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Abstract

When matching parts of a surface to its whole, a fundamental question arises:
Which points should be included in the matching process? The issue is intensified
when using isometry to measure similarity, as it requires the validation of whether
distances measured between pairs of surface points should influence the matching
process. The approach we propose treats surfaces as manifolds equipped with
geodesic distances, and addresses the partial shape matching challenge by intro-
ducing a novel criterion to meticulously search for consistent distances between
pairs of points. The new criterion explores the relation between intrinsic geodesic
distances between the points, geodesic distances between the points and surface
boundaries, and extrinsic distances between boundary points measured in the em-
bedding space. It is shown to be less restrictive compared to previous measures and
achieves state-of-the-art results when used as a loss function in training networks
for partial shape matching.

1 Introduction

Shape correspondence is a core challenge in computer graphics and computer vision, distinguished
by its wide array of applications extending from 3D modeling and animation to object recognition
and beyond. The task involves establishing mappings between corresponding points across different
surfaces that undergo non-rigid transformations. Shape correspondence grows particularly intricate
when it involves partial surfaces, where the objective is to find correspondences between parts of
surfaces or between a complete surface and a part of another. This sub-task is particularly difficult as
it involves incomplete data and possible different topology of the matched surfaces. Consequently,
training neural networks for the partial matching task is challenging, especially for unsupervised
methods, as there is no information about which parts are missing and which should be matched.

The state of the art in partial shape matching is performed with Functional Maps (FM), a popular
framework for relating functions defined on surfaces via basis functions defined on the surfaces
[2, 18, 22, 25, 36, 45, 34]. Recently, it was argued that the unused information from the full surface
impairs the learning process when FM is incorporated in the learning pipeline [10], with better results
obtained when bypassing FM altogether by direct estimation of correspondences. This method is
primarily guided by a loss function preserving the pairwise geodesic distances [25], which relies on
the fact that such distances are preserved under isometric transformations. When dealing with partial
surfaces, not all distances are preserved, as minimal geodesics on the full surface may go through
aregion which is missing in the partial surface. Therefore, undesired biases are integrated into the
learning procedure, which can impair the quality of the learned correspondence. This applies to both
FM-based unsupervised loss functions [48] and geodesic-based ones [25], where isometry between
the surfaces is assumed.
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In this paper, we present a novel loss for partial shape correspondence that takes into account partial
surfaces. It is constructed upon the notion of consistent pairs of points, where a pair is said to be
consistent if the geodesic distance between the points is the same on the partial and full surface. Our
task is to define a criterion that captures as much as possible consistent pairs, where these pairs are
referred to as guaranteed pairs. Using such a criterion, we can limit our matching procedures to
consider only guaranteed pairs, thereby avoiding distortions. Filtering out potentially inconsistent
distances between pairs of points was first studied in [13, 12, 14, 46, 47]. In particular, in [12, 46]
the authors showed that for non-Euclidean spaces the geodesic distance between two points on a
manifold is preserved when this distance is smaller than the sum of the surface distances of each
point to the boundary of the surface. We show that this criterion is too conservative and it filters
out a substantial number of consistent pairs of points. It can be improved by using the extrinsic
information encapsulated in the manifold’s embedding space. The new condition can be shown to
provide significantly more guaranteed pairs of points.

Using this novel criterion to find consistent pairs of points, we present a new loss function for
unsupervised shape correspondence tailored for partial surfaces. It is based on the ratio between the
geodesic pairwise distance, that is calculated on the partial surface, and a measure defined by our
criterion, which involves distances to points on the boundaries and the distance in the embedding
space between the corresponding boundary points. The new loss was used for training an unsupervised
shape correspondence neural network achieving state-of-the-art (SOTA) results on the reference
SHREC’16 CUTS and HOLES datasets [20] and on the recent PFAUST dataset [10]. Our code can
be found at https://github.com/ABracha/Wormhole.

Contributions

* We introduce a novel criterion for identifying consistent pairs, which are pairs of points
between which the geodesic distance is the same for the full and the partial surfaces.

* Using this criterion, we create a novel unsupervised loss function tailored specifically for
partial surfaces, achieving SOTA results on partial shape correspondence benchmarks.

2 Related Efforts

Early attempts to solve shape correspondence involved extracting hand-crafted features for each point
[4, 55]. Leveraging the intrinsic nature of the Laplace-Beltrami operator (LBO), its eigenfunctions
were often employed to define such features on the manifold, invariant to non-rigid isometry, thereby,
removing the dependency on the manifold’s embedding in Euclidean space. Later, the Functional-
Map (FM) framework was proposed [40]. It builds on the fact that the mapping of consistent
feature representations in local bases is linear, even for complex non-rigid spatial deformations of the
manifolds. In fact, the first neural network for solving shape correspondence was based on the FM
framework [33], which introduced a differentiable FM-layer to learn the correspondence map.

More recent methods suggested two alternative approaches for unsupervised shape matching. The
first is based on the fact that isometries preserve geodesic distances [25], and the second is based on
properties satisfied by the FM operator for isometric transformations [48]. Improved architectures
followed [22, 53, 31, 54]. Alternative loss functions were suggested, such as a supervised contrastive
loss [30], or using the objective function from [2], which penalizes the difference between the FM
output from the FM-layer and the FM estimated from the point-to-point mapping [18]. Other papers
explored different metrics, such as the scale invariant metric [11, 41], or anisotropic Riemannian
metrics using the Finsler-based LBO [61].

Several efforts were made to tackle surface matching under partiality. Some approaches are based on a
search strategy to find either the missing parts [7, 6, 43], or direct correspondence by exhaustive search
[24]. Few methods learn to find the correspondence, one such example learned linear invariant bases
suited for partial surfaces rather than the classical LBO eigenspaces [36]. Another supervised learning
approach applied an attention layer [59] on extracted features, allowing feature interaction between
the full and partial surfaces prior to the FM-layer [3]. An unsupervised learning method, based on
preserving intrinsic distances, avoided the use of an FM-layer altogether [10]. The motivation was
that FM introduces noise when used to match the whole to a part of a surface.

When dealing with partial surfaces, one needs to consider the fact that distances can be significantly
different when measured between corresponding points in the partial and the whole surface. Thus,
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encouraging distance preservation between corresponding points can introduce undesired biases on
the learned matching. Although [10] reported the current SOTA, it only tackles part of the problem.
Here, we introduce a novel loss function based on consistent pairs of points and geodesic distances,
greatly reducing the effect of inconsistent distances on the learned correspondence.

To construct our loss function, we first revisit the notion of consistent pairs. The link between
geodesic distances and distances to the boundaries of flat and non-flat surfaces was studied in
[12, 14, 46, 47]. Validity conditions were suggested to predict whether distances between matching
points are consistent between the partial and the full surface. Here, we revisit and refine these
conditions, and introduce a more inclusive criterion that guarantees more consistent pairs by which
the matching results improve.

3 On the Consistency of Distances between Pairs of Points in Partial Surfaces

3.1 Consistent and Guaranteed Pairs of Points

Partial )’

Figure 1: For a distance preserving map between full surfaces X and )/, also known as an isometry,
the minimal geodesics in the partial version ) may not correspond to those in the full surfaces ).
That is, the geodesic distances between corresponding points may get larger.

In this section, we present the concept of consistent and guaranteed pairs of points.

Let & and ) be isometric surfaces with a bijective mapping p : X — ). In partial shape matching,
the surfaces may have missing parts, meaning that we only have access to X’ € X and )’ C ). For
simplicity, we assume that we have access to the full surface A" but not the full surface ) and so
X' =X and )’ # Y. We can easily generalise the discussion if X’ # X. Consider two points Py
and @y on the partial surface )’ and their corresponding points Py = p~1(Py) and Qx = p~1(Qy)
on X. As the mapping p is isometric, the geodesic distances, reflecting the length of the shortest paths,
on the full surfaces dx and dy are equal by definition, dx (Px,Qx) = dy(Py, Qy). However, it
may be that the shortest path on the full surface ) between Py and ()y passes through a missing part
of )'. In such a case, computing the geodesic path between these two points could lead to a longer
path than the one on the full surface, implying that dy (Py, Qy) # dy/(Py,Qy) and that, in turn,
dx(Px,Qx) # dy(Py,Qy), even if the original mapping p is isometric (see Figure 1). As such,
methods relying on or enforcing the preservation of geodesic distances based on the isometry of the
transformation p are inappropriate when dealing with partial surfaces. They could incorrectly enforce
equal distances when they should not. Although not all geodesic distances are preserved for partial
surfaces, many nevertheless are preserved, leading to the definition of consistent pairs.

Definition 1 (Consistent Pair of Points). A pair of points Py and Qy of a partial surface )’ is said to
be consistent if the geodesic distance on the partial surface is the same as that on the original full

surface, i.e. dy(Py,Qy) = dy (Py, Qy).

As there are many consistent pairs even in cases of cuts and partiality, methods enforcing distance
preservation between all pairs, even inconsistent ones, perform fairly well. However, penalizing
distance dissimilarity for inconsistent pairs is undesired and decreases the quality of the resulting
mapping. Our goal is to filter the set of pairs by finding as many as possible consistent pairs, and then
relying only on these guaranteed pairs when matching surfaces.



Definition 2 (Guaranteed Pair of Points). A pair of points Py and Qy of a partial surface )’ is said
to be guaranteed with respect to a criterion C : )’ x )’ — {0, 1}, or C-guaranteed in short, if the
criterion proves that the pair is consistent.

Note, that the criterion is unsupervised as no oracle provides knowledge from the full surface ) to
compute it. The better the criterion, the more consistent pairs it finds, allowing for more consistent
information to be used for finding the matching, see Figure 2. In the rest of this section, we focus on
the search for consistent pairs in the partial surface )’ as a preprocessing step and will return to the
surface X when we perform partial shape matching.

(Cyy guaranteed pairs

(Cr guaranteed pairs

o

Figure 2: Venn diagrams showing the relation between all pairs of points, consistent and guaranteed
pairs for a surface with boundaries. All guaranteed pairs are consistent. Our criterion Cyy, is more
inclusive than that of [12, 46], Cy. All guaranteed pairs by C are also guaranteed by Cyy.

3.2 Expanding the Set of Guaranteed Pairs via Extrinsic Distances between Boundary Points

We introduce a criterion that finds as many consistent pairs as possible, which we then denote as
guaranteed. Denote B C )’ the boundary of ). For simplicity, we treat all boundaries equally. In
[12, 46], the criterion, C7, was designed to reject pairs of points, Py and )y on ), for which the
sum of their distances on to the boundary B is less than the geodesic distance between them,

1 if dy(Py,Qy) < dy(Py,B) + dy/(Qy, B)
Cr(P 1
7Py, Qy) {O otherwise, M)
where dy(Py, BB) is the minimal length of the minimal geodesic of Py to any boundary point,
(P = mi (Py, B). 2
dy( %B) gel%dy( Vs ) (2

This condition naturally follows from the fact that the length of a path between the points in the full
surface ) that passes through the boundary B is at least as long as the sum of their distances to the
boundary.

Note, that this criterion is overly conservative and removes many consistent pairs. It practically
ignores the length of possible trajectories connecting the boundary points, see Figure 3. To mitigate
this condition, we propose to include extrinsic information that bounds from below the distances
between pairs of boundary points. Note that when solving intrinsic problems, the practice of
combining intrinsic and extrinsic information is uncommon, yet it has been shown to be beneficial for
other types of robustness [16]. For simplicity, we assume from now on that the manifold is embedded
in a Euclidean space. We then readily use the following straightforward relation between geodesic
distances and Euclidean ones.

Theorem 1 (Euclidean bound). The geodesic distance between any points P and @) on a surface
Y € E, for some embedding Euclidean space E = R", is larger than or equal to the Euclidean
distance between the points measured in the embedding space,

where dg (P, Q) = ||P — Q|2-

For a proof see Appendix A.1. We propose to consider trajectories passing through any pairs of
boundary points By and Bs in 5. By acting like a wormhole connecting two boundary points, the
length of the straight line in E connecting B; and By can serve as a lower bound of the geodesic
distance on the full surface between the points. Geodesic distance measures the distance of P and )



to boundary points By and Bs, whereas the Euclidean distance d g (B1, B2) bounds from below the
geodesic distance on the full surface between B; and By. Our wormhole criterion Cyy is given by

llfd/P,Q S min d/PvB +d,Q7B +d B,B,
CW(Py,Qy):{ »(Py,Qy) BI’BQEBJJ(JJ 1) +dy (Qy, B2) + dr(Bi, Ba)

0 otherwise.

3)

By design, this criterion can be used to find consistent pairs.
Theorem 2 (Cyy guarantees). The wormhole criterion Cyy yields guaranteed pairs.

Inconsistent pair Consistent pairs Consistent pairs

Ct, Cyy rejected CT rejected © Cyy guaranteed

Figure 3: Example of inconsistent and consistent pairs of points. The minimal geodesic paths are
colored red, while paths to the boundary points are colored blue. Different boundary points are
selected in Cy [12, 46] and Cyy. The Euclidean lines connecting the boundary points selected by
Cyy are dashed blue. Both criteria correctly reject inconsistent pairs (left). Since Cy ignores the
distance between boundary points, it discards many consistent pairs (middle). Criterion Cyy finds
more consistent pairs by including the extrinsic Euclidean distance between boundary points (right).

Figure 4: We plot in green the set of points that together with the blue point satisfy Cy [12, 46] (left)
and Cyy (right). The blue point and any of the green ones form a guaranteed pairs. The cat surface is
taken from the SHREC’16 HOLES dataset [20].

See Appendix A.2 for a proof. The new criterion for finding consistent pairs, generalizes the best
known criterion C7 as all Cy-guaranteed pairs are also Cyy-guaranteed, see, e.g. Figure 4.

So far, we implicitly assumed that the metric on the manifold is the one induced from the Euclidean
metric of the embedding space, meaning that curves have the same length from the perspective
of the manifold and the embedding space. We can generalize the wormhole criterion to handle
general Riemannian metrics on the manifold, by modulating the Euclidean distance of the straight
line between boundary points by the minimal scaling relation between arclength measured by the
embedding metric restricted to the manifold and one measured by the Riemannian metric of the
embedded manifold. We present our generalised metric-sensitive criterion in Appendix A.3

The definition of consistent pairs has been in a continuous setting. We need to adapt it to the discrete
world. We describe in Appendix B.2 how to do so. In short, we only consider points on the surface or
its boundary to belong to a finite sampled set " of vertices on the continuous surface. We construct the
threshold and binary mask matrices K and M of size |V| x |V, containing at entry ¢j respectively
the threshold of the criterion Cyy and the binary criterion value Cyy of the ij pair of vertices,

K;; = BIIfIBizllede'(Ui7 By) +dy (vj, B2) + dg(B1, B2) 4



and

M;; =1L(p,), <K Q)
where 1 is the indicator function and (D5 );; is the computed geodesic distance on the partial surface
Y’ between v; and v;.

To evaluate the quality of our criterion Cyy, we searched empirically for consistent pairs using either
our criterion or Cy on the PFAUST-M and PFAUST-H [10] datasets, the latter comprising of shapes
with more holes than the former. We provide in Table 1 the percentage of consistent pairs, and
among those the percentage of guaranteed pairs by the different criteria, along with the standard
deviations. Our criterion Cyy is able to recover most pairs and it guarantees twice as many as the
previous criterion Cr.

Table 1: Empirical quantitative evaluation of the ability to recover consistent pairs. The numbers
represent either the average percentage of consistent pairs out of the total number of pairs of points
in a discrete shape, or the average percentage of guaranteed pairs by criteria C7 and Cyy out of the
number of consistent pairs. In parenthesis we provide the standard deviation across different shapes.
Averages and standard deviations are computed within the PFAUST-M or PFAUST-H [10] datasets,
the latter possessing shapes with more holes.

Dataset %Consistent  %Guaranteed (C7) [12,46] %Guaranteed (Cyy) (Ours)

PFAUST-M 78 (£16) 48 (+18) 82 (+14)
PFAUST-H 53 (£16) 30 (£18) 65 (£18)

4 Applications

4.1 Multi-Dimensional Scaling

In this paper, we concentrate on partial shape matching. Additionally, we demonstrate that the
proposed criterion for identifying consistent pairs can be beneficial for other tasks. Specifically, we
show how it can be incorporated into a multidimensional scaling (MDS) pipeline. The MDS goal is to
embed curved manifolds into a low dimensional Euclidean space R™, for some small m, such that the
pairwise Euclidean distances of the new embedding are as close as possible to the original geodesic
distances between corresponding pairs of points. To obtain embeddings robust to missing parts, we
handle boundary conditions on partial surfaces by relying on consistent distances of guaranteed pairs.
In [46, 47], the TCIE method minimises a masked distance preservation objective, with mask weights
w;; = C1(F;, P;). Our MDS method, named wormhole constrained isometric embedding (WHCIE),
adapts this approach by replacing the mask weights with our criterion w;; = Cyy (P;, P;) = M.

We plot the resulting WHCIE planar embedding of toy surfaces in Figure 5. For each Swiss roll,
we removed either a hole or a full rectangular cut connected to the boundary. We compare with
several reference manifold learning techniques: Isomap [57], MLLE [62], Laplacian eigenmaps [5],
UMAP [37], and TCIE [46, 47]. Methods that do not check for distance consistency between pairs
of points yield distorted embeddings. The wormhole criterion finds significantly more consistent
pairs compared to the TCIE, resulting in an embedding similar to that of the actual surface. That
is, a flat rectangle with a hole or a cut. For more details and comparison with related methods, see
Appendix B.1.

4.2 Partial Shape Matching

We next return to our primary application - matching shapes. To that end, we introduce the wormhole
loss, a method based on guaranteed pairs specifically designed for partial shape matching.

4.2.1 Wormhole Loss: Unsupervised Partial Shape Matching using Consistent Pairs

Our mask M and threshold K matrices operate on minimal geodesic distances. A relevant unsuper-
vised loss function using such distances for near isometric surfaces X and ) is [25],
1

2
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Figure 5: MDS embedding of various manifold learning methods on a whole Swiss roll (top) and on
two versions of it with Gaussian noise, having either a rectangular hole (middle) or a rectangular cut
(bottom). Other methods are referred to in Figures 7 and 8 in Appendix B.1.

where ||.|| » is the Frobenius norm, P is the estimated point-to-point soft correspondence matrix, D y
is the geodesic distance matrix on surface X', and |)| is the area of surface ). The stochastic matrix
P of size |Vy| x |Vy| takes values in P;; € [0, 1], and is row-normalized such that ), P;; = 1.
This continuous setting accounts for possible different samplings of the surfaces, as the matched
part in X of each sampled vertex in V) may not have a corresponding sample point in Vy. If P is
estimated to be the correct correspondence matrix, then, the distances are preserved and the loss is
minimal. We incorporate our mask M into this loss function for partial surfaces )’ as follows,
Loo(P,Dx, Dy, M) = > M;ijAyi;Ay;;(PDxPT — Dy, 7
ij
where P, now a matrix of size |Vx| x |Vy| is a full-to-partial correspondence matrix, and Ay is
diagonal matrix of the vertex areas of shape ). Thus, PDx P of size [Vys| x |Vy| maps the
distances between pairs of vertices in X’ to distances between pairs of vertices in ). The mask matrix
M filters out inconsistent pairs, allowing the loss to be minimized with distances transferred from
the full surface matched with those on the partial surface. This loss generalises the one proposed
in [10] by incorporating masking weights. We provide full details on how to derive this loss in the
supplementary material Appendix B.3.

In our experiments, we found that the binary criterion can be relaxed to better use the interaction
between pairs. Many inconsistent pairs have distances only slightly increased by the presence of
holes, thus, filtering them out removes valuable, though slightly noisy, information. We propose to
regularize the binary mask matrix into a soft mask M? as follows,

K..

M3, = min <”,1). )
! (Dy)ij

The weights of the soft mask matrix inhibit the contribution to the loss of non-guaranteed pairs whose

distance is significantly larger than the theoretical threshold of our criterion Cyy. By the same token,
it preserves the influence of distances of non-guaranteed pairs which are near the threshold.

4.2.2 Implementation Considerations

We evaluate the new geometric-wormhole loss, Lgco, by integrating it into a pipeline adapted from
[10], replacing their primary loss component, first introduced in [25]. Our pipeline takes raw input



features and then refines them independently for the surfaces using a shared-weights neural network,
DiffusionNet [54]. These refined features are then matched using Softmax similarity [7, 18] to directly
compute a correspondence matrix P, which is then plugged into the geometric-wormhole loss. We
keep the regularization loss [48] promoting the preservation of vertex area between corresponding
vertices, which is computed with the functional map extracted from the correspondence matrix. We
provide further details of the proposed pipeline and implementation details in the supplementary
material Appendix B.4.

4.2.3 Evaluation

Table 2: Quantitative analysis on SHREC’16 [20]. The numbers represent the average geodesic
error (multiplied by 100) of the results following post-processing refinement. The best performance
is highlighted in bold, and the second best is underlined. These results underscore the proposed
method’s dominance in unsupervised shape matching. It surpasses both supervised, unsupervised,
and pretrained methods on the HOLES benchmark, known for its highly challenging scenarii.

Test-set CUTS HOLES
Training-set CUTS HOLES CUTS HOLES
Axiomatic methods
PFM [45]—Zoomout 9.7—-9.0 232 —» 224
FSP [34] — Zoomout 16.1 — 15.2 33.7 — 327
Supervised methods
GeomFMaps [22] — Zoomout 128 -+ 104 198 —»16.7 20.6 —»174 153 —13.0
DPFM [3] — Zoomout 32—-1.8 86—-74 158—=139 13.1—-119
Pretrained using external datasets
RobustFMnet with Refinement [18] 3.2 5.6 13.5 8.2

Unsupervised methods
Unsupervised-DPFM [3] — Zoomout 11.8 - 128 195—18.7 191 —183 17.5—16.2

RobustFMnet [18] — Refinement 169 —10.6  22.7—16.6 18.7— 162 23.5— 188
DirectMatchNet [10] — Refinement 69—~ 56 122 —-80 142—10.2 114—-79
DirectMatchNet LPF [10] — Refinement 7.1 =47 8.6 5.5 164 —11.6 123 — 8.6
Wormhole (Ours) — Refinement 6.9 —43 108 —>72 17.1 -+ 109 10.9 — 6.6

Datasets. We evaluate our method on the benchmarks SHREC’16 [20] and PFAUST [10]. SHREC’16
includes two datasets, CUTS and HOLES. Both datasets contain processed figures from the TOSCA
[15] dataset. In CUTS, the figures were cut using several 3D planes. In HOLES, besides the cuts made
by the planes, additional holes were added, resulting in partial surfaces with more topological changes
and a longer boundary, which makes this dataset particularly harder for shape correspondence. The
second benchmark on which we evaluate our method is PFAUST, recently created by [10]. It contains
figures from the FAUST-Remeshed dataset [44] that were processed by creating holes in them. This
benchmark is also divided into two datasets; in PFAUST-M, there are bigger but fewer holes, and in
the PFAUST-H, there are smaller but more numerous holes. The latter presents a harder task for shape
correspondence, as a greater number of holes results in more significant changes in the topology.

Baselines. The baseline methods we evaluated fall into three categories: Axiomatic methods —
PFM [45] and FSP [34], supervised methods — GeomFMaps [22] and DPFM [3], which is the
current SOTA for the CUTS and PFAUST datasets, and unsupervised methods — unsupervised DPFM
[3], RobustFmaps [18], and DirectMatchNet [10], which is the current SOTA for the HOLES and
the unsupervised SOTA on the PFAUST datasets. We had to re-implement the loss function for
unsupervised DPFM due to source code unavailability. Recently, the authors of RobustFmaps updated
their models to include a pretraining phase including four external datasets. For completeness, we
include this pretrained version in our results table, albeit we separate it from the other methods not
using any external datasets. For fairness, we also provide the results of RobustFmaps when trained
only on HOLES or CUTS without any pretraining, following the common protocol of the benchmarks.
For post-processing refinement, we employed either Zoom-out [38] or test time adaptation refinement
[18] depending on what the original papers used.



Results. The quantitative results shown in Tables 2 and 3 indicate that our method reaches state-
of-the-art performance for unsupervised partial shape correspondence. We also display superior
qualitative performance in Figure 6 and Appendix B.5, demonstrating our method’s robustness
to missing parts. Indeed, unlike other methods our mappings are hardly distorted at challenging
locations, such as points close to boundaries. A major improvement over other approaches was in
the more challenging datasets HOLES, PFAUST-H, and PFAUST-M, whereas in the CUTS dataset a
relatively modest improvement is shown. The missing parts in the CUTS dataset were created by
slicing figures with 3D planes. In practice, this procedure does not modify much the topology of the
surface and it does not introduce many inconsistent pairs. As such, cuts mostly preserve all geodesic
distances, thus, our novel loss function was almost identical to the one in Equation (6) [25]. On the
more challenging datasets, a larger part of the inter-geodesic distances differ between the partial and
full surfaces, enabling our method to demonstrate its strength, even in comparison to supervised
methods or pretrained models on external datasets. In fact, our unsupervised approach demonstrates
superior performance to the best supervised approaches on the HOLES and PFAUST-H benchmarks.

Source RobustFMnet  DirectMatchNet Wormhole (Ours) ~ RobustFMnet  DirectMatchNet ~ Wormhole (Ours)

Figure 6: Qualitative results on the test set of PFAUST-H. Our method yields less distortions near
boundaries demonstrating its robustness to missing parts.

Table 3: Quantitative results on PEAUST [10]. The numbers indicate average geodesic error (< 100).
Our method surpasses previous unsupervised shape correspondence methods on the medium and
hard datasets, and is on par with the supervised method on the hard dataset. The largest improvement
is on the hard dataset, showing robustness to topological changes due to missing parts of the surface.

PFAUST-M PFAUST-H

Supervised DPFM [3] 3.0 6.8
Unsupervised-DPFM [3] 9.3 12.7

Unsupervised RobustFMnet [18] 7.9 124
P DirectMatchNet [10] 5.1 79
Wormhole (Ours) 4.6 6.7

Ablation study. To evaluate which criterion, ours Cyy or the more conservative C1 [12, 46], leads
to better masks for partial shape correspondence, we compare masking strategies on the HOLES
dataset in the following setting: Binary mask from Cy [12, 46], non-binary mask from C [12, 46],
our binary mask, and our non-binary mask. As can be seen in Table 4, learning with masks derived
from our wormhole criterion surpass the alternatives for partial shape correspondence, showing the
importance of less restrictive criteria to find consistent distances between pairs of points.

5 Conclusion

In this paper, we analyzed invariant properties of geodesic distances between partial and full surfaces.
Following it we developed an improved criterion for identifying consistent pairs — pairs where the
geodesic distance remains consistent between the partial and full surfaces. Our improved criterion



Table 4: Ablation study on the criterion used to derive the mask in the proposed loss. We compare
the criterion Cy [12, 46] with the new wormhole Cyy. Training and testing were conducted on the
HOLES dataset. Numbers represent the average geodesic error (x100).

Mask type Binary Non-binary
from Cr [12,46] Cyy (Ours) Cr [12,46] Cyy (Ours)
HOLES 18.8 15.3 14.7 10.9

finds consistent pairs, or guarantees them, if the distance between two points on the partial surface is,
for all couple of boundary points, smaller than the the sum of distances to the boundary points and of
the distance in the embedding space between these boundary points, which is given by the straight
line for Euclidean embeddings. We used this criterion to tackle the complex challenge of partial
shape correspondence, by incorporating our guaranteed pairs in a novel unsupervised loss function
specially designed to handle partial surfaces. With this loss function, our method demonstrated SOTA
results on reference partial shape correspondence benchmarks, namely the SHREC’16 CUTS and
HOLES and the recent PFAUST dataset.

Limitations. Our paper presents a novel criterion for finding consistent pairs in partial surfaces.
However, it is still not able to recover all consistent pairs in general surfaces, meaning that some
information that would be useful for partial shape matching is discarded. We suspect there could
exist even less restrictive criteria for finding consistent geodesic distances in the presence of holes
and cuts. The exploration of such criteria is left for future research. Additionally, finding boundaries
in higher dimensions should be addressed with care, and operating in the embedding space in higher
dimensions would not be as forgiving as what we have done for 2D surfaces in R3. In this work,
we focused on partial-to-full shape matching. Although the wormhole criterion can be used to find
consistent pairs on each shape independently, we would also need to find the shared consistent pairs
for matching the shapes. Designing a full pipeline for partial-to-partial shape matching with our
criterion is left for future work.
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A Further Theoretical Details and Proofs

A.1 Proof of Theorem 1

Proof. The geodesic curve between the two points is a curve (in the embedding space) between the
points restricted to the manifold ). The length of this curve is at least as long as that of the minimal
geodesic (line in the Euclidean case) connecting the points in the embedding space. This trivial result
holds since the metric on the manifold is the one induced by the metric of the (Euclidean) embedding
space restricted to the embedded manifold. O

A.2 Proof of Theorem 2

Proof. Consider the first case where the shortest paths on the full surface ) from Py to B; and
from )y to By do not intersect the boundary B. In this case, we have that the computed geodesic
distance on the partial surface to the boundary points is the same as that on the full surface. As
such, dy/ (Py, B1) = dy(Py, By) and dy/ (Qy, B2) = dy(Qy, Bs). The shortest path on the full
surface passing from Py to Qy passing through By and B will thus have length dy (Py, By) +
dy(Qy, B2) + dy(B1, Ba) > dy(Py, B1) + dy(Qy, B2) + dg(B1, B2) according to Theorem 1.
Therefore if the pair satisfies the criterion, the geodesic distance computed on the partial surface is
the geodesic distance on the full surface, meaning that the pair is consistent.

Consider now the second case where one or both of the shortest paths on the full surface ) from
Py to By and from @)y to By intersect the boundary B. Let B, and Bs be the first intersection
points on each of them. Any trajectory between them, such as the shortest path passing from
By to By followed by the Euclidean straight line from By to By and then the shortest path from
B, to Bs, are at least as long as the Euclidean straight line between Bj and Bs: dg(By, Bs) <
dy(By, B1)+dy/ (B2, Bs)+dg(B1, Bs). Since By and Bj are also closer to the original points, we
then have dy» (Py, By)+dy (Qy, Bs) +dg(By, Bs) < dy/(Py, B1)+dy (Qy, B2)+dg(B1, Ba).
Since the pair By and Bj satisfy the first case, the criterion will validate the pair Py and @)y only if
it is consistent.

O

A.3 Generalisation to Non-Standard Metrics

So far, we implicitly used the fact that we were working with the standard way of computing geodesic
distances on surfaces. Formally, this means that we only considered manifolds equipped with the
standard uniform isotropic Riemannian metric, where unit steps in the tangent plane have the same
length as unit steps in the embedding space. Schematically, the manifold and the embedding space
shared the same ruler. This allowed us to bound the Riemannian length of the geodesic curve with
the Euclidean length of the straight line in the embedding space between points.

However, in some cases, it is natural or beneficial to consider other metrics on the manifold. As new
metrics change the length concept, this means that a same curve on the manifold will have a different
length. With other metrics, the manifold and the embedding space no longer share the same ruler,
and unit steps on the manifold tangent space are no longer of unit Euclidean length. We must thus
adapt our criterion in consequence.

A Riemannian metric on the manifold is defined by a symmetric definite positive matrix M, such
that at any point x € X, the length of the tangent vector u at point x is given by a quadratic form

Rz(u) = /uT M(z)u. The geodesic length of a curve on the surface is given by integrating the

Riemannian length of all the infinitesimal tangent steps: |, 01 Ry (¥ (t))dt where ~(t) parametrises
the curve monotonically. The link between the manifold Riemannian length and the embedding
Euclidean length of steps is given by the eigenvalues of the metric M. Let u1(z) < po(x) be
its smallest and largest eigenvalues, with eigenvectors v;(z) and vz(x) of unit Euclidean norm
|lvr(z)]|2 = ||va(z)||2 = 1. Then Euclidean unit steps have length bounded in [/ 1 (), /2 (x)].
Under the assumption that min, p1(x) = Cpy > 0, which systematically occurs for common
metrics on natural surfaces, Euclidean unit steps have at least v/Cj; Riemannian length. As such,
reparametrising the curve with the standard Euclidean arclength, i.e. the arclength for the Riemannian
metric with matrix I, we can bound each infinitesimal step along the curve, which has a fixed
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Euclidean length, to get a bound on the geodesic length: dps(x,y) > /Chrdr(x,y), where dps is
the geodesic distance on the Riemannian manifold associated to the matrix M.

We return to partial surfaces, with )V and )’ full and partial versions of the same surface. The
surfaces are associated with the intrinsic Riemannian metric M. As such, geodesic distances are
changed to dy = dj; and are no longer necessarily equal to d;. We assume that C); is known’. We
can now adapt our wormhole criterion to the Riemannian metric M to define the new wormhole
metric-sensitive criterion

1 if dy/ (Py, < min dy/ (Py,B dyr ,B Crndg(By, Bs),
Cw(Py,Qy)Z{ v (Py,Qy) phn dy (Py, B1) + dy (Qy, B2) + VCudg(B1, Bs)
0 otherwise.
9
Note, that in the degenerate case C'y; = 0, our criterion Cyy degenerates to Cy as we are unable to
bound path lengths inside missing parts. By design, this generalised criterion to Riemannian metrics
can be used to find consistent pairs.

Theorem 3 (Cyy guarantees). The metric-sensitive wormhole criterion Cyy yields guaranteed pairs.

Proof. The proof generalises the one of Theorem 2. The difference comes when comparing the
length of geodesic paths on the full surface ) to length of curves in the embedding space. Name d;
the curved M -based Euclidean distance of geodesic curves on the manifold for the metric M. The
curved M -based Euclidean distance is greater than the Euclidean distance of straight lines between
the points d; > dg (Theorem 1). Since dp; > +/Chsdy, i.e. the geodesic distance is at least /C'yy
times larger than the curved M-based Euclidean distance, we have the relationship between the
geodesic and Euclidean distances dy > +/Cjrdg. We can then conclude by applying the same
reasoning as in the proof of Theorem 2. O

B Further Experimental Details

B.1 Multi-Dimensional Scaling

Formally, the original MDS problem aims to minimise the quadratic stress function

X* = argmin Y wi;(den (X, X;) — dy(P;, P)))?, (10)
XeRnxIVI =

where w;; € [0, 1] is a given optional weighting scheme. A common assumption in the theory of
MDS is that the given manifold can indeed be isometrically mapped to a low dimensional Euclidean
space’. If this assumption holds we could consider all pairs equally w;; = 1, which yields the
classical scaling approach [52, 57].

However, we would like embeddings of partial surfaces )’ to be robust to missing parts, which
implies that we need to handle the boundary conditions induced from partial surfaces. Enforcing
the preservation of distances for inconsistent pairs could distort the embedding. To overcome the
influence of holes, cuts, and boundaries in general, we resort to our criterion to filter out inconsistent
pairs.

In [12, 14, 46, 47], the weights are set to w;; = Cr(P;, P;), leading to the TCIE method [46, 47].
To the best of our knowledge, [46, 47] provides the best weighting scheme based on consistent
pairs of points without involving heuristics. Other approaches exist relying on heuristics, such as
focusing on local pairs of points due to local approximations of geodesic distances [51]. We propose
to refine the TCIE idea by taking a more inclusive criterion instead w;; = Cw(F;, Pj) = M.
Minimising Equation (10) can be efficiently done by any optimization method, for example, the
SMACOF algorithm [9] was shown to be equivalent to a constant step size weighted gradient descent
[17]. Classical scaling [52, 57] is a method of choice for initialization to avoid local minima.

Our toy surfaces are pointclouds of swiss rolls with 2000 randomly sampled vertices, stretched
in width by a factor of 1.5, to which either no noise (Figure 7) or very small Gaussian noise of

?For full-to-partial shape matching, then Cps can be computed on the full surface. For partial-to-partial shape
matching, we assume that C'ys is given by an oracle.

3This assumption is obviously violated for surfaces with effective Gaussian curvature, as can be easily
verified by the Gauss-Bonnet theorem [8].
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standard deviation 0.2 is added* (Figure 8). For each surface, we removed either a hole or a missing
part connected to the boundary. We use Dijkstra’s algorithm to compute geodesic distances on the
pointclouds. Following [46, 47], we also set w;; = 1 for small geodesic distances (smaller than 3) to
handle the boundaries. We here compare with more reference works in manifold learning than in
the main manuscript, namely Isomap [57], LLE [49], Hessian LLE [23], MLLE [62], LTSA LLE
[63], Laplacian eigenmaps [5], Diffusion maps [19], t-SNE [58], UMAP [37] PCA [42, 26], Kernel
PCA [50], and TCIE [46, 47]. We use either the Euclidean or geodesic distance matrix for Diffusion
Maps, t-SNE, and UMAP. We run t-SNE with perplexity parameter of 50 and UMAP with minimum
distance parameter of 0.8. For both methods, these high parameter values are supposed to respect
data topology rather than encourage clustering. Methods requiring nearest neighbor computations
use k = 15 neighbors. For reference, we also show the computed embeddings on the full surfaces.

In the ideal noiseless case, the non-vanilla LLE methods are able to handle the partial surface with a
hole quite well. However, only a minor amount of noise breaks these methods completely. The t-SNE
and UMAP methods perform poorly, even on the full surfaces. These popular methods were indeed
primarily designed to show nice clusters, but are not intended and should not be used for viewing
non-clustered data manifolds in low dimensions as is too often the case. Both TCIE and our WHCIE
are robust to small amounts of noise, yet our embeddings are superior as they are less distorted by the
missing parts as we find more consistent pairs.

B.2 Discretization

The definition of consistent pairs is so far in a continuous setting. We need to be adapt it to the
discrete world, as computational surfaces are themselves discrete. Let V' be a finite set of vertices
sampled from the continuous surface. We only compute guaranteed pairs between the vertices of
V. To that end, we consider only the discrete set of boundary vertices B = V N B. Given this
discretization, we calculated Cyy-guaranteed pairs in a naive manner. We first compute the geodesic
distance matrix Dy, having (i, j) entry (Dy),; as the geodesic distance on the partial surface )’
between the ¢-th and j-th vertices of V, using a relevant method for computing geodesic distances on
the discrete surface, e.g. Dijkstra’s algorithm [21], Fast Marching Method [28], MMP [56, 39], or
deep learning methods for geodesic distance calculation [32, 27]. We then calculate the Euclidean
distance between each pair of boundary vertices in B. We have thus computed all elements of the
threshold in Equation (3), and all that is left is to search for the two boundary vertices that give
the minimal bound. Optionally, computations can be sped up using a GPU, we used a V100 and it
took a few minutes to compute the masks for surfaces on the PFAUST datasets. We found that it is
best to compute the O(|V'|?| B|?) distances in batches due to the high spatial complexity, which for
common surfaces becomes prohibitively large. This process computes a matrix K of size |V| x |V,
containing the threshold of the criterion Cyy calculated for each pair of vertices. The guaranteed pairs
are the true elements of the binary mask M;; = 1(p ), <k,;-

An alternative faster approach to the naive method above for computing the mask matrix M would
be to recompute geodesic distances on a tweaked distance graph. The adjustment would be to create
an edge between all boundary points with distance equal to the Euclidean distance between them.
Shortest paths on this tweaked graph belong to one of two types. The first type of new shortest paths
between any two points corresponds to paths that do not pass through boundary points, which means
that they are the same as the ones on the partial surface )’: the pair is consistent and guaranteed by
Cw. The other type of new shortest paths between any two points corresponds to paths using a single
new edge between boundary vertices, which means that their length is equal to the wormhole worst
case distance bound between these two points: the pair is not guaranteed by Cyy. This procedure thus

computes the criterion matrix K defined as

Kij = min{(Dy-);, Ki;}- (11)
We can then compute the binary mask matrix by comparing the distances computed on the original
and the tweaked graphs M ;; = 1 (Dy)iy <Ky The total cost of this approach comes from computing

twice the distance algorithm, once on a graph and once on its modification with ©(| B|?) extra edges.
As such, the complexity of this method is © (|V|(|E| 4 | B> + |V/[log(]V])) ). However, in practice,
we usually have | B| = O(+/|V]). As such, the complexity is usually O(|V|(|E| + [V|log(|V]))).

“We provide the code to generate the pointclouds in our code repository.
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Figure 7: MDS embeddings of reference manifold learning methods on a whole swiss roll without
noise and its variants with a hole or a cut.
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Figure 8: MDS embeddings of reference manifold learning methods on a whole swiss roll with small
noise and its variants with a hole or a cut.
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meaning that computing the mask criterion K has the same complexity as computing the shortest
distances on the partial shape Dy-. Note that for triangulations or kNN graphs, |E| = O(]V]) and
then the complexity for computing the wormhole mask is simply O(|V'|?log(|V'])) in practice.

B.3 Derivation of the Masked Geodesic Distance Preservation Loss

Our discrete loss function L, in Equation (7) is based on the continuous loss presented in [1], see
also [13]. Following their formulations we introduce a loss for the correspondence function between
X and ), defined by p: J' x X — R™T as,

2
/ (/ dX(fL'la w2)ﬁ(x1>y/1)ﬁ(x27yé)dazldaa’z - dy’(y/layé)> m(y/hyé)dayidayé (12)
RN XxX

where dxy and dy measure the distances between surface points, and m : J' x ' — {0,1} is our
binary masking function. We readily have the discrete version,

- - ~T
L(P,Dy,Dy,M) = |VM®(PAxDxAxP — Dy)l|yy, (13)

where || B||yy = trace(B' Ay BAy) and v/ M is the entry-wise square-root of M. Similar to
previous papers [25] we assume that our learned correspondence matrix implicitly contains the area

matrix Ay, thus, P = PA x. Consequently, our loss function is defined as follows,
Lyo(P,Dx,Dy/,M) = |VM®(PDxP" —Dy)|yy. (14)

For simplicity, we expressed it element-wise,

2
Loo(P.Dx, Dy, M) = > MyAy,Ay;; ((PDXPT—Dy/)ij) . as)
ij

The same derivation led to the non-masked loss in [10].

B.4 Detailed Implementation Considerations

Most partial shape matching pipelines [3, 18, 10] can be divided into four parts; feature refinement
network, correspondence matrix creation, loss functions, and post processing. The feature refinement
network gets raw input features of the surface, such as xyz coordinates, and additional geometric
properties of the surface, e.g. the LBO eigendecomposition, and outputs a refined feature for each
vertex. Given the refined features from each surface, a correspondence matrix is built either from
FM [48, 25], or, as in our pipeline, directly from similarities between features on the different
surfaces [2, 18, 10]. The loss functions operate on the FM matrix that is calculated directly from the
feature matrix [48], or on the FM which is calculated from the correspondence matrix [10], or on the
correspondence matrix directly [25]. Post processing allows to refine test time results and usually
consists in applying the methods Zoom-out[38], PMF [60], or refinement of the network weights via
test time adaptation [18].

We use as input features the zyz coordinates of each vertex along with its estimated normal. We
took DiffusionNet [54] to be the feature extraction network, with shared weights between the full
and the partial surfaces. It outputs the refined features Fs € RIVs!*? where d = 256 is the
feature dimensionality, and S € {X’, }'}. We follow [11], by replacing the FM layer with a direct
computation of the correspondence matrix via Softmax similarity, similar to [7, 18],

P - exp(Gij/T) (16)

Y iexp(Gy/T)

where G = F;,F x, and 7 is a temperature hyper-parameter, where 7 = 0.07 for the HOLES dataset
and 7 = 0.01 for the CUTS and PFAUST datasets. We point out that the correspondence matrix is
row normalised ), P;; = 1 but not column normalised, as some vertices of X" in missing parts of )/
should not have corresponding vertices. The correspondence matrix is then fed into our loss function
Lgeo using the soft mask M ® unless stated otherwise (Equation (7)), with Lagrangian coefficient
Ageo = 103. Following [48], we additionally use regularization based on the FM matrix C' calculated
directly from the correspondence matrix P,

C =®,,Ay PPy, (17)
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where @ y and @, are the LBO eigenfunctions of the surfaces X’ and ), and A is diagonal matrix
containing the area associated to each vertex in the discrete surface )'. We plug the FM matrix into
the regularisation loss Lopno With Lagrangian coefficient \yno = 1, which promotes the preservation
of vertex area under the estimated correspondence [48, 3],

Lorno(C) = HCCT —J,

P (18)
where J,. = [ 4 8] is the identity matrix until column r and only zeros columns afterwards, and r is
number of eigenvalues of the LBO on )’ that are smaller than the largest eigenvalue of the truncated
LBO on the discrete surface X'. We trained our network for 20000 iterations, with Adam optimizer
[29], with a learning rate of 10~2 and a cosine annealing scheduler [35] with minimum learning rate
parameter 1),,;, = 10~* and maximum temperature of T},,, = 300 steps. Lastly, for post-processing,
we use the test time adaptation refinement method [18], that refines the network weights separately
for each pair of surfaces with 15 iterations of gradient descent.

Compared to DirectMatchNet [10], our method only involves an additional preprocessing of the shape
to compute the mask matrices for the loss function. As such, from a time perspective, both methods
are comparable and even identical at inference time without test time adaptation. For reference,
inference time is 0.12s on average on our hardware for both DirectMatchNet and our method on the
HOLES dataset.

B.5 Further Shape Correspondence Result

We here display further qualitative results on the PFAUST M (Figure 9), H (Figure 10), SHREC’16
CUTS (Figure 11), and HOLES (Figure 12). The results support those presented in Figure 6. Methods
not based on the preservation of distances produce significant distortions compared to those that do.
Furthermore, by focusing on consistent pairs, our method yields less distortion near holes than a
similar approach [10] not taking them into account.

We also provide in Figure 13 Percentage of Correct Keypoint (PCK) curves describing the percentage
of correct predictions with respect to the geodesic error for the baseline methods UnsupDPFM [3],
RobustFMnet [18], DirectMatchNet [10], and our method, without refinement for all methods. In
particular, our method yields clear improvement on the challenging PFAUST-H benchmark, and
moderate improvements on the other datasets, which corroborates the results of Tables 2 and 3.

20



DirectMatchNet

Wormbhole (Ours)

DirectMatchNet

Wormbhole (Ours)

Figure 10: Additional qualitative results on the PFAUST-H dataset.
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Figure 11: Additional qualitative results on the SHREC’16 CUTS dataset.
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Figure 12: Additional qualitative results on the SHREC’ 16 HOLES dataset.
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Figure 13: PCK curves of the geodesic error of the baselines and our method on the SHREC’16
CUTS and HOLES and the PFAUST M and H datasets.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a dedicated limitations section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Detailed proofs are provided even for the simplest claims in the supplementary
material.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed descriptions of the methodology are provided in the manuscript and
the supplementary material. The method is simple to implement and results are easily
reproducible.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: A link to the code is provided.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]
Justification: All experimental details are provided in the supplementary.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: PCK curves are provided, yielding significantly more information on the
distribution of the results than mere error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention both our small compute resources and the time of execution
related to our main contribution in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have respected the NeurIPS code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: The paper has no foreseeable societal impact. It is a paper about partial shape
matching.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide credit to the original papers of all external data, code, and models
used in this work.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: There are no new assets for shape matching. We also provide the code to
replicate the standard toy shapes in the multi-dimensional scaling section in our code
repository, and describe them in detail in the supplementary material.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: No crowdsourcing nor research with human subjects was involved in this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: No crowdsourcing nor research with human subjects was involved in this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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