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Abstract

Person Re-Identification (Re-ID) task seeks to enhance
the tracking of multiple individuals by surveillance cam-
eras. It supports multimodal tasks, including text-based
person retrieval and human matching. One of the most
significant challenges faced in Re-ID is clothes-changing,
where the same person may appear in different outfits.
While previous methods have made notable progress in
maintaining clothing data consistency and handling cloth-
ing change data, they still rely excessively on clothing in-
formation, which can limit performance due to the dynamic
nature of human appearances. To mitigate this challenge,
we propose the Pose-Guidance Deep Supervision (PGDS),
an effective framework for learning pose guidance within
the Re-ID task. It consists of three modules: a human
encoder, a pose encoder, and a Pose-to-Human Projection
module (PHP). Our framework guides the human encoder,
i.e., the main re-identification model, with pose informa-
tion from the pose encoder through multiple layers via the
knowledge transfer mechanism from the PHP module, help-
ing the human encoder learn body parts information with-
out increasing computation resources in the inference stage.
Through extensive experiments, our method surpasses the
performance of current state-of-the-art methods, demon-
strating its robustness and effectiveness for real-world ap-
plications. Our code is available at https://github.
com/huyquoctrinh/PGDS.

1. Introduction
Person Re-Identification (Re-ID) involves tracking and dis-
tinguishing individuals across various cameras and view-
points. This technique finds application in surveillance
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Figure 1: An example query retrieved by our framework
under the clothes-changing scenario.

camera systems, enhancing security measures by enabling
the search, tracking, and identifying unidentified individu-
als within specific areas or towns, thereby enhancing secu-
rity measures.

Despite notable advancements, several challenges persist
in the Re-ID task, e.g. occlusion, weather conditions, and
other external factors. In such problems, clothing-change
presents itself as one of those paramount challenges, first
highlighted by Xue et al. [31] and Wu et al. [30]. This chal-
lenge becomes particularly crucial in real-world scenarios
where individuals always change their clothes.

In recent years, researchers in the Re-ID domain have in-
creasingly focused on mitigating the clothing-change prob-
lem. Various methods, such as VC-Clothes [27], LTCC
[25], FSAM [11], CAL [7], and GI-ReID [13], have been
introduced to address this issue. The primary difficulty in
tackling this challenge arises from deep learning models re-
lying heavily on clothing appearance to make predictions
rather than considering biometric traits (e.g., face, hair,
pose, gait). A growing body of literature, such as PGFL-
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KD [33], Pose-transfer [18], Pose-guided re-ID [15], and
PSEAMA [14] have demonstrated the effectiveness of pose
information in tackling the clothes-chaning problem. How-
ever, these works often require complex modules to inte-
grate body parts information into the Re-ID model, leading
to an increase in computational cost, training time, and in-
ference time.

As a result, we introduce Pose-Guidance Deep
Supervision (PGDS), a simple and innovative framework
for the clothes-changing Re-ID task. Figure 1 indicates an
example query result of our framework under the clothing-
change scenario. In essence, our method builds upon three
main modules: human encoder, pose encoder, and Pose-
to-Human Projection module (PHP). The human encoder,
i.e., the main Re-ID model, efficiently adapts SOLIDER
[5], a self-supervised learning framework for human-centric
tasks, to extract the general human representations from
the input images. At the same time, the pose encoder is
taken from the pose estimation model OpenPose [3] to gen-
erate meaningful global features for biometric identifica-
tion, which includes the pose, body, foot, hand, and fa-
cial. Our PHP, which includes several projectors, operates
between two encoders to transfer the pose information ex-
tracted from the pose encoder to the human encoder across
various scales. In practice, we fine-tune the pre-trained hu-
man encoder and train our projectors while freezing the
pose encoder since we only need the general human pose in-
formation from the pose encoder. By incorporating pose in-
formation into the multiple layers, the Re-ID model can ef-
fectively concentrate on the body parts information, which
contain unique information crucial for individual identifica-
tion. Furthermore, integrating the frozen pre-trained pose
estimation model also avoids increasing the computational
cost in the inference stage, thus benefiting real-world appli-
cations. In summary, this paper’s main contributions are as
follows:

• We explore the potential of transferring the human
pose structure knowledge from the frozen pose estima-
tion model into the main Re-ID network to overcome
the clothes-changing problem. This simple strategy
can be the baseline approach to alleviate the clothes-
changing effect on the Re-ID task.

• We introduce a Re-ID framework, termed PGDS, in-
corporating a frozen pre-trained pose estimation model
to guide the human representation model across differ-
ent scales.

• We conduct comprehensive ablation studies on multi-
ple datasets to assess the effectiveness of our proposed
PGDS framework.

The content of this paper is organized as follows. In
Section 2, we briefly review existing methods for Clothes-

changing Re-Identification problem and similar works that
explore the utilization of pose information for Person Re-
Identification. Then, we introduce our proposed method in
Section 3. Section 4 presents the experiment setup, perfor-
mance comparison, and ablation study. Finally, we con-
clude our work and suggest problems for future work in
Section 5.

2. Related Work

Clothes-changing Re-Identification: Clothes-changing
poses one of the most significant challenges in the Per-
son Re-Identification task. The introduction of the LTCC
dataset [25] marked a significant development in address-
ing the clothes-changing problem. Subsequent research has
yielded various methods to tackle this challenge. FSAM
[11] aims to obtain coarse ID masks with structure-related
details, incorporating ID-relevant information for discrim-
inative structural feature extraction. CAL [7] proposes
a novel multi-positive-class classification loss to formu-
late multi-class adversarial learning. GI-ReID [13] inte-
grates clothes classification and a casual inference model
to mitigate bias in clothing information. AIM [32] de-
fines a causality-based auto-intervention model to miti-
gate clothing bias for robust Clothes-changing Person Re-
identification. FIRe2 [28] introduces fine-grained feature
mining and a fine-grained attribute recomposition module to
enhance the learning of robust features. Although previous
works achieved impressive results on the clothes-changing
Re-ID, it is worth noting that these methods lack focusing
on the crucial parts of the body, which is the salient informa-
tion to distinguish a specific person. In contrast, our work
focus on prioritizing body parts information by efficiently
leverage the pose information from frozen pre-trained pose
estimation model to guide the main Re-ID model.
Pose Guide for Clothes-changing Re-Identification:
Pose is crucial information utilized to guide Re-
Identification models. Several methods have been proposed
based on this approach. Among the most notable ones are
ABDNet [4], PGR [16], Gated Fusion [1], and Pitr [2].
These methods follow the concept of integrating modules
to fuse features extracted from pose heatmaps to the Re-ID
models. More recently, PGFL-KD [33], PFD [29], Pose-
guided re-ID [15], and PSEAMA [14] have leveraged pose
guidance through part matching via global features. These
methods demonstrate the effectiveness of pose information
in guiding Re-ID models. However, the primary issue noted
in these approaches is the substantial computational load
imposed by the fusion modules, which are used to incorpo-
rate pose information into the main model. Differently from
these previous works, PGDS integrates the pre-trained pose
estimation model during the training phase, which remains
frozen, to guide the main Re-ID model with pose informa-
tion. This approach prevents an increase in computational



expenses during the inference stage.

3. Proposed PGDS

In this section, we introduce our PGDS framework, which
consists of three primary modules: the human encoder, the
pose encoder, and the pose-to-human projection module
(PHP), as illustrated in Figure 2.

The human encoder takes in the image, learns each per-
son’s feature representations and unique human appearance
information, and then returns the image embedding. Mean-
while, the pose encoder (i.e., from a frozen pre-trained pose
estimation model) is used to extract the human pose infor-
mation from the input image and packs this information into
a pose heatmap. In the training phase, the PHP encourages
the early layers of the human encoder to attain the human
representation with additional pose information through a
knowledge distillation mechanism. When inferring, only
feature representations from the human encoder are used to
accomplish the re-identification task. In other words, we
leverage a frozen encoder pre-trained for pose estimation as
a teacher to compel the student human encoder to retain
pose information into the image embedding. We detail each
component in the following subsections to provide more in-
depth information.

3.1. Pose Encoder

As mentioned, the proposed PGS aims to transfer the gait,
pose, and posture information, which are unique character-
istics of each person, to consolidate the model’s capacity to
identify the same person wearing different clothes. Thus,
we propose a simple strategy that exploits a frozen pre-
trained pose estimator to enhance the Re-ID model’s abil-
ity to concentrate on body part information instead of cloth
appearance.

Our pose encoder is derived from the OpenPose [3], a
popular 2D pose estimation model. We hypothesize that the
feature representation from OpenPose sufficiently and effi-
ciently covers the pose-related information for our frame-
work since we only want to get the general posture infor-
mation. As a consequence, we keep the pose encoder un-
changed so that we can minimize the number of parameters
during training.

The pose encoder takes the input human image to gen-
erate the confidence map (i.e. pose feature), which high-
lights parts of the human, including “human body, hand,
facial, and foot keypoints” [3]. The confidence map is
then passed through the global average pooling and fully
connected layer to produce the meaningful feature maps
fp ∈ R1×768 that are associated with the overall posture
information.

3.2. Human Encoder

Our human encoder is derived from SOLIDER [5], a
human-centric self-supervised learning framework. It is im-
portant to note that the SOLIDER framework is based on
the teacher-student knowledge distillation approach. Thus,
it can adapt to a wide range of downstream tasks with differ-
ent requisitions of semantic information and appearance in-
formation. In addition to the teacher and student networks,
SOLIDER has a novel semantic controller that can modify
the ratio of semantic over appearance information encoded
in the feature.

Following the original paper [5], we use SOLIDER’s stu-
dent network as our human encoder, accompanied by the
frozen semantic controller with the ratio λhuman = 0.2.
More precisely, the backbone of the human encoder is the
Swin Transformer [20], which consists of four main lay-
ers. First, the human encoder will encode the image X ∈
RW×H×3 into five scale features fh

i ∈ R
W

2i+1 × H

2i+1 ×Ci

where Ci ∈ {48, 96, 192, 384, 768}, and i ∈ {0, 1, 2, 3, 4}.
The final scale feature fh

4 undergoes the linear layer to gen-
erate the final human embedding, denoted as f ∈ R1×768.
Each human embedding will be utilized to retrieve each in-
dividual. We train this human encoder in the contrastive
learning manner with the triplet loss so that the model can
discriminate between different people. This image embed-
ding will also be aligned with the pose feature fp by the
guide loss function [10], which we will detail in the follow-
ing subsection 3.4.

3.3. Pose-to-Human Projection Module (PHP)

The primary objective of PHP is to effectively and robustly
transfer posture knowledge from the pose encoder to the
human encoder. To enhance the consistency of the human
encoder throughout all its stages, PHP incorporates three
projectors corresponding to the three intermediate layers of
the human encoder. At each stage, denoted as i, the projec-
tor begins with the input feature from the human encoder,
referred to as fh

i . It then extracts implicit human repre-
sentations, denoted as ff

i , through a series of operations,
including global average pooling, linear projection, batch
normalization, and applying the non-linear ReLU activation
function.

It is important to note that the human encoder outputs
feature vectors that are more informative and semantically
richer compared to the pose encoder, which only contains
human pose information. From this understanding, it be-
comes apparent that directly guiding the features from the
human encoder with pose features might result in the loss
of other crucial information embedded in the human fea-
tures. Therefore, we design an indirect transfer knowledge
mechanism called a projector. This mechanism enables the
human encoder to learn pose information without compro-
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Figure 2: Overall framework of proposed PGDS including three modules: a human encoder, a pose encoder, and a pose-
to-human projection module (PHP). The pose encoder module utilizes a frozen pre-trained model while we fine-tune a
pre-trained human-centric model for the human encoder module. Our PHP transfers pose knowledge from the pose encoder
module to the human encoder module through multiple projectors and guide loss Lguide. H,W, and C denote the height,
width, and channel, respectively. Ltriplet is the triplet loss [10] which acquires person-centric representations.

mising other essential information. Intuitively, the projec-
tor acts as a non-linear, lightweight extractor. It unveils
human-specific information within the higher-dimensional
image representation of the human encoder and maps it to
the lower-dimensional pose heatmap space of the pose en-
coder. Consequently, the resulting features at each stage,
denoted as ff

i , are incorporated into the guide loss Lguide

to align them with the pose feature fp obtained from the
pose encoder.

3.4. Objective Functions

Our framework is trained end-to-end with a combined loss,
defined as in Equation 1.

Lcombined = Ltriplet + λLguide (1)

where Ltriplet is the triplet loss [10] to learn person-specific
representations, and Lguide is the guide loss to transfer the
pose knowledge from pose encoder to human encoder. The

hyperparameter λ, which we set to 0.8, controls the contri-
bution and effect of the guide loss on the whole system. See
section 4.3 for the ablation study on the λ values.
Triplet Loss: to learn a discriminative embedding in the
feature space (i.e., encouraging representations of the same
person to be similar to one another), we adapt the popular
deep metric learning triplet loss [10], which is defined as
follows:

Ltriplet =

N∑
i=1

[||fan
i − fpo

i ||22 − ||fan
i − fne

i ||22 + α] (2)

where N corresponds to the number of data samples in a
batch, i denotes the index of the sample, f stands for the
human embedding from the human encoder, and an, po, ne
symbols individually refer to the anchor, positive, and neg-
ative instances. We employ batch hard-triplet mining [9]
for the triplet selection. The parameter α signifies the mar-
gin, dictating the separation between embeddings. We set α



equal to 0.2 in our work.
Guide Loss: To encourage the model to learn semantically
consistent and clustered feature representations, we utilize
KL-divergence loss and the cross-entropy defined on the
class-probability vectors pp and pf of pose embedding fp

and human representation ff :

LKL(p
p, pf ) = yLsim(pp, pf ) + (1− y)Ldis(p

p, pf ) (3)

If pp and pf share the same human ID, y = 1 and

LKL(p
p, pf ) = Lsim(pp, pf ) = KL(pp|pf )+KL(pf |pp) (4)

Otherwise, y = 0 and

LKL(p
p, pf ) = Ldis(p

p, pf ) = max
(
0,
(
m−KL(pp|pf )

))
+max

(
0,
(
m−KL(pf |pp)

))
(5)

where m is user-specified margin and m = 2. The KL-
divergence is given by KL(p|q) =

∑K
k=1(p

klog(p
k

qk
))

Corresponding to three layers in PHP, the guide loss at
each layer ith is computed as LKL(p

p, pfi ), where pp and
pfi are class-probability vectors of pose embedding fp and
human representation ff

i .
During the training phase, at each stage, the primary ob-

jective of this loss function is to minimize the disparity be-
tween the distributions originating from pose embeddings
fp and those obtained from human embeddings ff

i . This
process helps determine the optimal weights for refining
human appearance representations by incorporating pose
knowledge. Consequently, the model becomes proficient at
capturing appearance and pose-related information. Since
we aim to introduce a simple framework for transferring
biometric knowledge (i.e., pose) to the Re-ID task, we have
not conducted an exhaustive search for the best loss func-
tions. This allows other researchers to explore the potential
of alternative loss functions for this task.

4. Experiments
4.1. Experimental Setup

Datasets: To assess the effectiveness of the proposed
PGDS, we conduct evaluations on five datasets that pre-
vious methods have widely used. These datasets cover a
wide range of scenarios and closely resemble real-world
conditions. Market-1501 [34] contains 1,501 identities ob-
served from 6 camera viewpoints, including 12,936 train-
ing images of 751 identities, 19,732 gallery images, and
2,228 queries. Duke-MTMC [26] comprises 34,183 images
of 1,404 identities from eight cameras. It contains 16,522
training images, 17,661 gallery images, and 2,228 queries.
CuHK03 [17] contains 14,097 pictures of 1,467 identities.

Additionally, the dataset offers 20 sets for training and test-
ing, where 100 identities are reserved for testing in each set
while the remaining identities are used for training. LTCC
[25] contains 17,119 person images of 152 identities. The
training set in this data includes 9,576 images with 77 iden-
tities (46 clothes-changing IDs and 31 clothes-consistent
IDs). The testing set includes 493 query images and 7,050
test images with 75 identities (45 clothes-changing IDs +
30 clothes-consistent IDs). This dataset includes two types
of testing: Standard (test cases including clothes-changing
and clothes-consistent), and CC (test cases include only
clothes-changing IDs). VC-Clothes [27] comprises synthe-
sized human images. It encompasses 19,060 images of 512
unique identities in four scenes. In the training phase, 9449
images of 256 identities are employed, leaving the remain-
ing 9611 images of 256 identities for the testing phase.

Implementation Detail: During the training and testing
phase, all images are resized to dimensions of 384 × 128.
Our training and testing for the clothes-consistent follow the
setting of Bag of Trick [22], while in the clothes-changing
testing, we follow the setup of LTCC [25]. The Pytorch
framework is used, and all experiments are done on the
Tesla A100 40GB GPU. The batch size for the training and
testing is 64; we also use the learning rate scheduler to sup-
port our training experiments with a base learning rate of
8e-4, and the temperature value equals 2. We choose the
AdamW [21] as our optimizer, and the best weight has been
gotten after 250 epochs.

Baselines: Based on two kinds of Re-ID problems, we
select different baselines in two scenarios as follows. For
clothes-changing setting, we evaluate our method on LTCC-
Standard, LTCC-CC and VC-Clothes datasets. We com-
pare our method with other state-of-the-art methods (i.e.,
LTCC [25], FSAM [11], CAL [7], GI-ReID [13], AIM [32],
and FIRe2 [28]). For clothes-consistent setting, we evaluate
our method on Market-1501, Duke-MTMC and CuHK03
datasets. We compare our method with several state-of-the-
art methods on the Re-ID task, including Bag of Trick [22],
ABDNet [4], Auto-ReID+ [6], TransReID [8], PGFL-KD
[33], AML [12], PFD [29], and SOLIDER [5]. To fur-
ther assess the robustness of our model, we conduct the
cross-domain setting in two scenarios: the Duke to Mar-
ket (D −→ M ) and the Market to Duke (M −→ D). We
compare our method against several existing methods, e.g.,
SSL [23], ATNet [19], UDAP [24], and SOLIDER [5].

Evaluation Metrics: For a fair comparison, we em-
ploy two metrics, i.e., mean Average Precision (mAP), and
Rank-1 accuracy (R1). mAP is calculated via the area under
the precision-recall curve while R1 is defined by how many
samples are correct in the top-1 prediction.



4.2. Performance Comparisons

The results of the clothes-changing setting, the clothes-
consistent setting, and the cross-domain setting are shown
in Table 1, Table 2, and the Table 3, respectively.

Table 1: Quantitative results on the clothes-changing
datasets. The highest scores are shown in bold.

Methods LTCC-Standard LTCC-CC VC-Clothes
mAP↑ R1↑ mAP↑ R1↑ mAP↑ R1↑

LTCC [25] 34.3 71.4 11.7 25.2 −− −−
FSAM [11] 35.4 73.2 16.2 38.5 78.9 78.6
CAL [7] 40.8 74.2 18.0 40.1 −− −−
GI-ReID [13] 29.4 63.2 10.4 23.7 59.0 63.7
AIM [32] 41.1 76.3 19.1 40.6 74.1 73.7
FIRe2 [28] 39.9 75.9 19.1 44.6 −− −−
PGDS (Ours) 43.0 77.5 26.7 49.1 84.6 92.5

Clothes-changing: From Table 1, it is evident that on the
LTCC-Standard dataset, our model showcases an improve-
ment of over +1.9% in mAP and +1.2% in the R1 met-
ric compared to the second-best method, AIM [32]. In the
sole clothes-changing testing scenario (LTCC-CC dataset),
our method outperforms the second-best (FIRe2) with a
+7.6% improvement in mAP and a substantial margin of
+4.5% in the R1 metric. As for the VC-Clothes dataset,
our method achieves a notable improvement of +5.7% in
mAP and +13.9% in the R1 metric compared to the second-
best method, FSAM. These results underscore the efficacy
of our method in addressing the clothes-changing problem
by prioritizing other body parts over clothing information.

Table 2: Quantitative results on the clothes-consistent
datasets. The highest scores are shown in bold.

Methods Market-1501 Duke-MTMC CuHK03
mAP↑ R1↑ mAP↑ R1↑ mAP↑ R1↑

Bag of Trick [22] 94.2 95.4 89.1 90.3 56.6 58.8
ABDNet [4] 88.3 95.6 78.6 89.0 −− −−
Auto-ReID+ [6] 88.2 95.8 80.1 90.1 74.2 78.1
PGFL-KD [33] 87.2 95.3 79.5 89.6 −− −−
AML [12] 89.5 95.7 81.7 91.1 82.3 85.6
PFD [29] 89.7 95.5 82.2 90.6 −− −−
SOLIDER [5] 95.3 96.6 86.1 89.4 71.6 67.4
PGDS (Our) 95.4 96.9 91.4 92.6 89.7 87.9

Clothes-consistent: From Table 2, it is evident that our
method leads to an improvement of +0.1% in the mAP met-
ric and +0.3% in the R1 metric on the Market-1501 dataset
when compared to the second-best method, SOLIDER [5].
Regarding the Duke-MTMC dataset, our method achieves
a better mAP metric by +2.3% and an improvement of
+2.3% in the R1 metric compared to the second-best
method, Bag of Tricks [22]. In the CuHK03 dataset, our
method surpasses the second-best method, AML [12], by a
margin of +7.4% in the mAP metric and +2.3% in the R1

metric. These results demonstrate that our method remains
competitive with state-of-the-art approaches across all three
datasets, emphasizing the efficacy of leveraging pose infor-
mation for distinguishing individuals. Such outcomes are
significant as they highlight the potential robustness of our
approach for future studies.

Cross-domain testing: From Table 3, in the D −→ M
setting, our method surpasses the second best method by
margins of +9.9% and +1.2% in terms of mAP and R1, re-
spectively. While in the M −→ D scenario, we exceed the
performance by +3.2% and +3.7% in mAP and R1 com-
pared to the second best method. These results highlight
the robustness of our framework in the Re-ID task.

Table 3: Results of the cross-domain testing. D, M represent
the Duke-MTMC and Market-1501 datasets. The highest
scores are shown in bold.

Methods D −→ M M −→ D
mAP↑ R1↑ mAP↑ R1↑

SSL [23] 37.8 71.7 28.6 52.5
ATNet [19] 25.6 55.7 24.9 45.1
UDAP [24] 53.7 75.8 49.0 68.4
SOLIDER [5] 50.3 59.9 50.3 59.9
PGDS (Our) 63.6 77.0 53.5 72.1

4.3. Ablation Study

To evaluate the effectiveness of the PGDS framework, we
conducted four ablation studies. The first experiment as-
sesses the effectiveness of pose guidance by the PHP mod-
ule across multiple scales in the clothes-consistent problem,
compared to the baseline human encoder (i.e., SOLIDER
[5]). The second experiment verifies the PHP module’s ef-
fectiveness across multiple scales in the clothes-changing
problem. The third experiment explores the impact of the
parameter λ, which controls the contribution of the guide
loss in the total loss, on knowledge transfer.

Effect of PHP across multiple scales in clothes-consistent
problem: Table 4 shows that with our proposed PHP mod-
ule applying to numerous stages, the results are improved
over the baseline, even with a relatively small number of
added trainable parameters. Since our framework only uses
the human encoder in the inference stage, thus the FLOPs
value remains the same compared with the baseline.



Table 4: Impact of PHP in clothes-consistent problem com-
pared with baseline in Duke-MTMC dataset. Our method,
represented by three distinct versions, i.e., PGDS-1, PGDS-
2, and PGDS-3, incorporates one to three PHP projectors
for transferring posture knowledge.

Methods Computational Cost Metrics
Params(M)↓ FLOPs(G)↓ mAP↑ R1↑

SOLIDER [5] 27.51 5.54 86.1 89.4
PGDS-1 28.13(0.62) 5.54 88.6(2.5) 90.9(1.5)
PGDS-2 28.28(0.77) 5.54 89.6(3.5) 91.4(2.0)
PGDS-3 28.57(1.06) 5.54 91.4(5.3) 92.6(3.2)

Effect of PHP across multiple scales in clothes-changing
problem: The results are summarized in Table 5 indicate
that when integrating the projector of PHP into multiple
stages, the Re-ID framework can make more robust predic-
tion since it prioritizes the pose information more than the
clothes.

Table 5: Impact of PHP in clothes-changing problem.

Settings LTCC-CC VC-Clothes
mAP↑ R1↑ mAP↑ R1↑

PGDS-1 23.5 45.1 83.3 91.3
PGDS-2 24.4(0.9) 45.6(0.5) 83.4(0.1) 91.4(0.1)
PGDS-3 26.7(3.2) 49.1(4.0) 84.6(1.3) 92.5(1.2)

Impact of λ for knowledge transfer: As illustrated in Ta-
ble 6, the results indicate that the model’s performance first
improves and then declines when λ equals 1.0. This phe-
nomenon occurs because a low λ limits the model’s ability
to adapt to pose knowledge, while setting λ to 1.0 can make
it challenging for the model to optimize both the triplet loss
and guide loss simultaneously.

Table 6: Ablation of the λ parameters on LTCC-CC dataset.

Accuracy λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0
mAP↑ 25.2 25.6 25.9 26.7 26.2
R1↑ 45.8 48.6 48.9 49.1 45.8

4.4. Feature Map Visualization

To gain deeper insights into the behavior of our framework,
we conducted heatmap visualization, as depicted in Fig-
ure 3. This visualization readily highlights that the result-
ing heatmaps from the three versions (PGDS-1, PGDS-2,
PGDS-3) primarily concentrate on the human’s head and
various body parts. In simpler terms, the synergy of the
human encoder, pose encoder, and the PHP module equips
the model with the ability to accurately prioritize the human
body, reducing its dependence on clothing variations.

Figure 3: Heatmap visualization compared with baseline to
understand the behavior of our framework. The baseline is
the SOLIDER [5].

5. Conclusion
In conclusion, this paper introduces the concept of Pose-
Guidance Deep Supervision (PGDS), which transfers the
pose knowledge into the main Re-ID model at multiple
scales for robust Re-ID in scenarios involving both clothes-
consistent and clothes-changing. Our study demonstrates
the effectiveness of this approach in enabling the model to
learn robust features, as evidenced by its competitive perfor-
mance compared to current state-of-the-art methods. This
simple approach is a promising candidate for real-world
camera surveillance applications and provides a solid foun-
dation for future studies to build more robust models. We
encourage fellow researchers to explore various methods to
improve this framework and address cloth-changing prob-
lems through the approach that integrates pose information.
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