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ABSTRACT

This paper introduces PINT (Physics-Informed Neural Time Series Models), a
novel framework designed to integrate physical constraints into neural time series
models, thereby enhancing their ability to capture complex dynamics in real-world
datasets. To demonstrate its practical utility, we apply PINT to the ERAS Weath-
erBench dataset, a widely-used benchmark for climate prediction, focusing on
long-term forecasting of 2m-temperature data.

PINT leverages the Simple Harmonic Oscillator Equation as a physics-informed
prior, incorporating its periodic dynamics into three popular neural architectures:
RNN, LSTM, and GRU. The choice of the Simple Harmonic Oscillator Equation
is motivated by its well-known analytical solutions (sine and cosine functions),
which not only represent periodic dynamics but also enable rigorous evaluation
of the performance improvements achieved through the incorporation of physics-
informed constraints. By benchmarking against a linear regression baseline de-
rived from the exact solutions of this equation, we quantify the added value of
embedding physical principles in data-driven models.

Unlike traditional time series approaches that often rely on future observations
for inference or training, PINT is designed for practical forecasting scenarios.
Using only the first 90 days of observed data, the framework iteratively predicts
the next two years, addressing challenges associated with limited or missing real-
time updates.

Extensive experiments on the WeatherBench dataset showcase PINT’s ability to
generalize to unseen data, accurately capture periodic trends, and align with under-
lying physical principles. This study highlights the potential of physics-informed
neural time series models to bridge the gap between data-driven machine learning
and the interpretability required for climate applications.

1 INTRODUCTION

Accurately modeling periodic dynamics in temporal data is a critical challenge in scientific model-
ing, with applications spanning physics, biology, and climate science. Real-world processes such as
oscillatory systems, seasonal climate variations, and energy cycles exhibit strong periodic behaviors
that demand models capable of leveraging domain-specific knowledge for reliable and interpretable
predictions. While traditional machine learning approaches excel in short-term forecasting, their
ability to generalize to long-term trends while adhering to underlying physical principles remains
limited.
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This paper introduces PINT (Physics-Informed Neural Time Series Models), a framework de-
signed to integrate physical constraints into neural architectures for robust handling of periodic
patterns in temporal data. Central to the framework is the Simple Harmonic Oscillator Equation,
a fundamental model of periodic dynamics with well-known analytical solutions (sine and cosine
functions). By embedding these solutions as constraints, PINT enhances the ability of neural models
to capture oscillatory behaviors and improves their interpretability. Furthermore, the availability of
analytical solutions allows us to quantitatively benchmark the performance improvements achieved
by incorporating physics-informed constraints.

To evaluate its practical applicability, we apply PINT to the ERAS WeatherBench datasetRasp et al.
(2020), focusing on long-term forecasting of 2m-temperature data. Climate datasets, such as ERAS,
are inherently periodic due to Earth’s rotation, revolution, and seasonal cycles, making them ideal
testbeds for physics-informed approaches. Unlike traditional numerical weather prediction (NWP)
models, such as the Integrated Forecasting System (IFS) [Bauer et al.|(2021)), which rely on solving
complex partial differential equations (PDEs) for atmospheric simulations, PINT provides a scalable
data-driven alternative with reduced computational overhead and improved interpretability.

In comparison to existing machine learning approaches like ClimODE |Verma et al.|(2024), ClimaX
Nguyen et al.| (2023)), and FourCastNet |Kurth et al.| (2023)), which focus on accurate short-term nu-
merical predictions, PINT differentiates itself by focusing on long-term forecasting. By iteratively
predicting extended future trends using only initial observations, PINT addresses challenges associ-
ated with cumulative errors and trend fidelity in long-term inference. Furthermore, by benchmarking
against a linear regression baseline derived from the harmonic oscillator’s analytical solutions, we
ensure rigorous and interpretable evaluation of the proposed framework’s performance.

Key Contributions:

* We introduce PINT, a Physics-Informed Neural Time Series framework, integrating the
Simple Harmonic Oscillator Equation as a constraint to capture periodic dynamics in tem-
poral data.

* We demonstrate PINT’s applicability on the ERAS WeatherBench dataset for long-term
forecasting, showcasing its ability to model periodic trends inherent in real-world climate
data.

* Unlike traditional RNN, LSTM, and GRU architectures, which also can perform auto-
regressive inference, PINT leverages embedded physical laws to deliver more robust and
interpretable results for long-term forecasting.

2 METHODOLOGY

2.1 RECURRENT NEURAL NETWORKS (RNN)

Recurrent Neural Networks (RNN) are a foundational class of deep learning models designed to
handle sequential data. By employing recurrent connections, RNN can capture temporal depen-
dencies in data, making them suitable for time-series forecasting tasks. However, traditional RNN
often suffer from the vanishing gradient problem, which hampers their ability to learn long-term
dependencies |[Hopfield (1982). Despite this limitation, RNN provide a baseline for evaluating the
effectiveness of more advanced architectures.

2.2 LONG SHORT-TERM MEMORY NETWORKS (LSTM)

Long Short-Term Memory Networks (LSTM) extend RNNs by introducing memory cells and gat-
ing mechanisms—namely, the input, forget, and output gates—that regulate the flow of information
Hochreiter & Schmidhuber (1997). These gates enable LSTM to learn and retain long-term de-
pendencies effectively, overcoming the vanishing gradient problem. Due to their ability to model
complex temporal relationships, LSTM are widely used in climate forecasting tasks|Qin et al.|(2017).
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2.3  GATED RECURRENT UNITS (GRU)

Gated Recurrent Units (GRU) simplify LSTM by merging the input and forget gates into a single
update gate |Cho et al.| (2014). This reduction in complexity decreases the number of parameters
while maintaining the ability to model long-term dependencies. GRU have shown comparable per-
formance to LSTM in various sequential modeling tasks, including weather prediction Yu et al.
(2017).

2.4 PHYSICS-INFORMED NEURAL TIME SERIES MODELS (PINT)

Physics-informed neural networks (PINN) incorporate domain knowledge by embedding physical
constraints into the learning process Raissi et al.|(2019). For example, in climate modeling, seasonal
variations can be described by the harmonic oscillator equation:

u” (t) + w?u(t) =0, (1)

where w = 27” represents the angular frequency for a periodic signal with period 7. Given that the

period T for climate data corresponds to one year (365 days), w is set to 32?”5.

Notably, since the data has been standardized (mean centered and variance normalized), no offset
value (constant term) is required. The standardization ensures that the mean of the data is zero,
effectively aligning the harmonic oscillator equation with the standardized time series. Moreover,
as shown in Figure |1} the framework combines data-driven loss with physics-based constraints to
enhance model predictions.
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Figure 1: Structure of PINT utilizing physics knowledge based on Simple harmonic oscillator.

The corresponding physics-informed loss ensures that the model predictions align with known phys-
ical laws:

N
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The total loss function used during training combines the physics-informed loss with the standard
data-driven loss, weighted by a hyperparameter Appysics, Which balances the influence of the two
terms:

Ltotal = )\dataﬁdata + Aphysicsﬁphysicsa (3)

where L4, represents the standard data loss (e.g., mean squared error between predictions and
observations), Adar 1S the data loss weight which is set to 1, and Aphysics is the physics loss weight.
This combined loss formulation enables the model to leverage prior knowledge effectively while
ensuring accurate predictions from the data.

Integrating this combined loss term into the training process improves interpretability and gener-
alization, especially for tasks requiring the enforcement of physical consistency, such as climate
forecasting.
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2.5 LINEAR REGRESSION UNDER PHYSICS’S LAwW

Linear Regression serves as a fundamental statistical technique used to model the relationship be-

tween a dependent variable and one or more independent variables by fitting a linear equation to
observed data. In the context of climate modeling, a simple harmonic equation is often sufficient for
representing seasonal cycles:

z(t) = By cos(wt) + B2 sin(wt), 4)
where w = %’T For this study, the period 7 is set to 365 days, resulting inw = 3277%. This formulation
mirrors the basic structure of a simple harmonic oscillator, providing a straightforward yet effective
baseline for comparing more sophisticated machine learning approaches.

Notably, since the dependent variable z(¢) has been standardized (mean centered and variance nor-

malized), no offset value (constant term) is required in this formulation. The standardization ensures
that the mean of the data is zero, thereby eliminating the need for a constant intercept term.

2.6 AUTOREGRESSIVE INFERENCE FOR LONG-TERM FORECASTING

In the context of climate modeling, autoregressive inference is a practical approach for long-term
forecasting. Unlike standard predictive models that rely on complete input sequences for each pre-

diction step, autoregressive models iteratively use their own predictions as inputs for subsequent
forecasts. This allows them to extend forecasting horizons without requiring intermediate observa-
tions.

Figure |2| illustrates the autoregressive inference workflow in the context of Recurrent Neural Net-
works (RNN). In each step:

* The model takes an input vector x, which consists of observed data for the initial time steps.
* The model predicts the next set of values 3 for the forecasting horizon.

* The predicted values ¢ are concatenated with the original input x, forming a new input
sequence for the next iteration.
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Figure 2: Workflow of the autoregressive inference for long-term forecasting.

PERFORMANCE METRICS

To evaluate the models, two key performance metrics are used:

* Root Mean Square Error (RMSE): This measures the average magnitude of the predic-
tion errors, defined as:

N
1
— § .02
RMSE = N (yz yz) )

®)
i=1
where y; are the observed values and g; are the predicted values. A lower RMSE indicates
better model accuracy.
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* Correlation Coefficient (CORR): This quantifies the strength and direction of the linear
relationship between the observed and predicted values, defined as:

SN (i — )@~ 9)
VEN - 92 X - )2

where 7 and 7 are the means of the observed and predicted values, respectively. A CORR
value closer to 1 indicates better alignment between predictions and observations.

CORR =

) (6)

3 DATA

To evaluate the proposed framework, we utilize the ERAS dataset from WeatherBench, a compre-
hensive real-world time series dataset specifically designed for benchmarking weather forecasting
models.

3.1 ERAS5 WEATHERBENCH

The ERAS dataset, derived from the European Centre for Medium-Range Weather Forecasts
(ECMWEF), offers a global atmospheric reanalysis that has been widely utilized in climatic stud-
ies [Rasp et al.| (2020). For this study, we specifically focus on the 2m_temperature (t2m) variable
from WeatherBench, which records the air temperature at two meters above the ground. The 2m
variable is particularly suitable for our analysis as it reflects near-surface atmospheric conditions,
making it highly relevant for climate modeling and forecasting applications.

We selected three cities with distinct climatic conditions—Seoul (South Korea), Washington, D.C.
(United States), and Beijing (China)—to ensure the robustness and applicability of our model across
different geographic and environmental contexts. The data for each city is spatially averaged around
the nearest grid point to the city’s coordinates, ensuring that local climatic conditions are adequately
captured.

3.2 DATA PROCESSING AND SEQUENCE MODELING

The temperature data from WeatherBench is split into training, validation, and test sets covering
different years. Moreover, descriptive statistics for each is shown in Table ??:

* Training Data: 2008-2012
¢ Validation Data: 2013-2015
e Test Data: 2016-2018

Each dataset includes daily temperature averages, which are used to construct input sequences of 90
days. These sequences are utilized to predict the subsequent 30 days of temperatures, allowing the
model to capture both short-term fluctuations and seasonal trends. This sequence modeling approach
is designed to test the model’s ability to leverage past climate data to forecast future conditions
effectively.

4 RESULTS

The predictive performance of the models was evaluated using two key metrics: Root Mean Square
Error (RMSE) and correlation coefficient (CORR). RMSE provides a measure of the average magni-
tude of errors between predicted and observed temperatures, offering a direct comparison of model
accuracy. CORR evaluates the strength and direction of the linear relationship between predictions
and actual values, reflecting the models’ ability to capture temporal trends in the data. Figures [4]
[lillustrate the time series comparisons for Seoul, Beijing, and Washington-DC, respectively, high-
lighting the performance of different models across these cities. Furthermore, Estimated Linear
Regression Beta Coefficients for each city are presented in Table I]

This section evaluates the performance of different models, focusing on four key comparisons: (1)
Choosing a Hyperparameter: physics loss weight, (2) RNN-family models vs. Physics-Informed
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Table 1: Linear Regression Beta Coefficients

City 31 (cosine) Bg(sine)
Seoul -1.2038 -0.5845
Beijing -1.3088 -0.3113
Washington-DC -1.0197 -0.8799

Counterparts, (3) A Best Model vs. Linear Regression as a baseline, and (4) general observations
across datasets.

4.1 CHOOSING A HYPERPARAMETER: PHYSICS LOSS WEIGHT

The physics loss weight was validated for each city using five different hyperparameter values,
ranging from 10~! to 1077, decreasing by a factor of 10 at each step. The optimal value for each
city was selected based on the lowest RMSE. As a result, the best-performing physics loss weight
was determined to be 10~° for Seoul and 10~ for both Beijing and Washington, D.C.

To illustrate this selection, the following figure presents a comparison of the Physics-Informed
LSTM model in Seoul using physics loss weights of 1073, 10~%, and 10~° (see Figure [3).

Seoul: Physics-Informed LSTM with Different Physics Loss Weights vs. Linear Regression

g
£
g
&

Figure 3: Seoul: Physics-Informed LSTM with different physics loss weights

4.2 COMPARISON 1: RNN-FAMILY MODELS VS. PHYSICS-INFORMED COUNTERPARTS

Physics-Informed Neural Networks (PINNs) were developed to enhance the accuracy and inter-
pretability of RNN-family models by embedding physical constraints inspired by the harmonic os-
cillator equation. Among the tested models, the Physics-Informed LSTM consistently delivered the
best performance across the three cities analyzed, underscoring the value of incorporating physical
principles into machine learning models. Results are summarized in Table 2] Table [3] and Table 4]
A comprehensive visual comparison is presented in Figure ] and Figure[6]

Table 2: Seoul Model Performance Summary, when Appysics = 107°
Model | RMSE | RMSE (Physics) | CORR | CORR (Physics)
RNN 3.9329 | 2.8231 (-1.1098) | 0.9033 | 0.9509 (+0.0476)
LSTM | 3.9597 | 2.9413 (-1.0184) | 0.9036 | 0.9492 (+0.0456)
GRU 2.9262 | 2.9467 (+0.0205) | 0.9491 | 0.9475 (-0.0016)

Table 3: Beijing Model Performance Summary, when Appysics = 10-3
Model | RMSE | RMSE (Physics) | CORR | CORR (Physics)
RNN 4.2696 | 4.6542 (+0.3846) | 0.9416 | 0.9297 (-0.0119)
LSTM | 4.3549 | 3.7866 (-0.5683) | 0.9439 | 0.9545 (+0.0106)
GRU 5.7860 | 5.6230 (-0.163) 0.8982 | 0.8987 (+0.0005)

e Seoul: The Physics-Informed RNN Outperforms All Models In Seoul, which exhibited
strong seasonal trends, the Physics-Informed RNN achieved the best performance:
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Seoul: Physics-Informed RNN vs. RNN(baseline)
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Figure 4: A Comparison for RNN-family Models vs. Physics-Informed Counterparts across cities.

Table 4: Washington-DC Model Performance Summary, when Appysics = 10-3
Model | RMSE | RMSE (Physics) | CORR | CORR (Physics)
RNN 4.0391 | 2.4875 (-1.5516) | 0.5126 | 0.8204 (+0.3078)
LSTM | 1.8667 | 1.3907 (-0.4760) | 0.9040 | 0.9485 (+0.0455)
GRU 2.3930 | 1.5689 (-0.8241) | 0.8442 | 0.9374 (+0.0932)

— CORR: 0.9509
- RMSE: 2.8231

The Physics-Informed LSTM performed similarly but with slightly higher RMSE, empha-
sizing the effectiveness of RNN-based architectures for periodic datasets.

* Beijing: Physics-Informed LSTM Shows the Superiority In Beijing, the Physics-
Informed LSTM delivered the best balance between RMSE and CORR:
— CORR: 0.9545
— RMSE: 3.7866

The Physics-Informed LSTM demonstrated superior performance across all metrics, high-
lighting its ability to effectively capture temporal patterns and trends in the data.

* Washington-DC: Physics-Informed LSTM Excels In Washington-DC, the Physics-
Informed LSTM significantly outperformed all other models:
— CORR: 0.9475
— RMSE: 1.3907
These results highlight the LSTM’s ability to model complex dependencies and the added

benefit of embedding physical constraints, even in datasets with relatively stable temporal
variations.
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4.3 COMPARISON 2: A BEST MODEL VS. LINEAR REGRESSION (BASELINE)

Linear Regression served as a baseline model, leveraging harmonic oscillator-based seasonal trends
for interpretable predictions. Unlike deep learning models, Linear Regression required only the
training set (2008-2012) and avoided the need for a validation set. Despite its simplicity, it per-
formed competitively in Beijing and Washington-DC, highlighting the effectiveness of simpler mod-
els in certain contexts. For visual comparisons, see Figure 5]

Seoul: Physics-Informed RNN vs. Linear

Linear Regression
~—- Physics-Informed RNN

re (Celcius)

2m-Temperatu

(Celcius)

2m-Temperature
|

2m-Temperature (Celcius)

Figure 5: A Comparison for Best Model per city vs. Linear Regression (baseline).

Table 5: A Comparison of the Best Model and Linear Regression (2016-2018)
City Year Model RMSE | CORR
Seoul | 20162018 Linear Regression 3.0015 | 0.9463
Physics-Informed RNN | 2.8231 | 0.9509
Beijing | 2016-2018 Linear Regression 4.0187 | 09514
Physics-Informed LSTM | 3.7866 | 0.9545
W-DC | 20162018 Linear Regression 1.2065 | 0.9627
Physics-Informed LSTM | 1.3907 | 0.9485

* Seoul: Physics-Informed RNN Outperforms Baseline The Physics-Informed LSTM sig-
nificantly outperformed Linear Regression:
— RMSE: 2.8231 (vs. 3.0015 for Linear Regression)
— CORR: 0.9509 (vs. 0.9463 for Linear Regression)

These results underscore the advantage of combining data-driven approaches with physical
constraints in datasets with pronounced seasonal trends.

* Beijing: Physics-Informed LSTM Outperforms Baseline In Beijing, The Physics-
Informed LSTM slightly outperformed Linear Regression :
— RMSE: 3.7866
— CORR: 0.9545
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This result highlights the flexibility of LSTM models in datasets dominated by complex
patterns.

* Washington-DC: Physics-Informed LSTM Matches Linear Regression In Washington-
DC, the Physics-Informed LSTM achieved comparable performance to Linear Regression:

— RMSE: 1.3907 (vs. 1.2065 for Linear Regression)
— CORR: 0.9485 (vs. 0.9627 for Linear Regression)

The results demonstrate that the Physics-Informed LSTM effectively captures stable trends
while maintaining physical interpretability.

5 CONCLUSION AND FUTURE WORK

This study highlights the effectiveness of integrating physics-based constraints into neural network
architectures for long-term forecasting tasks. The proposed framework, PINT (Physics-Informed
Neural Time Series Models), has been demonstrated on climate datasets, specifically for predicting
near-surface air temperature (z2m), showcasing its ability to capture complex temporal dynamics and
long-term trends. However, PINT is designed as a general-purpose physics-informed framework
that can be extended to various domains beyond climate prediction, offering significant potential
in fields with underlying periodic or physical dynamics, such as energy forecasting, finance, and
healthcare.

The results indicate that PINT delivers superior performance compared to traditional recurrent neu-
ral networks (RNNs) for datasets with pronounced seasonal patterns. At the same time, simpler
models like Linear Regression remain competitive for datasets with stable, well-defined seasonal
trends. These findings underscore the importance of selecting models based on the nature and com-
plexity of the dataset, balancing data-driven learning with physical interpretability.

FUTURE DIRECTIONS

To further extend and enhance the utility of PINT, several promising directions for future research
are identified:

* Multivariate Forecasting: Expanding the framework to incorporate multivariate time se-
ries forecasting could offer richer insights. Variables like humidity, precipitation, and wind
speed in climate science—or other interdependent factors in different domains—should be
integrated to capture nonlinear interactions and dependencies.

* Adaptive Physics Loss: Developing adaptive weighting mechanisms for the physics-
informed loss terms will improve the trade-off between physical constraints and data-driven
learning. This will enhance the generalizability of PINT across diverse datasets and tem-
poral resolutions.

* Regional and Global Evaluation: For climate science, future studies should evaluate
PINT across a broader range of geographic regions, including polar, tropical, and arid
zones, to validate the model’s robustness under varying climatic regimes. Similarly, eval-
uations in other domains should address diverse use cases to demonstrate the framework’s
adaptability.
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Table 6:

Hyperparameters configuration of the RNN family used.
Hyperparameter Configuration
Optimizer Adam

Weight initialization Random
Learning rate 0.001
Activation function tanh

Dropout rate 0.1

Number of hidden layers 2

Number of neurons per layer | 64

Sequence length 90

Prediction length 30

Training epochs 1000

Batch size Full batch
Early stopping No

Table 7: Hyperparameters configuration of the PINN used.

Hyperparameter Configuration
Optimizer Adam
Weight initialization Random
Learning rate 0.001
Activation function tanh

Data loss weight 1

Physics loss weight 107 Tt0 1073
Regularization weight -

Number of hidden layers 2

Number of neurons per layer | 64

Dropout rate 0.1

Training epochs 1000

Early stopping No

Batch size Full batch

11
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Seoul Model Performance Comparison (RMSE & CORR)
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Figure 6: Bar plots for RNN-family Models vs. Physics-Informed Counterparts across cities.
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