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Abstract

Low-Rank Adaptation (LoRA) is a parameter-efficient technique for rapidly fine-
tuning foundation models. In standard LoRA training dynamics, models tend to
converge to a local optimum near the initialization quickly. However, this local
optimum may not be ideal for out-of-distribution data or tasks such as merging
and pruning. In this work, we introduce a novel progressive training strategy
for LoRA that incorporates random layer dropping without incurring additional
training costs. This strategy also optimizes the Shapley value of LoRA parameters
in each layer, treating each layer as a player in a cooperative game. We refer to this
method as Cooperative LoRA (CopRA). Our experimental results demonstrate that
parameters trained with CopRA exhibit linear mode connectivity, which enables
efficient model merging. This also paves the way for federated learning and multi-
task learning via LoRA merging. Additionally, by optimizing the Shapley value,
CopRA shows superior performance in pruning tasks.

“The strength of the team is each individual member. The strength of each member is the team.”

– Phil Jackson

1 Introduction

Understanding and interpreting neural network landscapes is critical and challenging in deep learning.
Since neural networks are over-parameterized and highly non-convex, there exists multiple near-
optima [18, 5]. Despite all the local optima with similar performance [5], the inherent training
dynamics of gradient-based optimization algorithms cause each parameter to remain close to its
initialization point [7, 3]. Recent investigations into mode connectivity [10, 6] and neuron permutation
symmetries [2, 15, 28] have revealed that different local minima are not isolated and can be rebasin.

Advancements in foundation models have been significantly enhanced by low-rank adaptation
(LoRA) [11], which modifies the weights of each existing layer using low-rank matrices. To improve
model generalization and fusion, the composability of LoRA modules has been investigated [12].
Linear fusion [12, 25], illustrated in Fig. 1(a), is a straightforward method that preserves the low-rank
characteristics of updated weights and does not require additional storage during inference. Linear
mode connectivity (LMC) [9, 30], which reveals that different local minima can be connected linearly
in the loss landscape, is a crucial property for linear fusion. However, previous works [27, 23] have
shown that standard LoRA training may not achieve LMC, leading to poor accuracy in merging.
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Figure 1: Illustration of (left) LoRA merging and (right) Training strategy of CopRA. Different
colors represent parameters from different seeds or tasks, while grey indicates inactive parameters.

In this paper, we propose a novel training strategy for LoRA that facilitates the exploration of local
optima exhibiting LMC. Building on the findings from the layer-wise linear mode connectivity [1], we
observe that the averaging barrier of individual layers is minimal, suggesting that linear interpolation
between two local optima remains optimal when training a single LoRA layer. Our strategy randomly
determines the participation of each LoRA module during training based on an increasing probability,
creating uncertainty in the subset of selected modules.

In the early training stages, fewer modules are optimized, resulting in a limited number of optimal
solutions that are more likely to satisfy (layer-wise or group-wise) LMC. As training progresses, the
number of updated LoRA modules per optimization iteration increases, enabling a broader exploration
toward the global optimum and improved accuracy. Ultimately, this lazy training ensures that the
final solution remains close to the preceding local optima, preserving the LMC property.

2 Methodology

Notation. In this paper, for simplicity and generality, we represent the foundation model as an
L-layer fully connected neural network, even though it is actually based on the Transformer archi-
tecture [22]. We denote the model as f(·; (W l)

L
l=1), where (W l)

L
l=1 represents the set of weight

matrices for all layers. To keep the notation simple, we omit biases and activation functions, as LoRA
only modifies the weight matrices. Given an input x0, the model’s output ŷ can be expressed as:
ŷ = f(x0; (W l)

L
l=1) = fL(WL,xL−1), where xl = fl(W l,xl−1), ∀l ∈ 1, . . . , L− 1. (1)

Here, xl serves as both the input to layer l and the intermediate feature at that layer. LoRA employs
two low-rank matrices to compute updates to the weight matrix: A ∈ Rr×n and B ∈ Rm×r, where
r ≪ min(m,n). The weight matrix update is computed as ∆W = αBA ∈ Rm×n, where α is a
scaling factor. Thus, the fine-tuned model can be represented as f(·; (W l +∆W l)

L
l=1). To evaluate

the model’s performance, we use the cross-entropy (CE) loss, denoted as ℓ(ŷ,y).

2.1 Training Strategy

In this section, we formally introduce our method. As illustrated in Fig. 1(b), we propose a progressive
training strategy with random adapter dropping. The objective is formulated as follows:

min
(∆W l)Ll=1

ℓ(ŷ,y), where ŷ = f(x0; (W l + δl∆W l)
L
l=1) and δl ∼ Bernoulli(p) (2)

In this formulation, (δl)Ll=1 are independent random variables sampled from a Bernoulli distribution
with parameter p, which increases progressively during training. Specifically, for a total of T steps, at
any given step t, the probability p is defined as min{ 4t

3T , 1}. The training process consists two stages:

◦ In the initial three-quarters of training (t < 3T
4 ), p gradually increases from 0 to 1.

◦ In the final quarter (t ≥ 3T
4 ), p is set to 1, ensuring all LoRA layers are activated. At this stage,

the training objective becomes equivalent to standard LoRA training.

This progressive changing objective approximates a multi-level optimization process, initially op-
timizing with a higher drop rate and then transitioning to a lower rate. As the number of trainable
parameters increases, the optimal LoRA parameters for each layer expand within the weight space.
With decreasing learning rates and the inertia of neural network parameters, this strategy encourages
the exploration of new local optima near those identified in earlier training stages. Therefore, the
final model will preserve the properties established initially, which enables linear mode connectivity.
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2.2 A Cooperative Game Perspective

To gain deeper insights into this training strategy, we can view each LoRA layer as a player in a coop-
erative game, enabling structured analysis of individual contributions to overall model performance.

In general, a cooperative game can be represented by the pair (N, v), where: N = {1, ..., n} denotes
the set of players (in this case, the individual LoRA layers); v : 2N → R is the characteristic
function. For any subset C, v(C) quantifies the collective “reward” that the players in C can achieve
by working together. The Shapley value [19] offers a method to fairly allocate the total gain among
all players based on their contributions. The proposed method helps evaluate each LoRA layer’s
marginal contribution by considering all possible layer combinations. Additionally, we show that our
method approximates the optimization of the Shapley value for each LoRA layer.

Mathematically, directly computing the Shapley value is computationally expensive. To approximate
it efficiently, one approach is the multilinear extension [16], where the Shapley value is calculated as:

φi(v) =

∫ 1

0

ei(q)dq, ei(q) = E [v (Ei ∪ i)− v (Ei)] . (3)

In our method, Ei denotes a random subset of LoRAs excluding i, where each LoRA is selected
with probability q. The term ei(q) captures the expected marginal contribution of LoRA i. This
expectation is estimated through sampling, without considering changes in the learning rate, aligning
with our optimization objective in Eq. 2. After training, we estimate the Shapley values for each layer,
and the experimental results presented in Fig. 2 further validate our inference.
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Figure 2: Approximated Shapley value of each layer.

3 Results

We adopt the setting of CLIP-LoRA [24] with 11 datasets [29] as the benchmark for merging
evaluation. To further demonstrate the advantage of our method, we select dtd [4] and ucf101 [20] for
other evaluation. We use the default configuration with a rank r = 2 and ViT-B/16 as the backbone.
The learning rate is set to 5e-4, and each task is run with five random seeds.

3.1 CopRA Excels in Merging due to Linear Mode Connectivity

There are two merging strategies [27, 23], fusion [12] and mixture. The updates can be formulated as:
∆W f = (αB1 + (1− α)B2)(αA1 + (1− α)A2) (Fusion)
∆Wm = α∆W 1 + (1− α)∆W 2 = αB1A1 + (1− α)B2A2 (Mixture)

(4)

We adopt the fusion strategy for evaluation because it preserves the low-rank structure, even though
the accuracy of the mixture (stacking) has been shown to be higher [27, 23]. Due to the equivariance
within the adapter, we introduce a learnable invertible matrix P via SVD decomposition and leading
to the formulation ∆W 2 = (B2P )(P−1A2). We then propose LoRA align (LA), which minimizes
an upper bound ∆upper of the difference between the two merging methods, defined as:

∥∆W f −∆Wm∥2 ≤ α(1− α)
(
∥B1 −B2P ∥2 + ∥A1 − P−1A2∥2

)
= ∆upper (5)

Results presented in Fig. 3 illustrate the accuracy landscape with various interpolation coefficients,
demonstrating the linear mode connectivity of CopRA. When the interpolation ratio is 0.5, meaning
that the two models are evenly merged, we observe that CopRA achieves a significant improvement
compared to LoRA. With LA, accuracy is further improved, suggesting that CopRA operates not
within the adapter but across layers. However, due to the additional cost of LA’s backpropagation, we
do not employ LA in the following section.
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Figure 3: Visualization of accuracy landscape across different methods for the CLIP datasets.
The X-axis represents the interpolation coefficient, while the Y-axis indicates accuracy (%).
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Figure 4: (left) Structured pruning to various components, including layers (every other, low,
middle, high) and attention elements. (right) Unstructured pruning with varying levels of sparsity.

Table 1: Accuracies (%) on the dtd and
ucf101 datasets under FL and MTL settings.

FL MTL
dtd ucf101 dtd ucf101

origin LoRA 69.15 85.18 72.22 86.06
CopRA 69.16 85.61 72.80 87.39

merge LoRA 54.37 73.01 58.58 78.77
CopRA 64.07 79.25 64.88 81.42

Federated Learning and Multi-Task Learning.
Two important applications of CopRA are the aggrega-
tion of LoRAs in federated learning (FL) [14, 25, 23]
and multi-task learning (MTL) [26, 27]. In FL, the
dataset is randomly split into five subsets, each assigned
to an independent client that trains its sub-model using
different seeds. The server then merges the five trained
sub-models. As shown in Tab. 1 (left), the accuracy
of clients using LoRA and CopRA on two datasets is
similar, while CopRA achieves superior aggregation.
In MTL, we fuse models trained on two different datasets and evaluate the merged model. The results
in Tab. 1 (right) indicate that CopRA outperforms standard LoRA in terms of merging performance.

3.2 CopRA Provides a Simple Way to Prune

In this section, we highlight the advantages of CopRA in pruning tasks. Although LoRA already
uses a relatively small number of parameters, further reducing redundancy is still beneficial. CopRA
involves randomly skipping LoRA layers during training, similar to the random structured dropout [8]
and stochastic depth [13]. This technique has shown promising results in sub-selection pruning
strategies, making CopRA particularly well-suited for pruning.

Fig. 4 presents the results for both structured pruning and unstructured pruning of LoRA and CopRA.
In structured pruning, the label “all” refers to the original, unpruned parameters, while “everyother”
denotes a simple pruning where every other LoRA layer is dropped. Other labels indicate the portion
of parameters retained after pruning. We also compare with the “Early CopRA”, which refers to the
checkpoint taken in the first quarter of the training epochs. This comparison validates our hypothesis
that the earlier training stages exhibit LMC. For unstructured pruning, the sparsity refers to the
percentage of parameters removed. For instance, with a pre-defined sparsity ratio of 0.1, we set
10% of the weights to zero. Our findings demonstrate that CopRA performs effectively under both
pruning strategies, benefiting from its early-stage training. Furthermore, CopRA can be successfully
combined with other quantization and pruning schemes. This allows each layer’s parameters trained
by CopRA to individually express their capabilities more effectively compared to LoRA.
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3.3 Analysis

A reasonable assumption is that if the weights trained from different seeds are similar, the performance
of merging would improve. However, the LoRA parameters produced by CopRA are not necessarily
more similar. As illustrated in Fig 5(a), we visualize both LoRA and CopRA parameters using
t-SNE [21] across different seeds. In addition, CopRA consistently outperforms LoRA across various
learning rates, as shown in Fig. 5(b), where LoRA training fails when the learning rate exceeds 1e-3.
Finally, to demonstrate the effective of CopRA in different domains, we conduct the merging tasks
on MTL15 [17], which consists of 15 text classification tasks, and present the results in Fig. 5(c).
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Figure 5: (left) T-SNE visualization with different seeds and learning rates. (middle) Merging
accuracy across different learning rates. (right) Merging results on the MTL15 dataset.

We further investigate the impact of reducing the number of iterations on CopRA. Firstly, because
CopRA optimizes only a subset of parameters at each step, it trains faster with the same iterations. In
CLIP-LoRA [24], the default number of iterations is set to n_iters = 500. As illustrated in Fig. 6(a),
we report the average accuracy of models trained with different iterations and learning rates. Notably,
CopRA exhibits underfitting with a learning rate of 5e-5 and 100 iterations, while LoRA experiences
instability with a learning rate of 5e-3 and 400 iterations; therefore, these cases are not included in the
results. In Fig. 6(b), under the settings described in Sec. 3.1, we present the accuracy of the merged
models with an interpolation ratio of 0.5, which significantly outperforms LoRA even when using
very few iterations. Additionally, Fig. 6(c) presents the merging results for the optimal configurations
of both LoRA (lr=1e-3, n_iters = 400) and CopRA (lr=5e-3, n_iters = 400) across the training steps.
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Figure 6: Accuracy (left) and merging accuracy (middle) with different iterations and learning
rates. (right) Accuracy over steps for the merged model, using best results from LoRA and CopRA.

4 Conclusion

In this work, we introduce CopRA, a novel LoRA training strategy that enhances the standard LoRA
by incorporating linear mode connectivity through progressive training with an increasing subset
of optimized modules. This strategy aligns with optimizing the Shapley value of each layer, which
implies that each LoRA enhances its marginal contribution. Notably, similar to dropout, our method
is simple and effective, without incurring additional training time. Our experiments demonstrate that
CopRA not only enables efficient model merging for applications in federated and multi-task learning
but also achieves superior performance in pruning. In the future, we will further theoretically validate
CopRA’s superiority and extend its application to instruction tuning tasks on large language models.

5



References

[1] L. Adilova, M. Andriushchenko, M. Kamp, A. Fischer, and M. Jaggi. Layer-wise linear mode
connectivity. In The Twelfth International Conference on Learning Representations, 2024.

[2] S. Ainsworth, J. Hayase, and S. Srinivasa. Git re-basin: Merging models modulo permutation
symmetries. In The Eleventh International Conference on Learning Representations, 2023.

[3] L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. Advances
in Neural Information Processing Systems, 32, 2019.

[4] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the wild.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3606–3613, 2014.

[5] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and
attacking the saddle point problem in high-dimensional non-convex optimization. Advances in
Neural Information Processing Systems, 27, 2014.

[6] F. Draxler, K. Veschgini, M. Salmhofer, and F. Hamprecht. Essentially no barriers in neural
network energy landscape. In International Conference on Machine Learning, pages 1309–1318.
PMLR, 2018.

[7] S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-
parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

[8] A. Fan, E. Grave, and A. Joulin. Reducing transformer depth on demand with structured dropout.
In International Conference on Learning Representations, 2020.

[9] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin. Linear mode connectivity and the lottery
ticket hypothesis. In International Conference on Machine Learning, pages 3259–3269. PMLR,
2020.

[10] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson. Loss surfaces, mode
connectivity, and fast ensembling of dnns. Advances in Neural Information Processing Systems,
31, 2018.

[11] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
Low-rank adaptation of large language models. In International Conference on Learning
Representations, 2022.

[12] C. Huang, Q. Liu, B. Y. Lin, T. Pang, C. Du, and M. Lin. Lorahub: Efficient cross-task
generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269, 2023.

[13] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep networks with stochastic depth.
In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part IV 14, pages 646–661. Springer, 2016.

[14] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial Intelligence and Statistics,
pages 1273–1282. PMLR, 2017.

[15] A. Navon, A. Shamsian, I. Achituve, E. Fetaya, G. Chechik, and H. Maron. Equivariant
architectures for learning in deep weight spaces. In International Conference on Machine
Learning, pages 25790–25816. PMLR, 2023.

[16] G. Owen. Multilinear extensions of games. Management Science, 18(5-part-2):64–79, 1972.

[17] A. Razdaibiedina, Y. Mao, R. Hou, M. Khabsa, M. Lewis, and A. Almahairi. Progressive
prompts: Continual learning for language models. In The Eleventh International Conference on
Learning Representations, 2023.

[18] L. Sagun, V. U. Guney, G. B. Arous, and Y. LeCun. Explorations on high dimensional landscapes.
arXiv preprint arXiv:1412.6615, 2014.

[19] L. S. Shapley. A value for n-person games. Contributions to the Theory of Games, 2, 1953.

[20] K. Soomro. Ucf101: A dataset of 101 human actions classes from videos in the wild. arXiv
preprint arXiv:1212.0402, 2012.

[21] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9(11), 2008.

6



[22] A. Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[23] Z. Wang, Z. Shen, Y. He, G. Sun, H. Wang, L. Lyu, and A. Li. Flora: Federated fine-tuning large
language models with heterogeneous low-rank adaptations. arXiv preprint arXiv:2409.05976,
2024.

[24] M. Zanella and I. Ben Ayed. Low-rank few-shot adaptation of vision-language models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1593–1603, 2024.

[25] J. Zhang, S. Vahidian, M. Kuo, C. Li, R. Zhang, T. Yu, G. Wang, and Y. Chen. Towards building
the federatedgpt: Federated instruction tuning. In ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6915–6919. IEEE,
2024.

[26] Y. Zhang and Q. Yang. A survey on multi-task learning. IEEE Transactions on Knowledge and
Data Engineering, 34(12):5586–5609, 2021.

[27] Z. Zhao, L. Gan, G. Wang, W. Zhou, H. Yang, K. Kuang, and F. Wu. Loraretriever: Input-aware
lora retrieval and composition for mixed tasks in the wild. arXiv preprint arXiv:2402.09997,
2024.

[28] A. Zhou, K. Yang, K. Burns, A. Cardace, Y. Jiang, S. Sokota, J. Z. Kolter, and C. Finn.
Permutation equivariant neural functionals. Advances in Neural Information Processing Systems,
36, 2024.

[29] K. Zhou, J. Yang, C. C. Loy, and Z. Liu. Learning to prompt for vision-language models.
International Journal of Computer Vision, 130(9):2337–2348, 2022.

[30] Z. Zhou, Y. Yang, X. Yang, J. Yan, and W. Hu. Going beyond linear mode connectivity: The
layerwise linear feature connectivity. Advances in Neural Information Processing Systems,
36:60853–60877, 2023.

7


	Introduction
	Methodology
	Training Strategy
	A Cooperative Game Perspective

	Results
	CopRA Excels in Merging due to Linear Mode Connectivity
	CopRA Provides a Simple Way to Prune
	Analysis

	Conclusion

