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ABSTRACT

With the tremendous development of CNNs, obtaining an available CNN classifier
is more challenging due to the massive number of parameters and deep structure.
Recently, an emerging model disassembling and assembling task (MDA-Task) has
been proposed to obtain new models easily from the perspective of model reusing.
However, the existing methods are usually slow or inaccurate. In this paper, we
put forward a contribution paradigm for MDA-Task, which unifies existing model
disassembling and assembling methods into a universal formulation. We first pro-
pose a relative contribution mechanism that the prediction results of the CNN
classifier are decided by the larger contribution value. Then, the analysis and two
discoveries of contribution allocation and aggregation procedures are given around
the above mechanism. Based on the two discoveries, we introduce a contribution
attribution based CNN disassembling technique composed of single-layer contri-
bution attribution and backward accumulation attribution, which can effectively
find the category-aware components in each layer and associated components in
adjacent layers, respectively. In addition, a contribution rescaling based CNN
assembling technique is devised for assembling the above disassembled category-
aware components from different CNN classifiers, which can achieve comparable
accuracy performance with original CNN classifiers. Experiments on five bench-
mark datasets with three mainstream CNN classifiers verify the effectiveness of
the proposed contribution paradigm and demonstrate that the contribution attribu-
tion based CNN disassembling and assembling technique can achieve significant
accuracy increases and faster speed than the existing methods.

1 INTRODUCTION

In the past decade, the Convolutional neural network (CNN) has been one of the widely used classi-
fication network architectures, which has achieved remarkable breakthroughs in the image classifi-
cation task (Feng et al., 2019; He, 2020) such as face recognition (Khalajzadeh et al., 2014; Saxena
& Verbeek, 2016), medical image classification (Seetha & Raja, 2018; Yu et al., 2021), digital recog-
nition (Bhagyashree et al., 2021; Jain et al., 2021), etc. The powerful discrimination ability of the
CNN classifier benefits from its massive number of parameters and deep structure. However, It is
usually time- and resource-consuming to train an available CNN classifier.

Therefore, some works, including knowledge distillation (Fang et al., 2022; Gou et al., 2020; Lei
et al., 2021; Shen et al., 2021; Song et al., 2022), and transfer learning (Agarwal et al., 2021; Ric-
cardo et al., 2018; Rajesh & Manikanthan, 2017; Siddhant et al., 2018; Simoes et al., 2018; Zhuang
et al., 2020), are developed for reusing trained deep models, which is expected to save the cost of
time, training samples, and GPU resources. However, all the above existing methods require addi-
tional training time or training samples. Recently, Hu et al. (2022) proposed a novel and interesting
Model Disassembling and Assembling Task (MDA-Task), which aims to disassemble the deep mod-
els into independent modules and assemble those modules into a new deep model without additional
training cost like playing LEGO toys.

For MDA-Task, the existing method (Hu et al., 2022) adopted the first-order derivative of prediction
w.r.t. the feature maps to find the category-aware model components, based on the consumption that
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the large derivative value indicates important features. However, the derivative actually reveals the
sensitivity of features towards the prediction and also has the noisiness and discontinuity problem
(Lee et al., 2021). Those defects bring out two disadvantages: slow processing speed and incorrect
category-aware component identification.

In this paper, we first propose a relative contribution mechanism for the CNN classifier, where the
prediction results of the CNN classifier are decided by the larger contribution value, which is the
combination of essential features and category-aware parameters (Section 3). Then, we analyze
the contribution propagation in the CNN classifier (Section 3.1) and yields two discoveries on the
contribution allocation and aggregation (Section 3.2). Based on the analysis and discoveries, we
put forward a contribution paradigm, which unifies existing model assembling and disassembling
techniques into a universal formulation (Section 3.3). The contribution paradigm and the above two
discoveries are the foundation for disassembling and assembling the CNN classifier in this paper.

In the disassembling stage, we introduce a contribution attribution technique for finding the
category-aware components. The contribution attribution technique is composed of two parts:
single-layer contribution attribution and backward accumulation attribution. The former adopts the
normalized contribution indicator to distinguish whether an unit is important for the prediction of
a specific category. The latter accumulates the unimportant units between adjacent layers in the
backward propagation direction.

With the disassembled components for specific categories from different models with the same net-
work architecture, a contribution rescaling technique is devised for assembling those components
into a new model. Due to the different relative contributions for output in different models, we
rescale the contribution of components from different models to the same level, which ensures that
different categories of the assembled model can equally predict final results.

For the whole disassembling and assembing process, there is no additional cost of training sam-
ples and fine-tuning, which is the outstanding advantage of the MDA-Task. What’s more, exten-
sive experiments on five datasets with three mainstream CNN classifiers demonstrate that the pro-
posed model disassembling and assembling techniques can achieve significant accuracy increases
and faster speed than existing methods.

Our contribution is therefore proposing the relative contribution mechanism and giving two dis-
coveries on the contribution aggregation and allocation, which are the foundation for the following
model disassembling and assembling. Moreover, we put forward a contribution paradigm unifying
existing model disassembling and assembling techniques into a universal formulation. The contribu-
tion attribution based disassembling technique and contribution rescaling technique are introduced
for MDA-Task. Finally, we conduct extensive experiments on a wide domain of datasets with main-
stream classifiers to verify the superior accuracy and speed compared to existing methods.

2 RELATED WORK

The related works are feature attribution, model pruning, and subnetwork identification. Ex-
isting feature attribution techniques can be divided into four types: activation-based technique,
gradient-based technique, perturbation-based technique, and Layer-wise Relevance Propagation
(LRP). Activation-based techniques (Desai & Ramaswamy, 2020; Naidu & Michael, 2020; Wang
et al., 2020; Zhou et al., 2016) calculate a group of weight and then sum the activation map to visual-
ize important features. Similar to (Hu et al., 2022), gradient-based techniques (Chattopadhay et al.,
2018; Feng et al., 2022; Omeiza et al., 2019; Selvaraju et al., 2020; Shrikumar et al., 2017; 2016;
Simonyan et al., 2013; Song et al., 2019; Sundararajan et al., 2017) adopt gradient-related terms to
locate important features. Perturbation-based techniques (Lengerich et al., 2017; Zeiler & Fergus,
2014; Zhou & Troyanskaya, 2015; Zintgraf et al., 2017) discriminate important features through
removing, masking, or altering them and running a forward pass on the new input, measuring the
difference with the original output. LRP propagates the final prediction backward in the neural net-
work with the designed local propagation rule, which is based on the conservation property, what
a neuron has received must be redistributed to the lower layer in equal amounts (Montavon et al.,
2019). Montavon et al. (2019) surveyed the above LRP rules (LRP-0 (Bach et al., 2015), LRP-
ϵ (Bach et al., 2015), LRP-γ (Montavon et al., 2019), LRP-αβ (Bach et al., 2015), flat (Lapuschkin
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et al., 2019), ω2-rules (Montavon et al., 2016), zB-rule (Montavon et al., 2016)) and analyzed the
difference and connection.

Different from the above feature attribution methods, we propose the forward relative contribution
mechanism and give the analysis and experimental verification. Besides, we put forward a novel
contribution paradigm, which aggregates the normalized relative contribution to find category-aware
model parameters correctly and is devised for the model disassembling task.

For model pruning (Lecun, 1990), the core idea is to discriminate the important and unimportant
model parameters for the task and then prune those unimportant parameters, which aims to re-
duce the storage requirement and speed up the inference process. Existing model pruning tech-
niques (Choudhary et al., 2020; Lei et al., 2018) contain weight pruning (Han et al., 2015), neuron
pruning (Srinivas & Babu, 2015), filter pruning (Li et al., 2017), and layer pruning (Chen & Zhao,
2018). Different from model pruning which discriminates the task-aware redundant model compo-
nents, the proposed contribution paradigm aims to find the category-aware features or parameters.

For subnetwork identification, existing techniques can be divided into three types: during-training,
extra-training, and after-training. During-training techniques (Liang et al., 2020; Li et al., 2020)
focus on guiding the deep neural network to generate class-related pathways by adding the extra
modules during the training stage. Extra-training techniques (Wang et al., 2018; Hu et al., 2021;
Frankle & Carbin, 2018) usually use a trainable module or training strategy with extra training steps
to discover the subnetwork of a pretrained model. After-training techniques (Khakzar et al., 2021;
Hu et al., 2022) mainly apply the attribution analysis method to discover the critical pathways of
a pretrained model. The above methods can also be regarded as weight-based (Liang et al., 2020;
Frankle & Carbin, 2018), activation-based (Li et al., 2020; Wang et al., 2018; Hu et al., 2021), and
gradient-based (Khakzar et al., 2021; Hu et al., 2022), respectively.

Actually, the gradient just reveals the sensitivity of the feature map towards the model prediction and
has the noisiness and discontinuity problem (Lee et al., 2021). Meanwhile, in our analysis (Sec-
tion 3.3), weight-based and gradient-based methods are mainly related to the filter’s parameters,
and activation-based methods usually lack the analysis of subsequent layer’s parameters influence,
leading them to the incompleteness of contribution, while the contribution paradigm fully consid-
ered the parameters and activation of a network. In addition, the above subnetwork identification
techniques (except (Hu et al., 2022)) are mainly used for applications like network interpretation
and adversarial samples detection, while the proposed contribution paradigm focuses on disassem-
bling a pretrained model to solve the model reuse problem, and it can also be used for network
interpretation.

3 ANALYSIS AND DISCOVERY OF RELATIVE CONTRIBUTION MECHANISM

Relative Contribution Mechanism. The prediction of the CNN classifier is decided by the larger
contribution value1, which is the combination of essential features2 and category-aware parame-
ters3. The contribution values in the preceding layer will aggregate into the contribution values in
the latter layer through the forward propagation process.

3.1 ANALYSIS OF RELATIVE CONTRIBUTION

For a CNN classifier, a Softmax function usually follows the last linear layer, which turns the last
layer’s outcomes, aka logits, into probabilities that sum to one. The higher the outcomes, the higher
the corresponding probability. That means the relatively large outcome decides the final classifi-
cation result in the last layer, which is the most intuitive manifestation of the relative contribution
mechanism. In the other layers of CNN models, the relatively large outcome decides the magnitude
of important features. Therefore, the relative contribution phenomenons apply to the whole forward
propagation process of CNN models.

The following section will clarify the relative contribution allocation and aggregation in the whole
forward propagation process. Taking the propagation in the layer l as an example (as shown in

1The score that reflects the feature’s importance to the next layer.
2The features which are corresponding to the larger contribution value.
3The parameters which are related to the essential features.
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Figure 1: (a) the data flow diagram from the layer l to the layer (l + 1) for the convolutional
network, where each convolution filter Cl

k is composed of a group of convolution kernels Cl
k =

{clk,1, clk,2, ..., clk,n, ..., clk,N}. (b) the contribution aggregate to the k-th hidden feature maps H l
k for

the latent feature map ãlk. (c) the contribution allocation from the n-th activation map aln.

Fig.1(a)), the input feature maps of the layer l are denoted as {al1, al2, ..., aln, ..., alN}, and the corre-
sponding convolution filters are denoted as {Cl

1,Cl
2, ...,Cl

k, ...,Cl
K}, where each filter Cl

k is consists
of N convolution kernels Cl

k = {clk,1, clk,2, ..., clk,n, ..., clk,N}.

With the convolution filter Cl
k, the hidden feature maps Hl

k of the layer l are calculated as follows:

Hl
k = {hl

k,1, h
l
k,2, ..., h

l
k,n, ..., h

l
k,N}, hl

k,n = clk,n ⊗ aln, (1)

where ⊗ denotes the partial convolution operation. With the hidden feature maps Hl
k, the output

feature map ãlk of the layer l is calculated as follows:

ãlk =

N∑
n=1

hl
k,n + bk, (2)

where the bk denotes the bias of the k-th channel. Then, the final activation map al+1
k of the layer

(l + 1) is calculated as follows:
al+1
k = f(ãlk), (3)

where f denotes the following operation, such as batch normalization, activation function, and pool-
ing operation.

From Eqn.(2), we can see that the output feature map ãlk of the layer l is summed by hidden feature
maps Hl

k, which means that the value of ãlk is determined by the value of single hidden feature map
hl
k,n. Like the softmax operation on the last layer, the larger the single hidden feature map, the more

important to the output ãlk.

In the paper, the summed feature score ⊎hl
k,n of each hidden feature map hl

k,n is used to quantify
the degree of contribution to the output ãlk, where ⊎ denotes the value summing operation of a
matrix. For the classification task, positive/negative contributions have a positive/negative impact
on the output. Therefore, the negative contribution score ⊎hl

k,n should be filtered out, which will
reserve the positive contribution to the final classification results. In addition, the contribution to
the outcome is relative as described before. So, the normalization operation is adopted to obtain the
uniform contribution for different activation maps and model parameters. Finally, the normalized
contribution score rlk,n is given as follows:

rlk,n =
vlk,n −min(Vl

k)

max(Vl
k)−min(Vl

k) + ε
,Vl

k = {vlk,n}Nn=1, v
l
k,n =

{
⊎hl

k,n ⊎ hl
k,n > 0

0 ⊎ hl
k,n ≤ 0

, (4)

where ε denotes a minimum to avoid the situation of divide-by-zero.

For each output feature map ãlk, Fig.1 (b) shows the contribution aggregation process, where the
contribution from activation maps {aln}Nn=1 are aggregated to hidden feature maps H l

k with the k-th

4



Under review as a conference paper at ICLR 2023

(a)

local

global

im
ag

e
cl

as
s

0
2
4
6
8

0
2
4
6
8

(a)

(b)
im

ag
e

cl
as

s

(b)

0

1

0

1

0

1

0

1

0
2
4
6
8

0
2
4
6
8

Figure 2: The pattern of contribution aggregation to an unit for samples of the same category (a) and
different categories (b).
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Figure 3: The total contribution pattern from different activation maps for samples of the same
category (a) and different categories (b).

convolution filter Cl
k. The total contribution ul

n from the activation map aln is given as follows:

ul
n =

K∑
k=1

rlk,n. (5)

Fig.1 (c) shows the contribution allocation process, where the total contribution ul
n from the acti-

vation map aln are allocated to different hidden feature maps {hl
k,n}Kk=1 with different convolution

kernels {clk,n}Kk=1.

3.2 DISCOVERY OF RELATIVE CONTRIBUTION

Discovery 1. For the contribution aggregation to an unit, different samples of the same category
have the similar relative contribution pattern, while different categories have different relative con-
tribution pattern.

Fig.2(a) shows the relative contribution pattern for different images of the same category bird
in 13-th convolutional layer’s 2-th hidden layer of VGG-16 (Simonyan et al., 2013) on CIFAR-
10 (Krizhevsky, 2009). We can discover that different bird images have the almost same contribu-
tion pattern and some fixed contribution close to zero. Fig.2(b) shows the relative contribution of
different categories in the same hidden layer, where we can see that the relative contribution pattern
of categories varies with different categories.

Discovery 2. For the total contribution of different units, different samples of the same category have
the similar sparse total contribution pattern, which reveals that the prediction of a specific category
highly rely on large contribution from fixed units (the combination of important feature maps and
relevant model parameters). On the contrary, different categories have different total contribution
pattern, which means that different categories rely on contribution from different units.

Fig.3 shows the total contribution pattern from the layer 13’s input feature maps of VGG-16 (Si-
monyan et al., 2013) on CIFAR-10 (Krizhevsky, 2009). From Fig.3(a), we can see that different
images of the same category bird have similar total contribution pattern, which means that the pre-
diction of category bird rely on the large contribution from the fixed input feature maps in the layer
13. For the convolution operation in the layer l, al+1

k = F(Cl
k ⊗{al1, al2, ..., alN}), where F denotes

the following operation including summing, adding bias, batch normalization, activation function
and e.t. after the convolution operation ⊗. Above equation indicates that with the same input ac-
tivation maps {al1, al2, ..., alN} and F , the output activation map al+1

k is only associated with the
convolution filter Cl

k, which builds the relation between the k-th activation map with the the k-th
convolution filter in the previous layer (Feng et al., 2021). Therefore, it reveals that a specific cat-
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egory is only related with fixed convolution filters combining the discovered relation between the
specific category and the fixed activation maps in Fig.3(a), which is the foundation for the following
CNN model disassembling. On the contrary, Fig.3(b) shows that different categories have different
total contribution patterns, which indicates that prediction of different categories rely on large con-
tribution from different activation maps. That is to way, different categories have their own relevant
model parameters.

3.3 DISCUSSION ON UNIVERSALITY OF CONTRIBUTION PARADIGM

As shown in Fig.1(a), the convolution operation in the layer l can be abbreviated to al+1
k = F(Cl

k ⊗
{al1, al2, ..., alN}). For simply, according to the chain rule, the derivatives of outcome w.r.t. the input
feature maps is calculated as follows:

∂al+1
k

∂{al1, al2, ..., aln, ..., alN}
= Cl

kF ′, (6)

where F ′ denotes the derivatives of the operation after convolution. From Eqn.(6), we can see
that the derivative of output w.r.t. the feature maps is mainly related to the convolution parameters
Cl
k. Therefore, the first-order derivative attribution used in Hu et al. (2022) actually utilizes the

approximation of large value parameters to find the category-aware model components.

From the perspective of relative contribution, the prediction of specific category is related with
two terms: activation and model parameter, as given in Eqn.(1-5). Whereas, Hu et al. (2022) only
adopt the large value model parameter (the approximation of gradient) to disassemble CNN classi-
fier, which leads to incorrect identification of category-aware model components. In addition, some
activation-based techniques (Desai & Ramaswamy, 2020; Naidu & Michael, 2020; Wang et al.,
2020; Zhou et al., 2016) sum the activation map with a group of weight to visualize important fea-
tures, which actually adopts approximation of activation to find important features. Most of those
activation-based techniques can precisely discriminate category-aware important features, the root
reason of which is neglect of the second term important model parameters. In summary, the contribu-
tion paradigm, which combines the essential features (the first term activation) and category-aware
parameters (the second term). to find the prediction-related components, is an universal paradigm.
It units the existing model disassembling and assembling methods.

4 CONTRIBUTION ATTRIBUTION BASED CNN DISASSEMBLING

Based on above relative contribution mechanism and analysis, we devise a contribution attribution
technique to discriminate category-aware components. The contribution attribution technique is
composed two steps: single-layer contribution attribution and backward accumulation attribution,
which are devised to find the category-aware model components in each layer and accumulate the
contribution influence between adjacent layers in the backward attribution process, respectively.

4.1 SINGLE-LAYER CONTRIBUTION ATTRIBUTION

Based on the relative contribution mechanism, a threshold α is adopted to distinguish important and
unimportant contribution rlk,n calculated with Eqn.(4). Then, the importance indicator qlk,n for the
hidden feature map hl

k,n is calculated as follows:

qlk,n =

{
1 rlk,n ≥ α

0 rlk,n < α
, (7)

where qlk,n = 1 denotes the single-layer hidden feature map hl
k,n is important, qlk,n = 0 denotes

the single-layer hidden feature map hl
k,n is not important, and α ∈ (0, 1]. Next, the discrete total

contribution ül
n of the activation map aln is summed as follows:

ül
n =

K∑
k=1

qlk,n. (8)
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Similarly, based on the discovery on contribution allocated units, we adopt a threshold value β
to filter out activation without contribution or with less contribution. Therefore, the contribution
indicator tln for the activation map aln is calculated as follows:

tln =

{
1 sln ≥ β

0 sln < β
, sln =

ül
n

max({ül
1, ü

l
2, ..., ü

l
n, ..., ü

l
N}) + ε

, (9)

where tln = 1/0 denotes whether the activation map aln has contribution for the next layer, and
β ∈ (0, 1], similarly, ε denotes a minimum to avoid the situation of divide-by-zero.

4.2 BACKWARD ACCUMULATION ATTRIBUTION

In the forward propagation process, the small or negative aggregated contribution will be filtered out
by the following activation function, which means that the small or negative aggregated contribution
and the previous contribution allocated to the current unit do not contribute to the final prediction.
In the disassembling process, importance indicators {qlk,1, qlk,2, ..., qlk,n, ..., qlk,N} for the aggregated
feature map H l

k will be invalid if the contribution indicator tl+1
k equals 0, which means the activation

map al+1
k does not contribute to the final prediction. Therefore, the importance indicator qlk,n (Eqn.

(7)) for the hidden feature map hl
k,n with the accumulated influence from the activation map al+1

k is
recalculated as follows:

qlk,n =

{
1 rlk,n ≥ α and tl+1

k > 0

0 rlk,n < α or tl+1
k = 0

. (10)

Eqn.(8) and Eqn.(9) remain unchanged in the backward accumulation attribution. To sum up, the
contribution indicator tln (Eqn.(9)) for the activation map aln in the layer l is affected by the contri-
bution indicator tl+1

n in the layer (l + 1) by resetting qlk,n to zero when tl+1
n = 0.

The above two-step contribution attribution is also applicable for the fully connected layer. In ad-
dition, the backward accumulation attribution needs some tiny modification between the connection
of the fully connected layer and the last convolution layer. More details about the contribution at-
tribution in the fully connected layer are given in the appendix. In the last fully connected layer,
the contribution to the final prediction of a specific category can be used to identify the important
features. With the single-layer contribution attribution and the backward accumulation attribution,
the contribution indicator tln (Eqn.(9)) can be used to distinguish whether the activation map aln has
the contribution to the final prediction in the backward attribution process. As described in Dis-
covery 2, the activation map alk is only associated with the convolution filter Cl−1

k . Therefore, the
category-aware components can be effectively disassembled from the original CNN classifier with
the above contribution attribution techniques.

5 CONTRIBUTION RESCALING BASED CNN ASASSEMBLING

This paper only considers assembling category-aware components disassembled from homogeneous
CNN classifiers trained on datasets with different categories. With the disassembled components
from different models, the alignment padding strategy (Hu et al., 2022), which assembles category-
aware components of different models through padding empty kernels for each convolution or linear
filter, is adopted to assemble the model components in each layer. The padding operation ensures
that all filters in each layer have the same number of kernels.

Furthermore, we devise a contribution rescaling strategy to optimize the component assembling in
the last fully connected layer. Take the component assembling of two models as an example to elab-
orate on the contribution rescaling strategy. Assumed that there are two disassembled models m1

with desired X categories (category number of the original classifier is large than X ) and m2 with
desired Y categories, the disassembled category-aware model parameters of the last layer are de-
noted as {Wm1

1 ,Wm1
2 , ...,Wm1

x , ...,Wm1

X } and {Wm2
1 ,Wm2

2 , ...,Wm2
y , ...,Wm2

Y }, and the output
logits of the last layer are denoted as {em1

1 , em1
2 , ..., em1

x , ..., em1

X } and {em2
1 , em2

2 , ..., em2
y , ..., em2

Y }.
Then, with the contribution rescaling strategy, the new parameters W ′m1

x and W ′m2

x for the assem-
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Table 1: The disassembling performance comparison. ‘orig.’ denotes the average accuracy of origi-
nal models for specific categories (‘Disassembled Category’). All scores are in %.

Dataset Disassembled VGG-16 (Simonyan et al., 2013) ResNet50 (He et al., 2016) GoogleNet (Szegedy et al., 2015)

Category orig. Ours Grad. orig. Ours Grad. orig. Ours Grad.

MNIST

0 99.90 100.00 100.00 99.90 100.00 100.00 100.00 100.00 100.00
1 100.00 100.00 100.00 99.91 100.00 100.00 100.00 100.00 100.00

0-2 99.84 99.94 99.32 99.90 99.97 94.17 99.97 100.00 99.48
3-9 99.57 99.67 99.12 99.54 99.59 98.73 99.69 99.77 99.72

FASHION-MNIST

0 89.30 100.00 100.00 90.40 100.00 100.00 91.10 100.00 100.00
1 98.80 100.00 100.00 98.80 100.00 100.00 99.10 100.00 100.00

0-2 93.53 97.90 94.67 93.73 98.00 97.80 94.07 97.57 93.43
3-9 94.53 95.57 93.70 94.26 95.66 95.04 95.03 96.44 91.81

CIFAR-10

0 94.40 100.00 100.00 96.10 100.00 100.00 95.40 100.00 100.00
1 96.50 100.00 100.00 96.20 100.00 100.00 97.40 100.00 100.00

0-2 93.87 95.47 93.47 94.93 97.43 92.17 94.47 98.17 93.93
3-9 92.49 92.27 88.59 93.81 94.46 94.36 93.46 93.17 91.93

CIFAR-100

0 84.00 100.00 100.00 92.00 100.00 100.00 90.00 100.00 100.00
1 87.00 100.00 100.00 87.00 100.00 100.00 85.00 100.00 100.00

0-19 71.05 82.50 76.80 75.55 77.15 75.45 75.90 87.55 81.40
20-69 72.74 79.66 78.46 77.68 79.72 74.54 76.60 82.42 80.58

Tiny-ImageNet

0 82.00 100.0 100.00 92.00 100.00 100.00 88.00 100.00 100.00
1 70.00 100.0 100.00 80.00 100.00 100.00 76.00 100.00 100.00

0-69 50.17 55.49 50.89 56.06 56.40 52.83 52.89 59.40 59.31
70-179 45.36 47.95 42.49 51.27 53.42 48.8 47.91 51.04 50.44

bled model in the last layer are calculated as follows:

W ′m1

x =
e

em1
x

Wm1
x ,W ′m2

y =
e

em2
y

Wm2
y , e =

∑X
x=1 e

m1
x +

∑Y
y=1 e

m2
y

X + Y
, (11)

where e denotes the average logit value. The assembled model will predict the final results equally
by combining the alignment padding strategy with the contribution rescaling strategy.

6 EXPERIMENTS

In the experiments, we choose five benchmark datasets (MNIST (Lecun et al., 2001), Fashion-
MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009), Tiny-
ImageNet (Le & Yang, 2015)) and three mainstream CNN classifiers (VGG-16 (Simonyan et al.,
2013), ResNet-50 (He et al., 2016), GoogleNet (Szegedy et al., 2015)) to verify the effectiveness of
the proposed method for MDA-Task.

Parameter Setting. Unless stated otherwise, in convolutional layer, the default thresholds α = 0.3,
β = 0.2, in linear layer, the default thresholds α = 0.4, β = 0.3, and the default disassembled
layer number is all the layer. Besides, for the pretrained models, the default optimizer is SGD, the
learning rate is 0.01, and the training epoch is 200. More details and are given in the appendix.

6.1 THE PERFORMANCE OF DISASSEMBLING AND ASSEMBLING CNN CLASSIFIER

The disassembling performance comparison results with ‘Grad.’ (Hu et al., 2022) are given in Ta-
ble 1, where results are reported as an average of three runs to ensure fairness. From Table 1, we
can see that the performance of single-class disassembling and multi-class disassembling by our
method is close to or even above the original performance. What’s more, our method achieves sig-
nificant accuracy increases than ‘Grad.’, which verifies the effectiveness of the proposed contribution
paradigm and the proposed contribution attribution techniques. Our method has smaller amount of
model parameters (please refer to the appendix for the details quantitative results) than ‘Grad.’ as
the significant accuracy increases, which indicates that the proposed attribution techniques can find
category-aware model components more accurately. In addition, the proposed contribution attribu-
tion technique costs less time than ‘Grad.’ for the disassembling process. More experiment results
about disassembling time-cost are given in appendix.

The assembling performance comparisons for categories from different datasets are given in Table 2,
where we can see that the assembled new models by our method can achieve higher accuracy than
‘Grad.’, which demonstrates the significant advantage of the proposed method. More results and
analysis are given in the appendix.
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Table 2: The assembling performance for categories from different datasets. ‘orig.’ denotes the
average accuracy for ‘Assembled Category’ from the original models. All scores are in %.

Dataset Assembled VGG-16 (Simonyan et al., 2013) ResNet50 (He et al., 2016) GoogleNet (Szegedy et al., 2015)

Category orig. Ours Grad. orig. Ours Grad. orig. Ours Grad.

MNIST
+

FASHION-MNIST

0 + 0 94.60 97.35 50.00 95.15 62.05 50.00 95.55 96.05 50.00
0-2 + 0-2 96.69 98.48 82.16 96.82 90.47 84.22 97.02 98.27 95.45
0-2 + 3-9 96.12 95.62 81.15 95.95 88.58 84.22 96.51 96.34 86.12
0-9 + 0-2 98.24 98.29 97.25 98.29 83.97 73.69 98.46 98.49 97.13

CIFAR-10
+

CIFAR-100

0 + 0 89.20 50.00 50.00 94.05 77.30 50.00 92.70 99.60 94.25
0-2 + 0-19 74.03 74.17 71.54 78.08 64.34 18.72 78.32 79.22 67.62
3-9 + 20-69 75.16 73.72 69.97 79.66 72.03 54.62 78.67 70.24 69.25
0-9 + 20-99 74.87 72.07 69.96 79.54 65.97 49.12 78.57 66.59 65.13

CIFAR-10
+

Tiny-ImageNet

0 + 0 88.20 94.70 50.00 94.05 86.95 50.00 91.70 62.40 50.00
0-2 + 0-69 51.97 53.20 50.75 57.65 43.09 5.98 54.59 57.51 45.20
3-9 + 0-69 54.02 50.20 48.58 59.49 52.14 35.55 56.57 53.74 49.63

0-9 + 70-179 49.33 42.30 26.19 54.85 47.21 28.88 51.73 48.00 44.02

CIFAR-100
+

Tiny-ImageNet

0 + 0 83.00 50.00 50.00 92.00 53.00 50.00 89.00 50.00 50.00
0-19 + 0-69 69.86 50.66 49.62 74.59 57.86 50.31 74.73 58.67 57.78

20-69 + 70-179 71.48 50.08 33.94 76.54 56.53 49.68 75.08 54.09 53.46
0-99 + 0-199 55.97 43.06 20.71 61.51 53.05 52.05 59.19 48.66 48.65

40
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Figure 4: The ablation study on model hyper-parameters (α, β) and disassembled layers. The accu-
racy curve (a), disassembling FLOPs ratio curve (b), and model parameter amount ratio curve (c)
with varying hyper-parameters in the linear (αl, βl) and convolutional (αc, βc) layers. The accuracy
curve (d), disassembling FLOPs ratio curve (e), and model parameter amount ratio curve (f) with
the accumulated disassembled layers in the backward direction.

6.2 ABLATION STUDY

This section conducts the ablation study on the thresholds α and β in the linear layer and con-
volutional layer, as shown in Fig.4(a,b,c). In Fig.4(a), we can see that as the thresholds α and β
increase, the accuracy of the disassembled model decreases, and thresholds in the convolutional
layer is more sensitive than in the linear layer. Fig.4(b) shows that thresholds α and β have more
significant changes on FLOPs in the convolutional layer than in the linear layer. In Fig.4(c), the
model parameter amount ratio of the disassembled model will decrease with the thresholds increase.

Fig.4(d,e,f) show the ablation study on disassembled layer number, where the disassembling direc-
tion is from back to front. The accuracy will first rise and then fall as the layer number increases, as
shown in Fig.4(d). From Fig.4(e,f), we can see that the model parameter amount and disassembling
FLOPs ratio will decrease as the number of disassembled layers increases.

7 CONCLUSION

In this paper, we propose a relative contribution mechanism aka prediction results of a CNN clas-
sifier are decided by its larger contribution value, and give two discoveries on the pattern of contri-
bution and allocation, respectively. Based on the above fundamental discoveries, we put forward a
contribution paradigm, which unifies existing model disassembling and assembling techniques into
a universal formulation. Next, we devise two attribution techniques to disassemble and assemble
category-aware model components. Extensive experiments verify the effectiveness of the contribu-
tion paradigm and the superior accuracy and speed compared to the existing method. In the future,
we will focus on disassembling CNN models for other tasks such as segmentation and detection,
and assembling heterogeneous network architectures.
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In the appendix, we provide the detailed experiment setting, elaboration, more experiment results of
CNN disassembling and assembling, the ablation study on contribution rescaling strategy in CNN
assembling, applications of our disassembling and assembling framework on other tasks, and dis-
cussion about limitations. In addition, source codes are given in the ’code.zip’ file.

A DETAILED EXPERIMENT SETTING

In this section, we give the detailed parameter settings for the linear layer and the convolutional
layer of three mainstream CNN classifiers (VGG-16 (Simonyan et al., 2013), ResNet50 (He et al.,
2016), GoogleNet (Szegedy et al., 2015)) on five benchmark datasets (MNIST (Lecun et al., 2001),
Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009),
Tiny-ImageNet (Le & Yang, 2015)). Table 3 shows the detailed parameter settings for different
networks on different datasets.

Table 3: The detailed parameters setting in assembling stage.

Dataset VGG-16 (Simonyan et al., 2013) ResNet50 (He et al., 2016) GoogleNet (Szegedy et al., 2015)

Linear Conv. Linear Conv. Linear Conv.

MNIST α = 0.35, β = 0.55 α = 0.30, β = 0.20 α = 0.35, β = 0.55 α = 0.40, β = 0.20 α = 0.25, β = 0.55 α = 0.40, β = 0.15
FASHION-MNIST α = 0.36, β = 0.55 α = 0.40, β = 0.20 α = 0.35, β = 0.55 α = 0.40, β = 0.20 α = 0.25, β = 0.55 α = 0.40, β = 0.15
CIFAR-10 α = 0.40, β = 0.55 α = 0.30, β = 0.25 α = 0.25, β = 0.45 α = 0.35, β = 0.18 α = 0.25, β = 0.55 α = 0.40, β = 0.15
CIFAR-100 α = 0.25, β = 0.45 α = 0.35, β = 0.16 α = 0.25, β = 0.55 α = 0.40, β = 0.20 α = 0.25, β = 0.45 α = 0.35, β = 0.16
Tiny-ImageNet α = 0.25, β = 0.45 α = 0.35, β = 0.16 α = 0.25, β = 0.55 α = 0.40, β = 0.20 α = 0.25, β = 0.45 α = 0.35, β = 0.16

B CNN DISASSEMBLING

B.1 CONTRIBUTION ATTRIBUTION IN THE FULLY CONNECTED LAYER

In the Section 4.2 of the submitted paper, there is a special situation that if the layer l is a convo-
lutional layer, and the layer (l + 1) is a linear layer, assume that the inputs of the layer (l + 1) are
denoted as {pl+1

1 , pl+1
2 , ..., pl+1

j , ..., pl+1
J }, and the importance indicators of the layer (l+1)’s inputs

are denoted as {tl+1
1 , tl+1

2 , ..., tl+1
j , ..., tl+1

J }. In CNN classifier, the inputs of the layer (l + 1) is
usually calculated with the following operations: Global Average / Max Pooling, Flatten.

For the Global Average / Max Pooling, the Global Average / Max Pooling will not change the
channel’s number of the layer l’s outputs {ãl1, ãl2, ..., ãlk, ..., ãlK} and the layer (l + 1)’s inputs
{pl+1

1 , pl+1
2 , ..., pl+1

j , ..., pl+1
J }, aka K = J . Therefore, the importance indicator tl+1

j of the in-
put pl+1

j is equal to the importance indicators of H l
k, aka if tl+1

k = 0, then the importance indicators
{qlk,1, qlk,2, ..., qlk,n, ..., qlk,N} = 0.

For the Flatten operation, the part of inputs of the layer (l + 1) is calculated as follows:

{pl+1
(k−1)∗q+1, p

l+1
(k−1)∗q+2, ..., p

l+1
k∗q} = Flatten(ãlk), (12)

where {pl+1
(k−1)∗i+1, p

l+1
(k−1)∗i+2, ..., p

l+1
k∗i } ∈ {pl+1

1 , pl+1
2 , ..., pl+1

j , ..., pl+1
J }, i denotes the number of

inputs of the linear layer that flatten from one feature map in the preceding layer. Therefore, the
importance indicator t̃lk of ãlk is calculated as follows:

t̃lk =


1

k∗i∑
j=(k−1)∗i+1

(tl+1
j ) ≥ β

0

k∗i∑
j=(k−1)∗i+1

(tl+1
j ) < β

, (13)

where β is a threshold parameter, which filters out unimportant output feature map ãlk of the layer
l. If the importance indicator t̃lk = 0, then the importance of H l

k will also be regarded as zero. In
summary, the backward accumulation attribution can be applied to the entire network.
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Table 4: The disassembling performance comparison with other metrics. ‘FLOPs’ and ‘Para.’ denote
the FLOPs and parameter amount (unit is M) of the disassembled model, respectively. For ‘FLOPs’
and ‘Para.’, ‘score1 / score 2’ denotes the performance of ‘Grad.’ / ours. The value of ‘Time’
denotes the ratio of time-cost of ‘Grad.’ to the proposed method’s time-cost. The time-cost means
the consuming time of the disassembling process.

Dataset Disassembled VGG-16 (Simonyan et al., 2013) ResNet50 (He et al., 2016) GoogleNet (Szegedy et al., 2015)

Category FLOPs Para. Time FLOPs Para. Time FLOPs Para. Time

MNIST

0 7.24 / 20.31 4.24 / 4.59 1.11 91.38 / 105.06 9.94 / 13.77 1.69 32.32 / 46.40 3.42 / 4.39 3.79
1 7.64 / 11.96 4.21 / 2.28 1.11 77.30 / 92.52 8.78 / 10.32 1.69 30.70 / 44.81 3.27 / 4.25 3.79

0-2 19.87 / 26.65 17.13 / 9.62 1.11 109.82 / 122.13 17.71 / 18.39 1.69 41.02 / 49.04 4.92 / 5.30 3.79
3-9 28.68 / 30.79 29.34 / 14.84 1.11 123.90 / 126.62 22.85 / 21.85 1.69 48.74 / 49.64 5.64 / 5.73 3.79

FASHION-
MNIST

0 16.35 / 20.71 6.09 / 6.32 1.29 100.32 / 115.49 11.87 / 15.38 1.81 31.31 / 47.49 3.62 / 4.75 3.45
1 15.60 / 13.66 5.50 / 3.17 1.29 98.93 / 94.90 11.25 / 12.18 1.81 29.90 / 45.91 3.35 / 4.53 3.45

0-2 25.07 / 26.79 17.48 / 10.97 1.29 118.80 / 122.49 18.82 / 18.90 1.81 39.38 / 48.84 4.76 / 5.31 3.45
3-9 27.28 / 30.30 26.73 / 15.27 1.29 128.89 / 127.69 22.79 / 21.78 1.81 44.70 / 49.12 5.67 / 5.74 3.45

CIFAR-10

0 7.50 / 8.35 4.28 / 2.13 1.31 80.94 / 56.33 8.44 / 8.11 1.79 34.15 / 37.72 3.51 / 3.95 3.43
1 7.61 / 11.85 3.73 / 2.35 1.31 80.24 / 77.19 7.97 / 8.41 1.79 33.40 / 40.99 3.44 / 4.21 3.43

0-2 25.54 / 18.69 18.39 / 5.04 1.31 113.69 / 106.51 16.81 / 15.55 1.79 41.35 / 45.50 4.72 / 5.23 3.43
3-9 29.18 / 27.36 26.54 / 13.48 1.31 123.60 / 116.74 21.15 / 20.70 1.79 44.32 / 46.74 5.33 / 5.73 3.43

CIFAR-
100

0 7.27 / 11.42 3.50 / 3.09 1.08 23.85 / 33.62 2.80 / 3.20 1.74 29.00 / 33.13 3.08 / 3.16 2.99
1 6.84 / 12.73 3.41 / 3.11 1.08 24.28 / 55.76 2.89 / 6.18 1.74 29.83 / 35.43 3.01 / 3.22 2.99

0-19 31.35 / 30.76 31.64 / 26.81 1.08 110.70 / 109.51 22.06 / 17.45 1.74 42.92 / 45.21 5.41 / 5.29 2.99
20-69 32.55 / 31.97 32.41 / 30.01 1.08 116.15 / 120.01 22.99 / 21.56 1.74 45.78 / 47.08 5.57 / 5.57 2.99

Tiny-
ImageNet

0 3.23 / 6.62 2.81 / 1.63 1.05 26.03 / 49.98 3.07 / 5.12 2.25 32.24 / 35.38 3.23 / 3.13 3.17
1 3.11 / 4.66 2.75 / 1.58 1.05 24.81 / 38.59 2.93 / 4.41 2.25 34.40 / 34.21 3.23 / 3.13 3.17

0-69 32.52 / 32.07 32.95 / 29.40 1.05 122.29 / 126.98 23.46 / 22.43 2.25 51.19 / 50.80 6.25 / 6.17 3.17
70-179 32.06 / 32.61 33.17 / 30.72 1.05 124.22 / 128.33 23.61 / 23.23 2.25 51.74 / 51.13 6.32 / 6.23 3.17

B.2 PERFORMANCE COMPARISON WITH OTHER METRICS

To demonstrate that the disassembling performance of the proposed method is better than
‘Grad.’ (Hu et al., 2022), we give a detailed comparison with FLOPs and the parameter amount
of the disassembled model and the time-cost of the disassembling process, as shown in Table 4.

Apart from the higher accuracy obtained by the proposed method, from Table 4, we can see that the
FLOPs and the parameter amount of the proposed method are both less than ‘Grad.’ in most cases.
The proposed method can achieve both higher accuracy and larger FLOPS values than ‘Grad.’,
which indicates that the proposed method can find category-aware components more accurately. In
addition, another advantage of the proposed method is the faster speed of the disassembling process
than ‘Grad.’, where the derivation operation is very time-consuming.

C CNN ASSEMBLING

… … … …… … … …

… … … …

… …… … … … … …

…

… …… …

… … … …

① alignment padding

② concatenate

① concatenate

② alignment padding

…

(a) (b)

Figure 5: The (a) original alignment padding strategy and (b) improved alignment padding strategy
in the inception module.

C.1 THE ASSEMBLING OF GOOGLENET

The alignment padding strategy (Hu et al., 2022) fails on GoogleNet (Szegedy et al., 2015) due to
the particular multi-branch concatenation architecture aka inception module. As shown in Fig. 5(a),
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Table 5: The ablation study on contribution rescaling strategy. ‘Orig.’ denotes the average accuracy
for ‘Assembled Category’ from the original models. ‘Asse.’ and ‘Ours’ denote the accuracy of
the disassembled classifier without and with contribution rescaling strategy, respectively. ‘ep.+1’
denotes the accuracy of the disassembled classifier with another one-epoch fine-tuning. All scores
are in %.

Dataset Assembled VGG-16 (Simonyan et al., 2013)

Category Orig. Asse. Ours ep.+1

MNIST
+

FASHION-MNIST

0 + 0 94.60 53.32 97.35 100.00
0-2 + 0-2 96.69 96.22 98.48 98.74
0-2 + 3-9 96.12 89.51 95.62 96.63
0-9 + 0-2 98.24 87.87 98.29 98.66

CIFAR-10
+

CIFAR-100

0 + 0 89.20 50.00 94.00 98.80
0-2 + 0-19 74.03 71.74 74.17 69.94

3-9 + 20-69 75.16 71.97 73.72 54.13
0-9 + 20-99 74.87 69.12 72.07 61.73

CIFAR-10
+

Tiny-ImageNet

0 + 0 88.20 50.00 94.70 97.95
0-2 + 0-69 51.97 52.41 53.20 54.88
3-9 + 0-69 54.02 49.72 50.20 46.34

0-9 + 70-179 49.33 41.54 42.30 35.31

CIFAR-100
+

Tiny-ImageNet

0 + 0 83.00 50.00 85.50 60.50
0-19 + 0-69 69.86 50.37 50.66 45.61

20-69 + 70-179 71.48 50.06 50.08 40.33
0-99 + 0-199 55.97 40.83 43.06 34.77

the alignment padding is used in each convolutional filter by default, making the blank feature
calculated by zero kernels scattered all over the channel at various locations after the concatenate
operation. For the Inception Module, we put the alignment padding after the concatenate operation
in the improved alignment padding strategy, as shown in Fig. 5(b).

C.2 ABLATION STUDY ON CONTRIBUTION RESCALING STRATEGY

The results of the ablation study on the contribution rescaling strategy are given in Table 5. The
experiments are conducted on different datasets with VGG-16. From Table 5, we can see that the
method with the contribution rescaling strategy (‘Ours’) achieves higher accuracy than the method
without the contribution rescaling strategy (‘Asse.’) on all datasets. For some special cases (’0
+ 0’), ‘Ours’ achieves about 45% accuracy increase. The above ablation study results verify the
effectiveness of the contribution rescaling strategy.

D APPLICATION ON OTHER TASK

Given some pre-trained CNN classifiers, the proposed model disassembling and assembling tech-
nique can achieve category-customizable model reuse without any additional fine-tuning operation.
What’s more, the proposed model disassembling and assembling technique can also be extended
to other tasks, including model decision route visualization, model compression, knowledge distil-
lation, transfer learning, incremental learning, etc. Due to the limited time, we show the practical
application of model decision route visualization, model compression, and knowledge distillation in
the following section.

D.1 DECISION ROUTE VISUALIZATION

The decision route denotes the average data flow routes of each category, which is spare and fixed.
As we described in the submitted paper, the prediction of different categories relies on significant
contributions from different activation maps (aka different categories have their own relevant model
parameters); the proposed contribution attribution method can help us build this decision route for
each category. With the data flow routes of different categories, the researcher can easily locate the
wrong data flow for misclassified samples by comparing it with the decision routes of the corre-
sponding category, which partly solves the poor explainability of the deep models. What’s more, the
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route of the category dog
route of the category automobile

Figure 6: The decision route of category ‘dog’ and ‘automobile’ of LeNet-5 on CIFAR-10.

decision route visualization can be used as the master tool for better understanding and exploring
the deep classifiers.

As shown in Fig. 6, we take the LeNet-5 (Lecun et al., 2001) (including two-layer convolution and
three-layer linear) as an example to clearly demonstrate the decision route for specific categories,
where we can see each category has its own decision routes. Different categories share some decision
routes, which indicates that some model components are responsible for handling basic features for
some categories.

In our model disassembling and assembling framework, the category-aware components (parame-
ters) can be effectively disassembled from the original CNN classifier with the contribution attri-
bution technique. It means that for a CNN classifier, we can disassemble the parameters that are
used by all categories, and the parameters that are not used by any categories will be discarded.
Therefore, our disassembling method can also be used for model compression.

D.2 MODEL COMPRESSION

In this section, we provide the performance of model compression by our method with VGG-
16 (Simonyan et al., 2013) on two benchmark datasets (MNIST (Lecun et al., 2001), Fashion-
MNIST (Xiao et al., 2017)). Besides, we also provide the performance comparison of model com-
pression with the SOTA method FPGM (He et al., 2019), which implements the model compression
by pruning. From Table 6, we can see that the compressed model by our method can achieve higher
accuracy, and even higher than the method ‘Grad.’ (Hu et al., 2022) and FPGM (He et al., 2019) in
most cases. However, it’s obvious that the FLOPs ratio and parameter amount ratio of our method
is higher than FPGM. The possible reason is that our contribution attribution method focuses on
disassembling the relevant parameters of each category, while the pruning-based method focuses on
filtering out irrelevant parameters for all categories. Therefore, our method reserves the commonly
used parameters for all categories. However, the pruning-based method has the possibility of dis-
carding some commonly used components, which does not influence the final prediction. Therefore,
the pruning-based method (such as FPGM) has fewer FLOPs and parameter amounts. In future
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Table 6: The model compression performance comparison.‘Orig.’ denotes the accuracy of the orig-
inal model. ‘Acc.’ denotes the accuracy of the compressed model. ‘rFLOPs’ and ‘rPara.’ denote
the floating point of operations ratio and parameter amount ratio of the disassembled model to the
original model, respectively. All scores are in %.

Dataset CNN Ours ‘Grad.’ (Hu et al., 2022) FPGM (He et al., 2019)

classifier Orig. Acc. rFLOPs rPara. Acc. rFLOPs rPara. Acc. rFLOPs rPara.

MNIST
VGG-16 99.65 99.68 95.28 62.32 99.33 90.99 94.98 99.45 87.79 90.59
ResNet50 99.65 99.62 99.10 98.04 92.71 93.02 98.89 99.61 47.23 51.24
GoogleNet 99.77 99.30 94.1 93.82 99.74 84.5 94.14 98.73 51.23 54.87

FASHION-
MNIST

VGG-16 94.23 93.17 90.03 60.3 91.98 88.47 87.73 94.15 86.74 79.25
ResNet50 94.10 93.92 98.75 96.13 93.98 99.43 99.11 93.87 46.19 52.31
GoogleNet 94.74 94.59 93.86 94.45 94.32 90.9 93.5 94.52 50.74 53.67

Table 7: The knowledge distillation performance comparison. ‘Orig.’ denotes the average accuracy
for ‘Assembled Category’ from the original models. (All accuracy scores are in %).

Dataset Distilled VGG-16 (Simonyan et al., 2013)

Category Orig. Ours ‘Grad.’ (Hu et al., 2022) KA (Shen et al., 2019)

MNIST
+

FASHION-MNIST

0 + 0 94.60 97.35 50.00 92.24
0-2 + 0-2 96.69 98.48 82.16 93.81
0-2 + 3-9 96.12 95.62 81.15 92.76
0-9 + 0-2 98.24 98.29 97.25 93.57

CIFAR-10
+

CIFAR-100

0 + 0 89.20 94.00 50.00 84.35
0-2 + 0-19 74.03 74.17 71.54 69.46

3-9 + 20-69 75.16 73.72 69.97 71.38
0-9 + 20-99 74.87 72.07 69.96 71.60

CIFAR-10
+

Tiny-ImageNet

0 + 0 88.20 94.70 50.00 85.62
0-2 + 0-69 51.97 53.20 50.75 52.67
3-9 + 0-69 54.02 50.20 48.58 53.26

0-9 + 70-179 49.33 42.30 26.19 51.84

CIFAR-100
+

Tiny-ImageNet

0 + 0 83.00 85.50 50.00 81.31
0-19 + 0-69 69.86 50.66 49.62 68.24

20-69 + 70-179 71.48 50.08 33.94 67.52
0-99 + 0-199 55.97 43.06 20.71 52.74

work, we will focus on investigating the potential ability of model disassembling and assembling on
the model compression task.

D.3 KNOWLEDGE DISTILLATION

In the model disassembling and assembling task, category-aware components disassembled from
different models are assembled into a new model, which is similar to the knowledge amalgamating
(KA) (Shen et al., 2019) that amalgamates knowledge from the multiple teachers into a single stu-
dent by knowledge distillation. The goal of the above two tasks is similar. However, the adopted
techniques are completely different.

In this section, we conduct comparison experiments of the proposed method and KA (Shen et al.,
2019) with VGG-16 (Simonyan et al., 2013) on five benchmark datasets (MNIST (Lecun et al.,
2001), Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky,
2009), Tiny-ImageNet (Le & Yang, 2015)). From Table 7, we can see our method achieves higher
accuracy than KA (Shen et al., 2019) in most cases, particularly in the case of less number of
assembled categories, such as ‘MNIST + FASHION-MNIST’. On the contrary, when the number
of assembled categories increases (such as ‘CIFAR-100 + Tiny-ImageNet’), the performance of the
proposed method gets worse and is even lower than the accuracy of the original model and KA (Shen
et al., 2019). The possible reason is that when the number of assembled categories increases, the
category-aware model components for categories in ‘dataset A’ will increase. For an unknown test
image, it will flow through all decision routes of the assembled model. Therefore, those components
will disturb the correct prediction of samples in ‘dataset B’, which leads to decreased accuracy.

E VISUALIZATION OF CONTRIBUTION ATTRIBUTION

In this section, Fig. 7-10 show more contribution attribution visualization results. From Fig. 7, we
can see that in different layers of VGG-16, the different categories have different total contribu-
tion patterns. For a specific layer of different networks on different datasets, different categories
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Figure 7: The total contribution patterns from different activation maps for samples of the different
categories in different layers of VGG-16 on CIFAR-10.

also have different total contribution patterns, as shown in Fig. 8-10. In particular, for CIFAR-10,
different categories have similar high responses on some activation maps in layer 66 of GoogleNet.
However, there are still some activation maps with different responses for different categories, which
is the determinant for the correct prediction of GoogleNet on CIFAR-10 dataset. Overall, those con-
tribution attribution visualization results verify the second discovery on contribution allocated units
again.

F LIMITATION AND FUTURE WORK

Experiments in Table 1 of the submitted paper have shown that the model disassembled with the pro-
posed method can achieve higher accuracy than the original model. For the assembling performance,
Table 2 of the submitted paper shows that the new assembled model can achieve lower accuracy than
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Figure 8: The total contribution patterns from different activation maps for samples of the different
categories in layer 13 of VGG-16 on different datasets.
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Figure 9: The total contribution patterns from different activation maps for samples of the different
categories in layer 52 of ResNet-50 on different datasets.
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Figure 10: The total contribution patterns from different activation maps for samples of the different
categories in layer 66 of GoogleNet on different datasets.

the original model on part cases such as assembling too many categories from different models (case
‘0-19 + 0-69’, case ‘20-69 + 70-179’, case ‘0-99 + 0-199’ of ‘CIFAR-100 + Tiny-ImageNet’). The
possible reason is that more irrelevant components will disturb the correct prediction of samples.
What’s more, for extensive applications, including model compression and knowledge distillation,
the proposed model disassembling and assembling technique achieves poor performance than SOTA
methods on part cases, which indicates that the proposed model disassembling and assembling tech-
nique needs further optimization on those tasks. Therefore, we will focus on solving the disturbance
of irrelevant components and optimization of model disassembling and assembling for specific tasks
in the future. In this paper, we only disassemble and assemble CNN classifiers. We will conduct
disassembling and assembling models for other tasks such as object detection and segmentation in
the future.
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