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Abstract

We present an approach to discourage shortcut
learning. Our approach has two steps: (1) effi-
ciently identify relevant shortcuts, and (2) lever-
age the identified shortcuts to build robust and
efficient models. We present theoretical and em-
pirical arguments which show that our approach
leads to robust and efficient estimators.

1. Introduction
Despite their immense success, predictors constructed from
deep neural networks (DNNs) tend to have poor perfor-
mance under distribution shift [7, 22, 5, 12]. One reason be-
hind such brittleness is “shortcut learning”: when a predic-
tor relies on spurious correlations between the inputs and
the target label that are easy to learn (i.e., shortcuts) and are
predictive of the label in the training data [13]. If these spu-
rious correlations no longer exist when the test distribution
shifts, the accuracy of the predictor deteriorates. Here, we
study the problem of learning a performant predictor whose
risk is invariant to interventions that change the association
between irrelevant factors (i.e., shortcuts) and the target la-
bel. Our work tackles two limitations in previous literature
on preventing shortcut learning. First, previous work often
assumes that the set of shortcuts are known in advance, or
is easily identifiable using interpretability methods such as
saliency maps. Second, much of the existing work assumes
that there are a few (often one) shortcuts.

To tackle these limitations, we propose an approach to
identify shortcuts, and build models that are invariant to
possibly many shortcuts. Throughout, we will use the ex-
ample of detecting the presence and severity of diabetic re-
tionpathy (DR) using images taken using a funduscope. We
focus on a setting where we are also given multiple auxil-
iary labels (e.g., the type of funduscope, patient age, sex
and previous medical history) at training but not test time.
A subset of these auxiliary data label factors of variation
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(i.e., shortcuts) that we want to be invariant to but the rest
might be redundant for the purpose of shortcut removal.

Our contributions can be summarized as follows. (1) We
leverage ideas from causality to show that robustness to a
large set of distribution shifts is possible through ensuring
invariance to a small set of shortcuts. (2) We develop a
method for identifying these shortcuts, provide theoretical
arguments about validity of our approach and show that it
leads to more efficient predictors. (3) We extend previous
work on single shortcut removal to a more general formu-
lation that allows for high dimensional shortcuts of arbi-
trary types (4) We empirically validate our theoretical find-
ings using a semi-simulated benchmark and a medical task,
showing our approach has favorable in- and out-of-distribu-
tion generalization properties.

Related Work. Unlike previous work [35, 26, 33, 23, 30,
4], we do not assume that the relevant shortcuts are known
a priori and we do not make any assumptions about the
type or dimension of the auxiliary and target labels. A more
extensive review of related work is in the appendix.

2. Preliminaries
Setup. We consider a supervised learning setup where the
task is to construct a predictor f(X) that predicts a label Y
(e.g., presence and severity of DR) from an input X (e.g.,
image). We assume that at training time only, we have a
set of auxiliary labels Vd, with d = {0, . . . , D}. We use
V i to denote the ith column of Vd, and V d\i to denote all
columns except the ith column. We use X ,Y,Vd to denote
the domains of X, Y , and Vd respectively. We make no
assumptions about these domains: they can contain binary,
categorical or continuous variables. We use the notation
Z ⊥⊥ PZ

′ to denote that the two variables Z,Z ′ are in-
dependent under the distribution P . We use capital letters
to denote variables, and small letters to denote their value.
Our training data consist of tuples D = {(xi, yi,vdi )}ni=1

drawn from a source training distribution Ps. We will con-
sider predictors f of the form f = h(ϕ(x)), where ϕ is a
representation mapping and h is the final predictor.

We assume that Ps follows an anti-causal structure, mean-
ing that X is generated by the labels Y and Vp, where Vp

is a subset of Vd. Importantly, we do not assume that such
a subset is known a priori. We use Vc to denote the com-
plement of Vp, i.e., all the variables in Vd that do not di-
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Figure 1. Examples of causal DAGs studied in this paper.

rectly affect X. We assume that the labels Y and Vp are
are correlated, but not causally related; that is, an interven-
tion on Vp does not imply a change in the distribution of
Y , and vice versa. Such correlation often arises through
the influence of an unobserved third variable such as the
environment from which the data is collected. We make
no assumptions about the relationship between Y and Vc

or Vc and Vp: they can be causal or correlations. Fig-
ure 1 shows examples of the causal directed acyclic graphs
(DAGs) that conform with our assumptions. Solid edges in
the figure depict causal relationships, and dashed bidirec-
tional arrows depict correlations.

We assume that there is a sufficient statistic X∗ such that
Y only affects X through X∗, and X∗ can be fully recov-
ered from X via the function X∗ := e(X), where e(X)
is unknown. We make an overlap assumption with re-
spect to Vp on the source distribution, Ps: we assume that
Ps(V

p)Ps(Y )≪ Ps(V
p, Y ). We also assume that Vp has

a bounded variance. In the appendix, we give examples for
the DAGs in figure 1.

Risk invariance and shortcuts. We define the general-
ization risk of a function f on a distribution P as RP =
EX,Y∼P [ℓ(f(X), Y )], where ℓ is an appropriate loss func-
tion. We focus on obtaining an optimal risk invariant pre-
dictor, whose risk is invariant across a family of target dis-
tributions P that can be obtained from Ps by interventions
on the DAGs in Figure 1. Specifically, we consider in-
terventions on any non-causal relationship that keep the
marginal distribution of Y constant1. For example, each
distribution in the target family of distributions described
by the DAG in 1(a) can be obtained by replacing the source
conditional distribution Ps(Vp | Y ) with a target condi-
tional distribution Pt(V

p | Y ). In this case, the target
set of distributions is: P = {Ps(X | X∗,Vp)Ps(X

∗ |
Y )Ps(Y | Vc)P (Vc)Pt(V

p | Y )} This family allows the
marginal dependence between Y and Vp to change arbi-
trarily. We define the set of risk invariant predictors to
be all predictors that have the same risk for all Pt ∈ P ,

1Extending our analysis to settings where the marginal distri-
bution of Y also changes is possible, but would introduce some
notational overhead. It would require that a re-weighted risk be
invariant across such a family.

Frinv = {f : RPt
(f) = RP ′

t
(f) ∀Pt, P ′

t ∈ P} and an
optimal risk-invariant predictor frinv to have the property
frinv ∈ argminf∈Frinv RPt(f) ∀Pt ∈ P. The definition of
P also allows us to define a set of shortcuts that we care
to remove: these are the set of shortcuts that would lead to
varying risk across different distributions in P . We will re-
fer to this set asP-specific shortcuts, but drop such notation
when it is implied from the text.

The sufficiency of Vp for P-shortcut removal. One of
the insights of our work is that by taking into account the
causal DAG that generates the data, we are able to iden-
tify a small subset of the auxiliary labels that are sufficient
to induce robustness across P . Specifically, for any DAG
that satisfies the properties outlined above, we show that it
is sufficient to remove shortcuts that are labeled by Vp to
achieve robustness. We formally state this in the following
proposition.
Proposition 1. Let T (Ps) be any transformation that ren-
ders Y ⊥⊥ T (Ps)V

p. Under such transformation, the Bayes
optimal predictor is a function of X∗ only and is asymptot-
ically risk invariant.

The proof follows from the fact that X∗ d-separates Y,X
when Y ⊥⊥ T (Ps)V

p. Since the full statement of the
proof is identical that of proposition 1 in [26], it is omit-
ted. The proposition states that any transformation that
renders X independent of Vp is sufficient to give us risk
invariance for DAGs that satisfy the assumptions outlined
above. Meaning the only shortcuts that we care about are
ones induced by Vp. Transformations T include condi-
tioning on Vp or reweighting the distribution. As shown
in [26], conditioning might lead to poor estimators espe-
cially when training involves small batches. So we focus
on reweighting schemes. We use P ◦ to denote the outcome
of such a reweighting transformation, i.e., P ◦ = T (Ps),
with Y ⊥⊥ P◦Vp. We refer to this P ◦ as the ideal distribu-
tion. In the DR example, this distribution is one where we
are equally likely to observe a man or a woman with DR.

3. Identifying a sufficient subset of shortcuts
Our training strategy follows two steps. First, we develop
a novel approach to identify Vp. Second, by extending
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previous work on single shortcut removal, we suggest an
approach which leverages the results from the first step to
train predictors that are robust to arbitrary types and dimen-
sionality of auxiliary labels and target labels.

Examining the DAGs described in figure 1 reveals that the
variables Vp have two properties which can be exploited to
differentiate them from Vc. We state those two properties
in the following proposition.

Proposition 2. For all V i ∈ Vd, the following two prop-
erties hold: (1) Y ⊥⊥ Ps

V i | V d\i ⇒ V i ̸∈ Vp, and
(2) X ̸⊥⊥ PsV

i | Y,V d\i ⇔ V i ∈ Vp

Proposition 2 states that if any V i is independent of Y
conditional on the rest of the auxiliary variables, it is not
in Vp, and that for any V i in Vp, it must hold that X is
not independent of such a variable conditional on all other
auxiliary labels. These two properties provide us with two
tests that enables us to identify which auxiliary labels mark
shortcuts that are necessary to account for to induce robust-
ness versus ones which are not. In principal, we can apply
non-parametric conditional independence tests to each of
the auxiliary labels to identify whether it satisfies the two
properties. However, the power of non-parametric indepen-
dence tests has been shown to decline as a function of of the
dimension of the data [28, 29]. This dependence on the di-
mension of the data makes testing if X ̸⊥⊥ Ps

V i | Y,V d\i

particularly difficult in situations where X is high dimen-
sional, which is the case for high resolution images.

Instead, we seek out to find a low dimensional representa-
tion s(X), with s ∈ S such that if and only if X ̸⊥⊥ PsV

i |
Y,V d\i then it also true that s(X) ̸⊥⊥ Ps

V i | Y,V d\i.
Intuitively, if X contains any information about a given
V i ∈ Vd in some source distribution Ps, s(X) must retain
such information. This intuition implies that taking s(X)
to be the empirical risk minimizing function that predicts
Vd from X, is a good reduction.

To prove the validity of this simple reduction, we assume
that Vp is s-representable. Meaning there exists some s ∈
S that can perfectly predict Vp. We do not require that such
an s is identifiable using finite samples. We note that under
the causal DAGs in figure 1, for an appropriately chosen S ,
there should exist performant (albeit not perfect) predictors
of Vp from X since Vp causes X. In the appendix, we
discuss cases where this assumption can be relaxed.

Proposition 3. For a loss function ℓ, and function space S ,
let s∗(X) = argmins∈SEPs

[ℓ(s(X),Vd)]. Then s∗(X) ̸⊥⊥
Ps
V i | Y,V d\i ⇔ X ̸⊥⊥ Ps

V i | Y,V d\i, for all V i ∈ Vd

Propositions 2 and 3 give us a practical and efficient pro-
cedure to identify a subset of Vd that is sufficient for P-
shortcut removal. For each V i, we propose first testing
if Y ⊥⊥ Ps

V i | V d\i. We remove labels for which this

relationship holds (consistent with condition 1 of proposi-
tion 2). We use d to denote the remaining set of auxiliary
label indices. For the remaining labels in d, we test if the
second condition of proposition 2 holds as follows. We
split the training data into two sub samples D1 and D2. We
use D1 to train a model s : X → Vd. We then proceed by
predicting the value of S = s(xi) for i ∈ D2, and testing if
S ⊥⊥ V i | Y,V d/ i for all i ∈ d.

To conduct the conditional independence tests, we use
kernel-based conditional independence (KCIT) tests [37].
Such methods ascertain conditional independencies by an-
alyzing the cross covariance operator. Intuitively, the cross-
covariance operator can be thought of as an extension of the
covariance matrix when the variables are infinite dimen-
sional. We formally define it in the appendix.

In KCIT, the cross covariance operator is used to con-
duct a hypothesis test with the null hypothesis defined as
X ⊥⊥ Ps

V i | Y,V d\i, for example in our case. We use
the Gamma approximation method suggested in [37] to ap-
proximate the null distribution and reject the null if the p-
value corresponding to the independence test is less than
a pre-specified significance level. To account for the mul-
tiple hypothesis tests, we set the significance level to be
low (0.001), following the authors of KCIT. We use the ra-
dial basis function (RBF) to estimate the kernel matrices,
and use the median heuristic described in [17] to set the
kernel bandwidth. Finally, KCIT requires setting a param-
eter ϵ, which is a small regularization parameter. We set
ϵ = 10−3 as suggested by the authors but we find that the
tests are generally robust to this hyperparameter.

This procedure gives us a subset of V̂p, which is an esti-
mate of Vp that is sufficient for shortcut removal. When
characteristic kernels such as the RBF are used as the basis
for the RKHS over which we measure the cross covariance
operator, Zhang et al. [37] show that KCIT is asymptoti-
cally consistent, which in turns mean that V̂p is an asymp-
totically consistent estimate of Vp.

4. Building risk invariant predictors

Given the set V̂p, the challenge of building an invariant
predictor reduces to an extension of Makar et al. [26]. In
that work, the authors assume that (1) Vc = ∅, (2) the aux-
iliary and target labels are binary, and (3) there is a single,
binary auxiliary label. We relax these assumptions.

Reweighting to recover P ◦. Makar et al. [26] show that
by reweighting data sampled from an arbitrary Ps to gen-
erate a pseudo-sample from P ◦, the empirical risk mini-
mizer f∗ is asymptotically risk invariant across P . How-
ever, their proposed reweighting scheme assumes that Vp

and Y are binary. Instead we leverage permutation weight-
ing [3] which allows for arbitrarily valued Vp and Y . Per-
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mutation weighting proceeds by permuting Y in the train-
ing data to create D′ = {(xi, yπ(i),vdi )}ni=1, where π is
a random permutation of the indices. The original D and
D′ are stacked and a label C ∈ {0, 1} is given to examples
in the observed and permuted data respectively. A classifier
η : Y×Vp → {0, 1} is trained to learn Ps(C = 1 | Y,Vp).
The weights are then computed as:

ui =
η(vpi , yi)

1− η(vpi , yi)
=
Ps(C = 1 | vpi , yi)
Ps(C = 0 | vpi , yi)

. (1)

We use ũi to denote a normalized version of ui such that∑
i ũi = 1. Under this reweighting scheme, the empirical

risk minimizer f∗ = argminf
∑
i ũiℓ(f(xi), yi) is asymp-

totically risk invariant. The proof for this statement is iden-
tical to results by Makar et al. [26] and is hence omitted.

Causally-motivated regularization for lower variance.
Reweighting leads to estimators that are inefficient in finite
samples [10]. Similar to [26], we penalize models which
encode a correlation between ϕ(X) and Vp to improve the
efficiency of our approach. However, instead of using the
maximum mean discrepancy, which assumes that the auxil-
iary label is a single binary label, to enforce independence
between ϕ(X) and Vp, we use the Hilbert Schmidt Inde-
pendence Criterion (HSIC). The HSIC measures the de-
pendence between two vectors [17]. When Ps = P ◦, we
can penalize HSIC(ϕ(X),Vp) to enforce the desired in-
dependencies. When Ps ̸= P ◦, we need to penalize a
weighted version of the HSIC. This weighting in neces-
sary since the independence property only holds under P ◦.
We use the weighted HSIC estimator suggested by [21].
Putting all components of our approach together the final
objective to minimize the following loss function

L =
∑

i
ũiℓ(h(ϕ(xi)), yi) (2)

+ α · ĤSIC
u

γ (ϕ(X), V̂p),

where α > 0 is a hyperparameter that controls the cost of
violating the HSIC penalty, ĤSIC

u

γ is the estimate of the
HSIC, computed over samples weighted by u which is de-
fined in equation (1) using a kernel with bandwidth γ. In
the appendix, we show that our estimator inherits the finite
sample efficiency guarantees of the methods described in
[26]. Our cross-validation procedure (described in the ap-
pendix) is a modification of the one presented in [26].

5. Experiments
We study the performance of our approach in two tasks:
predicting diabetic retinopathy (presented in the appendix),
and predicting bird type. The latter is based on semi-
simulated task where the data generation process follows
the DAG described in figure 1(a). Specifically, we gener-
ate a high dimensional set of auxiliary labels with a small

subset that affects both Y and X while the rest only affect
Y . We follow Sagawa et al. [30] by constructing a semi-
synthetic waterbirds dataset where the task is to predict Y ,
the type of bird (land or water). In this setting Vp is 2
dimensional, with V p0 representing the image background
(land or water) and V p1 camera artifacts (present or ab-
sent). To generate the background shortcut, we combine
images of water and land birds extracted from the CUB
dataset [36] with water and land background extracted from
the Places dataset [38]. To generate the camera artifact
shortcut, we add small black patches to the image if camera
artifacts are present. In addition, we generate 10 auxiliary
labels (Vc) that affect the outcome Y but not the image X.
Additional details are included in the appendix.

We generate the source distribution Ps such that Ps(V p0 =
1 | Y = 1) = Ps(V

p0 = 0 | Y = 0) ≈ 0.75, and
Ps(V

p1 = 1 | Y = 1) = Ps(V
p1 = 0 | Y = 0) ≈ 0.65.

We also generate three test distributions: Ps, PFlip, and P ◦.
Ps is the same as the training distribution. P ◦ is the ideal
distribution, where P ◦(V p0 = 1 | Y = 1) = P ◦(V p0 =
0 | Y = 0) = P ◦(V p1 = 1 | Y = 1) = P ◦(V p1 =
0 | Y = 0) = 0.5. Finally, PFlip is the most dissimilar
to the training distribution, where the relationship between
V p0, V p1 and Y is flipped in that PFlip(V

p0 = 1 | Y =
1) = PFlip(V

p0 = 0 | Y = 0) ≈ 0.25, and PFlip(V
p1 = 1 |

Y = 1) = Ps(V
p1 = 0 | Y = 0) ≈ 0.35. We introduce

noise by randomly flipping 1% of the labels. We present
the results from 10 simulations. Additional training details
are included in the appendix.

Baselines. We compare our approach to the following
baselines: L2 is the standard neural network trained to min-
imize the empirical risk, with an L2 penalty on the model
weights. W-L2-FullV minimizes the weighted empirical
risk, with the weights computed as defined in equation 1
but using the full set of 12 auxiliary variables, Vd. W-L2-
S is similar to W-L2-FullV but it follows the first step in
our approach to identify a sufficient set of auxiliary labels
to compute the sample weights. W-L2-HDX is similar to
W-L2-S but instead of first reducing X to the low dimen-
sional s(X), it conducts the conditional independence tests
on the raw input X. W-HSIC-FullV and W-HSIC-HDX
are similar to W-L2-FullV and W-L2-HDX respectively but
instead of an L2 penalty, they penalizes the HSIC penalty.
Note that as Sagawa et al. [30] show, the baselines W-L2-
FullV, W-L2-S and W-L2-HDX are equivalent to distribu-
tionally robust optimization in some special cases.

Results. By reducing X to its low dimensional sufficient
statistic, our approach is able to correctly identify the two
true auxiliary labels in all 10 simulations. By contrast,
utilizing the full X rather than s(X) to conduct the con-
ditional independence tests identifies the correct auxiliary
labels in only 1 simulation. Figure 2 shows the AUROC
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Figure 2. Results on the Waterbirds dataset: test distribution (x-
axis) versus AUROC (y−axis). Our approach outperforms others
in the most severe distribution shifts and performs comparably to
others in-distribution. Note that our approach is equivalent to W-
HSIC-S.

(y-axis), on the three different test distributions PFlip, P
◦,

and Ps (x-axis). Our approach outperforms all others un-
der distribution shift and performs comparably to the best
models in-distribution. W-HSIC-HDX and W-HSIC-FullV
are unable to achieve the same level of robustness as our ap-
proach highlighting the limitation of conducting the condi-
tional independence tests on the full X, and the importance
of selecting a sufficient subset of shortcuts respectively.

6. Conclusion
We presented an approach to identify a sufficient set of
shortcuts and leverage the identified shortcuts to build pre-
dictors that are invariant to distribution shifts. We analyzed
the theoretical properties of our approach, showing that it is
both consistent and efficient. Empirically, we showed that
our approach outperforms others using a semi-simulated
dataset and a medical dataset.
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A. Related work
Existing work tackling out-of-distribution generalization tends to fall into two categories: those which assume access to
some (usually unlabeled) examples from the target domain (e.g., [15, 18, 25, 8]) and those which do not (e.g., [33, 32, 26,
35, 30]). Our work falls into the latter category.

Robustness to known shortcuts. Similar to our work, a number of authors adapt causal ideas for the purpose of out-of-
distribution generalization when samples from the target domain are unavailable. By contrast to our work, this line of work
tends to assume that the sources of bias (or shortcuts) are known a priori. For example, Subbaswamy et al. [33] assume
the availability of a “selection diagram” that specifies which variables have a unstable relationship with the target label,
and hence could be shortcuts. Absent prior knowledge, the authors suggest constructing this selection diagrams using
conditional independence tests. We show here that such tests are unreliable when the variables are high dimensional, and
present an solution to this limitation. The assumption of known shortcuts is implicit in other work (e.g., [23, 30, 4]) where
the authors aim to find the best predictor over a set of possible distributions. Here, defining such a set requires knowledge
of the meaningful shortcuts. In the experiments section, we show that our approach, by identifying a subset of relevant
shortcuts, is able to outperform approaches equivalent to [30].

Most similar to our work is [26], where the authors study an anti-causal prediction problem similar to ours. Unlike us, they
assume that there is a single shortcut labeled by a binary auxiliary label. Our work can be viewed as a direct extension of
this work to relax assumptions about the type and dimension of the auxiliary label as well as the prior knowledge about the
shortcut.

Shortcut identification. One approach that has been suggested to identify possible shortcuts is by leveraging interpretabil-
ity methods such as saliency maps [31] which visually highlight which parts of an image is most important for a prediction.
However, user-based studies have found that saliency maps often have limited utility in explaining model features [2]. In
addition, in domains such as healthcare, leveraging saliency maps to identify shortcuts might require expert knowledge.
In [6], the authors suggest manipulating the observed examples by intervening on possible shortcuts and measuring the
behviour of the model under such interventions. However, such work relies on being able to faithfully manipulate the
observed data, which is not possible in most cases.

B. Additional preliminary information
Examples of DAGs. To establish the intuition underlying the DAGs in figure 1, we highlight some possible scenarios
that these DAGs depict. In all DAGs, Vp can denote the quality of the funduscope, which is used to capture the image
X, or the sex of the patient which has been shown to affect the shape of the retina [9]. In figure 1(a), Vc can denote high
sugar intake: it can cause diabetes and its complications such as DR but it likely does not directly affect the appearance of
the retina (X) independently of Y . In figure 1(b), Vc can denote conditions that tend to co-occur with DR such as kidney
diseases [27] in figure 1(c), Vc could be socio-economic characteristics correlated with access to high quality funduscopes
(or healthcare in general) while in figure 1(d) Vc could be sex-specific diseases such as cervical cancer.

Relaxing s-representability In cases where Vp is binary, the assumption of s-representability can be relaxed. In that
case it is sufficient to assume that S contains some s with bounded δ error such that δ is less than the proportion of the
smallest subgroup defined by Y,Vp. Under such assumption, the following proposition establishes the validity of this
simple reduction.

Cross covariance operator definition The formal definition of the cross covariance operator is stated below

Definition 1. Let Z,Z ′ be a pair of random variables defined on Z ×Z ′ and let ΩZ and ΩZ′ be two Reproducing Kernel
Hilbert Spaces (RKHSs) defined on Z and Z ′. Define the cross-covariance operator of Z,Z, Czz′ : ΩZ → ΩZ′ such that
⟨f, Czz′g⟩ = Cov[g(Z), g′(Z ′)], ∀g ∈ ΩZ , g

′ ∈ ΩZ′

C. Proofs for section 3
C.1. Proof for proposition2

The proof relies on examining the d-separation properties implied by the DAGs. We will assume that V p and V c are single
dimensional for simplicity.
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First property. Note that for all DAGs, the two paths Y ← U → V i is unblocked by any other V d\i, which means that
for all V i ∈ Vp, Y ̸⊥⊥ V i | V d\i. Unfortunately, the same property holds for V i ∈ Vc in all DAGs except the DAG
in 1(d). To see that note that in DAG 1(a) the path Y ← Vp is unblocked by any other variables in Vd, in DAG 1(b),
Y ← U2 → Vc is unblocked by any other variables in Vd, in DAG 1(c) the path Y ← U1 → V p → U2 ← V c is
unblocked by conditioning on V p, which is a collider. So in all these DAGs, V i ∈ Vp, Y ̸⊥⊥ V i | V d\i. However, in
DAG 1(d) the path Y ← U → V p → V c is blocked by V p so Y ⊥⊥ V i | V d\i for V i = V c only.

Second property. We start by proving the direction: X ̸⊥⊥ Ps
V i | Y,V d/ i ⇒ V i ∈ Vp. Suppose that there exists

some i such that X ⊥⊥ Ps
V i | Y,V d/ i but V i ∈ Vp. This means that all paths between V i and X are blocked by V d/ i.

However in all DAGs for all V i ∈ Vp, the the path X ← V p cannot be blocked via conditioning on any other variables,
which represents a contradiction.

We next prove the direction V i ∈ Vp ⇒ X ̸⊥⊥ Ps
V i | Y,V d/ i. Suppose there exists some i such that V i ̸∈ Vp but

X ̸⊥⊥ Ps
V i | Y,V d/ i. Then there exists an unblocked path between V i and X. This is a contradiction because:

1. In DAG 1(a) the only path between V c and X is X ← V p ← U → Y ← V c. This path is blocked by conditioning
on V p.

2. In DAG 1(b) the only path between V c and X is X ← V p ← U → Y ← U2 → V c. This path is blocked by
conditioning on V p.

3. In DAG 1(c) the only path between V c and X is X← V p ← U2 → V c, which is blocked by V p.

4. In DAG 1(d) the path between V c and X is X← V p → V c which is blocked by V p.

C.2. Proof for proposition 3

The direction X ̸⊥⊥ Ps
V i | Y,V d/ i ⇒ s∗(X) ̸⊥⊥ Ps

V i | Y,V d/ i is easy to prove as follows. Suppose that X ⊥⊥
Ps
V i | Y,V d/ i but s∗(X) ⊥⊥ Ps

V i | Y,V d/ i. This statement presents an immediate contradiction since any functions of
independent random variables must be independent so such an s∗ cannot exist.

Next, the direction s∗(X) ̸⊥⊥ Ps
V i | Y,V d/ i ⇒ X ̸⊥⊥ Ps

V i | Y,V d/ i. Suppose that s∗(X) ⊥⊥ Ps
V i | Y,V d/ i but

X ̸⊥⊥ Ps
V i | Y,V d/ i. By proposition 2, X ̸⊥⊥ Ps

V i | Y,V d/ i implies that V i ∈ Vp. And by the assumption that Vp is s-
representable, we have that there exists some s such that V i = s(X). Such an s is an empirical risk minimizer achieving the
minimum possible risk of 0. By definition for such an s, s(X) ̸⊥⊥ Ps

V i | Y,V d/ i and EPs
[s(X)|V i = vi, Y = y,V d/ i =

vd/ i] ̸= EPs [s(X)|V i = ṽi, Y = y,V d/ i = vd/ i] for all vi ̸= ṽi and all z, y. However, for s∗(X) ⊥⊥ PsV
i | Y,V d/ i to

hold, it must be true that EPs [s(X)|V i = vi, Y = y,V d/ i = vd/ i] = EPs [s(X)|V i = ṽi, Y = y,V d/ i = vd/ i] for all
vi ̸= ṽi and all z, y. This means that s∗ must have an empirical risk greater than 0, i.e., it is not an empirical risk minimizer
which is a contradiction.

D. Proofs for section 4
D.1. Reducing sample complexity

To explain how the HSIC penalty leads to a reduction in the sample complexity and hence the variance of the estimator,
we follow the same strategy as Makar et al. [26] in studying a simple setting where we focus on a linear function class and
analyze how the suggested HSIC penalty compares to a standard L2-regularized function class. Our analysis is extendable
to more complex neural networks e.g., through approaches studied in [14].

For some A > 0, τ ≥ 0, define the two function classes:

FL2
:= {f : x 7→ σ(w⊤x), ∥w∥2 ≤ A}, (3)

FL2,HSIC := {f : x 7→ σ(w⊤x), ∥w∥2 ≤ A,HSIC ≤ τ}. (4)

In this simple function class, the HSIC constraint restricts the projection of the weights w onto ∆ := CovP◦(X,Vp). To
simplify notation, we assume that the variance of Vp is the vector of ones. However, if that is not true, Vp can be rescaled
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such that the variance is the vector of ones, which is possible because of the assumption of bounded variance. The matrix
∆ is the average change in X caused by intervening to change each dimension in Vp under P ◦. Define the projection
matrix Π := ∆(∆⊤∆)−1∆⊤ = ∥∆∥−2

2 ∆∆⊤, which projects any vector onto ∆, and w⊥ := Πw as the projection of w
onto ∆, which can be thought of as the “irrelevant” dimension of X. To directly compare our results with Makar et al.
[26], we consider the case where Vp is one dimensional, i.e., ∆ is a vector.

Proposition A1. Let f(x) = σ(ϕ(x)) = σ(w⊤x) be a function contained in FL2,HSIC. Then, ∥w⊥∥ ≤ τ
∥∆∥ . and

R(FL2
) ≤

A
√
B2

∥ +B2
⊥√

n
, and R(FL2,HSIC) ≤

A ·B∥ + τ B⊥
∥∆∥√

n
.

Proof. By Gretton and Györfi [16] we have that:

HSIC(ϕ(X),Vp,Ω,Ψ) ≥ sup
ω∈Ω,ψ∈Ψ

∥Cov(ω(ϕ(X)), ψ(Vp))∥HS ,

where Ω and Ψ are two RKHS spaces defined over ϕ(X) and Vp respectively.

Taking ω, and ψ to be the identity functions, and substituting ϕ for w⊤x, we have that:

τ ≥ HSIC(ϕ(X),Vp,Ω,Ψ)

≥ ∥Cov(w⊤X,Vp)∥F
= ∥wCov(X,Vp)∥2
= ∥w∆∥2
= |w∆|

where ∥.∥F is the Frobenius norm, and the equalities follow from the fact that wCov(X,Vp) is a scalar. Note that
∥w⊥∥ = |w∆|

∥∆∥ , which completes our proof for the first part of the statemenet (bound on ∥w⊥∥). The rest of the proof
follows identically to Makar et al. [26].

The generalization bound can also be obtained identically to Makar et al. [26], and is hence omitted. We note that if Vd is
used instead of Vp, the term CP in proposition A8 of [26] is larger, leading to a larger (less favorable) generalization error
bound.

E. Cross-validation
Cross-validation. The objective function in (2) depends on two hyperparameters: the cost of the HSIC penalty α, and
the penalty’s kernel bandwidth γ. Unlike many regularizers, the HSIC penalty depends on the distribution of the data, and
is vulnerable to overfitting, such that the estimated ĤSIC on the training data underestimates the population HSIC. For
this reason, we follow a two-step cross-validation procedure. Letting Dvalid denote a held out validation set, ϕvalid denote
{ϕ(xi)}i∈Dvalid , and similarly define Vp

valid, our cross validation procedure proceeds as follows. In the first step, for a given
α = α0, γ = γ0, we first check if the corresponding ϕvalid is independent of Vp

valid. We do so using the permutation test
suggested by Gretton et al. [17]. This test entails creating 100 permutations of the validation set, with the kth permutation
defined as D′ = {xi, yi,vpπk(i)

}, and πk(i) is a permutation of the indices. We compute a vector of HSIC values for each
of the permuted datasets, and the corresponding 1 − βth quantile of that vector. β is a pre-specified significance level that
we use to accept or reject the null hypothesis that the estimated ϕ(X),Vp are independent. Similar to before, we set that
to be 0.001 as a heuristic to account for the multiple tests. We reject α0, γ0 as valid hyperparameters if ĤSIC as calculated
on the unpermutated validation set is larger than the value corresponding to the 1−βth quantile. Repeating this process for
all α, γ candidates gives us a subset of the that set that encode the desired invariances. In the second step, we pick the best
performing model out of this subset of candidate functions.
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Figure 3. Examples of the generated waterbirds images. Left: water bird on water background. Middle: water bird on land background.
Right: water bird on land background with camera artifacts.

F. Waterbirds experiments details
F.1. Data generation

We use the subset of the places images provided by Makar et al. [26] in https://github.com/mymakar/
causally_motivated_shortcut_removal. We generate the data as follows. V p0 ∼ Binomial(0.5), V p1 is
generated such that it has a 70% correlation with V p0. Vc is drawn from Binomial(0.01). We generate the outcome
Y = σ(θ0 + θp0V

p0 + θp1V
p1 + θ⊤

c V
c + ε) , where σ(.) is the sigmoid function, and ε ∼ N (0, 0.5).

For Ps: θ0 = −0.84, θp0 = 0.84, θp1 = 0.4 and θc ∼ N (0, 1). For PFlip: θ0 = 0.45, θp0 = −0.84, θp1 = −0.4 and
θc ∼ N (0, 1). For P ◦: θ0 = −0.15, θp0 = 0, θp1 = 0 and θc ∼ N (0, 1).

Examples of the generated images are in figure 3.

F.2. Training details

We split the data into 70% training and validation and 30% is a held out test set. The training and validation data is further
split into 75% training and 25% validation. We resize the images to a resolution of 128 × 128, and train for 500 epochs.

We use ResNet-50 [20], pretrained on ImageNet. All models in this paper are implemented in TensorFlow [1]. In each of
the 10 simulations, we generate different train/test splits, different draws of auxiliary labels and different bird-background-
camera artifact combinations.

For all HSIC based models, we cross validate over bandwidth values = [1.0, 10.0, 100.0, 1000.0], and α values =
[1e3, 1e5, 1e7, 1e9]. We picked this set of bandwidths to cross validate over using the following heuristic: for each HSIC
model, we train its corresponding unpenalized (i.e., α = 0) model. We evaluate the HSIC of the unpenalized model at
various bandwidth levels, and pick the set that has non-zero HSIC as the reasonable set to cross validate over.

For all L2 models we cross validate over L2 penalty = [0, 0.0001]. We use Adam optimizer, with the default learning rate
0.001 and default ϵ = 1e− 07.

Each model takes roughly 50 minutes to train, with of 56 models per simulation and a total of 560 models, the total compute
time is roughly 470 hours on a Tesla T4 GPU.

G. Additional experiments: Diabetic Retinopathy
Setup. In this setting, we examine the validity of our approach when the outcome is non-binary. We use a publicly available
dataset made available by EyePACS, LLC [11]. Approval for the use of this data set for the purpose of research was
obtained via correspondence with the data curators. Here, we predict the presence and severity of diabetic retinopathy (DR)
using fundus images, with Y ∈ {0, . . . , 4}. To focus the analysis on the challenges pertaining to categorical outcomes, we
generate a single binary auxiliary label, V p, reflecting the presence or absence of funduscope artifacts. Similar to before,
we add small black patches to the image if funduscope artifacts are present. We simulate the training distribution Ps with
Ps(V

p = 1 | Y = 0) = Ps(V
p = 0 | Y > 0) = 0.9. We introduce noise by randomly permuting 1% of the labels.

Here, we compare two baselines to our approach: L2 is defined similar to before, W-L2 is a weighted version of L2, using

https://github.com/mymakar/causally_motivated_shortcut_removal
https://github.com/mymakar/causally_motivated_shortcut_removal
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AUROC (STE)
Model Flipped (PFlip) Ideal (P ◦) Same (Ps)

L2 0.69 (0.009) 0.82 (0.003) 0.92 (0.001)
W-L2 0.68 (0.015) 0.82 (0.005) 0.92 (0.001)
Ours 0.72 (0.026) 0.83 (0.007) 0.91 (0.007)

Table 1. Diabetic retinopathy results: AUROCs averaged over 10 simulations and standard deviations across 3 test distributions. Our
approach outperforms others especially when the distribution shift is most severe, and performs comparably to others in-distribution

weights defined with respect to V p. We follow Li et al. [24] in using an Inception-V3 architecture [34] to train all models.
We present the results from 10 simulations. In each simulation, we generate different train/test splits and different draws
of auxiliary labels.

We split the data into 70% training and validation and 30% is a held out test set. The training and validation data is further
split into 75% training and 25% validation. We follow [19] in preprocessing the images such that they are macula-centered,
and resize them to be 299 × 299. We train each model for 2 epochs (which is sufficient since the DR data is larger than
the waterbirds data). We use Adam as our optimizer, and follow tensorflow guidance in setting ϵ = 0.1. We also find that
a slower learning rate leads to better results for all models, so set it to 0.0001.

For the HSIC based model, we consider bandwidths = [0.1, 1.0], which were picked using the same heuristic described in
the waterbirds experiment, and α = [1e3, 1e5, 1e7]. Each model takes roughly 30 minutes. With 10 models per simulation,
we have 100 models which take a total of 5 hours to train on a Tesla T4 GPU.

Results. Similar to the waterbirds setting, we measure the performance of the three models on three distributions Ps, PFlip,
and P ◦, where PFlip has PFlip(V

p = 1 | Y = 0) = PFlip(V
p = 0 | Y > 0) = 0.1 and P ◦ is the ideal distribution.

Table 1 shows the AUROCs averaged over 10 simulations and their corresponding standard errors. The results show that
our approach vastly outperforms others in the most severe distribution shifts, and performs relatively on par with the other
models in-distribution. The slight drop in accuracy in-distribution is attributable to the fact that the baselines exploit the
shortcut whereas our approach does not. The results confirm that our approach extends to setting where the target label is
non-binary.


