
Published as a conference paper at ICLR 2025

CLOVER: A TEST CASE GENERATION BENCHMARK
WITH COVERAGE, LONG-CONTEXT, AND VERIFICA-
TION

Jiacheng Xu, Bo Pang, Jin Qu, Hiroaki Hayashi, Caiming Xiong & Yingbo Zhou ∗

Salesforce AI Research
jiacheng.xu@salesforce.com

ABSTRACT

Software testing is a critical aspect of software development, yet generating test
cases remains a routine task for engineers. This paper presents a benchmark,
CLOVER, to evaluate models’ capabilities in generating and completing test cases
under specific conditions. Spanning from simple assertion completions to writing
test cases that cover specific code blocks across multiple files, these tasks are based
on 12 python repositories, analyzing 845 problems with context lengths ranging
from 4k to 128k tokens. Utilizing code testing frameworks, we propose a method
to construct retrieval contexts using coverage information. While models exhibit
comparable performance with short contexts, notable differences emerge with 16k
contexts. Notably, models like GPT-4o and Claude 3.5 can effectively leverage
relevant snippets; however, all models score below 35% on the complex Task III,
even with the oracle context provided, underscoring the benchmark’s significance
and the potential for model improvement. The benchmark is containerized for
code execution across tasks, and we will release the code, data, and construction
methodologies.

1 INTRODUCTION

Software testing is integral to the software development lifecycle Yoo & Harman (2012); Wang et al.
(2024a); Alshahwan et al. (2024). From test-driven development (Mathews & Nagappan, 2024) to
program repair Yasunaga & Liang (2021); Jimenez et al. (2024), crafting efficient and high-quality
test cases is a routine task. Recently, large language models (LLMs) have gained attention for their
potential in code and software testing enhancements. These models utilize context, user prompts,
history, and code prefixes for code suggestions Nijkamp et al. (2023); 01.AI (2024); Roziere et al.
(2023); Yang et al. (2024). To evaluate models’ capability in writing code, many benchmarks have
been proposed in the past few years. These benchmarks vary in focus, tackling areas such as basic
coding problems Austin et al. (2021b); Chen et al. (2021), data science tasks Lai et al. (2022),
reasoning challenges Gu et al. (2024), and issue resolution Jimenez et al. (2024). We summarize the
most relevant work in Table 1.

Can LLMs write executable test cases with specific requirements in a realistic setup? To address
this question, we create a benchmark, CLoVer, focusing on automatic evaluation of unit test case
generated by LLMs. We create an automatic pipeline with little human intervention to scrape
permissive repositories from GitHub and configure the execution environment. We identify potential
problems by extracting and verifying test cases from the existing codebase. After this step, we take
these problems and structure three challenging tasks: (1) Task I simulates a code completion tool
by focusing on cloze-filling style questions; (2) Task II addresses scenarios requiring coverage and
testing of specific methods or classes within the source code; (3) Task III involves improving code
coverage, where models are challenged to cover certain code blocks within the source. The selection
of example is driven by AST parser and code coverage results. We evaluate model performance
by executing the generated code and capturing line coverage, offering a tangible measure of their
effectiveness.

∗Author contributions are listed in Section 8.

1

Published as a conference paper at ICLR 2025

Use Case Data Source PL Size Exec
Repo

Constructed
Context

Coverage

SWE-bench Jimenez et al. (2024) issue resolution SWE-Bench Python 2294
√

Up to 50k ×
TestEval Wang et al. (2024b) test case gen Leetcode Python 210 × ×

√

TestBench Zhang et al. (2024a) test case gen Github Java 108
√

×
√

SWT-Bench Mündler et al. (2024) tcg for issue reproduction SWE-Bench Python 1900+
√

×
√

TestGenEval Jain et al. (2024a) test case gen SWE-Bench Python 1210
√

×
√

CLOVER test case gen (3 tasks cov-
ering completion & gener-
ation)

Github (new) Python 845 from
16,234

√
Up to 128k

√

Table 1: Comparison of CLOVER and other benchmarks pertaining to test case generation. CLOVER
encompasses three unique tasks for generating test cases. It includes 845 problems, leading to a total
of 5312 instances when accounting for different context settings. Numerous benchmarks for test case
generation are based on the work by Jimenez et al. (2024).

In practical software testing, leveraging a comprehensive context window is crucial, encompassing
dependencies and their antecedents. To evaluate models in a realistic context-aware fashion, we
construct oracle context via test coverage for each example. We assess model performance across
three tasks with context lengths spanning 4k to 128k tokens and introduce context utilization as a
metric to assess how effectively models leverage extended contexts, independent of their absolute
performance.

Our evaluation includes 10 open-source and 4 proprietary models. In Task I, many open-source
models, such as MISTRAL-7B and QWEN 2.5CI-14B, underperform with longer contexts, indicating
a decline in response quality despite their technical capacity to handle such lengths. In Tasks II
and III, all models encounter difficulties in generating executable code, even when provided with
oracle context. A notable trend is the sharp performance drop among open-source models starting
at a 16k context window. The highest performance across all tasks is demonstrated by CLAUDE
3.5-S and GPT-4O, with GPT-4O achieving a 32.7% success rate on the most demanding task,
Task III. We identified a significant disparity in context utilization and long-context instruction-
following capabilities between leading proprietary models and others. Our data pipeline and
evaluation sandbox are designed for scalability. We plan to release the code, benchmark, Dockerized
environment, and recipes to enable the community to use these resources for further development and
training. The benchmark also supports code agent by providing APIs and task instructions.

2 DATA & SANDBOX CONSTRUCTION

#ex avail # templ PO 4k 8k 16k 32k 64k 128k

I 513 14952 1 0.9 2.7 5.5 11.0 21.9 42.8 -
II 151 184 2 1.0 - 3.9 11.8 27.7 58.7 -
III 181 1098 2 - - - - - 57.7 93.5

Table 2: Benchmark statistics. Number of unique
ex(amples), number of templates and average number
of tokens for different settings. Problem Only setting in-
cludes only the task instruction without supplementary
context. One unique example will be populated into n
examples for various settings. For instance, in Task II,
one unique example will be expanded into 2× 5 = 10
examples.

In Figure 1, we describe the overall
pipeline from data collection to final evalu-
ation. In this section, we will focus on data
collection and environment setup.

2.1 DATA COLLECTION

Source identification Following
Jimenez et al. (2024), we began by
scraping 42 new python repositories
and ultimately narrowed it down to 12
repositories for actual use. Details and
reasons for exclusions are provided in
Appendix A. In our methodology, we identified folders containing source and test code by matching
filenames with the pattern test *.py. For eleven repositories, we could not extract test suites.
This process resulted in the identification of test modules, each comprising at least one test function.

Problem extraction from file Test cases are extracted from modules by parsing Python files using
the AST tool to identify test functions. Using heuristics, we isolate setup code s to remove unrelated
test functions. In Figure 1, test functions test simple and test iter are preserved with the nec-
essary setup code, resulting in self-contained problems named tmp test lexnparse [*].py.
We maintain the original structure and path of test modules.

2

Published as a conference paper at ICLR 2025

📁 src/jinja2
├── 📄 __init__.py
├── 📄 constants.py
├── 📄 lexer.py
├── 📄 loaders.py
├── 📄 nodes.py
├── 📄 parser.py
├── 📄 ……

[98%]
[25%]
[81%]
[19%]
[1%]
[35%]

📄 test_lexnparse.py

from jinja2 import Environment
[import code omitted]

class TestTokenStream:
 test_tokens = [Token(1,
TOKEN_BLOCK_BEGIN, ""), Token(2,
TOKEN_BLOCK_END, "")]

 def test_simple(self, env):
 [code omitted]

 def test_iter(self, env):
 [code omitted]

[code omitted]

📄 test_tmp_lexnparse_0.py

from jinja2 import Environment
[import code omitted]

class TestTokenStream:
 test_tokens = [Token(1,
TOKEN_BLOCK_BEGIN, ""), Token(2,
TOKEN_BLOCK_END, "")]

 def test_simple(self, env):
 [code omitted]

📄 test_tmp_lexnparse_1.py

from jinja2 import Environment
[import code omitted]

class TestTokenStream:
 test_tokens = [Token(1,
TOKEN_BLOCK_BEGIN, ""), Token(2,
TOKEN_BLOCK_END, "")]

 def test_iter(self, env):
 [code omitted](1) segment a test file to self-contained test cases

remove peer cases

preserve setup
code s

📄 test_tmp_lexnparse_0.py

📄 test_tmp_lexnparse_1.py

📄 test_tmp_lexnparse_2.py

env: jinja

pytest tmp_[*].py
--cov —timeout 10

(2) verify extracted cases & obtain coverage report

📁 src/jinja2
├── 📄 __init__.py
├── 📄 constants.py
├── 📄 lexer.py
├── 📄 loaders.py
├── 📄 nodes.py
├── 📄 parser.py
├── 📄 ……

[98%]
[45%]
[82%]
[10%]
[0%]
[65%]

📁 src/jinja2
├── 📄 __init__.py
├── 📄 constants.py
├── 📄 lexer.py
├── 📄 loaders.py
├── 📄 nodes.py
├── 📄 parser.py
├── 📄 ……

[98%]
[21%]
[40%]
[11%]
[0%]
[15%]

Task III: Coverage-Oriented Test Implementation

from jinja2 import Environment
[import code omitted]

class TestTokenStream:
 test_tokens = [Token(1,
TOKEN_BLOCK_BEGIN, ""), Token(2,
TOKEN_BLOCK_END, "")]

setup code s
Create a unit test:

1) method signature:

test_iter(self, env)

2) code coverage of:

a. Line 84 ~ 91 [code omitted]

from parser.py;

b. Line 50 ~ 61 from lexer.py.

Instruction

📄 lexer.py

📄 constants.py

📄 parser.py

……

Retrieval files
sorted by coverage & limited by max len

📄 loaders.py

files from src

40%

21%

15%

11%

……

coverage order

1

3

2

-

……

required for solving
the problem

(3) assemble the task prompt

Sure! Here’s how you might implement it:


```python 
    def test_iter(self, env): 
        ts = TokenStream(self.test_tokens, 
"foo", “bar") 
        [code omitted] 
```

(4) obtain model response and post-process

from jinja2 import Environment
[import code omitted]

class TestTokenStream:
 test_tokens = [Token(1,
TOKEN_BLOCK_BEGIN, ""), Token(2,
TOKEN_BLOCK_END, “")]
 def test_iter(self, env):
 ts =
TokenStream(self.test_tokens, "foo",
“bar”) [code omitted]

regex

pytest [above code] —cov —timeout 10

Figure 1: Pipeline overview. In this example, we focus on a test function test iter, which covers
the use of Token and TokenStream classes from the source code. There are four major steps: 1)
we extract the problem from a test file test lexnparse.py, 2) verify of the extracted case(s) by
running pytest, 3) assemble task prompts with pre-constructed oracle dependent files, and 4) obtain
model response and verify the execution status. In Task I, we mask part of the assertion statements. In
Task II and III, we ask model to complete the test code almost from scratch with constraints imposed.

Verification API verify Executing new unit tests requires careful design. During the design and
testing of our verify API, we considered several points: (1) Consistency check. Evaluate model-
generated implementations against ground-truth code to identify issues from extraction, heuristics, or
system conditions such as caching; (2) Batchify operations. Enable batch evaluation of test cases to
decrease overhead from test framework executions and setups; (3) Timeout management. Prevent
infinite loops in model-generated code; (4) Error handling and logging; (5) Repository restoration.
Ensure repository state is reset before and after each use. We wrap this verification process to
an API verify(case) → {true, false} where the output indicates whether the case can execute
successfully.

Coverage API cov The coverage API provides line coverage metrics for a test case across the
entire repository. Utilizing pytest-cov, it reports hit and missed lines, and computes a file-level
coverage rate, even if execution fails. Unlike verify, cov cannot be parallelized due to shared
cache dependencies but can still deliver coverage reports on failed tests.

2.2 SANDBOX CONSTRUCTION

To run test programs across different repositories, we create sandboxes and package them in a Docker
image, maintaining minimal intervention to ensure the process is scalable to a larger number of
repositories.

Procedure First, we create a conda virtual environment with Python version set to 3.10. Then we
install packages including poetry1 and tox2. We exhaustively search for txt files, and try to pip
install those files. Then, git submodule related operations will handle submodules under the
project if any. After this step, we try to install the package from the current project directory with pip,
poetry and tox. After all the steps, we run pytest to check if we can find a significant number
of passed test cases. In practice, the procedure above can automatically configure the environment of
25 out of 42 (59.5%) repositories. We describe more detail about construction failure in Section A.

Efficiency Tasks are evaluated sequentially, while evaluations within each task run concurrently
across different repositories. The longest-running repository determines the evaluation’s time bottle-
neck. To limit evaluation to 2 hours per model on a CPU Linux machine, we capped the maximum
number of examples per repository: 50 for Task I, and 25 each for Task II and III.

1https://python-poetry.org/
2https://tox.wiki/en/stable/

3

https://python-poetry.org/
https://tox.wiki/en/stable/

Published as a conference paper at ICLR 2025

2.3 EVALUATED MODELS

We utilized vLLM Kwon et al. (2023) for model inference with temperature and top p set to 0.2
and 1.0. Maximum output lengths were 200, 4,000, and 4,000 for Tasks I, II, and III, respectively.
To accommodate output tokens without exceeding model length limits, we adjusted the maximum
sequence length by the output length during data preparation. The tokenizer from MISTRAL-7B
was used in this process. We evaluated open-source models including CODEGEMMA-7B (Team
et al., 2024), MAGICODER 6.7B Wei et al. (2024), QWEN 2.5CI-14B (Coder-Instruct) Yang et al.
(2024), YI-CODER-9B 01.AI (2024), STARCODER2-15B Lozhkov et al. (2024), CODELLAMA-13B
(Roziere et al., 2023), LLAMA 3.1-8B, LLAMA 3.1-70B (Dubey et al., 2024), CODESTRAL-22B,
and MISTRAL-7B (Jiang et al., 2023). For proprietary models, we evaluated CLAUDE 3.5-S(onnet),
GEMINI 1.5-F(lash), GPT-4O (2024-08-06), and GPT-4O-MINI (2024-07-18).

3 CONSTRUCTION OF ORACLE RETRIEVAL

Task I

Right after the above code block, you need to predict and fill
in the blank in the following assertion statement:
‘‘‘python { cloze question with blank } ‘‘‘
Use the context and the provided prefix in the unit test method
to infer the missing part of the assertion.

Task II

Here is the checklist:
The generated test code should contain ALL of the following
calls:
- {target name}, a Python {type} defined in file
{file name}.

Task III

Coverage Requirement
Please ensure that the following lines of code from the spec-
ified files are included and tested. Complete code snippets
have already been provided earlier. When referring to cov-
erage, it pertains to pytest coverage. If your code calls a
function or method that indirectly utilizes the specified lines,
this will also be considered as covering those lines.
{block.file path}
‘‘‘python { block.code snippet } ‘‘‘
This includes {block.line count} lines from line numbers
{block.start line number} to { block.end line number }.
[more code blocks if available]
Summary
In summary, there are {num files} files and {num code}
code segments that need to be covered. Please make an
effort to enhance the coverage of these lines, either directly
or indirectly, to ensure thorough testing with pytest.

Figure 2: Task specific prompt template for Task I,
II and III. For the complete prompts, check Sec C.

To write or complete test cases, models need
access to the related source code. To offer a
simplified but realistic evaluation setting with-
out using agents or retrievers, we provide oracle
retrieval code in this benchmark. This leverages
our executable environment and the coverage
API for detailed coverage information. This
setup aims to: (1) explore models’ near-upper
bound performance, (2) and test models in long-
context scenarios. Our approach constructs long-
contexts naturally and demands a multi-hop un-
derstanding of code and effective information
use. Our setup is also perfect for software agent
development.

Motivation Files such as init .py are
often highly covered by most test cases, but they
contribute little value in terms of addressing spe-
cific problems, as per information theory. These
files can quickly deplete the context budget due
to their high coverage rates. Hence, we need to
calibrate the coverage information to reflect the
importance of certain informative files.

Objective The objective of constructing the
oracle retrieval is to provide the most relevant or
informative content within a constrained context
budget. For the rest of this section, we will
describe how we prioritize salient information
with coverage information.

3.1 CALIBRATION OF COVERAGE

Within a file, we represent the test cases as Y = {y1, y2, . . . , yT }. Typically, these cases share
some setup code and are organized under the same testing topic. The collection of all source files
is denoted as X = {x1, x2, . . . , xF }. When using the verify API on T , we get a coverage
tensor C ∈ {1, 0}T×F×L, where Ct,f,l = 1 indicates test case yt covers the l-th line of file xf , and
Ct,f,l = 0 otherwise. T = |Y | represents the total number of test cases in this file, F = |X| is the
total number of source files, and L is the max number of lines in src. We run pytest-cov two times
for each test case yt:

• a regular run Cbase
t . This will return the regular coverage report of yt over X .

4

Published as a conference paper at ICLR 2025

• empty run Cempty
t . In this setting, we replace the code with an empty test statement: def

test(): assert True and it will be deployed to the same location of yt. For instance, if
test iter was implemented in tests/util, we will deploy the empty test to that directory
as well.

Repository Baseline We propose a repository baseline is established by comparing Cbase
t and

Cempty
t :

Qrepo
t =

{
xf | argf [1(Cbase

t,f = Cempty
t,f)]

}
where 1(·) is the indicator function. The set Qrepo

t comprises the files xf for which, for any test case
index t, the coverage remains unchanged after executing the actual test case. This implies that the
files in Qrepo

t offer minimal information gain in terms of entropy for generating test case yt.

Peer Baseline To uniquely identify each test case, we set a Peer Baseline. The aim is to identify
the most distinctive information across test cases. For a particular test case yt, the Peer Baseline is
defined as follows:

Qpeer
t =

{
xf | argf [1(

T∑
t′=1

Cbase
t′,f,l = 1)]

}
where 1(·) is the indicator function.

∑T
t′=1 C

base
t′,f,l = 1 ensures that the line l is covered by exactly

one test case (test case yt), meaning it’s only covered by the test case yt. Next, we define Q′, which
is the set not meeting the criteria for either Qpeer or Qrepo: Q′

t = F \
(
Qrepo

t ∪Qpeer
t

)
. We regard the

value of files in Q′ as lower than those in Qpeer but higher than the repository baseline Qrepo.

Calibration of Coverage Source files are classified into three categories: Qrepo, Qpeer, and Q′.
The approach for assembling context for test case t gives precedence to files in the order of Qpeer

t ,
followed by Q′

t, and ultimately Qrepo
t . Within each category, we randomly select files if the context

budget does not permit using them all.

3.2 TASK SETUP

Before diving into these three tasks, we define some terminologies which share across these tasks.
For one task instance, we provide three categories of contents:

• Task instruction. We show examples in Fig 1 and 2.
• In-file code, including setup code s and function declaration f . Setup s prepares necessary

components, such as imports, fixtures, and any initial configurations, required for the test. Function
declaration f specifies the function’s name, arguments, and any return types, if applicable. In Task
I, we also provide code prefix, which will be discussed later.

• Source files per task requirement and from oracle retrieval. Files required by task are guaranteed
to be provided unless in the Problem Only setting. It also has higher priority compared to oracle
retrieval when we try to fill the context budget.

Setting We introduced two settings across three tasks, Problem Only (PO) and Contextual. In
Problem Only setting, we only provide the Task instruction and in-file code. In contextual setting, we
provide code snippets capped by context budget.

4 TASK I: MASK PREDICTION IN ASSERTION STATEMENTS

This task challenges the model to predict the missing element in an assertion statement within a test
case, addressing the code completion feature offered by coding companions.

Problem Formulation For each problem x, it has following elements in the prompt of the task
[s, f, p, q, ref] in the Problem-Only setting:

• Prefix (p) refers to the existing code within the test function, serving as the context for solving
assertion statements.

5

Published as a conference paper at ICLR 2025

• Assertion statement with a MASK (q) represents the task for models to complete. Based on the
surrounding code and any referenced materials, the model is expected to fill the gap and complete
the assertion statements. q contains exactly one MASK.

• Reference answer (ref) is the original answer from the code. Any valid answer passing RER, a
metric defined next, is acceptable as correct.

The model relies solely on the problem details, without extensive information about the method under
test.

Cloze construction AST tools identify all possible assertion statements, including unary (e.g.,
variables, functions) and binary operations (comparisons). For binary, either operand can be masked.
The suffix of q is removed to avoid hints, ensuring q is the last code line.

EM ER RER

CODEGEMMA-7B 30.3% 46.5% 43.7%
MAGICODER 6.7B 23.3% 40.6% 34.3%
CODELLAMA-13B 31.3% 52.6% 42.3%
STARCODER2-15B 32.7% 52.4% 41.1%
MISTRAL-7B 21.5% 39.4% 37.2%
QWEN 2.5CI-14B 52.6% 64.7% 59.8%
CODESTRAL-22B 45.5% 68.2% 63.3%
YI-CODER-9B 41.4% 61.7% 56.5%
LLAMA 3.1-8B 35.7% 57.4% 53.5%
LLAMA 3.1-70B 49.9% 74.2% 69.0%

GPT-4O-MINI 43.1% 70.8% 66.3%
GEMINI 1.5-F 49.7% 71.9% 67.0%
CLAUDE 3.5-S 56.3% 78.2% 72.4%
GPT-4O 55.2% 72.0% 68.0%

Table 3: Model performance on Task I
in the Problem-Only setting. Refined ex-
ecution rate (RER) is the recommended
metric which reflects the models’ abil-
ity in completing compilable and non-
cheating assertion statements. Open
source models are organized in ascend-
ing order based on their maximum sup-
ported length, followed by their model
size.

Example selection Preliminary study find that within
each repository, there exists certain high frequent assertion
statements, which provides unwanted hint to models. For
instance, “200” (string literal) and 200 (number) are the
most frequent candidates for the MASK. So we filter out
problems with common ref . The chosen probability of a
problem xi is defined as:

p(xi) =

{
0, if count(refi)

N > 0.01
len(refi)∑N

j=0 len(refj)
, otherwise

where N is the total number of problems in one repository.
We downsample to 50 problems per repository to maintain
a diverse set of problems.

Prompt Template We explore two elicitation methods:
(1) answer only (pred): the model yields the answer di-
rectly in a code block; (2) assertion statement with answer
filled q.replace(MASK, pred): the model returns the
line with blank filled. Our studies with CODELLAMA-13B,
MISTRAL-7B, CODEGEMMA-7B, and CODESTRAL-
22B show the filled assertion method improves execution
rate by at least 6.0%, thus we use it for Task I experiments.

Metrics & Verification Let the model prediction for MASK be pred. We implement three evaluation
metrics for this task:: (1) Exact match is defined as EM = 1(ref = pred); (2) Execution Rate (ER)
indicates the execution result of the assertion statements filled with pred; (3) Refined execution rate
(RER) is based on ER but we applied post-processing steps to remove trivial assertions and prohibit
the copy of an existing assertion from the context.

Post-processing discards the following invalid scenarios: (1) pred is a constant in a unary operation;
(2) pred is a constant in a binary operation where the other operand is also a constant; (3) in an
equation comparison, pred matches the operand on the opposite side. We follow the definition of
constant in AST. Since the problems are selected given its surface length, as a proxy to its difficulty,
the false negative ratio is considered low.

4.1 RESULTS IN THE PROBLEM ONLY SETTING

In this setting, we only provide the problem itself, excluding external context like the code of MUT.
We present the result in Table 3. The best open-source model in this setting is QWEN 2.5CI-14B,
achieving comparable performance compared to proprietary models. CLAUDE 3.5-S performs the
best in all metrics.

Gap between EM and (R)ER We analyzed instances where predictions were successful in terms
of RER but failed under the exact match (EM) criteria. The model’s predictions averaged 25.8
characters compared to 30.7 characters in ground truth answers, suggesting a tendency toward brevity

6

Published as a conference paper at ICLR 2025

Max Len Model PO 4k 8k 16k 32k 64k Best ∆max(↑) ∆min(↑)

8k CODEGEMMA-7B 43.7% 40.6% 41.5% - - - 43.7% -2.2% -3.1%
16k MAGICODER 6.7B 34.3% 33.0% 34.2% 31.0% - - 34.3% -0.1% -3.3%
16k CODELLAMA-13B 42.3% 41.7% 42.3% 12.2% - - 42.3% 0.0% -30.1%
16k STARCODER2-15B 41.1% 37.3% 25.0% 25.4% - - 41.1% -3.8% -16.1%
32k MISTRAL-7B 37.2% 34.1% 36.2% 12.2% 12.6% - 37.2% -1.0% -25.0%
32k QWEN 2.5CI-14B 59.8% 59.2% 60.4% 31.0% 30.7% - 60.4% 0.6% -29.1%
32k CODESTRAL-22B 63.3% 65.0% 64.2% 22.3% 22.1% - 65.0% 1.7% -41.2%

131k+ YI-CODER-9B 56.5% 55.6% 53.4% 43.9% 40.2% 40.6% 56.5% -0.9% -16.3%
131k LLAMA 3.1-8B 53.5% 52.1% 51.3% 49.1% 49.0% 47.3% 53.5% -1.4% -6.2%
131k LLAMA 3.1-70B 69.0% 71.3% 71.1% 72.7% 71.7% 70.5% 72.7% 3.7% 1.5%
131k GPT-4O-MINI 66.3% 66.0% 67.3% 65.3% 66.7% 67.7% 67.7% 1.4% -1.0%

131k+ GEMINI 1.5-F 67.0% 67.6% 66.6% 66.0% 66.0% 66.2% 67.6% 0.6% -1.0%
131k CLAUDE 3.5-S 72.4% 71.5% 73.4% 73.4% 74.4% 75.4% 75.4% 3.0% -0.9%
131k GPT-4O 68.0% 71.0% 71.5% 70.9% 69.8% 67.2% 71.5% 3.5% -0.8%

Table 4: Refined execution rate (RER) of models in contextual settings for Task I. The table lists
models according to their maximum supported sequence length. The Problem-Only (PO) column
indicates the baseline performance of models with average short input lengths (0.9k tokens). ‘Best’
highlights the highest performance achieved across both settings (underscored for each model). Ctx
Util measures the maximum and minimum performance change when shifting from baseline to
contextual inputs. We highlight ∆ in green if ∆ > 0% and in red if ∆ < −20%.

Model
Task II Task III

Performance at Max Seq Length Best Ctx Util Perf
PO 8k 16k 32k 64k ∆max ↑ ∆min ↑ 64k 128k

CODEGEMMA-7B 14.9% 10.5% - - - 14.9% -4.4% -4.4% - -
MAGICODER 6.7B 13.7% 20.2% 0.0% - - 20.2% 6.5% -13.7% - -
CODELLAMA-13B 8.4% 8.4% 0.0% - - 8.4% 0.0% -8.4% - -

STARCODER2-15B 13.8% 19.1% 8.5% - - 19.1% 5.3% -5.3% - -
MISTRAL-7B 8.4% 11.6% 0.0% 0.0% - 11.6% 3.2% -8.4% - -

QWEN 2.5CI-14B 23.2% 25.3% 0.0% 0.0% - 25.3% 2.1% -23.2% - -
CODESTRAL-22B 20.0% 28.4% 0.0% 0.0% - 28.4% 8.4% -20.0% - -

YI-CODER-9B 14.7% 20.0% 14.7% 13.7% 13.7% 20.0% 5.3% -1.0% 4.7% 3.7%
LLAMA 3.1-8B 5.3% 5.3% 4.2% 9.5% 5.3% 9.5% 4.2% -1.1% 1.9% 0.9%

LLAMA 3.1-70B 12.9% 14.9% 13.8% 24.7% 18.3% 24.7% 11.8% 0.9% 6.5% 3.7%
GPT-4O-MINI 17.0% 22.3% 25.5% 26.6% 25.5% 26.6% 9.6% 5.3% 19.6% 21.5%
GEMINI 1.5-F 17.9% 17.9% 23.2% 21.1% 16.8% 23.2% 5.3% -1.1% 28.0% 27.1%
CLAUDE 3.5-S 26.9% 46.2% 39.8% 48.4% 46.2% 48.4% 21.5% 12.9% 29.0% 30.8%

GPT-4O 28.7% 37.2% 42.6% 40.9% 48.4% 48.4% 19.7% 8.5% 32.7% 31.8%

Table 5: Success rate on Task II and Task III (rightmost two columns). In Task II, we constructed the
Problem-Only setting and contextual setting from 8k to 64k. In Task III, we only have the contextual
setting since it heavily depends on retrieval files. For models that had a 0.0% success rate, with
a manual inspection we discovered the outputs contained gibberish, such as backticks, line break
symbols, and random words. We did not alter any configurations in vLLM for these models while
testing with various lengths.

or shortcuts. Common scenarios where execution succeeds but predictions do not exactly match the
original code include: (1) Unary operations in q with non-constant pred (e.g., assert pred); (2) Use
of syntactic sugar, such as considering x in dict equivalent to x in dict.keys(); (3) String
manipulations, including strip functions and interchangeable quotation marks; (4) Assertions for
non-existence, like assert x not in y, where x is flexible Currently, the execution method
lacks understanding of contextual semantics or user intent. A future goal is to develop a tool that can
evaluate responses based on execution success and alignment with user intent.
4.2 RESULTS IN CONTEXTUAL SETTINGS

We present the result in Table 4. The best overall performance is achieved by CLAUDE 3.5-S in
both settings, with a 3.0% gain from 72.6% to 75.6%. In the contextual setting, we found there is
a sharp decrease after 8k max length in most open source models including CODELLAMA-13B,
STARCODER2-15B, MISTRAL-7B, QWEN 2.5CI-14B, and CODESTRAL-22B. We examined the
model response in these cases and we find that the chance of getting gibberish output increases along
with the increase of input length. Note that the prompt template remains the same for context free
and contextual setting where the only change applied is the additional code snippets.

7

Published as a conference paper at ICLR 2025

Context Utilization ∆ We introduce a novel metric to measure models’ capability in ef-
fectively utilizing the context. On the performance gain side, we define it as ∆max =
max(r4k, r8k, . . . , rmaxLen)− r0 where r0 is the context free baseline performance. Since we provide
oracle context to the model, shorter context carrying strong hint could be sufficient and even better
than longer sequence. ∆max measures the best possible gain a model could get. Vice versa, we define
∆min = min(r4k, r8k, . . . , rmaxLen) − r0. This set of metrics focuses on the relative performance
change given longer context. The ideal value, if context provides good source of information, for this
metric follows this equation ∆max > ∆min > 0.

5 TASK II: TARGETED TEST IMPLEMENTATION

In Task II and Task III, we will shift from code completion to open-ended code generation, which is
more challenging and requires longer context. In Task II, given a python class or function from the
source code, the model needs to complete the test code by using the target.

Problem Formulation For each problem, we provide setup s, function declaration f and a spec-
ification to use the target. We show the specification template and an example in Figure 2. The
“target name” here is the name of the class or function. The “type” is either “class” or “function”.
“file name” is where the target object was implemented.

Data Construction We use AST tools to parse the code and identify all Attribute type nodes
through a recursive walk to find suitable targets. These identified classes and functions become
potential targets. They are then matched with those covered by this case in Cbase

t . A random target
is selected as the requirement. In settings ranging from 8k to 64k, we ensure the inclusion of the
necessary file as specified. The maximum length constraint is 8k and the output length is 4k, thus the
combined length of instructions and the required file must not exceed 4k. Any cases exceeding this
limit are discarded. By setting a single target, we maximize the inclusion of examples.

Answer Format In this task, the generated code is the completion of the function declaration
f . We designed two prompt templates to capture the output, one with the completion part only
(promptpart), and one with the full code block (s, f) along with the completion promptfull.

Metrics We define two metrics for Task II and Task III. Execution Rate measures if the generated
code can be captured, and executed successfully. Any test failures, exceptions and timeout will count
as execution failure. Success Rate Besides the execution rate, we also check whether the specification
was satisfied. For Task II, we check whether the required target was in the generated code. For Task
III, we check for code coverage.

Result We report the Success Rate using promptfull in Table 5 and promptpart in Table 6. In
the context free setting of this task, it provides no context to the model, not even the “file name”
required to complete the task. For most of the models, there is a significant performance boost
from context-free to 8k. With only 8k context length, CLAUDE 3.5-S achieves surprisingly high
performance (46.2%), 9.0% ahead of the second best model GPT-4O. Some models, however, remain
the same or even get slightly worse performance, including CODEGEMMA-7B, CODELLAMA-13B,
LLAMA 3.1-8B, and GEMINI 1.5-F. The best performance is achieved by CLAUDE 3.5-S and
GPT-4O at 32k and 64k respectively. Starting at 16k, we have seen a sudden performance drop on
CODELLAMA-13B, MISTRAL-7B, QWEN 2.5CI-14B, and CODESTRAL-22B.

6 TASK III: COVERAGE-ORIENTED TEST IMPLEMENTATION

In this task, given some code blocks from source code, the model needs to complete the test code and
cover those target blocks. This task shares a lot of similarity with Task II, so we will focus on the
different part.

Problem Formulation For each problem, we provide [s, f] and a specification to cover up to 10
code blocks from the source code. We provide the full code snippet in the “Retrieved Code Snippets

8

Published as a conference paper at ICLR 2025

for Reference” section of the prompt along with other oracle retrieval files. In the specification
prompt, we provide the file name, the code blocks to cover, and the starting and ending line number
for these code blocks in the original file.

Data Construction We took a deterministic approach to select code blocks rather than randomly
choosing code spans. We use the Qpeer

t to guide the selection of code blocks to cover. For a case yt,
we check if there is some code blocks only covered by it, not any other peer cases. Typically it’s the
case where a conditional branch or a function is hit by only one case. We also filter out code blocks
with fewer than 5 lines as we do not want to include many code fragments. The max number of files
to cover is set at 10. With this approach, we can guide the model with a feasible and reasonable
coverage requirement which also aligns with the function name and arguments.

The answer format and metrics of Task III remains the same with Task II. The different task specific
prompt is shown in Figure 2. In this setting, since we include up to 10 files, we set the total sequence
length to 64k and 128k to keep as many examples as possible.

Results We present the success rate of Task III in the rightmost 2 columns in Table 5. GPT-4O
achieves the best performance in 64k setting with 32.7%. None of the open-source models passed
10% in this task. CLAUDE 3.5-S and GPT-4O-MINI are the models performing better with longer
context provided.

Can LLMs satisfy the coverage requirement? To answer this question, we compare the execution
rate and the success rate in Table 3. The gap of whether the coverage requirements can be met is
around 5 to 10% for different models. During evaluation, we only consider it a success if all of
the code blocks’ coverage requirements are satisfied. As the result shows, there is generally a gap
between execution rate v.s. success rate, indicates the generated test cases are generally not satisfying
all the coverage requirements.

7 RELATED WORKS

Success Rate Execution Rate

Model 64k 128k 64k 128k

YI-CODER-9B 4.7% 3.7% 11.2% 8.4%
LLAMA 3.1-8B 1.9% 0.9% 2.8% 4.7%

LLAMA 3.1-70B 6.5% 3.7% 8.4% 10.3%

GPT-4O-MINI 19.6% 21.5% 25.2% 25.2%
GEMINI 1.5-F 28.0% 27.1% 38.3% 36.4%

CLAUDE 3.5-S 29.0% 30.8% 34.6% 35.5%
GPT-4O 32.7% 31.8% 42.1% 39.3%

Figure 3: Success rate and execution rate
of models on Task III.

Code & Test Case Generation Benchmarks The de-
velopment of benchmarks for evaluating code genera-
tion models has been active. Earlier benchmarks like
HumanEval Chen et al. (2021) and MBPP Austin et al.
(2021a) focused on basic or LeetCode-style programming
problems. BigCodeBench Zhuo et al. (2024) extends this
with complex function calls, while DevBench Li et al.
(2024) evaluates model performance in entire software
development lifecycle. We summarized several recent benchmarks related to test case generation in
Table 1. The source data and dev environment of Jimenez et al. (2024) has been widely adopted to
develop new benchmarks. Jain et al. (2024b) demonstrated a scalable framework to turn any GitHub
repo into an interactive environment for agents.

Test Case Generation LLMs are widely used for automating test case generation. Chen et al.
(2024) employs LLMs for efficient test creation. Liu et al. (2024a) utilize LLMs for bug detection,
while Tang et al. (2024); Yuan et al. (2024) enhance ChatGPT’s unit test generation capabilities.
Alshahwan et al. (2024) explore LLM use in industry. Neural models for test case generation were
proposed by Tufano et al. (2020); Nie et al. (2023). Ryan et al. (2024) investigated coverage-guided
test case generation with LLMs.

Code LLMs and Agents Recent studies on code-specific LLMs Roziere et al. (2023); Lozhkov
et al. (2024); Hui et al. (2024) showcase the potential of specialized models for code generation. The
StarCoder 2 Lozhkov et al. (2024) and open code models based on GEMMA Team et al. (2024) show
the evolution of LLMs tailored for programming tasks.

Long Context for Code Existing long context benchmarks either exclude coding tasks or have
restricted access to code LLMs. RULER Hsieh et al. (2024) and ∞Bench Zhang et al. (2024b) fail to
replicate real-world software development scenarios. Meanwhile, code benchmarks are insufficient

9

Published as a conference paper at ICLR 2025

for long context evaluation. RepoBench Liu et al. (2024b) sets the maximum token threshold of
12k for Python and 24k for Java. Most test cases in TestBench Zhang et al. (2024a) are within 32k
tokens and TestGenEval Jain et al. (2024a) evaluates context length up to 32k. SWE-Bench Jimenez
et al. (2024) focuses on context length less than 50k, which is far behind many recent models often
claiming to be able to consume 128k+ context length.

8 LIMITATION & CONCLUSION

Our study is confined to Python and specific pytest tools. We didn’t explore using code agents to
tackle problems in this benchmark. Preliminary findings indicate that code agents, such as those by
Wang et al. (2024c), are costly to run due to the need to explore entire repositories, primarily because
of the overhead from reading large files.

In this study, we introduce a benchmark designed for multiple real-world software testing scenarios.
We identified significant gaps in long-context handling, context utilization, and instruction-following
capabilities between open-source and closed-source models, pointing to substantial opportunities for
improvement. The coverage-driven oracle context could advance research on long-context evaluation
in (code) LLMs. Researchers can use the API for real-time feedback to enhance models’ coding
and reasoning skills. Additionally, the data pipeline can be adapted to create high-quality training
datasets.

AUTHOR CONTRIBUTIONS

All authors contributed to discussions throughout the project. JX led the project, developed most
of the code, executed the experiments, and wrote the majority of the manuscript. BP supported the
model inference tasks for open-source models. JQ provided insights into long-context models and
related literature. HH applied code agents to the benchmark and conducted various analyses. CX and
YZ supervised the project, overseeing its initiation, scope definition, infrastructure, and publication.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for their constructive feedback.

REFERENCES

01.AI. Meet yi-coder: A small but mighty llm for code, September 2024. URL
https://01-ai.github.io/blog.html?post=en/2024-09-05-A-Small-
but-Mighty-LLM-for-Code.md.

Nadia Alshahwan, Jubin Chheda, Anastasia Finogenova, Beliz Gokkaya, Mark Harman, Inna Harper,
Alexandru Marginean, Shubho Sengupta, and Eddy Wang. Automated unit test improvement
using large language models at meta. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering, pp. 185–196, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021a.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. Chatunitest: A
framework for llm-based test generation. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering, pp. 572–576, 2024.

10

https://01-ai.github.io/blog.html?post=en/2024-09-05-A-Small-but-Mighty-LLM-for-Code.md
https://01-ai.github.io/blog.html?post=en/2024-09-05-A-Small-but-Mighty-LLM-for-Code.md

Published as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Alex Gu, Baptiste Roziere, Hugh James Leather, Armando Solar-Lezama, Gabriel Synnaeve, and
Sida Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. In Forty-first
International Conference on Machine Learning, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Kush Jain, Gabriel Synnaeve, and Baptiste Rozière. Testgeneval: A real world unit test generation
and test completion benchmark, 2024a. URL https://arxiv.org/abs/2410.00752.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e: Turning any
github repository into a programming agent environment. In Forty-first International Conference
on Machine Learning, 2024b.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. ArXiv, abs/2211.11501, 2022.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian,
Binyuan Hui, Qicheng Zhang, Zhiyin Yu, He Du, Ping Yang, Dahua Lin, Chao Peng, and Kai
Chen. Devbench: A comprehensive benchmark for software development, 2024. URL https:
//arxiv.org/abs/2403.08604.

Kaibo Liu, Yiyang Liu, Zhenpeng Chen, Jie M Zhang, Yudong Han, Yun Ma, Ge Li, and Gang Huang.
Llm-powered test case generation for detecting tricky bugs. arXiv preprint arXiv:2404.10304,
2024a.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. In The Twelfth International Conference on Learning Representations,
2024b.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov,
Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul,
Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii,
Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan
Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov,
Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri
Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa

11

https://arxiv.org/abs/2410.00752
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2403.08604
https://arxiv.org/abs/2403.08604

Published as a conference paper at ICLR 2025

Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the stack v2:
The next generation, 2024. URL https://arxiv.org/abs/2402.19173.

Noble Saji Mathews and Meiyappan Nagappan. Test-driven development for code generation, 2024.
URL https://arxiv.org/abs/2402.13521.

Niels Mündler, Mark Niklas Müller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and
validating real-world bug-fixes with code agents, 2024. URL https://arxiv.org/abs/
2406.12952.

Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J Mooney, and Milos Gligoric. Learning deep
semantics for test completion. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pp. 2111–2123. IEEE, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Murali Krishna Ra-
manathan, and Baishakhi Ray. Code-aware prompting: A study of coverage-guided test generation
in regression setting using llm. Proceedings of the ACM on Software Engineering, 1(FSE):951–971,
2024.

Yutian Tang, Zhijie Liu, Zhichao Zhou, and Xiapu Luo. Chatgpt vs sbst: A comparative assessment
of unit test suite generation. IEEE Transactions on Software Engineering, 2024.

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen, Siqi Zuo, Andrea Hu,
Christopher A Choquette-Choo, Jingyue Shen, Joe Kelley, et al. Codegemma: Open code models
based on gemma. arXiv preprint arXiv:2406.11409, 2024.

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan. Unit test
case generation with transformers and focal context. arXiv preprint arXiv:2009.05617, 2020.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. Software
testing with large language models: Survey, landscape, and vision. IEEE Transactions on Software
Engineering, 2024a.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming
Zhang, An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case
generation, 2024b. URL https://arxiv.org/abs/2406.04531.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An Open Platform for AI Software
Developers as Generalist Agents, 2024c. URL https://arxiv.org/abs/2407.16741.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with OSS-instruct. In Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 52632–52657. PMLR,
21–27 Jul 2024. URL https://proceedings.mlr.press/v235/wei24h.html.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024.

12

https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.13521
https://arxiv.org/abs/2406.12952
https://arxiv.org/abs/2406.12952
https://arxiv.org/abs/2406.04531
https://arxiv.org/abs/2407.16741
https://proceedings.mlr.press/v235/wei24h.html

Published as a conference paper at ICLR 2025

Michihiro Yasunaga and Percy Liang. Break-it-fix-it: Unsupervised learning for program repair. In
Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 11941–11952. PMLR, 18–
24 Jul 2021. URL https://proceedings.mlr.press/v139/yasunaga21a.html.

Shin Yoo and Mark Harman. Regression testing minimization, selection and prioritization: a survey.
Software testing, verification and reliability, 22(2):67–120, 2012.

Zhiqiang Yuan, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, Xin Peng, and Yiling Lou.
Evaluating and improving chatgpt for unit test generation. Proceedings of the ACM on Software
Engineering, 1(FSE):1703–1726, 2024.

Quanjun Zhang, Ye Shang, Chunrong Fang, Siqi Gu, Jianyi Zhou, and Zhenyu Chen. Testbench:
Evaluating class-level test case generation capability of large language models, 2024a. URL
https://arxiv.org/abs/2409.17561.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen
Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. ∞Bench: Extending long context evaluation
beyond 100K tokens. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 15262–15277, Bangkok, Thailand, August 2024b. Association for Computational
Linguistics. URL https://aclanthology.org/2024.acl-long.814.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. CoRR, 2024.

13

https://proceedings.mlr.press/v139/yasunaga21a.html
https://arxiv.org/abs/2409.17561
https://aclanthology.org/2024.acl-long.814

Published as a conference paper at ICLR 2025

Performance at Max Seq Length Ctx Util
PO 8k 16k 32k 64k Best ∆max ↑ ∆min ↑

CODEGEMMA-7B 10.6% 11.7% - - - 11.7% 1.1% 1.1%
MAGICODER 6.7B 13.8% 19.1% 0.0% 0.0% 3.2% 19.1% 5.3% -13.8%
CODELLAMA-13B 9.6% 8.4% 0.0% - - 9.6% -1.2% -9.6%

STARCODER2-15B 12.6% 22.1% 9.5% - - 22.1% 9.5% -3.1%
MISTRAL-7B 9.6% 9.6% 0.0% 0.0% - 9.6% 0.0% -9.6%

QWEN 2.5CI-14B 27.4% 20.0% 0.0% 0.0% - 27.4% -7.4% -27.4%
CODESTRAL-22B 20.2% 27.4% 0.0% 0.0% - 27.4% 7.2% -20.2%

YI-CODER-9B 12.6% 23.2% 15.8% 6.3% 7.4% 23.2% 10.6% -6.3%
LLAMA 3.1-8B 7.4% 11.6% 6.4% 9.5% 9.6% 11.6% 4.2% -1.0%

LLAMA 3.1-70B 14.0% 12.9% 14.9% 13.7% 12.8% 14.9% 0.9% -1.2%
GPT-4O-MINI 14.7% 27.7% 22.1% 24.5% 20.2% 27.7% 13.0% 5.5%
GEMINI 1.5-F 20.0% 21.1% 26.3% 24.2% 23.2% 26.3% 6.3% 1.1%

CLAUDE 3.5-S 28.4% 45.3% 44.2% 46.3% 48.4% 48.4% 20.0% 15.8%
GPT-4O 25.8% 33.3% 39.8% 39.4% 44.7% 44.7% 18.9% 7.5%

Table 6: Success Rate of Task II with promptpart.

A REPOSITORIES SCRAPPED & USED

The benchmark incorporates the following repositories from GitHub: Pillow, elasticsearch-py, flask,
httpx, jinja, kombu, paramiko, pip, requests, sqlalchemy, starlette, and pylint. Conversely, the reposi-
tories not utilized include: salt, celery, aiohttp, pytest, sphinx, docker-py, channels, mongoengine,
boto3, scrapy, requests-html, black, dd-trace-py, ansible, pyzmq, python-prompt-toolkit, blessed,
fastText, google-api-python-client, h2, scikit-learn, httpbin, ipython, libcloud, matplotlib, numpy,
pandas, twisted, and voluptuous.

The cutoff date for this benchmark is set for August 30, 2024. Various reasons account for not using
all repositories, such as:

• some repositories do not support pytest and/or pytest-cov,
• challenges in automatically configuring the environment or extracting test cases,
• non-standard naming of tests that disrupts our heuristics,
• failure of rule-based folder localization approach (a.k.a. finding tests and src folder)

due to non-standard naming or project structure. For instance, elasticsearch-py
has source code folder and test code folder named as elasticsearch and
test elasticsearch. There are 11 repositories where we manually specified its
folder name,

• some repositories being very slow or causing issues during evaluation, and
• requirements for external setup, non-Python setup, or specific system configurations for

some repositories.

B RESULTS WITH promptpart

In Table 6 we present the results with promptpart on Task II. In Table 7 we demonstrate the results
on Task III. We found for most of the models, the promptfull which asks for the whole code block
works better than promptpart in practice.

C PROMPT TEMPLATES AND EXAMPLES

We list the prompts for Task I in Fig 4 and Fig 5, Task II in Fig 6 and Task III in Fig 7.

14

Published as a conference paper at ICLR 2025

Task I (Problem Only)

Task Overview
You need to complete the assertion in the provided unit test method by considering the context
from the corresponding Python file.
Context Information
Below is the file context, which includes necessary imports and setups for the unittest:
{{ context }}

Target Unit Test Method
This is the unit test method for which you need to complete the assertion statement:
{{ prefix }}

Your Task
Right after the above code block, you need to predict and fill in the blank (cloze key) in
the following assertion statement:
{{ cloze_question }}

Use the context and the provided prefix in the unit test method to infer the missing part of the
assertion.
Output Format
Your output should be a finished assertion statement. Do not generate the entire unit test
method; only produce the assertion statement.
Example
For instance, if the cloze question is assert == (25, 25, 75, 75), and your
prediction for the blank is im.getbbox(alpha only=False), your output should be:

assert im.getbbox(alpha_only=False) == (25, 25, 75, 75)

Please provide your output in the desired format without additional explanations or step-by-
step guidance.
Notes

• The completed assertion should not be trivial. For instance, assert True ==
True and assert str("a") == "a" are considered trivial assertions.

• There will be precisely one blank in the assertion statement to be filled in.

Figure 4: PO prompt of Task I.

Success Rate Execution Rate

Model 64k 128k 64k 128k

YI-CODER-9B 10.3% 10.3% 22.4% 17.8%
LLAMA 3.1-8B 0.9% 0.9% 4.7% 1.9%

LLAMA 3.1-70B 11.2% 4.7% 14.0% 7.5%

GPT-4O-MINI 21.5% 20.6% 29.9% 28.0%
GEMINI 1.5-F 26.2% 25.2% 36.4% 34.6%

CLAUDE 3.5-S 32.7% 29.9% 42.1% 37.4%
GPT-4O 28.0% 29.9% 35.5% 41.1%

Table 7: Success rate and execution rate of Task III with promptpart.

15

Published as a conference paper at ICLR 2025

Task I (Contextual)

Task Overview
You need to complete the assertion in the provided unit test method by considering the context
from the corresponding Python file.
Retrieved Code Snippets for Reference
Here are a few code snippets retrieved for your reference while making your prediction:

{{ retrieved_snippet }}

Context Information
Below is the file context, which includes necessary imports and setups for the unittest:
{{ context }}

Target Unit Test Method
This is the unit test method for which you need to complete the assertion statement:
{{ prefix }}

Your Task
Right after the above code block, you need to predict and fill in the blank (cloze key) in
the following assertion statement:
{{ cloze_question }}

Use the context and the provided prefix in the unit test method to infer the missing part of the
assertion.
Output Format
Your output should be a finished assertion statement. Do not generate the entire unit test
method; only produce the assertion statement.
Example
For instance, if the cloze question is assert == (25, 25, 75, 75), and your
prediction for the blank is im.getbbox(alpha only=False), your output should be:

assert im.getbbox(alpha_only=False) == (25, 25, 75, 75)

Please provide your output in the desired format without additional explanations or step-by-
step guidance.
Notes

1. The completed assertion should not be trivial. For instance, assert True ==
True and assert str("a") == "a" are considered trivial assertions.

2. There will be precisely one blank in the assertion statement to be filled in.

Figure 5: Contextual prompt of Task I.

16

Published as a conference paper at ICLR 2025

Task Overview
Create a unit test based on the provided method signature and given context. All necessary imports for the test have been included, so
focus solely on writing the unit test method. No additional libraries can be imported.
Retrieved Code Snippets for Reference
Several code snippets have been provided for your reference:

{{ retrieved_snippet }}

Hint: Depending on the target unit test method’s signature, you might want to utilize or test these code snippets.
Requirement: Each retrieved code snippet must be used at least once in the final unit test method.
Context Information
Below is the test code context, including necessary imports and setups for unittest:

{{ context }}

Signature of Target Unit Test Method
This is the unit test method signature you need to complete:

{{ prefix }}

Your Task
Continue writing the unit test method immediately following the provided method signature, ensuring to include at least one
substantial assertion. Your task is to replace “<YOUR CODE HERE>” with correctly indented code.
Output Format
Please return the WHOLE FILE content (including the context and the completed unit test method, but not the Retrieved Code
Snippets). You should not modify the context part of the code.
Example 1:

class A:
def __init__(self):

self.a = 1
self.b = 2

def test_comparing_a_b():
<YOUR CODE HERE>

def test_assert_b():
assert self.b == 2

The output should follow the correct indentation principles. For example:

class A:
def __init__(self):

self.a = 1
self.b = 2

def test_comparing_a_b():
assert self.a == 1 # Correct indentation with eight spaces before ‘assert‘
assert self.a != self.b # Correct indentation with eight spaces before ‘assert‘

def test_assert_b():
assert self.b == 2

Here is one WRONG example:

wrong example
class A:

def __init__(self):
self.a = 1
self.b = 2

def test_comparing_a_b():
assert self.a == 1 # Incorrect indentation

assert self.a != self.b # Incorrect indentation
def test_assert_b():

return # YOU SHOULD NEVER modify the context code

Example 2:

def test_value_c():
<YOUR CODE HERE>

The output should follow the correct indentation principles. For example:

def test_value_c():
assert c == 3

- Keep in mind that the “<YOUR CODE HERE>” section lacks any leading spaces. - Ensure you include the appropriate amount of
indentation before the ‘assert‘ statements. - If the method signature necessitates returning an object, implement that as well.

Figure 6: Contextual promptfull of Task II.

17

Published as a conference paper at ICLR 2025

Task Overview
Create a unit test based on the provided method signature and given context. All necessary imports for
the test have been included, so focus solely on writing the unit test method. No additional libraries can
be imported.
Retrieved Code Snippets for Reference
Several code snippets have been provided for your reference:

{{ retrieved_snippet }}

Output Format
When completing a code snippet, the output should include the entire code context provided, including
any imports, class definitions, or function signatures. Replace placeholders with meaningful code that
fits the context. Example:
Given:
import pytest
from aiohttp import web
from aiohttp.web_urldispatcher import UrlDispatcher

@pytest.fixture
def router() -> UrlDispatcher:

return UrlDispatcher()

def test_get(router: UrlDispatcher) -> None:
{{ SYMBOL_YOUR_CODE }}

The goal is to complete the method test get(router: UrlDispatcher) -> None: with
correct indentation and necessary logic while retaining the full context.
Example output:
import pytest
from aiohttp import web
from aiohttp.web_urldispatcher import UrlDispatcher

@pytest.fixture
def router() -> UrlDispatcher:

return UrlDispatcher()

def test_get(router: UrlDispatcher) -> None:
async def handler(request: web.Request) -> NoReturn:

assert False

router.add_routes([web.get("/", handler)])
route = list(router.routes())[1]
assert route.handler is handler
assert route.method == "GET"

Task with Context Provided
Below is the test code context, including necessary imports and setups for unittest. Following the
method signature ” method signature ”, you need to complete the unit test method. Ensure to
include at least one substantial assertion. Replace SYMBOL YOUR CODE with the correctly indented
test code.

{{ context }}

Hint: Depending on the target unit test method’s signature, you might want to utilize or test these code
snippets.
Requirement:

• Ensure you return the unit test method including the given method signature. Do not modify
the method signature.

• You are not allowed to import anything else as all necessary imports for the case have been
provided.

• Properly indent each line before including it.

• Avoid using ANY trivial assertions such as assert True == True or assert
str("a") == "a", as they will be deemed incorrect.

{{ coverage_requirement }}

Figure 7: Contextual promptfull for Task III.18

	Introduction
	Data & Sandbox Construction
	Data Collection
	Sandbox Construction
	Evaluated Models

	Construction of Oracle Retrieval
	Calibration of Coverage
	Task Setup

	Task I: Mask Prediction in Assertion Statements
	Results in the Problem Only setting
	Results in Contextual Settings

	Task II: Targeted Test Implementation
	Task III: Coverage-Oriented Test Implementation
	Related Works
	Limitation & Conclusion
	Repositories Scrapped & Used
	Results with promptpart
	Prompt templates and examples

