

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DETECTING GEOMETRIC DEFORMATION IN VISUAL GENERATION

Anonymous authors

Paper under double-blind review

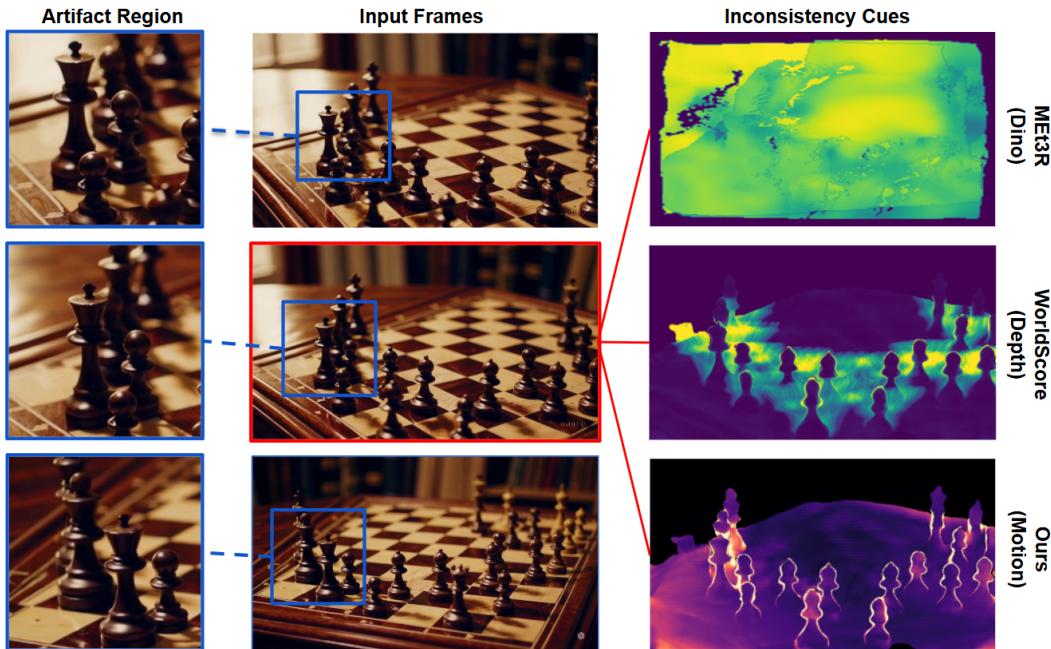


Figure 1: **Artifact (geometric deformation) detection on a generated video.** (Top) MEt3R produces a diffuse error map and fails to localize the specific geometric error, as it relies on semantic feature (DINO) consistency. (Middle) WorldScore (Depth Reprojection) correctly identifies the inconsistent object by evaluating 3D depth consistency, but its resulting map is not sharply localized. (Bottom) **Our approach** uses motion cues to isolate non-rigid flow and produces a sparse and interpretable map that precisely pinpoints the subtle deformation.

ABSTRACT

Recent text-to-video and multi-view generative models produce striking imagery but often violate basic 3D geometry, exhibiting non-rigid “melting” or “breathing” artifacts across viewpoints. We study this failure mode in the static-scene regime, where camera motion is allowed but objects must remain rigid; any apparent object motion is deemed deformation. We introduce a geometry-grounded detection pipeline that localizes and quantifies such artifacts. The pipeline estimates camera motion and depth to predict the rigid pixel motion expected in a static world, compares it to observed optical flow to obtain a motion error map, and fuses this with a depth reprojection error map to handle occlusions. The result is an occlusion-aware, per-pixel deformation map and interpretable video-level scores. To enable controlled, quantitative evaluation, we present WARPBENCH, a synthetic dataset that applies localized thin-plate-spline warps to real frames while recording dense displacement ground truth. We instantiate it as *CO3D-Warp* (object-centric) and *ScanNet++-Warp* (scene-level). To probe performance

054
055
056
057
058
059
060
061
062

beyond synthetic perturbations, we further introduce **Geo-Flaw**, a task-oriented benchmark spanning object-centric reconstruction, indoor navigation, large-scale outdoor scenes, and challenging surfaces, under both slow and fast camera motion. Our experiments show that the proposed pipeline detects deformation artifacts missed by feature-based metrics and coordinate-only consistency measures, and it naturally extends to moving object segmentation, outperforming prior training-free baselines. Together, these components provide an interpretable and practical toolkit for diagnosing geometric inconsistency and for benchmarking video generative models on true 3D fidelity.

063
064

065 1 INTRODUCTION

066

067 Generative models for multi-view imagery and novel view synthesis (Yu et al., 2023b; Seo et al.,
 068 2024; Rombach et al., 2021) have advanced rapidly, producing photorealistic frames from text
 069 prompts or a single image. Yet, despite impressive visual quality, the generated images by these
 070 models frequently violate basic 3D geometry: objects stretch, bend, or melt across viewpoints, re-
 071 vealing deformation artifacts that are inconsistent with a rigid scene. To investigate this issue, this
 072 work explicitly targets *static videos with no moving objects*; any apparent object motion is treated
 073 as deformation. In this setting, the camera moves while scene geometry should remain unchanged,
 074 but generated views often exhibit structural drift between frames.

075
076
077
078
079
080
081
082
083

Evaluating multi-view (3D) consistency using this simplified setting is challenging for existing methods. Prior approaches either compare deep features across warped views (for example, DINO-based metrics such as MEt3R (Asim et al., 2025)) or rely on depth- and point-cloud-based errors (for example, WorldScore-3D consistency). Feature comparisons can capture semantic drift but are intentionally insensitive to local shape changes and often miss geometric deformation. Depth- and point-cloud-based errors are sensitive only to 3D coordinates or depth; if corresponding points occupy similar 3D locations after alignment, these methods can report low error even when surfaces have bent, sheared, or otherwise deformed. They also provide limited diagnostic insight into *where* and *how* rigidity is violated.

084
085
086
087
088
089
090

We propose a geometry-grounded *detection pipeline* that measures deformation directly from motion cues and depth reprojection. We estimate camera motion and scene depth, compute the rigid pixel motion that would occur if the scene were perfectly static, and compare it to the optical flow observed between generated frames to obtain a motion error map. Because the motion error map is unreliable in occluded regions, we complement it with a depth reprojection error map. Fusing these two signals yields an occlusion-aware, per-pixel *deformation map* that localizes violations of rigidity and can be aggregated into interpretable video-level scores.

091
092
093
094
095
096
097
098
099
100

Annotating artifact ground truth on generated videos is difficult. To enable quantitative assessment with reliable supervision, we introduce **WARPBENCH**, a synthetic deformation dataset that applies localized, non-rigid thin-plate-spline warps to real frames while recording the exact displacement used to distort each image. We instantiate **WARPBENCH** on object-centric clips from **CO3D** (Reizenstein et al., 2021) (*CO3D-Warp*) and scene-level reconstructions from **Scan-Net++** (Dai et al., 2017; Yeshwanth et al., 2023) (*ScanNet++-Warp*). Each instance provides a dense per-pixel displacement field and an occlusion indicator, enabling precise, per-pixel evaluation of detectors as well as scalar summaries via displacement magnitude. We quantitatively demonstrate the effectiveness of our pipeline on **WARPBENCH**, and then use it to benchmark state-of-the-art video generation models in terms of deformation artifacts.

101
102
103
104
105
106
107

To probe performance beyond synthetic warps, we introduce **Geo-Flaw**, a task-oriented benchmark for static scenes that spans four scenario families, including object-centric reconstruction, indoor navigation, large-scale outdoor reconstruction, and challenging surfaces and edges. Besides, the benchmark covers both slow and fast camera motions: slow motions reveal subtle “breathing” or “melting” artifacts, and fast motions challenge multi-view coherence under aggressive perspective changes. This design supports a structured evaluation of a model’s ability to maintain a stable and plausible 3D world.

We make the following contributions:

- 108 • A novel pipeline that fuses residual motion and depth reprojection errors into interpretable,
109 dense deformation maps.
- 110 • **WARPBENCH**, a synthetic dataset with dense ground-truth warps (*CO3D-Warp* &
111 *ScanNet++-Warp*) for rigorous evaluation.
- 112 • **Geo-Flaw**, a comprehensive benchmark and analysis of geometric artifacts in leading text-
113 to-video and multi-view generation models.
- 114

115 These components provide a principled toolkit for diagnosing and measuring geometric inconsis-
116 tency in generated videos of static scenes.

118 2 RELATED WORK

120 Our work positions at the intersection of generative model evaluation, 3D computer vision, and
121 motion analysis. We situate our contributions with respect to prior work in evaluating multi-view
122 consistency and in the foundational tasks of motion decomposition and occlusion handling.

124 2.1 METRICS FOR MULTI-VIEW GEOMETRIC CONSISTENCY

126 Evaluating the 3D consistency of generative models is an active area of research, with methods
127 largely falling into two categories: feature-based and coordinate-based.

129 **Feature-Based Consistency.** A popular approach is to measure the semantic similarity be-
130 tween views. MEt3R (Asim et al., 2025), for instance, computes the cosine similarity of dense
131 DINO (Caron et al., 2021) features between a rendered view and a source view warped by predicted
132 depth and camera motion. While effective for capturing large-scale semantic drift, this approach has
133 a fundamental limitation for our task: deep features are often designed to be invariant to the very
134 local geometric deformations we aim to detect. A pillar that is slightly bent might be geometrically
135 incorrect but semantically identical to a straight one, leading feature-based metrics to miss such
136 artifacts. Our method, in contrast, moves away from feature similarity and instead focuses on the
137 coherence of motion fields to directly target these subtle structural inconsistencies.

138 **Coordinate- and Depth-Based Consistency.** Another line of work evaluates consistency by mea-
139 suring errors in the 3D positions of points. For example, the Thresholded Symmetric Epipolar
140 Distance (TSED) (Yu et al., 2023a) measures consistency based on the epipolar geometry of sparse
141 SIFT (Lowe, 2004) feature matches. More recent methods like WorldScore (Duan et al., 2025) com-
142 pute a scalar reprojection error after performing a full structure-from-motion (SfM) reconstruction.
143 Similarly, MVGBench (Xie et al., 2025) evaluates object-centric models by sampling point clouds
144 from generated views and comparing them using the Chamfer distance.

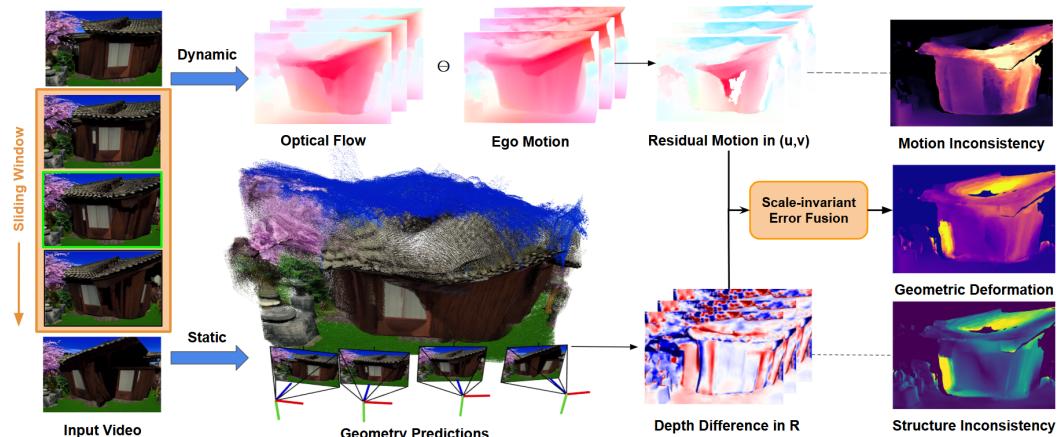
145 A key drawback of these methods is that they typically output a single numerical score for an entire
146 video or set of views. This lacks diagnostic power, as it does not reveal *where* or *how* the scene
147 geometry fails. Furthermore, by focusing only on point positions or depth, they can fail to detect
148 surface-level distortions like bending or shearing if the aligned 3D coordinates remain close. Our
149 pipeline addresses this gap by producing a dense, per-pixel deformation map, offering interpretable,
150 localized feedback on geometric violations.

152 2.2 MOTION DECOMPOSITION AND SEGMENTATION

154 Our pipeline’s core idea—disentangling camera ego-motion from independent object motion—is
155 a classic problem in computer vision. We build upon powerful, modern optical flow models like
156 UFM (Zhang et al., 2025) to estimate the dense pixel correspondence between frames. By sub-
157 tracting the predicted rigid flow, we isolate a residual motion field that corresponds to non-rigid
158 deformation.

159 This formulation naturally connects our work to moving object segmentation. While many methods
160 exist for this task, our approach is notable for being training-free. Methods like Segment Any Motion
161 in Videos (Huang et al., 2025) represent the state-of-the-art but require training. By treating any non-
rigid motion as “foreground,” our deformation map serves as a powerful signal for segmentation. We

162 demonstrate that this simple, geometry-grounded approach outperforms other training-free baselines
 163 on the DAVIS dataset (Perazzi et al., 2016; Pont-Tuset et al., 2017).



181 **Figure 2: Geometric deformation detection pipeline.** Our method decomposes inconsistency
 182 into two complementary signals. The **dynamic branch** isolates non-rigid motion by computing the
 183 **residual motion** (the difference between observed optical flow and camera ego-motion). Concur-
 184 rently, the **static branch** identifies structural errors by calculating a **depth difference map** from re-
 185 constructed 3D geometry. Both error signals are normalized and combined through **scale-invariant**
 186 **fusion** to produce a unified deformation map that precisely localizes geometric artifacts.

3 METHODOLOGY

190 Our goal is to detect and quantify geometric deformation artifacts in generated multi-view videos of
 191 static scenes. The core principle is that for a perfectly rigid scene, pixel motion between two frames
 192 (optical flow) should be entirely explained by the camera’s movement (ego-motion). Any deviation
 193 from this rigid motion model indicates a non-rigid deformation. We capture these deviations by
 194 decomposing observed inconsistencies into two complementary signals: *motion-based* (dynamic)
 195 and *structure-based* (static).

196 The overall pipeline, illustrated in Figure 2, processes an input video using a sliding-window ap-
 197 proach. For each pair of frames, it estimates motion and geometry inconsistencies, normalizes them
 198 into a scale-invariant domain, and fuses them into a unified deformation map.

3.1 DERIVING MOTION AND GEOMETRIC INCONSISTENCIES

202 **Motion-Based Inconsistency.** The first signal comes from discrepancies between observed optical
 203 flow and the flow predicted by camera motion. We use an optical flow model (Zhang et al., 2025)
 204 to compute dense optical flow $F_{t \rightarrow t+1}$ between frames I_t and I_{t+1} . In parallel, we use a geometry
 205 foundation model (Wang et al., 2025) to estimate per-pixel depth D_t , camera intrinsics K_t , and the
 206 relative camera pose $T_{t \rightarrow t+1} = [R|t]$. Using these estimates, we construct a **rigid flow field** F_{rigid}
 207 by projecting each pixel $p = (u, v)$ from I_t into I_{t+1} :

$$F_{\text{rigid}}(p) = \pi(R \cdot (D_t(p)K_t^{-1}\tilde{p}) + t) - p,$$

209 where $\tilde{p} = [u, v, 1]^\top$ is the homogeneous pixel coordinate, and $\pi(\cdot)$ projects 3D points back into
 210 2D using the target camera intrinsics. The difference between observed and rigid flow defines the
 211 **residual motion**:

$$F_{\text{residual}}(p) = F_{t \rightarrow t+1}(p) - F_{\text{rigid}}(p).$$

213 This residual highlights non-rigid dynamics, but is valid only for pixels visible in both frames.

215 **Structure-Based Inconsistency.** To capture inconsistencies in static geometry, including occluded
 216 regions where motion is unreliable, we compute a depth reprojection error. The 3D point cloud of I_t

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

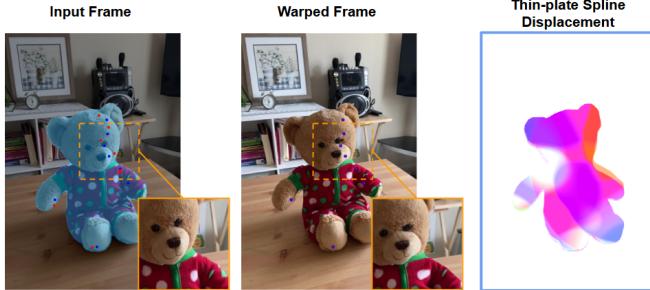


Figure 3: **WARPBENCH generation process.** **(Left)** An input frame with a segmentation mask overlay and sampled source control points (red dots). **(Center)** The warped frame after applying the deformation (inset shows subtle, non-rigid distortion). **(Right)** The dense displacement field from Thin-Plate Spline (TPS) interpolation.

is reprojected into the viewpoint of I_{t+1} , yielding a synthetic depth map $D_{t \rightarrow t+1}$. This is compared with the independently estimated depth map D_{t+1} :

$$\Delta Z(p') = D_{t+1}(p') - D_{t \rightarrow t+1}(p'),$$

where p' are pixel coordinates in I_{t+1} . The resulting **depth difference map** ΔZ highlights structural inconsistencies.

3.2 SCALE-INVARIANT ERROR FUSION

The residual motion (in pixels) and depth difference (in world units) are not directly comparable. We therefore normalize both into a common, scale-invariant 3D error space using the reference depth $Z = D_t(p)$:

$$(e_x, e_y, e_z) = \left(\frac{\Delta X}{Z}, \frac{\Delta Y}{Z}, \frac{\Delta Z}{Z} \right).$$

Here, e_z is the normalized depth error. Substituting the pinhole camera equations, $\Delta X = Z \cdot \Delta u / f_x$ and $\Delta Y = Z \cdot \Delta v / f_y$, we obtain: $e_x = \frac{\Delta u}{f_x}$, $e_y = \frac{\Delta v}{f_y}$. Thus, motion- and structure-based errors are unified in a depth-invariant domain.

We then fuse these components adaptively. For co-visible pixels, all three terms (e_x, e_y, e_z) are used. For occluded pixels, where residual motion is invalid, we set $(e_x, e_y) = 0$ and rely solely on e_z . The final output of our pipeline is the **geometric inconsistency map**, defined as the L2 norm of the active components:

$$M_{\text{geo}}(p) = \sqrt{e_x(p)^2 + e_y(p)^2 + e_z(p)^2}.$$

In addition to this fused map, the **motion inconsistency** and **structure inconsistency** maps are available as intermediate signals, which we use for ablations and diagnostic visualization.

4 DATASET

Evaluating geometric artifacts in generated videos is challenging, as artifact regions cannot be reliably annotated. We therefore adopt a two-stage strategy. First, we construct WARPBENCH, a synthetic benchmark that uses Thin Plate Splines (TPS) to mimic localized non-rigid deformations while providing exact ground-truth displacement fields, enabling rigorous validation of our pipeline. Second, to test the realism and robustness of generative models under diverse conditions, we introduce GEO-FLAW, a task-driven benchmark spanning varied scenarios and camera dynamics. Together, these datasets support both controlled validation and realistic evaluation of geometric consistency in video generation.

4.1 WARPBENCH: SYNTHETIC DEFORMATION DATASET

Data Sources. We instantiate WARPBENCH on two settings: object-centric clips from **CO3D** Reizenstein et al. (2021) (*CO3D-Warp*) and scene-level reconstructions from **ScanNet++** Dai et al. (2017); Yeshwanth et al. (2023) (*ScanNet++-Warp*). In total, WarpBench contains 100 object-centric clips (2,000 frames) and 100 scene-level clips (2,000 frames), spanning 50 object categories and 6 indoor scenes.

270 **Warp Synthesis.** To simulate non-rigid artifacts, we generate temporally smooth deformations
 271 using Thin Plate Splines (TPS). For each clip, we sample K control points from the object mask via
 272 farthest-point sampling (FPS) to ensure coverage. Their 2D displacements evolve under a temporal
 273 model, and at each frame we fit a TPS to obtain a dense warp. The displacement is spatially localized
 274 with a feathered mask, smoothed over time with an exponential moving average (EMA), and applied
 275 using differentiable backward sampling.

276 **TPS Formulation.** Let $C = \{c_i\}_{i=1}^K$ be the fixed control points, and $y_{i,t} = c_i + \Delta_{i,t}$ their displaced
 277 targets at frame t . We fit an affine-plus-RBF mapping $f_t : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ with TPS basis $\phi(r) = r^2 \log r$:
 278

$$279 \quad f_t(x) = A_t x + a_t + \sum_{i=1}^K w_{i,t} \phi(\|x - c_i\|),$$

$$280$$

$$281$$

282 where $A_t \in \mathbb{R}^{2 \times 2}$, $a_t \in \mathbb{R}^2$, and $w_{i,t} \in \mathbb{R}^2$. The dense displacement is $U_t(p) = f_t(p) - p$,
 283 localized as $\tilde{U}_t(p) = w(p) U_t(p)$ with feathered weight $w(p)$. Temporal smoothing gives $\bar{U}_t =$
 284 $\beta \bar{U}_{t-1} + (1-\beta) \tilde{U}_t$. The final warped frame is: $I_t^{\text{def}}(p) = I_t(p + \bar{U}_t(p))$. Please refer to Appendix B
 285 for a comprehensive list of all parameters used in the **WARPBENCH** generation pipeline.
 286

287 **Outputs.** For every warped frame, we release the dense displacement field $\bar{U}_t(p) \in \mathbb{R}^2$ as ground
 288 truth, along with its magnitude $M_t(p) = \|\bar{U}_t(p)\|_2$ when a scalar target is needed. These outputs
 289 allow precise, per-pixel evaluation of geometric inconsistency detection.
 290

291 4.2 THE GEO-FLAW BENCHMARK

$$292$$

293 **Benchmark Design.** Deformation artifacts in generated videos appear as temporal geometric inco-
 294 herencies. To systematically evaluate this, we introduce **Geo-Flaw**, a small benchmark inspired by
 295 core 3D vision tasks where structural consistency is essential. It spans both commercial and open-
 296 source models and covers four categories: *object-centric reconstruction*, *indoor navigation*, *large-
 297 scale outdoor reconstruction*, and a stress-testing case targeting *challenging surfaces and edges*.
 298

299 Within each category, we generate videos under two camera regimes: *slow, smooth motion*, which
 300 exposes subtle “breathing” or “melting” artifacts, and *fast, dynamic motion*, which stresses multi-
 301 view coherence under aggressive perspective changes. This design enables structured evaluation of a
 302 model’s ability to produce stable and plausible 3D geometry. For a full summary of the benchmark’s
 303 composition, including the scenarios detailed in Table 3, please see Appendix A.
 304

305 **Model Selection.** For each open-source model, we generate clips per scenario, resulting in ~50
 306 videos per model. For the commercial system Sora, we follow its released content and obtain 80
 307 object-centric, 96 indoor navigation, 53 large-scale outdoor, and 80 challenging-surface clips (309
 308 videos in total). Our evaluation therefore spans both leading commercial systems and recent open-
 309 source state-of-the-art models, including WAN 2.2 (Wan et al., 2025) and CogVideoX (Hong et al.,
 310 2022; Yang et al., 2024).
 311

312 5 EXPERIMENT

$$313$$

314 **Experiment Design.** Our experiments are structured to evaluate both the capability of our method
 315 and its utility for studying generative models. We first use **WARPBENCH** to validate that our pipeline
 316 can detect anomalous frames and localize spatial deformations under controlled, ground-truth conditions.
 317 We then turn to **GEO-FLAW**, where our method serves as a diagnostic tool for benchmarking
 318 commercial and open-source video generation models across diverse scenarios without ground-truth
 319 annotations.
 320

321 5.1 PIPELINE EVALUATION ON SYNTHETIC DATA

$$322$$

323 We evaluate our method through two complementary tasks: single-frame anomaly detection (tempo-
 324 ral) and pairwise spatial localization (spatial). These experiments are conducted on the **CO3D-Warp**
 325 and **Scannet-Warp** datasets and compared against baseline methods.
 326

324
 325 **Table 1: Pairwise spatial localization and correlation results.** Higher is better for all metrics.
 326 “Structure Only” uses depth reprojection error alone, “Motion Only” uses residual motion, “Fusion
 327 (Full)” combines both in a scale-invariant domain, and “Fusion (Occlusion-Aware)” adds depth only
 328 in occluded regions. MEt3R serves as a baseline.

329 330 Method	331 CO3D-Warp			332 Scannet-Warp		
	333 AP (%) \uparrow	334 IoU (%) \uparrow	335 SRCC \uparrow	336 AP (%) \uparrow	337 IoU (%) \uparrow	338 SRCC \uparrow
339 MEt3R (baseline)	340 16.26	341 15.95	342 -0.176	343 30.34	344 33.13	345 -0.351
346 Structure Only	347 25.64	348 3.20	349 0.079	350 51.71	351 14.11	352 0.183
353 Motion Only	354 64.90	355 44.48	356 0.581	357 87.12	358 52.36	359 0.706
360 Fused (Full)	361 60.63	362 41.69	363 0.554	364 82.70	365 48.87	366 0.547
367 Fused (Occlusion-Aware)	368 63.49	369 43.42	370 0.561	371 83.66	372 49.20	373 0.557

336
 337 **Experiment 1: Single-Frame Anomaly Detection.** In this task, a single frame within a 10-frame
 338 clip is randomly replaced by its warped version, and the goal is to identify the anomalous frame.
 339 Performance is measured using **Detection Accuracy (%)**, i.e., the fraction of clips where the
 340 manipulated frame is correctly identified.

341 **Analysis.** Results in Table 4 show that motion is the most reliable cue for anomaly de-
 342 tection: *Motion Only* achieves the best accuracy on CO3D-Warp (71.59%) and strong results
 343 on ScanNet-Warp (89.23%). Fusion with depth is mixed—“Fusion (Full)” gives the highest
 344 accuracy on ScanNet-Warp (92.31%) but lags behind motion alone on CO3D-Warp, suggest-
 345 ing depth can introduce noise in less reliable settings. The “Fusion (Occlusion-Aware)” abla-
 346 tion, which applies depth only in occluded regions, performs closer to Motion Only, showing
 347 the benefit of targeted depth integration. The baseline (MEt3R) performs poorly, underscor-
 348 ing the challenge of the task and the advantage of explicitly modeling motion and geometry.
 349

350 **Experiment 2: Pairwise Spatial Localiza-
 351 tion.** This experiment evaluates the ability of
 352 the method to produce spatial maps of ma-
 353 nipulations. Given a pair of frames (real vs.
 354 warped), the system generates an inconsis-
 355 tency map that is compared against the ground
 356 truth. We report **AP (%)**, **IoU (%)**, and **Spearman’s
 357 Rank Correlation (SRCC)**¹ to jointly assess
 358 localization precision, overlap with ground-
 359 truth masks, and consistency with manipulation
 360 intensity.

361 **Analysis.** As shown in Table 1, motion is the
 362 dominant cue for spatial localization: *Motion
 363 Only* outperforms all variants, reaching 87.12%
 364 AP, 52.36% IoU, and 0.706 SRCC on ScanNet-
 365 Warp. Fusion with depth slightly reduces per-
 366 formance, suggesting conflicts in noisy regions,
 367 though the “Fusion (Occlusion-Aware)” variant remains close to Motion Only, highlighting the ben-
 368 efit of targeted depth use. Negative SRCC values for MEt3R indicate not just failure but anti-
 369 correlation with ground truth, underscoring the challenge of this task and the effectiveness of our
 370 approach.

371 5.2 BENCHMARKING GENERATIVE MODELS WITH OUR PIPELINE

372 Having validated our pipeline on synthetic data, we now apply it to its primary domain: analyzing
 373 videos from generative models. In this context, where ground-truth masks are unavailable, our

375 **Figure 4: Single-frame anomaly detection
 376 accuracy (%).** Higher is better. “Structure
 377 Only” uses depth reprojection error alone, “Mo-
 378 tion Only” uses residual motion from optical flow,
 379 “Fusion (Full)” combines both in a scale-invariant
 380 domain, and “Fusion (Occlusion-Aware)” applies
 381 depth error only in occluded regions. MEt3R
 382 serves as a baseline.

383 Method	384 CO3D-warp	385 Scannet-Warp
386 MEt3R (baseline)	387 6.82	388 15.38
389 Structure Only	390 42.05	391 84.62
392 Motion Only	393 71.59	394 89.23
395 Fused (Full)	396 55.68	397 92.31
398 Fused (Occlusion-Aware)	399 52.27	400 87.69

378 ¹Spearman’s Rank Correlation is a non-parametric measure of rank correlation that evaluates the strength
 379 and direction of a monotonic relationship between two ranked variables, defined as $\rho = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)}$, where
 380 d_i is the difference between the ranks of paired observations and n is the number of pairs.

378
 379 **Table 2: Video generation evaluation across scenarios.** Metrics shown are Motion Inconsistency,
 380 Structure Inconsistency, and the final deformation scores with and without occlusion-aware fusion.
 381 Each score is the mean value of its corresponding inconsistency map, averaged over the video.
 382 Lower values indicate fewer geometric artifacts.

Type	Model	Motion ↓	Structure ↓	Fused (Occ) ↓	Fused (Full) ↓
Object-centric					
Commercial	Sora	0.018749	0.106039	0.169207	0.186912
Open-source	WAN 2.2	0.033315	0.354326	0.245789	0.262989
Open-source	CogVideoX	0.024880	0.165006	0.311831	0.367868
Indoor navigation					
Commercial	Sora	0.026924	0.182063	0.138727	0.149884
Open-source	WAN 2.2	0.052337	0.479448	0.147014	0.157955
Open-source	CogVideoX	0.032981	0.247008	0.254227	0.306632
Outdoor reconstruction					
Commercial	Sora	0.022506	0.188681	0.148556	0.161185
Open-source	WAN 2.2	0.015693	0.385315	0.152012	0.162418
Open-source	CogVideoX	0.028539	0.140516	0.335744	0.391256
Challenging (stress test)					
Commercial	Sora	0.033955	0.408964	0.156814	0.171525
Open-source	WAN 2.2	0.032849	0.443181	0.189504	0.206616
Open-source	CogVideoX	0.033371	0.094839	0.353770	0.452582

401
 402 method serves as a diagnostic tool to quantitatively score and qualitatively assess violations of 3D
 403 geometric consistency.
 404

405 **Quantitative Benchmark.** We first apply our pipeline to score videos from several leading generative
 406 models—Sora, WAN 2.2, and CogVideoX—across a variety of scenarios. A lower inconsistency
 407 score, as measured by our method, indicates stronger geometric stability and fewer deformation ar-
 408 tifacts. The aggregated results of this benchmark are summarized in Table 2.

409 The quantitative results reveal clear performance differences among the models. Sora consistently
 410 achieves the lowest inconsistency scores across all scenarios, indicating a higher degree of geometric
 411 stability. WAN 2.2 performs competitively, particularly on outdoor scenes, but is less robust indoors.
 412 CogVideoX exhibits the highest fused errors, especially in challenging cases. Notably, across all
 413 models, the occlusion-aware fusion variant typically yields lower error scores than the full fusion,
 414 reinforcing the benefit of selectively integrating depth cues when analyzing generated content.

415 **Qualitative Analysis.** Qualitative examples provide visual intuition for these quantitative scores and
 416 highlight the types of errors our method detects. A common failure mode, even for top-performing
 417 models, is the inability to maintain the rigidity of simple rotating objects. Figure 6 illustrates this
 418 with a deforming globe, where our method effectively captures the spurious motion and structural
 419 warping that contribute to a higher inconsistency score.

420 Furthermore, the interpretability of our inconsistency maps is crucial for their utility as a diagnostic
 421 tool. In Figure 5, we compare our method against baselines designed for generic non-rigid motion
 422 detection. On a generated video with subtle artifacts, methods like SegAnyMo and MET3R either
 423 fail to detect the localized motion or produce blurred, unspecific score maps that mask the entire
 424 object. In contrast, our pipeline generates precise, interpretable maps that isolate the specific areas
 425 of geometric distortion, offering more actionable feedback on model performance.

426
 427 **5.3 FINDINGS ON VIDEO GENERATION MODELS**

428
 429 **”And Then There Were None.”** Our most challenging geometric consistency tests revealed a uni-
 430 versal vulnerability: all evaluated models failed to maintain structural integrity. This highlights a
 431 common point of failure in current video generation methods, especially under stress tests targeting
 fine patterns, reflections, refractions, and dense edges that are prone to artifacts.



Figure 5: Qualitative comparison on deformation artifacts. Top row: input video with geometric deformation. SegAnyMo fails to predict localized motion, while MET3R produces a blurred score map without region-level detail. In contrast, our method produces interpretable maps that highlight subtle, localized geometric distortions rather than masking entire objects.

Figure 6: The Globe That Cannot Be Stopped: Even state-of-the-art video generation models struggle to render a rigid globe without introducing spurious motion and deformation, as revealed by our motion, static, and fused inconsistency maps.

“The Globe That Can’t Be Stopped.” We also identified a consistent and surprising failure mode: the inability of all models to generate a simple, rigidly rotating globe. Instead of producing stable motion, models introduce subtle non-rigid deformations or irregular rotations. A possible reason is bias in training data, where most examples of globes appear in motion, leading models to conflate object persistence with deformation or drift.

6 CONCLUSION

In this work, we introduced a novel pipeline for detecting and quantifying geometric deformation artifacts in videos of static scenes. Our central finding is that **residual motion is the most potent indicator of deformation**, consistently and significantly outperforming cues derived from scene structure, such as depth. We demonstrated that a focused motion-based analysis is paramount, as naively fusing depth information can often dilute the primary signal.

By deploying our method as a metric, we benchmarked leading generative models and uncovered several important findings. We identified universal vulnerabilities, with all models failing challenging “stress tests,” and consistent failure modes in seemingly simple scenarios, such as rendering a rigidly rotating globe. These results not only validate our pipeline as an effective diagnostic tool but also highlight that maintaining geometric consistency remains a critical challenge for even state-of-the-art video generation models.

486 REFERENCES
487

488 Mohammad Asim, Christopher Wewer, Thomas Wimmer, Bernt Schiele, and Jan Eric Lenssen.
489 Met3r: Measuring multi-view consistency in generated images. *2025 IEEE/CVF Conference on*
490 *Computer Vision and Pattern Recognition (CVPR)*, pp. 6034–6044, 2025.

491 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
492 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of*
493 *the IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

494

495 Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
496 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proc. Computer*
497 *Vision and Pattern Recognition (CVPR), IEEE*, 2017.

498 Haoyi Duan, Hong-Xing Yu, Sirui Chen, Li Fei-Fei, and Jiajun Wu. Worldscore: A unified evalua-
499 tion benchmark for world generation. *arXiv preprint arXiv:2504.00983*, 2025.

500

501 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pre-
502 training for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*, 2022.

503

504 Nan Huang, Wenzhao Zheng, Chenfeng Xu, Kurt Keutzer, Shanghang Zhang, Angjoo Kanazawa,
505 and Qianqian Wang. Segment any motion in videos. *2025 IEEE/CVF Conference on Com-*
506 *puter Vision and Pattern Recognition (CVPR)*, pp. 3406–3416, 2025. URL <https://api.semanticscholar.org/CorpusID:277435459>.

507

508 David G Lowe. Distinctive image features from scale-invariant keypoints. *International journal of*
509 *computer vision*, 60(2):91–110, 2004.

510

511 Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander
512 Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmen-
513 tation. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.

514

515 Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alexander Sorkine-Hornung, and
516 Luc Van Gool. The 2017 davis challenge on video object segmentation. *arXiv:1704.00675*, 2017.

517

518 Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and
519 David Novotny. Common objects in 3d: Large-scale learning and evaluation of real-life 3d cate-
520 gory reconstruction. In *International Conference on Computer Vision*, 2021.

521

522 Robin Rombach, Patrick Esser, and Björn Ommer. Geometry-free view synthesis: Transformers and
523 no 3d priors. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
524 14356–14366, 2021.

525

526 Junyoung Seo, Kazumi Fukuda, Takashi Shibuya, Takuya Narihira, Naoki Murata, Shoukang Hu,
527 Chieh-Hsin Lai, Seungryong Kim, and Yuki Mitsufuji. Genwarp: Single image to novel views
528 with semantic-preserving generative warping. *Advances in Neural Information Processing Sys-*
529 *tems*, 37:80220–80243, 2024.

530

531 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
532 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
533 models. *arXiv preprint arXiv:2503.20314*, 2025.

534

535 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
536 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the IEEE/CVF Con-*
537 *ference on Computer Vision and Pattern Recognition*, 2025.

538

539 Xianghui Xie, Chuhang Zou, Meher Gitika Karumuri, Jan Eric Lenssen, and Gerard Pons-Moll.
Mvgbench: Comprehensive benchmark for multi-view generation models, 2025. URL <https://arxiv.org/abs/2507.00006>.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

540 Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. Scannet++: A high-
541 fidelity dataset of 3d indoor scenes. In *Proceedings of the International Conference on Computer*
542 *Vision (ICCV)*, 2023.

543 Jason J. Yu, Fereshteh Forghani, Konstantinos G. Derpanis, and Marcus A. Brubaker. Long-term
544 photometric consistent novel view synthesis with diffusion models. In *Proceedings of the Inter-*
545 *national Conference on Computer Vision (ICCV)*, 2023a.

546 Jason J Yu, Fereshteh Forghani, Konstantinos G Derpanis, and Marcus A Brubaker. Long-term pho-
547 tometric consistent novel view synthesis with diffusion models. In *Proceedings of the IEEE/CVF*
548 *International Conference on Computer Vision*, pp. 7094–7104, 2023b.

549 Yuchen Zhang, Nikhil Keetha, Chenwei Lyu, Bhuvan Jhamb, Yutian Chen, Yuheng Qiu, Jay
550 Karhade, Shreyas Jha, Yaoyu Hu, Deva Ramanan, Sebastian Scherer, and Wenshan Wang. Ufm:
551 A simple path towards unified dense correspondence with flow. In *arXiv*, 2025.

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594
595
596
A THE GEO-FLAW BENCHMARK COMPOSITION597
598
599
Table 3: Composition of the Geo-Flaw benchmark. Our dataset is structured around four evaluation
scenarios designed to probe geometric consistency, each tested with both slow and fast camera
dynamics.

Evaluation Scenario	Dynamics	Example Scenarios
Object-Centric Reconstruction <i>Objective:</i> Maintain rigid, detailed geometry of a single isolated object.	Slow	360° orbit of globe; upward pan of statue; push-in on clay pot.
	Fast	Rapid orbit of sports car; zig-zag approach to dollhouse; armor hall fly-through.
Indoor Navigation <i>Objective:</i> Preserve coherent room layout and global structure during traversal.	Slow	Library dolly; gallery arc; cathedral glide.
	Fast	Hallway sprint; server-room zig-zag; staircase swoop.
Outdoor Large-Scene Reconstruction <i>Objective:</i> Ensure consistency across expansive environments with layered depth.	Slow	Mountain sweep; ruins glide; forest track.
	Fast	Rooftop traverse; amusement-park fly-through; refinery sweep.
Challenging Surfaces & Edges <i>Objective:</i> Stress-test fine patterns, reflections, refractions, and dense edges prone to artifacts.	Slow	Mosaic macro track; chrome-engine orbit; chandelier orbit.
	Fast	Grand staircase ascent; bookcase fly-through; glass corridor traverse.

610
611
612
613
614
615
616
617
B WARPBENCH GENERATION PARAMETERS618
619
620
621
622
623
Here we detail the parameters used in the WARPBENCH data generation pipeline, described in Section 4.1.624
625
626
627
Control Points. For each video clip, we sample a fixed set of $K = 24$ control points from the initial frame’s segmentation mask using farthest-point sampling to ensure broad spatial coverage. These points remain fixed for the duration of the clip to provide a stable basis for deformation.628
629
630
Temporal Motion Model. The per-frame offsets for the control points, $\Delta_{i,t}$, are generated using an AR(1) autoregressive process to ensure temporally smooth yet non-trivial motion. The update rule is:

631
$$\Delta_{i,t} = \rho \Delta_{i,t-1} + \sigma \epsilon_t,$$

632
633
where $\epsilon_t \sim \mathcal{N}(0, I)$ is random Gaussian noise. We use a high correlation coefficient $\rho = 0.95$ to ensure smoothness and a noise standard deviation of $\sigma = 0.6$ to introduce variation.634
635
636
637
Deformation Magnitude. After the raw displacement field U_t is generated, it is rescaled to match a predefined target magnitude. This provides direct control over the deformation strength. For our experiments, the target magnitude (the mean per-pixel displacement within the mask) is sampled uniformly for each clip from a range of $[3, 8]$ pixels.638
639
640
641
642
Mask Localization and Feathering. To ensure the warp is localized to the object of interest and blends smoothly with the background, we modulate the displacement field with a weight map $w(p)$. This map is derived from the ground-truth segmentation mask by first eroding the mask by 10 pixels and then applying a cosine falloff over a 20-pixel “feathering” band at the edge. This creates a soft transition from the fully warped region to the static background.643
644
645
Temporal Smoothing (EMA). As a final step to prevent unnaturally jerky motion, we apply an Exponential Moving Average (EMA) to the sequence of displacement fields. We use a smoothing factor of $\beta = 0.8$ in the update rule $\tilde{U}_t = \beta \bar{U}_{t-1} + (1-\beta) \tilde{U}_t$.646
647
Data packaging. Each sample is the tuple $(I_t, I_t^{\text{def}}, U_t, M_t)$. Images I_t , I_t^{def} : PNG (8-bit sRGB). Displacement U_t : float32 array $(H \times W \times 2)$ in pixel units. Magnitude

648 M_t : float32 ($H \times W$). A JSON manifest accompanies each clip with hyperparameters
 649 ($K, s, \rho, \sigma, \lambda, \beta$, feather radius, clamps), PRNG seeds, and generation flags.
 650

651 **Defaults used in our experiments.** Unless otherwise noted, we use: $T=20$; control-point density
 652 targeting δ points per 10^4 mask pixels with bounds $20 \leq K \leq 80$ and minimum spacing s px; AR(1)
 653 coefficient ρ ; target RMS amplitude A (as a fraction of the short image side) with $\sigma = \sqrt{1 - \rho^2} A$;
 654 displacement clamp A_{\max} ; TPS regularization λ (on normalized coordinates); feather radius r_f ;
 655 EMA coefficient β . Exact values and ranges are reported in the released configs.

656 **Stability safeguards.** We reject and resample a clip if TPS induces excessive distortion (e.g., more
 657 than a small fraction of pixels with $|\det J_{f_t}(p)| < \tau_J$) or if median $\|U_t\|$ exceeds a bound. We also
 658 cap $\|\Delta_{i,t}\| \leq A_{\max}$ during AR(1) generation.

659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701