
A NUMA Aware Compiler Framework for Large Scale
Mathematical Reasoning Inference on PCIe Based

Multi Accelerator Systems

JooHyoung Cha
UST

South Korea
jh.cha@etri.re.kr

Yongin Kwon
ETRI

South Korea
yongin.kwon@etri.re.kr

Abstract

Mathematical reasoning workloads proof search, program verification, equation
solving, code as proof traces, and tool augmented LLM pipelines demand long
context decoding, speculative/beam search, and mixture of experts, which induce
frequent collectives under model/tensor parallelism. In commodity dual socket
NUMA servers with PCIe interconnects, non uniform link bandwidth/latency and
host mediated cross socket routes make these collectives the bottleneck, inflating
end to end latency that matters for interactive theorem proving and education
at scale. We present a NUMA aware compiler framework for large scale math
reasoning inference. The system profiles compute and memory paths, learns a la-
tency bandwidth cost model for hierarchical collectives, and jointly optimizes data,
model, and tensor partitioning along with device memory placement under static
feasibility constraints. Using MLIR/TOSA templates, it emits host and accelerator
code with explicit comm–compute overlap and schedule shaping via ring, tree, and
hybrid schemes, without relying on vendor specific fabrics. We target math AI
pipelines such as LLMs with solver or tool use and prover trace generation, and
We outline ablations to isolate how profiling, static analysis, schedule choice, and
overlap affect throughput and p95 latency.

1 Introduction

Math AI at scale. Recent LLM advances have unlocked automated and assisted mathematical
reasoning: multi step chain of thought, self verification and solver calls, program synthesis for proofs,
and interaction with proof assistants. These pipelines mix long context decoding, speculative/beam
search, and mixture of experts (MoE) gating, often exceeding the capacity/latency targets of a single
accelerator and requiring model/tensor parallelism at inference time.

Systems gap. While GPU centric collective communication libraries (CCL) perform well on uniform,
high bandwidth fabrics, many lab and production deployments for math AI run on PCIe based
multi-accelerator servers with dual socket non-uniform memory access (NUMA) topologies, where
inter socket traffic traverses CPU fabrics. The resulting non-uniform bandwidth/latency and host
mediated transfers make collective communication (including KV cache exchange, expert routing,
and partial result aggregation) a dominant bottleneck especially harmful for interactive theorem
proving and classroom settings that are latency sensitive.

Key observation. Effective math reasoning inference on NUMA systems requires hierarchical
schedules (complete fast intra socket collectives before a minimized inter socket step) and overlap
aware execution (interleave comm with compute). Because decoding strategies (e.g., speculative

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The 5th Workshop on
Mathematical Reasoning and AI at NeurIPS 2025.



CPU1CPU0

Memory Memory

QPI

DLA

Mem

DLA

DLA

DLA

DLA

DLA

PCI-E PCI-E

Figure 1: Typical topology of a PCIe based multi DLA NUMA system.

or beam search) change traffic patterns and tensor shapes over time, the schedule shape, chunking,
overlap policy, and NUMA aware placement must be co-designed.

This work. We introduce a compiler assisted framework that is NUMA aware by construction and
tailored to mathematical reasoning inference on PCIe/QPI-class servers. The framework:

• calibrates a portable latency bandwidth cost model for collectives and NUMA paths,
• co-optimizes partitioning and device memory placement under memory/concurrency limits,
• generates MLIR (TOSA) templates with explicit communication, compute, and synchronization,
• prunes infeasible configurations via static analysis (e.g., OOM, DMA limits), and
• runs feedback driven search to emit overlapped host/accelerator code with ring, tree, and hybrid

schedules.

2 Background and Motivation

2.1 Collectives on NUMA topologies

Figure 1 shows a common two socket NUMA system with six deep learning accelerators (DLA).
Intra socket transfers may leverage peer to peer direct memory access (DMA), while inter socket
traffic typically traverses QPI with CPU involvement [1]. This asymmetry necessitates hierarchical
schedules that (1) complete intra node collectives first and (2) perform a minimized inter node
step, often with smaller payloads. Typical operations include BROADCAST, REDUCE, ALLREDUCE,
GATHER, and SCATTER. Prior work has extensively studied optimization of collective operations in
MPI !and hierarchical fabrics [2, 3, 4], and more recent work explores topology aware or template
guided AllReduce in deep learning systems [5, 6, 7].

2.2 Parallelism and overlap

Data parallelism replicates the model and communicates gradients/activations; model/tensor paral-
lelism partitions layers/weights and typically induces more frequent exchanges. Effective systems
overlap collective stages with computation to hide latency. Practical distributed training frameworks
such as Horovod [8], BytePS [9], and large scale model parallel systems like Megatron LM [10] all
demonstrate the importance of minimizing communication overheads and overlapping communication
with computation.

3 System Model and Problem Formulation

Let devices (DLAs/CPUs) be nodes A and directed links be E . Each link e ∈ E has bandwidth BWe

and latency αe. Transferring a message of size sz over e costs

Te(sz) = αe +
sz

BWe
. (1)

This latency bandwidth formulation is standard in the analysis of collective algorithms [4, 2, 3]. For a
path P (e.g., a host mediated inter socket route), TP (sz) =

∑
e∈P Te(sz). For a collective schedule

S (e.g., RING, TREE, hierarchical RING→TREE), the total is

TS(m) =
∑
k

max
p∈Pk

Tp

(
szk

)
, (2)

where stage k transmits chunk szk over a set of concurrent paths Pk.

2



Performance 
Profiler

NUMA
Arch.

Template
Generator

Static
Analyzer

Optimizer

TOSA 
Dialect

Template
Code

TOSA 
Dialect

Back-end
Compiler

Test

Optimal Code

Figure 2: Proposed compiler framework: profiling, MLIR/TOSA based template generation, static
feasibility analysis, and feedback driven optimization.

Objective. Given a model graph, partitioning choice π (data/model/tensor), placement ρ (de-
vice/memory/NUMA node), and a schedule S for each collective, minimize wall-clock latency
Tend-to-end(π, ρ,S) subject to memory, DMA, and stream concurrency constraints.

4 Framework Overview

Figure 2 outlines the compiler based framework. It consists of a NUMA aware profiler, a template
generator, a static analyzer, and an optimizer.

NUMA aware Performance Profiler. We calibrate {αe,BWe}e∈E using microbenchmarks cov-
ering DMA sizes/patterns (H2D, D2H, D2D), and measure compute kernels (GEMM, nonlinears,
reduce). Inter socket routes are characterized via QPI. The profiler yields per-link fits for (1), which
feed both analysis and search.

Template Generator (MLIR/TOSA). Using MLIR [11] and the TOSA dialect [12], we lower mod-
els to an IR that explicitly marks (i) collective ops and (ii) buffer locations (host vs. DLA memory). The
generator emits host/DLA code stubs with repeatable inference loops, communication/computation
streams, and barriers. Partitioning knobs include: (a) weights resident on host vs. DLA, (b) tensor
shard sizes and NUMA node affinity for data parallelism, (c) tensor dimensions and nodes for model
parallelism, (d) redundancy level for replicated weights. Similar ideas of exposing collectives as first
class IR constructs have appeared in DSL based approaches such as MSCCLang [13], and template
guided synthesis techniques like TACCL [7] also motivate our template driven design.

Static Analyzer. Given a parameter tuple (π, ρ,S), the analyzer checks: memory capacity per
NUMA node/DLA; DMA engine limits; alignment and maximum transfer sizes; stream counts; and
synchronization feasibility. It returns tightened domains to the optimizer, eliminating infeasible or
clearly dominated regions.

5 Optimization Details

We cast schedule/placement selection as constrained blackbox optimization with fast model based
estimates and measured feedback, following prior work that has explored automated synthesis and
search of collective algorithms [6, 7, 5].

5.1 Parameterization

• Collective schedule per phase: RING, TREE, or hierarchical (RINGintra node, TREEinter node).

• Chunking: number/size of pipeline chunks per tensor.

• Overlap policy: degree of comm/compute overlap (streams, prefetch distance).

• Placement: NUMA node for inputs/weights/activations; replica vs. shard decisions.

• Partitioning: data vs. model/tensor parallel split ratios.

3



Algorithm 1 Feedback driven schedule/placement search
1: Initialize policy πθ with cost model priors
2: for t = 1, . . . , T do
3: Sample (π, ρ,S) ∼ πθ(· | features)
4: if STATICANALYZE rejects (π, ρ,S) then continue
5: end if
6: Generate code via MLIR templates; compile (host/DLA)
7: Run inference micro batches; measure latency Lt, tokens/s Rt

8: Update πθ ← IMPROVE(πθ;−Lt or Rt)
9: end for

10: return best configuration

5.2 Searcher

We use a lightweight reinforcement learning loop (e.g., contextual bandit) with state features derived
from (i) per-link α/BW, (ii) current partition sizes, (iii) model layer types, and (iv) analyzer derived
headroom (memory, streams). The action is the parameter tuple; the reward is negative latency (or
tokens/s). A fitted model (e.g., linear/UCB or shallow network) warm starts from the analytic cost
model to reduce trials. This feedback driven approach is inspired by recent collective synthesis
systems that combine analytic models with empirical search to converge to efficient schedules [6, 7].

6 Evaluation Plan

We outline an evaluation methodology; concrete numbers depend on hardware availability.

• Platforms: Dual socket NUMA server with six DLAs over PCIe (as in Figure 1); DRAM backed
accelerators (no HBM) to stress PCIe/QPI paths.

• Workloads: LLM inference (decoder only, FP16/bfloat16), plus operator level microbench-
marks (GEMM + ALLREDUCE/BROADCAST). To contextualize our workloads, we follow prior
distributed DL benchmarks that evaluate collectives in the context of large scale training and
inference, such as Horovod [8], BytePS [9], and Megatron LM [10].

• Baselines: NCCL [14], oneCCL [15], RCCL [16] where applicable; vendor SDK default sched-
ules; naive host staged collectives. These are compared against practical distributed training
frameworks (e.g., Horovod and BytePS) that have become common baselines in recent evalua-
tions [8, 9].

• Metrics: End to end latency per token and tokens/s; p95 latency; PCIe/QPI utilization; CPU
involvement overhead; memory footprint.

• Ablations: (A1) cost model warm start vs. random; (A2) hierarchical vs. flat schedules; (A3) over-
lap on/off; (A4) placement only vs. placement+partitioning; (A5) static analyzer enabled/disabled.

• Reporting: For each workload, report best configuration and budget (number of trials), with
Pareto curves (latency vs. memory).

7 Conclusion and Future Work

We introduced a NUMA aware, compiler based framework that co-optimizes partitioning, placement,
and collective schedules for inference on PCIe-/QPI-class multi accelerator systems. By combining
calibrated cost models, MLIR/TOSA code generation, static feasibility checks, and feedback driven
search, our approach improves efficiency without relying on vendor specific interconnects. Although
demonstrated on decoding centric workloads, the methodology also applies to latency sensitive
domains such as mathematical reasoning with long context decoding and KV cache traffic.

Future work includes adding runtime adaptivity under dynamic contention, extending support to
more accelerators and interconnects, and co-designing with math AI decoding strategies. We also
plan to incorporate energy/cost objectives and lightweight verification of collectives, making large
scale reasoning pipelines more practical on commodity NUMA servers.

4



Acknowledgement

This work was supported by the Institute of Information & Communications Technology Planning &
Evaluation (IITP)grant funded by the Korea government (MSIT) (No.RS-2024-00459797, No.RS-
2023-00277060, No.RS-2025-02217404, No.RS-2025-02214497, No.RS-2025-02216517)

References
[1] Intel. https://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-

general.html.

[2] Rolf Rabenseifner. Optimization of collective reduction operations. In Computational Science – ICCS
2004, volume 3036 of Lecture Notes in Computer Science, pages 1–9. Springer, 2004.

[3] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective communication
operations in mpich. The International Journal of High Performance Computing Applications, 19(1):49–
66, 2005.

[4] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algorithms for clusters of workstations.
Journal of Parallel and Distributed Computing, 69(2):117–124, 2009.

[5] Minsik Cho, Ulrich Finkler, Mauricio Serrano, David Kung, and Hillery Hunter. Blueconnect: Decomposing
all-reduce for deep learning on heterogeneous network hierarchy. In Proceedings of the 2nd SysML
Conference (now MLSys), 2019.

[6] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, and
Olli Saarikivi. Synthesizing optimal collective algorithms. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP ’21), 2021.

[7] Aashaka Shah, Abhinav Jangda, Binyang Li, Caio Rocha, Changho Hwang, Jithin Jose, Saeed Maleki,
Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and Rachee Singh. Taccl: Guiding
collective algorithm synthesis using traffic-optimized templates. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), 2023.

[8] Alexander Sergeev and Mike Del Balso. Horovod: Fast and easy distributed deep learning in tensorflow.
arXiv preprint arXiv:1802.05799, 2018.

[9] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed dnn training in heterogeneous gpu/cpu clusters. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 463–479, 2020.

[10] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[11] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle,
Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: Scaling compiler infrastructure for
domain specific computation. In 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pages 2–14. IEEE, 2021.

[12] LLVM. https://mlir.llvm.org/docs/dialects/tosa/.

[13] Meghan Cowan, Saeed Maleki, Madanlal Musuvathi, Olli Saarikivi, and Yifan Xiong. Mscclang: Microsoft
collective communication language. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS ’23), 2023.

[14] NVIDIA. https://github.com/nvidia/nccl.

[15] Intel. https://github.com/oneapi-src/oneccl.

[16] AMD. https://github.com/rocm/rccl.

5


	Introduction
	Background and Motivation
	Collectives on NUMA topologies
	Parallelism and overlap

	System Model and Problem Formulation
	Framework Overview
	Optimization Details
	Parameterization
	Searcher

	Evaluation Plan
	Conclusion and Future Work

