
Published in Transactions on Machine Learning Research (07/2024)

XAudit : A Learning-Theoretic Look at Auditing with Ex-
planations

Chhavi Yadav cyadav@ucsd.edu UC San Diego

Michal Moshkovitz michal.moshkovitz@il.bosch.com Bosch Center for AI

Kamalika Chaudhuri kamalika@cs.ucsd.edu UC San Diego, Meta AI

Reviewed on OpenReview: https: // openreview. net/ forum? id= gPtjyzXskg

Abstract

Responsible use of machine learning requires models to be audited for undesirable properties.
While a body of work has proposed using explanations for auditing, how to do so and why has
remained relatively ill-understood. This work formalizes the role of explanations in auditing
using inspirations from active learning and investigates if and how model explanations can
help audits. As an instantiation of our framework, we look at ‘feature sensitivity’ and
propose explanation-based algorithms for auditing linear classifiers and decision trees for
this property. Our results illustrate that Counterfactual explanations are extremely helpful
for auditing feature sensitivity, even in the worst-case. While Anchor explanations and
decision paths may not be as beneficial in the worst-case, in the average-case they do aid
significantly as demonstrated by our experiments.

1 Introduction

The recent success of machine learning (ML) has opened up exciting possibilities for potential societal
applications Bojarski et al. (2016); Aini et al. (2020); Castiglioni et al. (2021). However, this kind of wide-
spread usage requires us to be able to audit these models extensively and verify that they possess certain
desirable properties related to safety, robustness and fairness.

So far, due to complexities in the ML pipeline and the black box nature of most models, auditing has been
primarily performed in a somewhat ad-hoc manner, usually by creating a separate audit testing set Soares
et al. (2023). This, however, leaves open the question of what an audit really signifies. Additionally, a recent
body of work has also posited that local explanations might be helpful for auditing Bhatt et al. (2020); Oala
et al. (2020); Adebayo and Gorelick (2017); Watson and Floridi (2021); Zhang et al. (2022); Poland (2022);
Hamelers (2021); Carvalho et al. (2019); however, in the absence of a formal framework, how or why precisely
this is the case is not understood.

Recently, Yan and Zhang (2022) has made one of the first attempts at providing a formal framework for
auditing and proposed principled auditors for auditing demographic parity with rigorous guarantees. However
a limitation of their work is that they do not incorporate explanations into their framework. We take this
line of work forward by formalizing the role of explanations in auditing.

In the context of auditing, the model-to-be-audited is held by a data scientist and not revealed to the
auditor due to confidentiality reasons – this hidden aspect is what makes the task of auditing challenging
and consequently, the auditor’s objective is to acquire insights into the concealed model. To achieve this,
the auditor queries data points to the data scientist and in turn the data scientist responds with labels
and (local) explanations. This paper aims to measure whether the supplementary information derived from
explanations, beyond mere labels, can effectively diminish the query complexity of auditing.

1

https://openreview.net/forum?id=gPtjyzXskg

Published in Transactions on Machine Learning Research (07/2024)

In this paper, we consider auditing ‘feature sensitivity’, for two hypothesis classes with different local ex-
planation methods – linear classifiers with counterfactual and anchor explanations and decision trees with
decision path explanations. We provide auditing algorithms and theoretical guarantees for these cases. Our
results illustrate that explanation methods differ greatly in their audit efficacy – while worst-case anchors
do not provide any additional information than predictions themselves and with decision paths total queries
scale linearly with number of nodes in the tree in the worst-case, surprisingly counterfactuals greatly bring
down the query complexity of auditing to a single query when considering feature sensitivity.

We empirically evaluate our proposed auditors on standard datasets. Our experiments show that unlike
the worst case, ‘typical’ anchors significantly reduce the number of queries needed to audit linear classifiers
for feature sensitivity. Additionally, our proposed Anchor Augmentation technique helps reduce the query
complexity over a no-anchor approach. Similarly, our experiments on decision trees demonstrate that the
average number of queries to audit feature sensitivity is considerably lower than number of nodes in the tree.

Could there be a more general auditing strategy in our framework? We next show that this is possible. By
drawing on a connection between auditing and membership query active learning, we provide strategies for
two critical aspects of any auditor – picking the next query and stopping criteria. We show that our general
strategy leads to successful auditing when the property to be audited is testable – in the sense that it can
be inferred based on making queries to the model.

To summarize, our contributions are as follows.

1. We formalize the role of explanations in auditing and propose explanation-based algorithms to audit
feature sensitivity in linear classifiers and decision trees.

2. We empirically illustrate that unlike the worst case, in the average case, explanations help reduce
the query complexity of auditing feature sensitivity significantly.

3. We propose a general strategy for auditing (and with explanations) by drawing a connection between
auditing and active learning.

4. Finally, we discuss ways of dealing with an untruthful data scientist and the privacy concerns arising
from auditing.

2 Preliminaries

The four key components involved in an ML audit are : 1) Data Scientist (DS), 2) Auditor, 3) Model to
be audited and 4) Auditing Property (AP). DS is the one who holds a model which it cannot reveal for
confidentiality reasons, while an Auditor is an external entity who wants to verify certain properties of the
hidden model. We assume that the auditor has query access to this model through the DS. The hidden
model, h̄ : X × {−1, 1}, belongs to a hypothesis class H. We assume that the hypothesis class is known to
the auditor. Let the instance space X = Rd.

The auditor will audit the model held by the DS for a specific auditing property that we measure quantita-
tively by a score function s : H → [0, 1]. This function has a value of zero when the property is absent in the
model and a high value when the model exhibits the property to a large extent. Auditor knows the exact
form of the score function but does not know its value for h̄ (since h̄ is hidden).

We expect an auditing property to satisfy the notion of ‘testability’, defined below. Testability ensures that
the property of a hypothesis can be determined by making queries to instances x ∈ X . Absence of testability
makes it possible to have two hypotheses that agree on every input in the instance space, yet may have
very different values of the property (for instance, robustness to distribution shifts or adversarial attacks).
Auditing this kind of a property would require more information than simply queries.
Definition 1 (Testable Auditing Property). An auditing property defined by score function s : H → [0, 1] is
testable using an instance space X if the following holds: for any h1, h2 ∈ H if h1(x) = h2(x) ∀x ∈ X , then
s(h1) = s(h2).

When a query is asked to the DS, it returns the corresponding label and a local explanation. Both the DS
and auditor agree upon a specific explanation method before auditing begins. Let eh : X → E denote this
explanation method where E represents the codomain of eh and h ∈ H. We assume that the DS is truthful,

2

Published in Transactions on Machine Learning Research (07/2024)

meaning the labels and explanations returned for x are y = h̄(x) and eh̄(x) respectively. In §6 we discuss
what happens when this assumption does not hold.

At the end of the auditing process, the auditor responds with an answer Ya which takes values {Yes, No}.
This is a random variable since both the DS and auditor can be randomized algorithms.

Next we conceptualize the auditing process as an interaction between the DS and auditor. Our protocol is
as follows.

At each time step t = 1, 2, . . .

1. Auditor picks a new query xt ∈ X and supplies it to the DS.
2. DS returns a label yt ∈ Y and an explanation et ∈ E to the auditor.
3. Auditor decides whether or not to stop. If auditor decides to stop, it returns a decision Ya ∈
{Yes, No}, otherwise it continues to the next time step.

Furthermore, we formally define what makes a successful auditor at the end of the auditing process.
Definition 2 ((ϵ, δ)-auditor). An auditor is an (ϵ, δ)-auditor for ϵ, δ ∈ [0, 1], hypothesis class H and a score
function s(·) if ∀h ∈ H the following conditions hold : 1) if s(h) > ϵ, Pr(Ya = Yes) ≥ 1 − δ and 2) if
s(h) = 0, Pr(Ya = No) = 1.

The first condition pertaining to soundness implies that a successful auditor should return a Yes with high
probability when AP is followed by the model to a large extent. The second condition measures completeness,
and requires the auditor to say No when AP is not followed at all. Observe that when 0 < s(h) ≤ ϵ, we
cannot place a guarantee on the auditor’s decision with a finite query budget.

Query complexity T of an (ϵ, δ)-auditor is the total number of queries it asks the DS before stopping. Efficient
auditing requires that T be small.

3 An Example of Auditing Through ‘Feature Sensitivity’

A popular auditing property in the literature has been demographic parity. But this notion applies exclusively
to fairness and is distribution dependent. In contrast, we focus on ‘feature sensitivity’.

A feature is termed sensitive if changing its value in the input leads to a different prediction. Identifying such
features can lead to insights into a model’s working and uncover spurious correlations and harmful biases
that it may have learnt. For instance, while auditing a model that predicts the presence of lung cancer based
on a radiology image, a human auditor may suspect a feature in the input, such as the presence of pen
markings on X-rays, to be spuriously correlated to the output. Another example is when an auditor might
suspect that an input feature such as home zipcode, which might act as a proxy for race (not included in the
data), may be correlated with loan rejections. In both cases, the goal is to audit if a model is sensitive to
a specific input feature. Note that our presented techniques can easily extend to multiple sensitive features
by repeating the same procedure for different features. When features are correlated, we assume that there
is a third party, for eg. a regulator or a government entity, which guides what features are correlated and
what features should be audited for.

Let the feature that we wish to audit the sensitivity of be called a feature-of-interest (FoI). Let pair pij

denote a pair of inputs xi, xj ∈ X which are same in all but the feature-of-interest. The pair pij is called a
responsive pair if the predictions for xi and xj are distinct. These pairs need not be constructed from a data
distribution and can be artificially synthesized like in membership query active learning and therefore the
correlations according to a data distribution need not be respected. Unless mentioned, predictions are made
by the model h̄. Lastly, our feature-of-interest is a sensitive feature for the model if one or more responsive
pairs exist.

The score function for feature sensitivity is the probability that a randomly drawn pair from the set of all
pairs P is a responsive pair and is given as s(·) = Prpij∈P (pij is a responsive pair). When P is finite, the
score function can be interpreted as the fraction of responsive pairs. Usually when the score function is
probabilistic, knowledge of the underlying distribution is required in order to estimate its value. However, in

3

Published in Transactions on Machine Learning Research (07/2024)

the following sections, we give an auditing decision without computing the value of score function explicitly,
by using the structure of the class and explanation methods. We next prove that feature sensitivity is a
testable property.

Theorem 3.1. Feature Sensitivity, given by s(·) = Prpij∈P (pij is a responsive pair), is testable for a hy-
pothesis class H using the instance space X = Rd.

Proof. Fix two hypothesis h1, h2 ∈ H such that ∀x ∈ X it holds that h1(x) = h2(x). Fix a pair (xi, xj) ∈ X .
This pair is responsive according to h1 if and only if it is responsive according to h2, i.e., h1(xi) ̸= h1(xj)⇐⇒
h2(xi) ̸= h2(xj). Thus s(h1) = s(h2) and it is testable for H.

A Simple Baseline: Random Testing. An easy way to detect feature sensitivity for any hypothesis class
is to query a large number of pairs at random from the DS. The feature is sensitive if any responsive pair
exists. This algorithm would need to query O(1

ϵ log 1
δ) pairs to be an (ϵ, δ)-auditor.

Note that this baseline is independent of the hypothesis class. It does not need to find out what the hidden
h̄ is, even partially, in order to audit and it doesn’t use explanations either. However, a lot of pairs have
to be queried for a small ϵ. Next we discuss cases where using explanations and exploiting the structure of
hypothesis class leads to more efficient auditing.

3.1 Linear Classifiers

Our first hypothesis class is Linear Classifiers, defined as HLC = {hw,b}w∈Rd,b∈R where hw,b(x) =
sign(⟨w, x⟩ + b). Responsive pairs exist with respect to h ∈ HLC and for a feature of interest xi if and
only if weight wi is non-zero.

3.1.1 Counterfactual Explanations

Given an input x and a model h, a counterfactual explanation Laugel et al. (2017); Deutch and Frost (2019);
Karimi et al. (2020) returns the closest instance x′ in L2 distance such that h labels x′ differently from x.
More precisely, x′ = argminx′:h(x′)̸=h(x) ∥x− x′∥2.

We observe that for linear classifiers the difference x− x′ is parallel to w. This fact can be exploited by an
auditor, which returns a decision by simply checking if x− x′ is zero in the feature-of-interest. We use these
insights to design an auditor that uses a single random query to audit, denoted by AlgLCc 1.

Algorithm 1 AlgLCc : Auditing Linear Classifiers using Counterfactuals
1: Query any point x from the DS
2: Auditor receives label y and explanation x′ from the DS
3: ŵ ← x− x′

4: if ŵi = 0 (ith feature is the FoI) then
5: return No
6: else
7: return Yes
8: end if

Theorem 3.2. For any ϵ ∈ [0, 1], auditor AlgLCc is an (ϵ,0)-auditor for feature sensitivity and hypothesis
class HLC with T = 1 query.

Proof for the theorem can be found in the Appendix §A.2.

Counterfactual explanations enable the auditor to partially learn the hidden h̄ via a scaled (not exact)
version of the weights, which it then utilizes to make a decision. This partial-learning-based-auditing is way
efficient than completely learning a linear classifier without explanations, which requires O(d log 1

ϵ) queries
in the active learning setting §4. Also note that we allow the explanation to be found from the instance

4

Published in Transactions on Machine Learning Research (07/2024)

space rather than the training set. This is so because an example in the training data may be too far to
be considered a good counterfactual explanation and if a counterfactual with some property (for instance
an actionable counterfactual) is desired then the training data may not contain a relevant counterfactual
example Karimi et al. (2020); Deutch and Frost (2019).

3.1.2 Anchor Explanations

Given a model h, an instance x, a distribution D, and a precision parameter τ , an anchor explanation
Ribeiro et al. (2018) returns a hyperrectangle Ax such that (a) Ax contains x (b) at least τ fraction of the
points in Ax under D have the same label h(x) Ribeiro et al. (2018); Dasgupta et al. (2022). Specifically,
τ = Prx′∈DAx(h(x) = h(x′)). Here, the precision parameter τ measures the quality of the anchor explanation.
To describe the quality of an anchor explanation, we also use a coverage parameter, c – which is the probability
that a point sampled according to D lies in the Ax, c = Prx′∼D(x′ ∈ Ax). The distribution D is used by the
DS to create anchor explanations. Refer to the appendix for notes on how to deal with imperfect precision.

We consider homogeneous linear classifiers (b = 0) in this section; however our techniques can be easily
extended to non-homogeneous linear classifiers by considering d + 1 dimensions and concatenating 1 to x
and b to w. For simplicity, we assume our anchor explanations have perfect precision.

We propose an auditor with anchors inspired by the active learning algorithm of Alabdulmohsin et al. (2015)
which does not use explanations. Their goal is to learn a hypothesis by maintaining a search space over hy-
potheses and narrowing it down actively through label queries. They construct an ellipsoidal approximation
of the search space at each step, ε⋆ = (µ⋆, Σ⋆) where µ⋆ is the center and Σ⋆ is the covariance matrix of
the ellipsoid. Next they extract the top eigenvector of a matrix comprising of the covariance matrix of the
ellipsoid. This eigenvector serves as the next synthesized query to the oracle. Our auditor uses this skeleton
to audit by maintaining a similar search space and narrowing it down for h̄.

Our contribution to the aforementioned algorithm is a new method for incorporating anchors into it – a
procedure that we call Anchor Augmentation – for potentially higher auditing efficiency. The main idea is
that anchor explanations give a region of space around a point x where labels are the same as that of x; using
this fact more synthetic already labeled examples can be generated for free without actually querying the
DS and fed into the algorithm. Through these insights we design an auditor AlgLCa §2 for linear classifiers
using anchors. This auditor first learns the hidden h̄ and then checks the weight of the feature of interest to
return a decision.

Notation used in AlgLCa In AlgLCa, εt⋆ = (µt⋆, Σt⋆) denotes the largest ellipsoid that approximates the
search space (corresponds to search space in our case) at time t where µt⋆ is the center and Σt⋆ is the
covariance matrix of the ellipsoid at time t. N t is the orthonormal basis of the orthogonal complement of
µt⋆ and N t′ is its transpose. αt⋆ is the top eigenvector of the matrix N t′Σt⋆N t. In the implementation by
Alabdulmohsin et al. (2015), some warm-up labeled points are supplied by the user, we denote this set as
W . Let W (t) denote the t-th element of this set. Let the dth feature be the feature of interest without loss
of generality.

Worst Case Query Complexity. Anchor explanations returned by the DS can be absolutely consistent
with the input and truthful, yet be worst-case. For instance, in the 1D case, where linear classifiers are
thresholds, all the anchor points can lie on one side of the input point away from the threshold – this
maintains truthfulness and consistency of the explanation – but do not help in identifying the threshold
anymore than the input point itself. Generalizing this to higher dimensions, worst-case would mean that
the shrinkage of the search space over hypotheses with and without explanations is the same. For the
aforementioned algorithm, worst-case anchor explanations for a point x is {λx|λ ∈ R+} such that all anchor
points lie on a ray in the direction of point x.
Lemma 1. Given input x, a worst-case anchor for AlgLCa is of the form Ax = {λx|λ ∈ R+} with precision
parameter τ = 1.

Proof. Consider that given x, DS returns label y and anchor explanation Ax = {λx|λ ∈ R+} with τ = 1.

5

Published in Transactions on Machine Learning Research (07/2024)

Algorithm 2 AlgLCa : Auditing Linear Classifiers using Anchors
1: Input: T , augmentation size s, set of warm-up labeled points W
2: set of queried points Q := ∅, l :=size(W)
3: for t = 1, 2, 3, . . . , T + l do
4: if t <= l then
5: (x, y) := W (t)
6: Q← Q ∪ (x, y)
7: goto step 15
8: else
9: Query point xt := N tαt⋆ from the DS

10: Auditor receives label y and explanation Ax from the DS
11: Q← Q ∪ (xt, y)
12: Sample randomly q points xt1 . . . xtq from Ax

13: Q← Q ∪ {(xt1, y) . . . (xtq, y)}
14: end if
15: ε(t+1)∗ =

(
µ(t+1)⋆, Σ(t+1)⋆

)
:= estimate_ellipsoid(Q)

16: N t+1 := update_N(µ(t+1)⋆)
17: α(t+1)⋆ := update_alpha(N t+1, Σ(t+1)⋆)
18: end for
19: ŵ = µT +1

20: if |ŵi| ≤ ∆ (ith feature is the FoI) then
21: return No
22: else
23: return Yes
24: end if

Anchor
Augmentation

Let the set of all classifiers consistent with the label be H = {w : y⟨w, x⟩ > 0}.

From the definition of anchors and τ = 1, the label of all points in anchor Ax is also y. Then, the set of
all classifiers consistent with Ax is, H ′ = {w : y⟨w, λx⟩ > 0} = {w : λy⟨w, x⟩ > 0} = H. Hence the set of
consistent classifiers remains the same despite anchors. Therefore Ax qualifies as a worst-case anchor.

The query complexity of our auditor using anchors AlgLCa is presented below.
Theorem 3.3. For every dimension d, there exists c > 0 such that for any ϵ ∈ (0, 1), auditor AlgLCa is an
(ϵ, 0)-auditor for feature sensitivity and HLC with T = O

(
d log 2c

ϵ

)
queries.

This bound is comparable to actively learning a linear classifier without explanations O(d log 1
ϵ) Alabdul-

mohsin et al. (2015); Balcan and Long (2013) and might discredit the utility of explanations. However, we
show the silver lining in §5.1. Proof and more details about the algorithm can be found in Appendix §A.4.

3.2 Decision Trees

Now we move beyond the linear hypothesis class to a non-linear one – decision trees and show how explana-
tions can help in auditing them. A natural explanation for a decision tree prediction is the path traversed in
the tree from root to the predicted leaf Audemard et al. (2021); Boer et al. (2020); Dasgupta et al. (2022).
This explanation is consistent if the explanation path leads to the same prediction as that returned by the
data scientist and the nodes with their values/range are consistent with the input features.

We propose an auditor AlgDT based on an explanation-based breadth-first tree search algorithm, it works as
follows. If the feature-of-interest is not present in the explanation path, auditor randomly picks a node in the
path and perturbs its value while keeping the other features fixed such that it can explore the other branch
of the perturbed node. Incase after perturbation the point satisfies one of the previous paths received as an

6

Published in Transactions on Machine Learning Research (07/2024)

explanation, it randomly picks a new query. Otherwise, the feature-of-interest is a node in the explanation,
and therefore is a sensitive feature since it is used in the tree. AlgDT can be found in 3.

Algorithm 3 AlgDT : Auditing Decision Trees using decision path explanations
1: Given : Query Count threshold qT ≥ 1
2: Initialize : Query count qcount := 0; set of received paths, P := ∅
3: Query any point x from the DS
4: Auditor receives label y and explanation path p from the DS
5: P ← P ∪ p
6: qcount := qcount + 1
7: if foi is a node in p then
8: return Yes
9: end if

10: while True do
11: if qcount == qT then
12: return No
13: end if
14: x := perturb(x, p) {In App. Sec.A.5 }
15: while findpath(x, P) {In App. Sec.A.5 } do
16: Pick a random query as x
17: end while
18: Query x from the DS
19: Auditor receives label y′ and explanation path p′ from the DS
20: P ← P ∪ p′

21: qcount := qcount + 1
22: if foi is a node in p′ then
23: return Yes
24: end if
25: end while

While we are not aware of an active learning algorithm that learns a decision tree with continuous features,
Kushilevitz and Mansour (1991) propose a non-explanation membership query algorithm for binary features
that exactly learns the tree in time poly(2depth, d). Our auditor with explanations, which basically learns
the entire tree in the worst-case, has a linear worst-case complexity on the order of number of nodes in the
tree. Proof is in the App. Sec. A.5.
Theorem 3.4. For any ϵ ∈ [0, 1], auditor AlgDT is an (ϵ,0)-auditor for feature sensitivity and hypothesis
class HDT with T = O(V) queries where V is the number of nodes in the decision tree.

4 Auditor through connections with Active Learning

Table 1: Worst-Case Query
Complexity of auditing feature
sensitivity

Auditor Query Complexity
Baseline O(1

ϵ log 1
δ)

AlgLCc 1
AlgLCa O(d log(2c

ϵ))
AlgDT O(V)

In the previous section we designed specific auditors based on hypothesis
class and explanation type. This naturally begs the question if a general
auditing strategy exists, we answer in the affirmative. We start by taking
a closer look at two critical steps – strategy to pick the next query and
the stopping condition – of our interactive auditing protocol mentioned
in §2 and then propose a general recipe to create an auditor.

Picking next query The next query should be picked such that the
auditor gets closer to the hidden h̄, thereby reducing its uncertainty in
making a decision. To achieve this the auditor can maintain a search space
over hypotheses beginning with S0 = H and narrowing it through queries
made to the DS at each subsequent step until the stopping condition is
reached.

7

Published in Transactions on Machine Learning Research (07/2024)

Let Zt−1 ⊆ Z = X × Y and Et−1 ⊆ X × E be the set of labeled examples and explanations acquired from
the DS till t− 1. Search space at t, St, is the subset of hypotheses that are consistent with all the labels and
explanations in Zt−1 and Et−1 respectively. As an example for counterfactual explanations, the hypothesis
h is consistent if ∀(x, h̄(x)) ∈ Zt−1 and their counterfactuals (x, x′ = eh̄(x)) ∈ Et−1, h(x) = h̄(x) and
h(x′) = h̄(x′).

For efficient pruning of the search space, the auditor chooses a query point that reduces the measure of
the search space the most, no matter what explanation and label are returned by the DS. Formally, xt =
argmaxx∈X (minE×Y |St|/|St+1|) = argmaxx∈X valuex where |St| and |St+1| denote the measure of the search
spaces St and St+1 and valuex corresponds to the reduction by worst case label and explanation for a point
x. For finite hypothesis classes, the measure of the search space corresponds to the number of elements in
it, while for infinite classes it is more complex; in §3.1.2 the search space is approximated by an ellipsoid at
each time and measure is volume of the ellipsoid.

Stopping Condition decides query complexity of the auditor. For finite hypothesis classes, since h̄ is
always guaranteed to be in the search space at all times, if s(h) > ϵ for all h in St then the auditor can
safely conclude that h̄ has the desired property and stop with a Yes decision. Similarly, if s(h) ≤ ϵ for all
h in St the auditor will stop with a No. Observe that the auditor will ultimately arrive at one of these two
cases – if none of the two stopping conditions hold, the next query will cause the search space to shrink –
and ultimately our search space will consist of a single hypothesis.

For infinite hypothesis classes, we propose exploiting the structure of the hypothesis class and explanation
methods to reduce the search space to a single hypothesis or to a set where value of the score function is
same for each of its elements, in which case similar stopping conditions as the finite case can be used. Our
proposed auditors for feature sensitivity lie in this setting.

Using the above query picking and stopping strategies, we formally outline an auditor for finite hypothesis
classes presented in Alg.4 in the Appendix Sec.A.1. These strategies lead to an (ϵ, δ)-auditor, which follows
directly from h̄ belonging to the search space at all times and the stopping conditions as proved below.
Theorem 4.1. Algorithm 4 is an (ϵ, δ)-auditor for a finite hypothesis class H.

Proof. Firstly, note that h̄ is in the search space St at all times t. This is because the search space is reduced
based on labels and explanations w.r.t. h̄ (provided by the data scientist). Next, we assume that value
of function s can be computed to arbitrary precision for any hypothesis h. Then the proposed stopping
conditions satisfy the soundness and completeness properties of the (ϵ, δ)-auditor from definition.

This general auditor is similar to the Optimal Deterministic Algorithm of Yan and Zhang (2022) in the sense
that it is inspired from active learning. However, our general auditor has different stopping condition, also
uses explanations and is not manipulation-proof (although all of our auditors in §3 are manipulation-proof).
Due to difference in stopping condition and the fact that our auditor returns a binary decision, our auditor
might be faster in reality. See Appendix §A.6 for details on manipulation-proofness.

Connections to Active Learning. For readers who are acquainted with active learning, our auditor may
appear familiar. In active learning Dasgupta (2005), the goal is to learn a classifier in an interactive manner
by querying highly informative unlabeled data points for labels. A specific variant of active learning is
Membership Query Active Learning (MQAL) Angluin (1988); Feldman (2009) where the learner synthesizes
queries rather than sampling from the data distribution or selecting from a pool.

Our auditor is essentially an active partial-learning algorithm in the MQAL setting, with a modified oracle
that returns explanations in addition to labels. Here, the DS is the oracle and the auditor is the learner. The
algorithm does partial learning – since it stops when the auditing goal is complete and before the classifier
h̄ is fully learnt.

We observe that learning is a harder task than auditing – since the goal in learning is to find the classifier
generating the labels, while in auditing we aim to decide if this classifier has a certain property. This implies
that if there exists an algorithm that can learn a classifier, it can also audit it as long as the score function

8

Published in Transactions on Machine Learning Research (07/2024)

can be computed/estimated, and a membership query active learning algorithm can be used as a fallback
auditing algorithm. This leads to the following fallback guarantee.
Theorem 4.2. If there exists a membership query active learner that can learn h̄ exactly in T queries, then
the active learner can also audit in T queries.

Proof. Once h̄ is known, s(h̄) returns the auditing decision. If s(h̄) = 0, the decision is No and if s(h̄) > ϵ,
the decision is Yes.

To summarize, while our auditor is connected to active learning, the key differences are – 1) the goals as
mentioned above, 2) usage of explanations and 3) unlike active learning, partial learning of the hypothesis
can be sufficient for auditing. For example, if all hypotheses in the search space have a zero score value,
auditor can return a decision without learning h̄ exactly; or learning only some parameters of h̄ may be
enough to audit. Since partial learning can be sufficient for auditing, an auditing algorithm is not necessarily
an active learning algorithm.

Distribution-Dependent Properties. For distribution-dependent properties, the score function should
also depend on the distribution and hence the auditor will have to estimate the score function using samples
from this distribution (or another distribution which will lead to errors in the estimate based on how different
the two distributions are).

The general idea to audit a distribution-dependent property such as demographic parity under our framework
is to find the hidden classifier through active learning queries and estimate the score function for the learnt
classifier by sampling from the said distribution. For finite hypothesis class, it can also use algorithm 4
except that the score function for all existing hypotheses in the search space is to be estimated using samples
from the said distribution. Note that while these algorithms are manipulation-proof unlike using random
sampling for estimating the property as noted in Yan and Zhang (2022).

5 Experiments

In this section we conduct experiments on standard datasets to test some aspects of feature sensitivity
auditing. Specifically, we ask the following questions:

1. Does augmentation of ‘typical’ anchors reduce query complexity for linear classifiers?
2. How many queries are needed on average to audit decision trees of various depths?

The datasets used in our experiments are - Adult Income Becker and Kohavi (1996), CovertypeBlackard
(1998) and Credit DefaultYeh (2016). The features of interest are gender, wilderness area type and sex for
Adult, Covertype and Credit datasets respectively. All the datasets have a mix of categorical and continuous
features. Categorical features are processed such that each category corresponds to a binary feature in itself.
We remove all rows with missing values in any columns. We use an 80-20 split to create the train-test sets.

We learn both our linear and tree classifiers using scikit-learn. To run the anchor experiments, we use the
matlab code provided by Alabdulmohsin et al. (2015). All of our experiments on a CPU varying from a
minute to 2-3 hours. Additional details about the experiments can be found in the appendix §A.7.

5.1 Anchor Augmentation of Typical Anchors

As discussed in §3.1.2, augmentation of worst-case anchors does not help in reducing the query complexity
of auditing. In other words, augmenting worst-case anchors is equivalent to not using anchor explanations.
A natural question then is - do typical anchors help? Since auditing with anchors using AlgLCa means
learning the DS’s model under the hood, reduction in query complexity of learning implies reduction in that
of auditing. Hence, we check experimentally if faster learning is achieved through anchor augmentation of
typical anchor points.

Methodology We learn a linear classifier with weights w for each dataset ; these correspond to the DS’s
model. All of these models have a non-zero weight for the feature of interest; later we manually set the

9

Published in Transactions on Machine Learning Research (07/2024)

weight corresponding to the FoI to zero to conduct experiments for the case when the FoI is not used for
auditing. Then the weights are estimated during auditing using Algorithm 2. We consider two different
augmentations 1) worst-case anchor points which is equivalent to not using anchors 2) typical anchor points.
We set the augmentation size (number of anchor points augmented) to a maximum of 30. Our anchors are
hyperrectangles of a fixed volume surrounding the query point. We sample points with the same label as
the query point from this hyperrectangle and augment to the set of queries in the typical case.

Results The results for the non-zero FoI case are shown in Figure 1. We see that the anchor augmentation
of typical anchors drastically reduces the query complexity to achieve the same estimation error between
weights as compared to not using anchors (or equivalently using worst-case anchors). This saving directly
translates to efficiency in auditing. For example, in the adults dataset, less than 50% of the queries are needed
to achieve a lower error with typical anchors than without them. This illustrates that anchor explanations
can be helpful for auditing, suggesting an application for these explanations. Note that the error in Figure 1
is not zero and could be due to the ellipsoidal approximation. When the FoI has a weight of zero, we observe
that typical anchors reach a stable near-zero estimate for the FoI weight sooner than worst-case anchors, as
shown in Figure 2.

Figure 1: Number of queries required to learn a linear classifier with anchor augmentation of worst-case
anchor points (in blue) and typical anchor points (in orange). For the latter, a clear reduction in query
complexity is observed. The FoI has a non-zero weight in all of these.

0 25 50 75 100 125 150 175 200
of Queries

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

Er
ro

r i
n

or
ig

in
al

 a
nd

 e
st

im
at

ed
 F

oI
 w

ei
gh

t

Adult Income
Worst-case
Typical

0 25 50 75 100 125 150 175 200
of Queries

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Er
ro

r i
n

or
ig

in
al

 a
nd

 e
st

im
at

ed
 F

oI
 w

ei
gh

t

CoverType
Worst-case
Typical

0 25 50 75 100 125 150 175 200
of Queries

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Er
ro

r i
n

or
ig

in
al

 a
nd

 e
st

im
at

ed
 F

oI
 w

ei
gh

t

Credit Default
Worst-case
Typical

Figure 2: Number of queries required to learn a linear classifier when the FoI has a zero weight, with anchor
augmentation of worst-case anchor points (in blue) and typical anchor points (in orange). The latter reaches
a stable near-zero weight for the FoI sooner, demonstrating a reduction in query complexity.

5.2 Average Queries for Decision Tree Auditing

In §3.2 we discussed that the worst-case query complexity of auditing is on the order of number of nodes in
the decision tree. However on average the auditor might ask way lesser queries than the worst-case bound.
We check experimentally if this is the case.

Methodology We learn decision trees for each of the datasets using scikit-learn which implements CART
Breiman (2017) to construct the tree. All of these use the FoI to make predictions. We vary tree depth by
fixing the ‘max-depth’ hyperparameter. Then we freeze the tree and run AlgDT a 1000 times. We report an

10

Published in Transactions on Machine Learning Research (07/2024)

average of the total queries required to audit across the 1000 runs. We also run our random testing baseline
from §3 until we detect the sensitive feature. We do this a 1000 times and report the average number of
queries over those runs.

Results Our results are displayed in Table 2. As can be seen, the average number of queries needed to
audit is consistently way lesser than the number of nodes, which highlights the utility of explanations in the
average-case. There is a complex relationship between the total number of nodes in the tree and the number
of feature-of-interest nodes in the tree which jointly determines the number of queries.

As the depth of the tree increases, the number of nodes increase exponentially while the feature-of-interest
nodes and therefore average queries increase at a much slower pace. The CovType dataset has the lowest
query complexity which might be a result of the feature-of-interest having four categories rather than two
(male/female) in other datasets. There is a huge disparity between the average number of queries our auditor
needs (low) and the average random testing queries (high). This demonstrates the efficacy of our auditor
over the baseline.

Table 2: Decision Tree Auditing : Avg. number of queries required to audit over 1000 runs of AlgDT across
different depths of decision trees. #Avg. queries are rounded to the nearest integer and reported with 95%
confidence intervals. #Avg. queries are consistently lower than #Nodes and #Random Testing Queries.

Dataset Depth Test Acc. #Avg. Queries #Nodes #FoI Nodes #Random Testing Queries
Adult 9 85.09 11 ± 0.48 188 3 248 ± 15.4

12 85.36 9 ± 0.4 552 18 299 ± 18.65
15 84.59 10 ± 0.41 1158 31 160 ± 9.8

CovType 7 77.92 2 ± 0.10 119 9 17 ± 1.03
9 80.06 2 ± 0.07 383 14 13 ± 0.77
12 83.80 2 ± 0.08 1625 34 11 ± 0.67
15 87.40 2 ± 0.08 4196 57 9 ± 0.5

Credit 9 81.07 17 ± 0.63 234 3 176 ± 10.71
12 80.58 36 ± 1.2 629 6 276 ± 17.59
15 81.65 54 ± 1.87 1030 20 905 ± 54.31

To summarize, we observe that worst-case estimates are generally very pessimistic and project explanations
in a bad light. In the average case, which happens a lot on average, explanations bring down the number of
queries for auditing significantly.

6 Discussion

Untruthful Data Scientist A natural question to ask is what happens when a DS is not entirely truthful
in the auditing process, as we assumed in §2. What kind of auditing is possible in this case?

Suppose the DS returns all labels and explanations from an entirely different model than h̄. In this case,
there is no way for an auditor to detect it; but perhaps this can be dealt with in a procedural manner – like
the DS hands its model to a trusted third party who answers the auditor’s queries.

What if the DS returns the correct labels but incorrect explanations? DS might be forced to return cor-
rect labels when the auditor has some labeled samples already and hence can catch the DS if it lies with
labels. This scenario motivates verification of explanations. Next, we discuss schemes to verify anchors and
counterfactuals for this scenario.

Anchors. For anchors, verification is possible if we have samples from the underlying distribution D. For
a query x, DS returns an unverified anchor Ax with precision τx and coverage cx. The correctness of τx can
be detected as follows. First, get an estimate for the true value of the precision parameter by sampling n
points from anchor Ax according to D. Let the true and estimated values of precision parameter be τ and
τ̂ respectively. τ̂ approaches τ with sufficiently large number of points as mentioned in lemma 2. Second,
compare τx with τ̂ . A large difference between τx and τ̂ implies false anchors.

11

Published in Transactions on Machine Learning Research (07/2024)

Lemma 2. For any ∆ > 0 and integer n, Pr(|τ − τ̂ | ≥ ∆) ≤ 2 exp−2∆2n.

Lemma 2 is immediate from Hoeffding’s Inequality. Notice that the number of samples n required to verify
precision changes with 1/∆2. If the fraction of responsive pairs ϵ equals ∆, our baseline in section 3 can audit
with O(1/∆) samples without using explanations. Hence, in adversarial conditions where the probability of
a lying DS is high, it is better to audit with our explanations-free baseline than auditing with anchors and
verifying them.

Since coverage is the probability that a point sampled from D belongs to Ax, it can be easily checked 1) by
calculating the volume of Ax when all dimensions of x are bounded or 2) by sampling points from D when
the features are unbounded.

Counterfactuals. Given x, let x′ be the unverified counterfactual explanation returned by the DS. There
are two aspects to a counterfactual explanation – its label which should be different from x and it should be
the closest such point to x.

The first aspect can be easily verified by querying x′ from the DS. For the second aspect, we observe that
finding the counterfactual is equivalent to finding the closest adversarial point. Deriving from adversarial
robustness literature, verifying the closeness aspect can be a computationally hard problem for some hypoth-
esis classes like discussed in Weng et al. (2018). However, we propose a sampling based algorithm to estimate
the true counterfactual, assuming that the DS is lying. Firstly, sample points from the ball B(x, d(x, x′)).
For x′ to be the true counterfactual, all points within the ball B(x, d(x, x′)) should have the same label as x.
If a point x′′ with a different label is sampled, select this point as an estimate of the true counterfactual and
repeat the scheme with the new ball B(x, d(x, x′′)). By following this procedure iteratively, we get closer to
the correct counterfactual explanation as the radius of the ball reduces at each iteration. There are cases
where our algorithm may not work well. We leave designing better algorithms for verifying closeness to
future work.

Upon verification, if auditor finds that the DS is untruthful, it can choose to 1) stop auditing and declare that
the DS is lying, 2) audit with estimated explanations or 3) audit with explanations-free baseline algorithm
(§3) since option 2 is computationally intensive.

Privacy Auditing also raises a legitimate privacy concern. On one hand, model is hidden from the auditor
for confidentiality reasons while on the other hand, to be able to give a correct auditing decision efficiently,
the auditor has to extract/learn the hidden model, albeit partially. This concern can be resolved by using
crytographic tools like Zero-Knowledge proofs Yadav et al. (2024); Singh et al. (2021); Liu et al. (2021). A
future direction of our work is modifying our framework to work with cryptographic tools.

7 Related Work

Auditing has been used to uncover undesirable behavior in ML models in the past Buolamwini and Gebru
(2018); Koenecke et al. (2020); Tatman and Kasten (2017); Tatman (2017). However, these works were based
on creating a audit dataset in an ad-hoc manner. Recently, there have been efforts towards streamlining
and developing a structured process for auditing. For instance, Gebru et al. (2018); Mitchell et al. (2019)
introduce datasheets for datasets and model cards and Raji et al. (2020) introduce an end-to-end internal
auditing process. In contrast with these works, we theoretically formalize auditing with explanations which
allows us to determine what kind of properties can be audited and with how many queries.

Auditing with Formal Guarantees The work most related to ours is concurrent work due to Yan and
Zhang (2022), who present a formal framework as well as algorithms for auditing fairness in ML models by
checking if a model has a certain demographic parity on a data distribution. Their algorithms are motivated
by connections to active learning as well as machine teaching Goldman and Kearns (1995). In contrast,
we look at auditing with explanations. Our instantiation – auditing feature sensitivity – is different from
demographic parity, which, together with the use of explanations, leads to very different algorithms.

12

Published in Transactions on Machine Learning Research (07/2024)

Another work on auditing with guarantees is Goldwasser et al. (2021), who audit the accuracy of ML models.
They use an interactive protocol between the verifier and the prover like our work, and their algorithm is
related to a notion of property testing due to Balcan et al. (2011). The auditing task used in our paper,
feature sensitivity, is different from accuracy used in their paper. We also utilize explanations.

Auditing and Explanations Explanations are supposed to help in auditing as suggested in Bhatt et al.
(2020); Oala et al. (2020); Adebayo and Gorelick (2017); Watson and Floridi (2021); Zhang et al. (2022);
Poland (2022); Hamelers (2021); Carvalho et al. (2019), but exactly how and under what conditions was
not understood. In a concurrent work by Mougan et al. (2023), authors show that explanations lead to
more sensitive audits than using labels and demonstrate the case for demographic parity using shapley
values Lundberg et al. (2019; 2020). On the other hand, our focus is to demonstrate how explanations can
reduce the query complexity of auditing and formalizing the auditing process by connecting it to active
learning. The notion of feature sensitivity and the kind of explanations used in our paper are also different
from theirs.

Other Auditing Methods Specific statistical methods have been proposed by Jagielski et al. (2020); Ye
et al. (2021) to audit privacy and by Liu and Tsaftaris (2020); Huang et al. (2021) to audit data deletion.
These are properties of the learning algorithm rather than the model. In our paper we focus on the latter and
hence our algorithms are not applicable to auditing privacy and data deletion. Extending our framework to
broader settings is an important direction of future work.

8 Conclusions and Future Work

We formalize the role of explanations in auditing with a special focus on ‘feature sensitivity’ and find that
their theoretical efficacy in reducing query complexity vastly varies across different methods. Structure
of the hypothesis class and explanation method together determine this efficacy. While worst-case query
complexities for auditing ‘feature sensitivity’ are pessimistic, our experiments herald optimism – in the
average-case we see a significant reduction in the number of queries required to audit across all explanation
types. We also connect auditing to the well-established field of active learning and provide general active-
learning inspired algorithms for auditing with explanations.

We believe that this work is a first step towards understanding certified auditing and auditing with expla-
nations. A major research direction is auditing with approximate or incorrect explanations. Other future
directions include incorporating other kinds of explanations, investigating different hypothesis classes, au-
diting properties and theorising the average-case complexity with explanations.

Ethics Statement. This work uses feature sensitivity more broadly than fairness (as described in §3)and
only to demonstrate an instantiation of our framework. We agree that feature sensitivity, though linked to
fairness, is not ‘the’ perfect measure of fairness and we doubt if such a metric can exist.

We believe that auditing is a complex process. Auditing can only be done for vulnerabilities that we know can
exist and hence unknown vulnerabilities might still exist in a model despite being audited. There are real-life
scenarios like limited budget (financial, time) which might prevent an auditor from uncovering vulnerabilites,
even though they exist. Our work is a step in understanding the auditing process better.

Acknowledgements. This work was supported by NSF under CNS 1804829 and ARO MURI
W911NF2110317. MM has received funding from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation program (grant agreement No. 882396), by the Israel
Science Foundation (grant number 993/17), Tel Aviv University Center for AI and Data Science (TAD),
and the Yandex Initiative for Machine Learning at Tel Aviv University. CY thanks Geelon So for providing
valuable feedback on an early draft of the paper.

13

Published in Transactions on Machine Learning Research (07/2024)

References
Julius Adebayo and Micha Gorelick. Fairml: Auditing black-box predictive models. Blog. Fastforwardlabs.

Com, 2017.

Gulimila Aini et al. A summary of the research on the judicial application of artificial intelligence. Chinese
Studies, 9(01):14, 2020.

Ibrahim Alabdulmohsin, Xin Gao, and Xiangliang Zhang. Efficient active learning of halfspaces via query
synthesis. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.

Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez, and Pierre Marquis.
On the explanatory power of decision trees. arXiv preprint arXiv:2108.05266, 2021.

Maria-Florina Balcan and Phil Long. Active and passive learning of linear separators under log-concave
distributions. In Conference on Learning Theory, pages 288–316. PMLR, 2013.

Maria-Florina Balcan, Eric Blais, Avrim Blum, and Liu Yang. Active property testing. arXiv preprint
arXiv:1111.0897, 2011.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Yunhan Jia, Joydeep Ghosh,
Ruchir Puri, José MF Moura, and Peter Eckersley. Explainable machine learning in deployment. In
Proceedings of the 2020 conference on fairness, accountability, and transparency, pages 648–657, 2020.

Jock Blackard. Covertype. UCI Machine Learning Repository, 1998. DOI:
https://doi.org/10.24432/C50K5N.

Naama Boer, Daniel Deutch, Nave Frost, and Tova Milo. Personal insights for altering decisions of tree-based
ensembles over time. Proceedings of the VLDB Endowment, 13(6):798–811, 2020.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

Leo Breiman. Classification and regression trees. Routledge, 2017.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial gender
classification. In Conference on fairness, accountability and transparency, pages 77–91. PMLR, 2018.

Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. Machine learning interpretability: A survey
on methods and metrics. Electronics, 8(8):832, 2019.

Isabella Castiglioni, Leonardo Rundo, Marina Codari, Giovanni Di Leo, Christian Salvatore, Matteo Inter-
lenghi, Francesca Gallivanone, Andrea Cozzi, Natascha Claudia D’Amico, and Francesco Sardanelli. Ai
applications to medical images: From machine learning to deep learning. Physica Medica, 83:9–24, 2021.

Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. Advances in neural information
processing systems, 18, 2005.

Sanjoy Dasgupta, Nave Frost, and Michal Moshkovitz. Framework for evaluating faithfulness of local expla-
nations. arXiv preprint arXiv:2202.00734, 2022.

Daniel Deutch and Nave Frost. Constraints-based explanations of classifications. In 2019 IEEE 35th Inter-
national Conference on Data Engineering (ICDE), pages 530–541. IEEE, 2019.

Vitaly Feldman. On the power of membership queries in agnostic learning. The Journal of Machine Learning
Research, 10:163–182, 2009.

14

Published in Transactions on Machine Learning Research (07/2024)

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach, Hal
Daumé III, and Kate Crawford. Datasheets for datasets. arXiv preprint arXiv:1803.09010, 2018.

Sally A Goldman and Michael J Kearns. On the complexity of teaching. Journal of Computer and System
Sciences, 50(1):20–31, 1995.

Shafi Goldwasser, Guy N Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive proofs for verifying
machine learning. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

LH Hamelers. Detecting and explaining potential financial fraud cases in invoice data with machine learning.
Master’s thesis, University of Twente, 2021.

Yangsibo Huang, Xiaoxiao Li, and Kai Li. Ema: Auditing data removal from trained models. In International
Conference on Medical Image Computing and Computer-Assisted Intervention, pages 793–803. Springer,
2021.

Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private machine learning:
How private is private sgd? Advances in Neural Information Processing Systems, 33:22205–22216, 2020.

Amir-Hossein Karimi, Gilles Barthe, Borja Balle, and Isabel Valera. Model-agnostic counterfactual expla-
nations for consequential decisions. In International Conference on Artificial Intelligence and Statistics,
pages 895–905. PMLR, 2020.

Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion Mengesha, Connor Toups,
John R Rickford, Dan Jurafsky, and Sharad Goel. Racial disparities in automated speech recognition.
Proceedings of the National Academy of Sciences, 117(14):7684–7689, 2020.

Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum. In Proceedings of
the twenty-third annual ACM symposium on Theory of computing, pages 455–464, 1991.

Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard, and Marcin Detyniecki. Inverse
classification for comparison-based interpretability in machine learning. arXiv preprint arXiv:1712.08443,
2017.

Tianyi Liu, Xiang Xie, and Yupeng Zhang. Zkcnn: Zero knowledge proofs for convolutional neural net-
work predictions and accuracy. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 2968–2985, 2021.

Xiao Liu and Sotirios A Tsaftaris. Have you forgotten? a method to assess if machine learning models
have forgotten data. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 95–105. Springer, 2020.

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit Katz,
Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. Explainable ai for trees: From local explanations to
global understanding. arXiv preprint arXiv:1905.04610, 2019.

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit Katz,
Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to global understanding
with explainable ai for trees. Nature machine intelligence, 2(1):56–67, 2020.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena
Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for model reporting. In Proceedings of
the conference on fairness, accountability, and transparency, pages 220–229, 2019.

Carlos Mougan, Laura State, Antonio Ferrara, Salvatore Ruggieri, and Steffen Staab. Demographic parity
inspector: Fairness audits via the explanation space. arXiv preprint arXiv:2303.08040, 2023.

15

Published in Transactions on Machine Learning Research (07/2024)

Luis Oala, Jana Fehr, Luca Gilli, Pradeep Balachandran, Alixandro Werneck Leite, Saul Calderon-Ramirez,
Danny Xie Li, Gabriel Nobis, Erick Alejandro Muñoz Alvarado, Giovanna Jaramillo-Gutierrez, et al. Ml4h
auditing: From paper to practice. In Machine learning for health, pages 280–317. PMLR, 2020.

Cherie M Poland. The right tool for the job: Open-source auditing tools in machine learning. arXiv preprint
arXiv:2206.10613, 2022.

Inioluwa Deborah Raji, Andrew Smart, Rebecca N White, Margaret Mitchell, Timnit Gebru, Ben Hutchin-
son, Jamila Smith-Loud, Daniel Theron, and Parker Barnes. Closing the ai accountability gap: Defining an
end-to-end framework for internal algorithmic auditing. In Proceedings of the 2020 conference on fairness,
accountability, and transparency, pages 33–44, 2020.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic explana-
tions. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Nitin Singh, Pankaj Dayama, and Vinayaka Pandit. Zero knowledge proofs towards verifiable decentralized
ai pipelines. Cryptology ePrint Archive, 2021.

Ioana Baldini Soares, Chhavi Yadav, Payel Das, and Kush Varshney. Keeping up with the language models:
Robustness-bias interplay in nli data and models. In Annual Meeting of the Association for Computational
Linguistics, 2023.

Rachael Tatman. Gender and dialect bias in youtube’s automatic captions. In Proceedings of the First ACL
Workshop on Ethics in Natural Language Processing, pages 53–59, 2017.

Rachael Tatman and Conner Kasten. Effects of talker dialect, gender & race on accuracy of bing speech and
youtube automatic captions. In Interspeech, pages 934–938, 2017.

David S Watson and Luciano Floridi. The explanation game: a formal framework for interpretable machine
learning. In Ethics, Governance, and Policies in Artificial Intelligence, pages 185–219. Springer, 2021.

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning, and Inderjit
Dhillon. Towards fast computation of certified robustness for relu networks. In International Conference
on Machine Learning, pages 5276–5285. PMLR, 2018.

Chhavi Yadav, Amrita Roy Chowdhury, Dan Boneh, and Kamalika Chaudhuri. Fairproof: Confidential and
certifiable fairness for neural networks. arXiv preprint arXiv:2402.12572, 2024.

Tom Yan and Chicheng Zhang. Active fairness auditing. In International Conference on Machine Learning,
pages 24929–24962. PMLR, 2022.

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, and Reza Shokri. Privacy auditing of machine learning
using membership inference attacks. "", 2021.

I-Cheng Yeh. default of credit card clients. UCI Machine Learning Repository, 2016. DOI:
https://doi.org/10.24432/C55S3H.

Chanyuan Abigail Zhang, Soohyun Cho, and Miklos Vasarhelyi. Explainable artificial intelligence (xai) in
auditing. International Journal of Accounting Information Systems, page 100572, 2022.

16

Published in Transactions on Machine Learning Research (07/2024)

A Appendix

A.1 A General Auditor for finite hypothesis classes

Algorithm 4 A General Auditor for finite hypothesis classes
1: S0 := H where |H| is finite; stop_flag := False; t := 1; ϵ := eps
2: while !stop_flag do
3: xt := picking_next_query(St−1)
4: Auditor receives label yt and explanation et from the DS
5: St+1 := update_search_space(St, xt, yt, et)
6: Y_a, stop_flag = check_stopping_condition(St)
7: end while
8: return Y_a

Algorithm 5 check_stopping_condition()
1: Input: St

2: if ∀h ∈ St, s(h) > eps then
3: decision = Yes, stop_flag = True
4: else if ∀h ∈ St, s(h) ≤ eps then
5: decision = No, stop_flag = True
6: else
7: decision = None, stop_flag = False
8: end if
9: return decision, !stop_flag

Algorithm 6 picking_next_query()
1: Input: St

2: for x ∈ X do
3: for (e, y) ∈ E × Y do
4: St+1 = update_search_space(St, x, y, e)
5: end for
6: valuex = minE×Y |St|/|St+1|

7: end for
8: return argmaxx∈X valuex

Algorithm 7 update_search_space()
1: Input: S, x, y, e
2: Snew := {h ∈ S|h(x) = y, check_consistent_explanation(x, eh(x), e)} {//Explanation method depen-

dent consistency check}
3: return Snew

A.2 Auditing Linear Classifiers with Counterfactual Explanations

In this section, we will prove that auditing linear classifiers using counterfactual explanations requires only
one query. We denote our auditor by AlgLCc, as outlined in Alg. 1. The proof goes by noting that the
counterfactual explanation x′ returned by the DS is very close to the projection of input x and that x− x′

is parallel to w. We consider the d-th feature to be our feature of interest without loss of generality.
Lemma 3. Given hyperplane wT x + b = 0, point x and its projection on the hyperplane x′′, x − x′′ = λw

where λ = wT x+b
∥w∥2

2
.

17

Published in Transactions on Machine Learning Research (07/2024)

Algorithm 8 AlgLCc : Auditing Linear Classifiers using Counterfactuals
1: Query any point x from the DS
2: Auditor receives label y and explanation x′ from the DS
3: ŵ ← x− x′

4: if ŵi = 0 (ith feature is the FoI) then
5: return No
6: else
7: return Yes
8: end if

Proof. The projection, x′′, of x on the hyperplane wT x+b = 0, is found by solving the following optimization
problem.

min
x′′

∥x′′ − x∥2

s.t. wT x′′ + b = 0
(1)

Let L(x′′, λ) be the lagrangian for the above optimization problem.

L(x′′, λ) = ∥x′′ − x∥2 + 2λ(wT x′′ + b)

= ∥x′′∥2 + ∥x∥2 − 2x⊤x′′ + 2λw⊤x′′ + 2λb

= ∥x′′∥2 + ∥x∥2 − 2(x− λw)⊤x′′ + 2λb

(2)

Taking derivative of the lagrangian with respect to x′′ and equating with zero we get,

∂L

∂x′′ = 2x′′ − 2(x− λw) = 0

x− x′′ = λw
(3)

By substituting above equation in the constraint for the optimization problem wT x′′ + b = 0, we get λ =
w⊤x+b

∥w∥2
2

.

Theorem 3.2. For any ϵ ∈ [0, 1], auditor AlgLCc is an (ϵ,0)-auditor for feature sensitivity and hypothesis
class HLC with T = 1 query.

Proof. Recall that the counterfactual explanation returned by the DS for input x is given as x′ =
argminx′:h(x′)̸=h(x) d(x, x′) where d(x, x′) = ∥x− x′∥2.

The projection of x on the hyperplane, x′′ is the closest point to x on the hyperplane. Therefore x′ = x′′ +∆
where ∆ is a vector in the direction of w, ∆ = γw, γ is a very small non-zero constant.

Therefore, x− x′ = x− (x′′ + ∆) = (x− x′′) + ∆.
Using lemma 3,

ŵ := x− x′ = λw + γw = c0w, (4)
where c0 is a non-zero constant. (x− x′ is non-zero due to the definition of counterfactuals, specifically that
they have different labels.)

If wd = 0, then it implies that ŵd = 0 and the feature has no effect on the prediction. Thus the score
function is zero. Since AlgLCc returns a No when ŵd = 0, it is always correct in this case. For all the other
cases when wd ̸= 0, it implies that ŵd ̸= 0 and therefore, the feature has an effect on the prediction. Since
AlgLCc returns a Yes when ŵd ̸= 0, it is always correct.

Also δ = 0 since our auditor and DS are deterministic.

18

Published in Transactions on Machine Learning Research (07/2024)

Note that this is partial learning since 1) we do not need to learn w exactly and 2) we do not need to learn
the bias term b.

A.3 Connection between Model Parameters and Score Function

Notation For vector v, the ith feature is denoted vi.
Let hypothesis hw,b ∈ HLC. When w, b are clear from the context, we simply write h. Let w′ be the
(d − 1)-dimensional vector [w1 . . . wd−1]T . Hence w is a concatenation of w′ and wd, denoted by the
shorthand w = [w′, wd]. We assume that ∥w′∥2 = 1.
Let x be a d-dimensional input to this hypothesis. Let x′ be the (d − 1)-dimensional vector [x1 . . . xd−1]T .
Let x̄ = [x1 . . . xd−1, 1]⊤. Without loss of generality, let the dth feature be the feature of interest and
xd ∈ {0, 1}.
The score function for a hypothesis h is given as, s(h) = Pr

((
xi, xj

)
forms a responsive pair

)
where

(
xi, xj

)
is sampled uniformly from the set of all pairs and labeled by h. Henceforth we use this score function.

In the following theorem, we bound the fraction of responsive pairs, also our score function, using the weight
of our feature of interest, wd. The score function is bounded by c · |wd| where c depends on the dimension of
the input. This implies that if |wd| is small, there are not a lot of responsive pairs (low score function value).
Theorem 1. Assume ∀x ∈ X , ∥x̄∥2 ≤ 1. Let h[w′,wd],b ∈ HLC. Then

s(h) ≤ c · |wd| (5)

where c = 2d−2

π(d−1
2)·Γ(d+1

2)
is a constant for finite dimension d and Γ is Euler’s Gamma function.

Proof. Let P be the set of all pairs of points. Let xi and xj denote two inputs forming a pair. Let the pair
(xi, xj) drawn uniformly from P form a responsive pair.

From the definition of a pair, xi and xj only differ in the dth feature. Hence,

w⊤xj + b = w′⊤x′j + b + wdxj
d

= w′⊤x′i + b + wd

(
1− xi

d

)
= w′⊤x′i + b + wd − wdxi

d.

(6)

Without loss of generality, let xi
d = 0, hence xj

d = 1.
Therefore,

w⊤xj + b = w′⊤x′i + b + wd (7)

Next, writing the definition of a responsive pair for HLC we get,

sign
(
w⊤xi + b

)
̸= sign

(
w⊤xj + b

)
(8)

Substituting eq. 7 into the RHS of eq. 8, we get,

sign
(
w⊤xi + b

)
̸= sign

(
w′⊤x′i + b + wd

)
(9)

Expanding the LHS of eq. 9 and substituting xi
d = 0, we get,

sign
(
w′⊤x′i + b

)
̸= sign

(
w′⊤x′i + b + wd

)
(10)

Eq. 10 implies the following,

19

Published in Transactions on Machine Learning Research (07/2024)

0 ≤ w′⊤x′i + b⇒ w′⊤x′i + b + wd < 0
0 > w′⊤x′i + b⇒ w′⊤x′i + b + wd ≥ 0

(11)

Combining the two equations in eq. 11 we get,

0 ≤ w′⊤x′i + b < −wd

0 < −
(
w′⊤x′i + b

)
≤ wd

(12)

Note that the model (defined by w, b) is fixed. Hence the variables in the above conditions are the inputs x.
Note that only one of the conditions in eq. 12 can be satisfied at any time, based on whether wd ≥ 0 or
wd < 0. The fraction of the inputs which satisfy one of the above conditions correspond to the fraction of
responsive pairs and hence is the value of the score function.

Conditions in eq. 12 correspond to intersecting halfspaces formed by parallel hyperplanes. If ∥x̄∥2 ≤ r,
the region of intersection can be upper bounded by a hypercuboid of length 2r in d − 2 dimensions and
perpendicular length between the two hyperplanes l = |wd|

∥w′ ∥2
in the (d− 1)-th dimension.

Hence, we can upper bound score function s(h) as,

s(h) ≤ (2r)d−2 · l
Vd−1(r) (13)

where l = |wd|
∥w′ ∥2

and Vd−1(r) is the volume of the (d − 1)-dimensional ball given by π(d−1)/2

Γ(d−1
2 +1)rd−1 and Γ is

Euler’s Gamma function.

Upon simplification we get,

s(h) ≤ 2d−2

π(d−1
2)

l

rΓ
(

d+1
2

) (14)

Assuming r = 1 and ∥w′∥2 = 1, we can write eq. 14 as,

s(h) ≤ c · |wd| (15)

where c = 2d−2

π(d−1
2)·Γ(d+1

2)
is a constant for small dimensions.

A.4 Auditing Linear Classifiers with Anchor Explanations

Imperfect Precision. When the precision is not perfect, the anchor augmentation scheme (lines 11-13
in Alg. 2) is not as straightforward. Essentially we cannot assign the same label to all randomly sampled
points in the hyperrectangle. To overcome this problem we can use some heuristics and tricks. (a) Note that
we wish to exploit the information given by anchors to automatically label samples, but due to imperfect
precision there will be errors in this labeling if we use our old augmentation scheme – this is analogous to
active learning with noisy labels and we can explore existing literature in this field to deal with this problem.
(b) We can internally consider a smaller hyperrectangle than that supplied by the data scientist and only
sample from that – this can reduce the error arising from potential wrong labeling (c) We can also ask for
labels for some points within each anchor - this might help due to the structure of linear classifiers (only
points closer to the decision boundary can have imperfect precision) and the fact that the problem only
arises when the precision is somewhere in between 0 and 1, it does not arise at the ends or closer to 0 or 1.
Imperfect precision can potentially increase the number of queries or the computations required for anchor
augmentation.

Alabdulmohsin et al. (2015) proposed a query synthesis spectral algorithm to learn homogeneous linear
classifiers in O(d log 1

∆) steps where ∆ corresponds to a bound on the error between estimated and true

20

Published in Transactions on Machine Learning Research (07/2024)

classifier. They maintain a version space of consistent hypotheses approximated using the largest ellipsoid
ε⋆ = (µ⋆, Σ⋆) where µ⋆ is the center and Σ⋆ is the covariance matrix of the ellipsoid. They prove that
the optimal query which halves the version space is orthogonal to µ⋆ and maximizes the projection in the
direction of the eigenvectors of Σ⋆.

We propose an auditor AlgLCa as depicted in alg. 2 using their algorithm. The anchor explanations are
incorporated through anchor augmentation. But, in the worst-case anchors are not helpful and hence the
algorithm reduces essentially to that of Alabdulmohsin et al. (2015) (without anchors). In this section we
find the query complexity of this auditor.

Notation In AlgLCa, εt⋆ = (µt⋆, Σt⋆) denotes the largest ellipsoid that approximates the version space
(corresponds to search space in our case) at time t where µt⋆ is the center and Σt⋆ is the covariance matrix
of the ellipsoid at time t. N t is the orthonormal basis of the orthogonal complement of µt⋆ and N t′ is its
transpose. αt⋆ is the top eigenvector of the matrix N t′Σt⋆N t. In the implementation by Alabdulmohsin
et al. (2015), some warm-up labeled points are supplied by the user, we denote this set as W . Let W (t)
denote the t-th element of this set. Let the dth feature be the feature of interest without loss of generality.

Algorithm 9 AlgLCa : Auditing Linear Classifiers using Anchors
1: Input: T , augmentation size s, set of warm-up labeled points W
2: set of queried points Q := ∅, l :=size(W)
3: for t = 1, 2, 3, . . . , T + l do
4: if t <= l then
5: (x, y) := W (t)
6: Q← Q ∪ (x, y)
7: goto step 15
8: else
9: Query point xt := N tαt⋆ from the DS

10: Auditor receives label y and explanation Ax from the DS
11: Q← Q ∪ (xt, y)
12: Sample randomly q points xt1 . . . xtq from Ax

13: Q← Q ∪ {(xt1, y) . . . (xtq, y)}
14: end if
15: ε(t+1)∗ =

(
µ(t+1)⋆, Σ(t+1)⋆

)
:= estimate_ellipsoid(Q)

16: N t+1 := update_N(µ(t+1)⋆)
17: α(t+1)⋆ := update_alpha(N t+1, Σ(t+1)⋆)
18: {//Exact formulae for steps 15, 16 and 17 can be found in Alabdulmohsin et al. (2015)}
19: end for
20: ŵ = µT +1

21: if |ŵi| ≤ ∆ (ith feature is the FoI) then
22: return No
23: else
24: return Yes
25: end if

Anchor
Augmentation

Next we give a bound on the number of queries required to audit using AlgLCa. With worst-case anchors, it
means that we are just using the algorithm of Alabdulmohsin et al. (2015), essentially without explanations
and anchor augmentation. The auditor has a fixed ϵ that it decides beforehand. AlgLCa decides how many
times it must run the algorithm of Alabdulmohsin et al. (2015) such that for the fixed ϵ, it satisfies def. 2.

Theorem 3.3. For every dimension d, there exists c > 0 such that for any ϵ ∈ (0, 1), auditor AlgLCa is an
(ϵ, 0)-auditor for feature sensitivity and HLC with T = O

(
d log 2c

ϵ

)
queries.

21

Published in Transactions on Machine Learning Research (07/2024)

Proof. Let w be the true classifier and ŵ be the estimated classifier learnt by AlgLCa.

Let the difference between w and ŵ be bounded by ∆ as follows,

∥w − ŵ∥2 ≤ ∆. (16)

The value of ∆ will be set later on. Since AlgLCa uses |ŵd| to make its decision, the worst case is when the
entire error in estimation is on the dth dimension. Hence, we consider |wd − ŵd| ≤ ∆.

To guarantee that the auditor is an (ϵ, 0)-auditor we need to verify for every hypothesis in the class that if
s(·) = 0, then the answer is No and if s(·) > ϵ, then the answer is Yes, see def. 2.

Importantly, s(w) is zero only if wd = 0 from theorem 1. If wd = 0 ⇒ |ŵd| ≤ ∆, by eq. 16. Since AlgLCa

returns a No for |ŵd| ≤ ∆, AlgLCa satisfies def. 2 when s(w) = 0 with δ = 0.

Next, we have the case s(w) > ϵ when auditor should return a Yes with high probability. AlgLCa returns a
Yes when |ŵd| > ∆. Hence for AlgLCa to be correct, we need that s(w) > ϵ imply that |ŵd| > ∆.

We can upper bound s(w) using eq. 14 as,

s(w) ≤ c · |wd| (17)

Since ϵ < s(w),

ϵ < c · |wd| (18)

Since |wd − ŵd| ≤ ∆,

ϵ ≤ c (|ŵd|+ ∆) (19)

On rearranging,

ϵ

c −∆ ≤ |ŵd| (20)

Eq. 20 connects ϵ with ∆ and ŵd. For s(w) > ϵ, |ŵd| should be greater than ∆ for AlgLCa to be correct.
Hence, lower bounding the LHS of eq. 20 we get,

∆ ≤ ϵ

c −∆

∆ ≤ ϵ

c −∆

∆ ≤ ϵ

2c

(21)

We set ∆ = ϵ
2c .

From Lemma 1, AlgLCa reduces to Alabdulmohsin et al. (2015)’s spectral algorithm in the worst-case. This
algorithm has a bound of O(d log(1

∆)). Hence, the query complexity of AlgLCa is O(d log(2c
ϵ)).

22

Published in Transactions on Machine Learning Research (07/2024)

A.5 Auditing Decision Trees

Algorithm 10 findpath(x, P)
1: Given : Query x and explanation paths set P
2: for path p ∈ P do
3: not_p := False
4: for (fi, vi, diri) ∈ p do
5: if (diri ==≤ & xfi > vi)||(diri ==≥ & xfi < vi) then
6: not_p := True
7: goto line 3
8: end if
9: end for

10: if not_p == False then
11: return True {Query satisfies a pre-existing path}
12: end if
13: end for
14: return False

Algorithm 11 perturb(x, p)
1: Given : Query x and corresponding explanation path p = [(f, v, dir = {≤ / ≥})] {Two directions of

inequality are used for ease of illustration. The code is generalizable to include other conditions easily.}
2: Randomly pick a tuple (f, v, d) from p
3: if dir ==≤ then
4: Perturb xf such that xf > v
5: else
6: Perturb xf such that xf < v
7: end if
8: x := x\xf

∪ xf

9: return x

Theorem A.1. For any ϵ ∈ [0, 1], auditor AlgDT is an (ϵ,0)-auditor for feature sensitivity and hypothesis
class HDT with T = O(V) queries where V is the number of nodes in the decision tree.

Proof. Let L be the number of leaves and V be the number of nodes in the decision tree. The total number
of queries asked by 3 equals the number of paths in the tree. The number of paths in a binary decision tree
equals the number of leaves L and L = (V + 1)/2. Once the auditor makes V queries, it has explored all
the paths in the tree and hence knows the tree exactly. Therefore with O(V) queries, it can give the correct
auditing decision precisely.

A.6 Manipulation-Proofness

Yan and Zhang (2022) define manipulation-proofness as follows. Given a set of classifiers V , a classifier h,
and a unlabeled dataset S, define the version space induced by S to be V (h, S) := {h′ ∈ V : h′(S) = h(S)}.
An auditing algorithm is ϵ-manipulation-proof if, for any h∗, it outputs a set of queries S and estimate ŝ
that guarantees that maxh∈V(h∗,S) |s(h)− ŝ| ≤ ϵ.

Our anchor and decision tree auditors are manipulation-proof trivially since the version space size at the
end of auditing is 1. Our counterfactual auditor is manipulation-proof since only those classifiers which
have wi = 0 will be in the version space.

23

Published in Transactions on Machine Learning Research (07/2024)

A.7 Experiments

For Adult dataset, the output variable is whether Income exceeds $50K/yr. For Covertype, the output
variable is whether forest covertype is category 1 or not. For Credit Default, the output is default payment
(0/1).

24

	Introduction
	Preliminaries
	An Example of Auditing Through `Feature Sensitivity'
	Linear Classifiers
	Counterfactual Explanations
	Anchor Explanations

	Decision Trees

	Auditor through connections with Active Learning
	Experiments
	Anchor Augmentation of Typical Anchors
	Average Queries for Decision Tree Auditing

	Discussion
	Related Work
	Conclusions and Future Work
	Appendix
	A General Auditor for finite hypothesis classes
	Auditing Linear Classifiers with Counterfactual Explanations
	Connection between Model Parameters and Score Function
	Auditing Linear Classifiers with Anchor Explanations
	Auditing Decision Trees
	Manipulation-Proofness
	Experiments

