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DETECTING GEOMETRIC DEFORMATION IN VISUAL
GENERATION
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Figure 1: Artifact (geometric deformation) detection on a generated video. (Top) MEt3R
produces a diffuse error map and fails to localize the specific geometric error, as it relies on semantic
feature (DINO) consistency. (Middle) WorldScore (Depth Reprojection) correctly identifies the
inconsistent object by evaluating 3D depth consistency, but its resulting map is not sharply localized.
(Bottom) Our approach uses motion cues to isolate non-rigid flow and produces a sparse and
interpretable map that precisely pinpoints the subtle deformation.

ABSTRACT

Recent text-to-video and multi-view generative models produce striking imagery
but often violate basic 3D geometry, exhibiting non-rigid “melting” or “breath-
ing” artifacts across viewpoints. We study this failure mode in the static-scene
regime, where camera motion is allowed but objects must remain rigid; any ap-
parent object motion is deemed deformation. We introduce a geometry-grounded
detection pipeline that localizes and quantifies such artifacts. The pipeline esti-
mates camera motion and depth to predict the rigid pixel motion expected in a
static world, compares it to observed optical flow to obtain a motion error map,
and fuses this with a depth reprojection error map to handle occlusions. The result
is an occlusion-aware, per-pixel deformation map and interpretable video-level
scores. To enable controlled, quantitative evaluation, we present WARPBENCH,
a synthetic dataset that applies localized thin-plate-spline warps to real frames
while recording dense displacement ground truth. We instantiate it as CO3D-
Warp (object-centric) and ScanNet++-Warp (scene-level). To probe performance
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beyond synthetic perturbations, we further introduce Geo-Flaw, a task-oriented
benchmark spanning object-centric reconstruction, indoor navigation, large-scale
outdoor scenes, and challenging surfaces, under both slow and fast camera motion.
Our experiments show that the proposed pipeline detects deformation artifacts
missed by feature-based metrics and coordinate-only consistency measures, and
it naturally extends to moving object segmentation, outperforming prior training-
free baselines. Together, these components provide an interpretable and practical
toolkit for diagnosing geometric inconsistency and for benchmarking video gen-
erative models on true 3D fidelity.

1 INTRODUCTION

Generative models for multi-view imagery and novel view synthesis (Yu et al., 2023b; Seo et al.,
2024; Rombach et al., 2021) have advanced rapidly, producing photorealistic frames from text
prompts or a single image. Yet, despite impressive visual quality, the generated images by these
models frequently violate basic 3D geometry: objects stretch, bend, or melt across viewpoints, re-
vealing deformation artifacts that are inconsistent with a rigid scene. To investigate this issue, this
work explicitly targets static videos with no moving objects; any apparent object motion is treated
as deformation. In this setting, the camera moves while scene geometry should remain unchanged,
but generated views often exhibit structural drift between frames.

Evaluating multi-view (3D) consistency using this simplified setting is challenging for existing
methods. Prior approaches either compare deep features across warped views (for example, DINO-
based metrics such as MEt3R (Asim et al., 2025)) or rely on depth- and point-cloud–based errors
(for example, WorldScore-3D consistency). Feature comparisons can capture semantic drift but are
intentionally insensitive to local shape changes and often miss geometric deformation. Depth- and
point-cloud–based errors are sensitive only to 3D coordinates or depth; if corresponding points oc-
cupy similar 3D locations after alignment, these methods can report low error even when surfaces
have bent, sheared, or otherwise deformed. They also provide limited diagnostic insight into where
and how rigidity is violated.

We propose a geometry-grounded detection pipeline that measures deformation directly from motion
cues and depth reprojection. We estimate camera motion and scene depth, compute the rigid pixel
motion that would occur if the scene were perfectly static, and compare it to the optical flow observed
between generated frames to obtain a motion error map. Because the motion error map is unreliable
in occluded regions, we complement it with a depth reprojection error map. Fusing these two signals
yields an occlusion-aware, per-pixel deformation map that localizes violations of rigidity and can be
aggregated into interpretable video-level scores.

Annotating artifact ground truth on generated videos is difficult. To enable quantitative as-
sessment with reliable supervision, we introduce WARPBENCH, a synthetic deformation dataset
that applies localized, non-rigid thin-plate-spline warps to real frames while recording the exact
displacement used to distort each image. We instantiate WARPBENCH on object-centric clips
from CO3D (Reizenstein et al., 2021) (CO3D-Warp) and scene-level reconstructions from Scan-
Net++ (Dai et al., 2017; Yeshwanth et al., 2023) (ScanNet++-Warp). Each instance provides a dense
per-pixel displacement field and an occlusion indicator, enabling precise, per-pixel evaluation of de-
tectors as well as scalar summaries via displacement magnitude. We quantitatively demonstrate the
effectiveness of our pipeline on WARPBENCH, and then use it to benchmark state-of-the-art video
generation models in terms of deformation artifacts.

To probe performance beyond synthetic warps, we introduce Geo-Flaw, a task-oriented benchmark
for static scenes that spans four scenario families, including object-centric reconstruction, indoor
navigation, large-scale outdoor reconstruction, and challenging surfaces and edges. Besides, the
benchmark covers both slow and fast camera motions: slow motions reveal subtle “breathing” or
“melting” artifacts, and fast motions challenge multi-view coherence under aggressive perspective
changes. This design supports a structured evaluation of a model’s ability to maintain a stable and
plausible 3D world.

We make the following contributions:
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• A novel pipeline that fuses residual motion and depth reprojection errors into interpretable,
dense deformation maps.

• WARPBENCH, a synthetic dataset with dense ground-truth warps (CO3D-Warp &
ScanNet++-Warp) for rigorous evaluation.

• Geo-Flaw, a comprehensive benchmark and analysis of geometric artifacts in leading text-
to-video and multi-view generation models.

These components provide a principled toolkit for diagnosing and measuring geometric inconsis-
tency in generated videos of static scenes.

2 RELATED WORK

Our work positions at the intersection of generative model evaluation, 3D computer vision, and
motion analysis. We situate our contributions with respect to prior work in evaluating multi-view
consistency and in the foundational tasks of motion decomposition and occlusion handling.

2.1 METRICS FOR MULTI-VIEW GEOMETRIC CONSISTENCY

Evaluating the 3D consistency of generative models is an active area of research, with methods
largely falling into two categories: feature-based and coordinate-based.

Feature-Based Consistency. A popular approach is to measure the semantic similarity be-
tween views. MEt3R (Asim et al., 2025), for instance, computes the cosine similarity of dense
DINO (Caron et al., 2021) features between a rendered view and a source view warped by predicted
depth and camera motion. While effective for capturing large-scale semantic drift, this approach has
a fundamental limitation for our task: deep features are often designed to be invariant to the very
local geometric deformations we aim to detect. A pillar that is slightly bent might be geometrically
incorrect but semantically identical to a straight one, leading feature-based metrics to miss such
artifacts. Our method, in contrast, moves away from feature similarity and instead focuses on the
coherence of motion fields to directly target these subtle structural inconsistencies.

Coordinate- and Depth-Based Consistency. Another line of work evaluates consistency by mea-
suring errors in the 3D positions of points. For example, the Thresholded Symmetric Epipolar
Distance (TSED) (Yu et al., 2023a) measures consistency based on the epipolar geometry of sparse
SIFT (Lowe, 2004) feature matches. More recent methods like WorldScore (Duan et al., 2025) com-
pute a scalar reprojection error after performing a full structure-from-motion (SfM) reconstruction.
Similarly, MVGBench (Xie et al., 2025) evaluates object-centric models by sampling point clouds
from generated views and comparing them using the Chamfer distance.

A key drawback of these methods is that they typically output a single numerical score for an entire
video or set of views. This lacks diagnostic power, as it does not reveal where or how the scene
geometry fails. Furthermore, by focusing only on point positions or depth, they can fail to detect
surface-level distortions like bending or shearing if the aligned 3D coordinates remain close. Our
pipeline addresses this gap by producing a dense, per-pixel deformation map, offering interpretable,
localized feedback on geometric violations.

2.2 MOTION DECOMPOSITION AND SEGMENTATION

Our pipeline’s core idea—disentangling camera ego-motion from independent object motion—is
a classic problem in computer vision. We build upon powerful, modern optical flow models like
UFM (Zhang et al., 2025) to estimate the dense pixel correspondence between frames. By sub-
tracting the predicted rigid flow, we isolate a residual motion field that corresponds to non-rigid
deformation.

This formulation naturally connects our work to moving object segmentation. While many methods
exist for this task, our approach is notable for being training-free. Methods like Segment Any Motion
in Videos (Huang et al., 2025) represent the state-of-the-art but require training. By treating any non-
rigid motion as ”foreground,” our deformation map serves as a powerful signal for segmentation. We
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demonstrate that this simple, geometry-grounded approach outperforms other training-free baselines
on the DAVIS dataset (Perazzi et al., 2016; Pont-Tuset et al., 2017).

Figure 2: Geometric deformation detection pipeline. Our method decomposes inconsistency
into two complementary signals. The dynamic branch isolates non-rigid motion by computing the
residual motion (the difference between observed optical flow and camera ego-motion). Concur-
rently, the static branch identifies structural errors by calculating a depth difference map from re-
constructed 3D geometry. Both error signals are normalized and combined through scale-invariant
fusion to produce a unified deformation map that precisely localizes geometric artifacts.

3 METHODOLOGY

Our goal is to detect and quantify geometric deformation artifacts in generated multi-view videos of
static scenes. The core principle is that for a perfectly rigid scene, pixel motion between two frames
(optical flow) should be entirely explained by the camera’s movement (ego-motion). Any deviation
from this rigid motion model indicates a non-rigid deformation. We capture these deviations by
decomposing observed inconsistencies into two complementary signals: motion-based (dynamic)
and structure-based (static).

The overall pipeline, illustrated in Figure 2, processes an input video using a sliding-window ap-
proach. For each pair of frames, it estimates motion and geometry inconsistencies, normalizes them
into a scale-invariant domain, and fuses them into a unified deformation map.

3.1 DERIVING MOTION AND GEOMETRIC INCONSISTENCIES

Motion-Based Inconsistency. The first signal comes from discrepancies between observed optical
flow and the flow predicted by camera motion. We use an optical flow model (Zhang et al., 2025)
to compute dense optical flow Ft→t+1 between frames It and It+1. In parallel, we use a geometry
foundation model (Wang et al., 2025) to estimate per-pixel depth Dt, camera intrinsics Kt, and the
relative camera pose Tt→t+1 = [R|t]. Using these estimates, we construct a rigid flow field Frigid
by projecting each pixel p = (u, v) from It into It+1:

Frigid(p) = π
(
R · (Dt(p)K

−1
t p̃) + t

)
− p,

where p̃ = [u, v, 1]⊤ is the homogeneous pixel coordinate, and π(·) projects 3D points back into
2D using the target camera intrinsics. The difference between observed and rigid flow defines the
residual motion:

Fresidual(p) = Ft→t+1(p)− Frigid(p).

This residual highlights non-rigid dynamics, but is valid only for pixels visible in both frames.

Structure-Based Inconsistency. To capture inconsistencies in static geometry, including occluded
regions where motion is unreliable, we compute a depth reprojection error. The 3D point cloud of It
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Figure 3: WARPBENCH gen-
eration process. (Left) An
input frame with a segmenta-
tion mask overlay and sampled
source control points (red dots).
(Center) The warped frame af-
ter applying the deformation (in-
set shows subtle, non-rigid dis-
tortion). (Right) The dense dis-
placement field from Thin-Plate
Spline (TPS) interpolation.

is reprojected into the viewpoint of It+1, yielding a synthetic depth map Dt→t+1. This is compared
with the independently estimated depth map Dt+1:

∆Z(p′) = Dt+1(p
′)−Dt→t+1(p

′),

where p′ are pixel coordinates in It+1. The resulting depth difference map ∆Z highlights structural
inconsistencies.

3.2 SCALE-INVARIANT ERROR FUSION

The residual motion (in pixels) and depth difference (in world units) are not directly comparable. We
therefore normalize both into a common, scale-invariant 3D error space using the reference depth
Z = Dt(p):

(ex, ey, ez) =

(
∆X

Z
,
∆Y

Z
,
∆Z

Z

)
.

Here, ez is the normalized depth error. Substituting the pinhole camera equations, ∆X = Z ·∆u/fx
and ∆Y = Z ·∆v/fy , we obtain: ex = ∆u

fx
, ey = ∆v

fy
. Thus, motion- and structure-based errors

are unified in a depth-invariant domain.

We then fuse these components adaptively. For co-visible pixels, all three terms (ex, ey, ez) are
used. For occluded pixels, where residual motion is invalid, we set (ex, ey) = 0 and rely solely on
ez . The final output of our pipeline is the geometric inconsistency map, defined as the L2 norm of
the active components:

Mgeo(p) =
√
ex(p)2 + ey(p)2 + ez(p)2.

In addition to this fused map, the motion inconsistency and structure inconsistency maps are
available as intermediate signals, which we use for ablations and diagnostic visualization.

4 DATASET

Evaluating geometric artifacts in generated videos is challenging, as artifact regions cannot be reli-
ably annotated. We therefore adopt a two-stage strategy. First, we construct WARPBENCH, a syn-
thetic benchmark that uses Thin Plate Splines (TPS) to mimic localized non-rigid deformations while
providing exact ground-truth displacement fields, enabling rigorous validation of our pipeline. Sec-
ond, to test the realism and robustness of generative models under diverse conditions, we introduce
GEO-FLAW, a task-driven benchmark spanning varied scenarios and camera dynamics. Together,
these datasets support both controlled validation and realistic evaluation of geometric consistency in
video generation.

4.1 WARPBENCH: SYNTHETIC DEFORMATION DATASET

Data Sources. We instantiate WARPBENCH on two settings: object-centric clips from
CO3D Reizenstein et al. (2021) (CO3D-Warp) and scene-level reconstructions from ScanNet++ Dai
et al. (2017); Yeshwanth et al. (2023) (ScanNet++-Warp). In total, WarpBench contains 100 object-
centric clips (2,000 frames) and 100 scene-level clips (2,000 frames), spanning 50 object categories
and 6 indoor scenes.

5
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Warp Synthesis. To simulate non-rigid artifacts, we generate temporally smooth deformations
using Thin Plate Splines (TPS). For each clip, we sample K control points from the object mask via
farthest-point sampling (FPS) to ensure coverage. Their 2D displacements evolve under a temporal
model, and at each frame we fit a TPS to obtain a dense warp. The displacement is spatially localized
with a feathered mask, smoothed over time with an exponential moving average (EMA), and applied
using differentiable backward sampling.

TPS Formulation. Let C = {ci}Ki=1 be the fixed control points, and yi,t = ci+∆i,t their displaced
targets at frame t. We fit an affine-plus-RBF mapping ft : R2→R2 with TPS basis ϕ(r) = r2 log r:

ft(x) = Atx+ at +

K∑
i=1

wi,t ϕ(∥x− ci∥),

where At ∈ R2×2, at ∈ R2, and wi,t ∈ R2. The dense displacement is Ut(p) = ft(p) − p,
localized as Ũt(p) = w(p)Ut(p) with feathered weight w(p). Temporal smoothing gives Ūt =

β Ūt−1+(1−β)Ũt. The final warped frame is: Ideft (p) = It
(
p+ Ūt(p)

)
. Please refer to Appendix B

for a comprehensive list of all parameters used in the WARPBENCH generation pipeline.

Outputs. For every warped frame, we release the dense displacement field Ūt(p) ∈ R2 as ground
truth, along with its magnitude Mt(p) = ∥Ūt(p)∥2 when a scalar target is needed. These outputs
allow precise, per-pixel evaluation of geometric inconsistency detection.

4.2 THE GEO-FLAW BENCHMARK

Benchmark Design. Deformation artifacts in generated videos appear as temporal geometric incon-
sistencies To systematically evaluate this, we introduce Geo-Flaw, a small benchmark inspired by
core 3D vision tasks where structural consistency is essential. It spans both commercial and open-
source models and covers four categories: object-centric reconstruction, indoor navigation, large-
scale outdoor reconstruction, and a stress-testing case targeting challenging surfaces and edges.

Within each category, we generate videos under two camera regimes: slow, smooth motion, which
exposes subtle “breathing” or “melting” artifacts, and fast, dynamic motion, which stresses multi-
view coherence under aggressive perspective changes. This design enables structured evaluation of a
model’s ability to produce stable and plausible 3D geometry. For a full summary of the benchmark’s
composition, including the scenarios detailed in Table 3, please see Appendix A.

Model Selection. For each open-source model, we generate clips per scenario, resulting in ¿50
videos per model. For the commercial system Sora, we follow its released content and obtain 80
object-centric, 96 indoor navigation, 53 large-scale outdoor, and 80 challenging-surface clips (309
videos in total). Our evaluation therefore spans both leading commercial systems and recent open-
source state-of-the-art models, including WAN 2.2 (Wan et al., 2025) and CogVideoX (Hong et al.,
2022; Yang et al., 2024).

5 EXPERIMENT

Experiment Design. Our experiments are structured to evaluate both the capability of our method
and its utility for studying generative models. We first use WARPBENCH to validate that our pipeline
can detect anomalous frames and localize spatial deformations under controlled, ground-truth condi-
tions. We then turn to GEO-FLAW, where our method serves as a diagnostic tool for benchmarking
commercial and open-source video generation models across diverse scenarios without ground-truth
annotations.

5.1 PIPELINE EVALUATION ON SYNTHETIC DATA

We evaluate our method through two complementary tasks: single-frame anomaly detection (tempo-
ral) and pairwise spatial localization (spatial). These experiments are conducted on the CO3D-Warp
and Scannet-Warp datasets and compared against baseline methods.
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Table 1: Pairwise spatial localization and correlation results. Higher is better for all metrics.
“Structure Only” uses depth reprojection error alone, “Motion Only” uses residual motion, “Fusion
(Full)” combines both in a scale-invariant domain, and “Fusion (Occlusion-Aware)” adds depth only
in occluded regions. MEt3R serves as a baseline.

Method CO3D-Warp Scannet-Warp

AP (%) ↑ IoU (%) ↑ SRCC ↑ AP (%) ↑ IoU (%) ↑ SRCC ↑
MEt3R (baseline) 16.26 15.95 -0.176 30.34 33.13 -0.351
Structure Only 25.64 3.20 0.079 51.71 14.11 0.183
Motion Only 64.90 44.48 0.581 87.12 52.36 0.706
Fused (Full) 60.63 41.69 0.554 82.70 48.87 0.547
Fused (Occlusion-Aware) 63.49 43.42 0.561 83.66 49.20 0.557

Experiment 1: Single-Frame Anomaly Detection. In this task, a single frame within a 10-frame
clip is randomly replaced by its warped version, and the goal is to identify the anomalous frame.
Performance is measured using Detection Accuracy (%), i.e., the fraction of clips where the ma-
nipulated frame is correctly identified.

Analysis. Results in Table 4 show that motion is the most reliable cue for anomaly de-
tection: Motion Only achieves the best accuracy on CO3D-Warp (71.59%) and strong results
on ScanNet-Warp (89.23%). Fusion with depth is mixed—“Fusion (Full)” gives the highest
accuracy on ScanNet-Warp (92.31%) but lags behind motion alone on CO3D-Warp, suggest-
ing depth can introduce noise in less reliable settings. The “Fusion (Occlusion-Aware)” abla-
tion, which applies depth only in occluded regions, performs closer to Motion Only, showing
the benefit of targeted depth integration. The baseline (MEt3R) performs poorly, underscor-
ing the challenge of the task and the advantage of explicitly modeling motion and geometry.‘

Figure 4: Single-frame anomaly detection
accuracy (%). Higher is better. “Structure
Only” uses depth reprojection error alone, “Mo-
tion Only” uses residual motion from optical flow,
“Fusion (Full)” combines both in a scale-invariant
domain, and “Fusion (Occlusion-Aware)” applies
depth error only in occluded regions. MEt3R
serves as a baseline.
Method CO3D-warp Scannet-Warp

MEt3R (baseline) 6.82 15.38
Structure Only 42.05 84.62
Motion Only 71.59 89.23
Fused (Full) 55.68 92.31
Fused (Occlusion-Aware) 52.27 87.69

Experiment 2: Pairwise Spatial Localiza-
tion. This experiment evaluates the ability of
the method to produce spatial maps of ma-
nipulations. Given a pair of frames (real vs.
warped), the system generates an inconsistency
map that is compared against the ground truth.
We report AP (%), IoU (%), and Spearman’s
Rank Correlation (SRCC)1 to jointly assess
localization precision, overlap with ground-
truth masks, and consistency with manipulation
intensity.

Analysis. As shown in Table 1, motion is the
dominant cue for spatial localization: Motion
Only outperforms all variants, reaching 87.12%
AP, 52.36% IoU, and 0.706 SRCC on ScanNet-
Warp. Fusion with depth slightly reduces per-
formance, suggesting conflicts in noisy regions,
though the “Fusion (Occlusion-Aware)” variant remains close to Motion Only, highlighting the ben-
efit of targeted depth use. Negative SRCC values for MEt3R indicate not just failure but anti-
correlation with ground truth, underscoring the challenge of this task and the effectiveness of our
approach.

5.2 BENCHMARKING GENERATIVE MODELS WITH OUR PIPELINE

Having validated our pipeline on synthetic data, we now apply it to its primary domain: analyzing
videos from generative models. In this context, where ground-truth masks are unavailable, our

1Spearman’s Rank Correlation is a non-parametric measure of rank correlation that evaluates the strength
and direction of a monotonic relationship between two ranked variables, defined as ρ = 1 − 6

∑
d2i

n(n2−1)
, where

di is the difference between the ranks of paired observations and n is the number of pairs.
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Table 2: Video generation evaluation across scenarios. Metrics shown are Motion Inconsistency,
Structure Inconsistency, and the final deformation scores with and without occlusion-aware fusion.
Each score is the mean value of its corresponding inconsistency map, averaged over the video.
Lower values indicate fewer geometric artifacts.

Type Model Motion ↓ Structure ↓ Fused (Occ) ↓ Fused (Full) ↓

Object-centric
Commercial Sora 0.018749 0.106039 0.169207 0.186912
Open-source WAN 2.2 0.033315 0.354326 0.245789 0.262989
Open-source CogVideoX 0.024880 0.165006 0.311831 0.367868

Indoor navigation
Commercial Sora 0.026924 0.182063 0.138727 0.149884
Open-source WAN 2.2 0.052337 0.479448 0.147014 0.157955
Open-source CogVideoX 0.032981 0.247008 0.254227 0.306632

Outdoor reconstruction
Commercial Sora 0.022506 0.188681 0.148556 0.161185
Open-source WAN 2.2 0.015693 0.385315 0.152012 0.162418
Open-source CogVideoX 0.028539 0.140516 0.335744 0.391256

Challenging (stress test)
Commercial Sora 0.033955 0.408964 0.156814 0.171525
Open-source WAN 2.2 0.032849 0.443181 0.189504 0.206616
Open-source CogVideoX 0.033371 0.094839 0.353770 0.452582

method serves as a diagnostic tool to quantitatively score and qualitatively assess violations of 3D
geometric consistency.

Quantitative Benchmark. We first apply our pipeline to score videos from several leading genera-
tive models—Sora, WAN 2.2, and CogVideoX—across a variety of scenarios. A lower inconsistency
score, as measured by our method, indicates stronger geometric stability and fewer deformation ar-
tifacts. The aggregated results of this benchmark are summarized in Table 2.

The quantitative results reveal clear performance differences among the models. Sora consistently
achieves the lowest inconsistency scores across all scenarios, indicating a higher degree of geometric
stability. WAN 2.2 performs competitively, particularly on outdoor scenes, but is less robust indoors.
CogVideoX exhibits the highest fused errors, especially in challenging cases. Notably, across all
models, the occlusion-aware fusion variant typically yields lower error scores than the full fusion,
reinforcing the benefit of selectively integrating depth cues when analyzing generated content.

Qualitative Analysis. Qualitative examples provide visual intuition for these quantitative scores and
highlight the types of errors our method detects. A common failure mode, even for top-performing
models, is the inability to maintain the rigidity of simple rotating objects. Figure 6 illustrates this
with a deforming globe, where our method effectively captures the spurious motion and structural
warping that contribute to a higher inconsistency score.

Furthermore, the interpretability of our inconsistency maps is crucial for their utility as a diagnostic
tool. In Figure 5, we compare our method against baselines designed for generic non-rigid motion
detection. On a generated video with subtle artifacts, methods like SegAnyMo and MEt3R either
fail to detect the localized motion or produce blurred, unspecific score maps that mask the entire
object. In contrast, our pipeline generates precise, interpretable maps that isolate the specific areas
of geometric distortion, offering more actionable feedback on model performance.

5.3 FINDINGS ON VIDEO GENERATION MODELS

”And Then There Were None.” Our most challenging geometric consistency tests revealed a uni-
versal vulnerability: all evaluated models failed to maintain structural integrity. This highlights a
common point of failure in current video generation methods, especially under stress tests targeting
fine patterns, reflections, refractions, and dense edges that are prone to artifacts.
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Figure 5: Qualitative comparison on deformation artifacts. Top row: input video with geometric
deformation. SegAnyMo fails to predict localized motion, while MEt3R produces a blurred score
map without region-level detail. In contrast, our method produces interpretable maps that highlight
subtle, localized geometric distortions rather than masking entire objects.

Figure 6: The Globe That Cannot Be Stopped: Even state-of-the-art video generation models
struggle to render a rigid globe without introducing spurious motion and deformation, as revealed
by our motion, static, and fused inconsistency maps.

”The Globe That Can’t Be Stopped.” We also identified a consistent and surprising failure mode:
the inability of all models to generate a simple, rigidly rotating globe. Instead of producing stable
motion, models introduce subtle non-rigid deformations or irregular rotations. A possible reason is
bias in training data, where most examples of globes appear in motion, leading models to conflate
object persistence with deformation or drift.

6 CONCLUSION

In this work, we introduced a novel pipeline for detecting and quantifying geometric deformation
artifacts in videos of static scenes. Our central finding is that residual motion is the most potent
indicator of deformation, consistently and significantly outperforming cues derived from scene
structure, such as depth. We demonstrated that a focused motion-based analysis is paramount, as
naively fusing depth information can often dilute the primary signal.

By deploying our method as a metric, we benchmarked leading generative models and uncovered
several important findings. We identified universal vulnerabilities, with all models failing challeng-
ing ”stress tests,” and consistent failure modes in seemingly simple scenarios, such as rendering a
rigidly rotating globe. These results not only validate our pipeline as an effective diagnostic tool but
also highlight that maintaining geometric consistency remains a critical challenge for even state-of-
the-art video generation models.
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A THE GEO-FLAW BENCHMARK COMPOSITION

Table 3: Composition of the Geo-Flaw benchmark. Our dataset is structured around four evaluation
scenarios designed to probe geometric consistency, each tested with both slow and fast camera
dynamics.
Evaluation Scenario Dynamics Example Scenarios
Object-Centric Reconstruction
Objective: Maintain rigid, detailed geometry of a single
isolated object.

Slow 360° orbit of globe; upward pan of
statue; push-in on clay pot.

Fast Rapid orbit of sports car; zig-zag
approach to dollhouse; armor hall
fly-through.

Indoor Navigation
Objective: Preserve coherent room layout and global
structure during traversal.

Slow Library dolly; gallery arc; cathedral
glide.

Fast Hallway sprint; server-room zig-
zag; staircase swoop.

Outdoor Large-Scene Reconstruction
Objective: Ensure consistency across expansive environ-
ments with layered depth.

Slow Mountain sweep; ruins glide; forest
track.

Fast Rooftop traverse; amusement-park
fly-through; refinery sweep.

Challenging Surfaces & Edges
Objective: Stress-test fine patterns, reflections, refrac-
tions, and dense edges prone to artifacts.

Slow Mosaic macro track; chrome-engine
orbit; chandelier orbit.

Fast Grand staircase ascent; bookcase
fly-through; glass corridor traverse.

B WARPBENCH GENERATION PARAMETERS

Here we detail the parameters used in the WARPBENCH data generation pipeline, described in Sec-
tion 4.1.

Control Points. For each video clip, we sample a fixed set of K = 24 control points from the initial
frame’s segmentation mask using farthest-point sampling to ensure broad spatial coverage. These
points remain fixed for the duration of the clip to provide a stable basis for deformation.

Temporal Motion Model. The per-frame offsets for the control points, ∆i,t, are generated using an
AR(1) autoregressive process to ensure temporally smooth yet non-trivial motion. The update rule
is:

∆i,t = ρ∆i,t−1 + σϵt,

where ϵt ∼ N (0, I) is random Gaussian noise. We use a high correlation coefficient ρ = 0.95 to
ensure smoothness and a noise standard deviation of σ = 0.6 to introduce variation.

Deformation Magnitude. After the raw displacement field Ut is generated, it is rescaled to match
a predefined target magnitude. This provides direct control over the deformation strength. For our
experiments, the target magnitude (the mean per-pixel displacement within the mask) is sampled
uniformly for each clip from a range of [3, 8] pixels.

Mask Localization and Feathering. To ensure the warp is localized to the object of interest and
blends smoothly with the background, we modulate the displacement field with a weight map w(p).
This map is derived from the ground-truth segmentation mask by first eroding the mask by 10 pixels
and then applying a cosine falloff over a 20-pixel ”feathering” band at the edge. This creates a soft
transition from the fully warped region to the static background.

Temporal Smoothing (EMA). As a final step to prevent unnaturally jerky motion, we apply an
Exponential Moving Average (EMA) to the sequence of displacement fields. We use a smoothing
factor of β = 0.8 in the update rule Ūt = β Ūt−1 + (1−β)Ũt.

Data packaging. Each sample is the tuple
(
It, I

def
t , Ut, Mt

)
. Images It, Ideft : PNG

(8-bit sRGB). Displacement Ut: float32 array (H×W×2) in pixel units. Magnitude
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Mt: float32 (H×W ). A JSON manifest accompanies each clip with hyperparameters
(K, s, ρ, σ, λ, β, feather radius, clamps), PRNG seeds, and generation flags.

Defaults used in our experiments. Unless otherwise noted, we use: T=20; control-point density
targeting δ points per 104 mask pixels with bounds 20 ≤ K ≤ 80 and minimum spacing s px; AR(1)
coefficient ρ; target RMS amplitude A (as a fraction of the short image side) with σ =

√
1− ρ2 A;

displacement clamp Amax; TPS regularization λ (on normalized coordinates); feather radius rf ;
EMA coefficient β. Exact values and ranges are reported in the released configs.

Stability safeguards. We reject and resample a clip if TPS induces excessive distortion (e.g., more
than a small fraction of pixels with |det Jft(p)| < τJ ) or if median ∥Ut∥ exceeds a bound. We also
cap ∥∆i,t∥ ≤ Amax during AR(1) generation.
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