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ABSTRACT
Recently, deep AUC maximization (DAM) has achieved great success in differ-
ent domains (e.g., medical image classification). However, the end-to-end train-
ing for deep AUC maximization still remains a challenging problem. Previous
studies employ an ad-hoc two-stage approach that first trains the network by op-
timizing a traditional loss (e.g., cross-entropy loss) and then finetunes the net-
work by optimizing an AUC loss. This is because that training a deep neural
network from scratch by maximizing an AUC loss usually does not yield a satis-
factory performance. This phenomenon can be attributed to the degraded feature
representations learned by maximizing the AUC loss from scratch. To address
this issue, we propose a novel compositional training framework for end-to-end
DAM, namely compositional DAM. The key idea of compositional training is
to minimize a compositional objective function, where the outer function corre-
sponds to an AUC loss and the inner function represents a gradient descent step
for minimizing a traditional loss, e.g., the cross-entropy (CE) loss. To optimize
the non-standard compositional objective, we propose an efficient and provable
stochastic optimization algorithm. The proposed algorithm enhances the capabil-
ities of both robust feature learning and robust classifier learning by alternatively
taking a gradient descent step for the CE loss and for the AUC loss in a systematic
way. We conduct extensive empirical studies on imbalanced benchmark and med-
ical image datasets, which unanimously verify the effectiveness of the proposed
method. Our results show that the compositional training approach dramatically
improves both the feature representations and the testing AUC score compared
with traditional deep learning approaches, and yields better performance than the
two-stage approaches for DAM as well. The proposed method is implemented in
our open-sourced library LibAUC (www.libauc.org) and code is available at
https://github.com/Optimization-AI/LibAUC.

1 INTRODUCTION

Deep AUC maximization (DAM) represents a new learning paradigm for deep learning, which max-
imizes the area under ROC curve (AUC) on a training dataset for learning a deep neural network.
It has received increasing attention recently due to the advancement in large-scale non-convex opti-
mization algorithms for AUC maximization (Liu et al., 2019a; Yuan et al., 2021; Guo et al., 2020a;b).

Recently, DAM has been successfully applied to different domains with imbalanced data (Yuan
et al., 2020; Wang et al., 2021b). For example, Yuan et al. (2020) has employed DAM for a vari-
ety of medical image classification tasks, e.g., classification of X-ray images, skin lesion images,
mammograms, and microscopic images, and they observed great improvements with about 1%∼5%
AUC increase over traditional deep learning approaches by optimizing a standard loss function, e.g.,
the cross-entropy (CE) loss. These pioneering studies on DAM open a new direction for deep learn-
ing in the presence of imbalanced data but also raise many questions yet to be solved. A particular
question relates to how the network is trained by DAM. Existing studies employ a two-stage ap-
proach for DAM, in which the first stage pretrains the network on the training data by optimizing a
traditional loss function (e.g. the CE loss) and the second stage finetunes the network by optimiz-
ing an AUC loss. It was conjectured in (Yuan et al., 2020) the feature extraction layers learned by
directly optimizing AUC from scratch are not as good as optimizing the standard CE loss, similarly
as optimizing a class-weighted loss for deep learning with imbalanced data (Cao et al., 2019).
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Figure 1: t-SNE visualization of feature representations of an imbalanced training set for the Catvs-
Dog visualized by tSNE learned by different methods (from left to right): optimizing CE loss, an
AUC loss, a linear combination of CE and AUC loss, and a compositional objective by our method.

Although the ad-hoc two-stage method of DAM has achieved some success, this approach leads
to several undesirable consequences increasing the engineering costs in practice: (i) which layers
should we finetune in the second stage? Fine-tuning all layers increases the training costs but not
necessarily improves the final performance (Jamal et al., 2020; Qi et al., 2020); (ii) when do we stop
the training for the first-stage? A long training time for the first-stage increases the overall training
costs but not necessarily increases the final prediction performance, while a short training time for
the first-stage could harm the prediction performance (Kang et al., 2019). Hence, the literature has
suggested different tricks for the two-stage approach, including the decoupling method that simply
optimizes the classifier layer in the second-stage (Kang et al., 2019) and deferred re-weighting that
only dedicates the iterations with the largest step size to the CE loss (Cao et al., 2019), which could
be borrowed to DAM as well. However, an important question remains open regarding DAM:

How can we conduct end-to-end training for deep AUC maximization?

To answer this question, we have examined the learned feature representations by optimizing an
AUC loss directly from scratch and confirmed the conjecture in (Yuan et al., 2020) that the learned
feature representations exhibit no advantage over optimizing the CE loss directly. In Figure 1 we
visualize the feature representations on an imbalanced training set for the CatvsDog classification
learned by different methods and visualized by t-SNE (van der Maaten & Hinton, 2008). We
can see that optimizing an AUC loss from scratch (2nd column) does not yield a cleaner feature
representations for the two classes of data than optimizing the CE loss. What makes end-to-end
deep learning successful is its superb feature learning capability, i.e., the lower layers capture the
low-level features and higher layers capture the high-level features. In terms of feature learning,
different examples roughly have equal weights regardless which classes they belong to. From this
perspective, we could understand why optimizing AUC loss alone bears worse feature learning
capability. The AUC loss assigns different weights to different examples from different classes for
more robust classifier learning. In particular, the data in the positive class has a higher weight than
data in the negative class. These non-equal weights are important for learning a robust classifier
given that feature representations have been learned well but are not readily helpful for learning
feature representations in an end-to-end fashion. Can we achieve both effects in a unified and
end-to-end learning framework, i.e., optimizing the CE loss with equal weights for robust feature
learning and optimizing an AUC loss with uneven weights for robust classifier learning? A naive
approach is to simply optimize a linear combination of the CE loss and an AUC loss. However, this
approach has a trade-off, meaning that AUC is not necessarily maximized due to the presence of
the CE loss in the objective and the learned feature representations could be degraded by the AUC
loss (Figure 1, 3rd column).

In this paper, we propose a better and novel end-to-end training method that not only achieves both
benefits of minimizing the CE loss for robust feature learning and minimizing an AUC loss for
robust classifier learning, but also achieves the effect of “1+1>2", i.e., achieves better performance
than the naive linear combination approach. The novel synthesis lies in how we composite the two
training steps corresponding to the CE loss and the AUC loss. The central idea is to minimize a
two-level compositional objective, where the outer function is an AUC loss, and the inner function
is a gradient descent step towards minimizing the CE loss, which represents a quick adaptation to the
solution to minimizing the CE loss. We propose a novel efficient stochastic algorithm with provable
convergence for minimizing the compositional objective, which performs alternating gradient-based
updates that are first based on the gradient of CE loss and then based on the gradient of an AUC loss
at the point obtained in the first step. We summarize our contributions below.
• We propose a novel training framework for end-to-end deep AUC maximization, namely compo-

sitional DAM. The novel compositional objective enables not only the robust feature learning of
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lower layers from minimizing the standard loss function but also the robust learning of a classi�er
from minimizing an AUC loss.

• Theoretically, we propose an ef�cient stochastic optimization algorithm for solving compositional
DAM, and establish the same convergence rate as standard SGD for optimizing a standard aver-
aged loss. Empirically, we conduct extensive studies on benchmark and medical image datasets,
and observe that the proposed method not only improves the baseline methods including the
naive linear combination approach but also improves ad-hoc two-stage approaches for DAM. The
learned feature representations of compositional DAM (e.g., Figure 1 right) are much better than
those learned by minimizing the CE loss or an AUC loss alone and their combination.

2 RELATED WORK

Deep AUC Maximization. AUC maximization has a history of two decades. Most of the existing
studies revolve around the design of ef�cient optimization algorithms. Earlier papers have focused
on full batch methods (Herbrich et al., 1999; Yan et al., 2003; Ferri et al., 2002; Freund et al., 2003;
Joachims, 2005; Herschtal & Raskutti, 2004; Rakotomamonjy, 2004; Zhang et al., 2012) and online
optimization methods (Zhao et al., 2011; Kar et al., 2014; 2013; Gao et al., 2013). Recently, stochas-
tic optimization for AUC maximization has become the dominating approach (Ying et al., 2016; Liu
et al., 2018; Natole et al., 2018; 2019). Ying et al. (2016) propose a milestone work for stochastic
optimization of AUC. They consider optimizing the pairwise square loss and propose an equivalent
min-max formulation that transforms the original non-decomposable objective into a decomposable
one, which enables the design of ef�cient stochastic methods based on mini-batch of data without
explicitly constructing the pairs. The min-max formulation also serves as the basis for recent works
on DAM (Liu et al., 2019a; Yuan et al., 2021; Guo et al., 2020a;b). (Liu et al., 2019a) is the �rst work
that explicitly considers DAM and develops the �rst practical and provable stochastic algorithms for
DAM based on the min-max formulation of the pairwise square loss function. However, this work
only focuses on optimization and experiments are done on simple benchmark datasets. Later, Yuan
et al. (2020) propose a new robust loss in the min-max form for DAM and evaluates the performance
of DAM on various medical image classi�cation tasks, which demonstrates great success of DAM.
However, none of these works have addressed the problem of end-to-end training for DAM.

Deep Learning with Imbalanced data. Deep learning in the presence of imbalanced data has
recently attracted tremendous attention (Cui et al., 2019; Johnson & Khoshgoftaar, 2019; Masko &
Hensman, 2015; Lee et al., 2016; Khan et al., 2017; Dablain et al., 2021; Ren et al., 2018; Jamal
et al., 2020; Qi et al., 2020; Lin et al., 2017; Cao et al., 2019; Kang et al., 2019; Liu et al., 2019b;
Zhu & Yang, 2020; Zhou et al., 2020; Xiang et al., 2020; Wang et al., 2021a; 2020; Menon et al.,
2021). Among these studies that are closely related to our work include (Lin et al., 2017; Cui
et al., 2019; Cao et al., 2019; Qi et al., 2020; Kang et al., 2019; Jamal et al., 2020), which focus on
optimizing different objectives from the standard CE loss, including class-weighted loss, focal loss,
individually weighted loss functions, etc. Nevertheless, these works are not directly comparable to
our method for maximizing AUC.

Two-stage Approaches.However, directly optimizing a weighted loss for training a deep neural
network from scratch does not work well (Cao et al., 2019; Kang et al., 2019; Jamal et al., 2020; Qi
et al., 2020; Yuan et al., 2020). This phenomenon was �rst observed in (Cao et al., 2019), which
is attributed to the degraded feature representations. To tackle this issue, Cao et al. (2019) propose
a deferred re-weighting/re-sampling trick. It minimizes the standard average loss for the �rst stage
and switches to minimizing the class-weighted loss or re-sampling method in the second stage. In
their paper, the �rst stage is de�ned as the training period from the beginning to the iteration that
the step size was reduced for the �rst time in SGD or momentum methods. Kang et al. (2019)
investigate a decoupling approach, where the �rst stage learns the feature representations (i.e., a
feature extraction network) by optimizing a standard loss with a large number of iterations, and the
second stage learns a robust classi�er (i.e. the classi�er layer). The authors show that the decoupling
approach can achieve better performance than the deferred re-weighting trick in (Cao et al., 2019).
However, the decoupling approaches do not necessarily yield the best performance. In particular,
some studies have found that �ne-tuning some higher layers besides the classi�er layer in the second
stage is bene�cial (Jamal et al., 2020; Qi et al., 2020). Recently, Yang & Xu (2020) propose to use
self-supervised learning for learning the feature representations for the �rst stage and to switch to
re-weighting method in the second stage. Different from these studies, our work is to design an
elegant end-to-end training framework for deep learning with an AUC loss.
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3 COMPOSITIONAL TRAINING FOR DEEPAUC MAXIMIZATION

Notations. We use(x; y) to denote an example, wherex 2 Rd0 denotes the input andy 2 Y denotes
its corresponding label. Letk � k denote the Euclidean norm of a vector, and letw 2 Rd denote
the weight parameters of a deep neural network. A functionF (w) is calledL-smooth if its gradient
is L -Lipschitz continuous, i.e.,kr F (w) � r F (w 0)k � Lkw � w 0k. Let f (w ; x) denote the
prediction scores of a deep neural network parameterized byw on an inputx, wheref (w ; x) 2 R
for binary classi�cation withY = f 1; � 1g. Denote byD = f (x1; y1); : : : ; (xn ; yn )g a set ofn
training examples. Let̀(w ; x; y) denote a loss function on an individual data, e.g., cross-entropy
loss. We letL (w; S) denote an aggregate loss function de�ned on a set of samplesS � D . When
S = D, we simply use the notationL(w) = L(w; D). Let � 
 [� ] denotes an Euclidean projection
on the set
 . Denote byn+ (n� ) the number of positive (negative) examples.

A standard approach of deep learning is to minimize an averaged loss on training examples, i.e.,

min
w 2 Rd

L AVG(w) =
1
n

nX

i =1

`(w ; x i ; yi ): (1)

AUC losses.AUC (area under the ROC curve) is a commonly used measure for evaluating classi-
�ers for binary classi�cation with imbalanced data. Recently, there emerge voluminous studies on
optimizing AUC score for learning a predictive model (e.g., a deep neural network). The idea is to
optimize a surrogate loss for the AUC score. A special surrogate loss is the AUC square loss (Gao
& Zhou, 2015), which is de�ned as:

min
w

1
n+ n�

X

y i =1

X

y j = � 1

(c � (f (w ; x i ) � f (w ; x j ))) 2;

wherec is a margin parameter (e.g.,1). Since directly optimizing the above pairwise loss is com-
putationally expensive, existing works transform the above problem into an equivalent min-max
optimization (Liu et al., 2019a), which is decomposable over individual examples:

min
w ;a;b

max
� 2 


� ( w ; a; b; �) :=
1
n

nX

i =1

� (w ; a; b; � ; x i ; yi ) ; where (2)

� (w ; a; b; � ; x i ; yi ) = (1 � p) ( f (w ; x i ) � a)2 I [y i =1] + p(f (w ; x i ) � b)2I [y i = � 1] (3)

� p(1 � p)� 2 + 2 �
�
p(1 � p)c + pf (w ; x i )I [y i = � 1] � (1 � p)f (w ; x i )I [y i =1]

�
;


 = R andp = n+ =n. From the above objective function� , we can see that each examplex i also
has a class-level weight for their contributed loss, i.e., the data from the positive class is weighted
by 1 � p and the data from the negative class is weighted byp.

It was recently shown that the AUC square loss is sensitive to noisy data and also has adverse
effect when trained with easy data. Hence, Yuan et al. (2020) proposed the min-max AUC margin
(AUCM) loss, whose optimization problem is (2) with
 = f 0 � � � ug for someu. Let us de�ne
L AUC(w) = min a;b max� 2 
 � ( w ; a; b; �) as the AUC loss function.

3.1 COMPOSITIONAL DAM: A C OMPOSITIONAL TRAINING METHOD FOR DAM

In this section, we present the proposed compositional training for DAM. Our proposed objective
for end-to-end deep learning is given by

min
w 2 Rd

L AUC(w � � r L AVG(w)) ; (4)

where� is hyper-parameter. Different fromL AUC(w), the above objective is a compositional func-
tion, where the inner componentw � � r L AVG(w) is another function ofw. We refer to the above
objective as the compositional objective and a method for minimizing the above compositional ob-
jective as compositional training.

To understand the compositional objective (4), we take the second-order Taylor expansion of the
compositional objective, which include three terms:
L AUC(w � � r L AVG(w)) � L AUC(w) � � r L AUC(w)> r L AVG(w) + C� 2=2kr L AVG(w)k2; (5)

whereC represents the Lipchitz continuity constant ofr L AUC(�). In order to understand how the
three terms play their roles and evolve in the optimization process by our proposed algorithm pre-
sented in next subsection (Algorithm 1), we conduct some empirical studies on several benchmark
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Figure 2: Evolution of different terms in (5) computed in the process of our optimization algorithm
(Algorithm 1) on the CatvsDog data.L AVG is the averaged CE loss. Please refer to Appendix A.6
for more details of the calculations.

datasets reported in Appendix A.6. Here, we explain the result of the CatvsDog classi�cation shown
in Figure 2. Initially, the �rst termL AUC(w) dominates the objective and the algorithm will fo-
cus on pushing this term to be smaller (1st column), once it reaches the same level of the third
term the algorithm will shift its focus to pushkr L AVG(w)k smaller (2nd column) while keeping
r L AUC(w)> r L AVG(w) to be positive (3rd column). This process will continue by alternating be-
tween the efforts of pushingL AUC(w) smaller and of pushingkr L AVG(w)k2 to be smaller while
keepingr L AUC(w)> r L AVG(w) to be non-negative. We also notice that the �nal AUC loss is close
to zero. The same phenomena are also observed on other datasets.

To further understand the compositional training intuitively, let us take a thought experiment by
using a gradient descent method to optimize the compositional objective. First, we evaluate the
inner function byu = w � � r L AVG(w). We can see thatu is computed by a gradient descent step
for minimizing the averaged lossL AVG(w), which facilitates the learning of lower layers for feature
extraction due to equal weights of all examples. Then, we take a gradient descent step to updatew
for minimizing the outer functionL AUC(�) by using the gradientr L AUC(u) instead ofr L AUC(w).
Becauseu is better thanw in terms of feature extraction layers, taking a gradient descent step using
r L AUC(u) would be better than usingr L AUC(w). In addition, taking a gradient descent step for
the outer functionL AUC(�) will make the classi�er more robust to the minority class due to the
higher weights of examples from the minority class. Overall, we havetwo alternating conceptual
steps, i.e., the inner gradient descent stepu = w � � r L AVG(w) acts as afeature puri�cation
step, and the outer gradient descent stepw � � (I � � r 2L AVG(w)) r L AUC(u) acts as aclassi�er
robusti�cation step, where� is a step size.

VS. linear combination approach. It is notable that minimizing the compositional objective
L AUC(w � � r L AVG(w)) is different from minimizing a linear combination of an AUC loss and
the averaged loss, i.e.,L AUC(w) + cLAVG(w), wherec > 0 is a combination weight. First, minimiz-
ing the latter objective will pushr L AUC(w) + cr L AVG(w) = 0 . This makesr L AUC(w) to have
an opposite direction fromr L AVG(w) at the optimal solution, which is different from minimizing
the compositional objective in light of the three terms in (5). Second, if we take a gradient descent
method for minimizing this objective, the update ofw is given byw � � (r L AUC(w)+ cr L AVG(w)) .
This update is fundamentally different from the two alternating steps of compositional training that
use gradients of the AUC loss and the average loss at different points. Third, minimizing the linear
combination has a trade-off, meaning that the AUC score is not necessarily maximized due to the
presence of the CE loss in the objective and the learned feature representations are degraded due to
the presence of AUC loss.

More discussions.Finally, we note that the inner gradient descent stepw � � r L AVG(w) is sim-
ilar to the idea used in model-agnostic meta learning (MAML) (Finn et al., 2017). However, our
compositional objective works fundamentally different from that for MAML. In MAML, the outer
loss function and the loss function for the inner gradient descent step is the same. In contrast, the
two loss functions in our objective are different. But similar to MAML approaches, we can also run
multiple gradient descent steps for the inner function, i.e, the inner functionw � � r L AVG(w) can
be replaced by multiple gradient descent steps. In our experiments, we also found this trick to be
helpful for improving the performance.

3.2 STOCHASTIC OPTIMIZATION ALGORITHMS

In this subsection, we develop ef�cient stochastic optimization algorithms for optimizing the compo-
sitional objective (4) for DAM. First, we argue the necessity for such development. (i) the problem is
a min-max form and the objective is a compositional function, which makes computing an unbiased
stochastic gradient of the objectiveL AUC(w � � r L AVG(w)) impossible. Existing algorithms of
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Algorithm 1 Primal-Dual Stochastic Compositional Adaptive (PDSCA) method for solving (6)
1: Require Parameters:� 0; � 1; �; G 0; � 1; � 2
2: Initialization: �w0 = ( w0; a0; b0) 2 Rd+2 ; � 0; u0 2 Rd+2

3: for t = 0 ; 1; :::; T do
4: Sample two sets of examples denoted byS1; S2
5: u t +1 = (1 � � 0)u t + � 0h( �w t ; S1)
6: Ot = r �w h( �w t ; S1)> [r u g1(u t +1 ; S2) + � t r u g2(u t +1 ; S2)]
7: zt +1 = (1 � � 1)zt + � 1Ot
8: z2;t +1 = ht (fO j ; j = 0 ; : : : ; t)g � ht can be implemented by that in Appendix B
9: �w t +1 = �w t � � 1

z t +1p
z2;t +1 + G0

� with the simplest formht = 1

10: � t +1 = � 
 [� t + � 2(g2(u t +1 ; S1 [ S 2) � r g3(� t ))]
11: end for

non-convex min-max optimization for DAM that focus on minimizingL AUC(w) (Liu et al., 2019a;
Yuan et al., 2021; Guo et al., 2020a;b) are not applicable due to the presence of inner function
w � � r L AVG(w). (ii) Our objective is also different from that of MAML due to thatL AUC(�) is a
min-max form, which renders existing algorithms for MAML (Finn et al., 2017; Fallah et al., 2020)
not applicable. Hence, below we propose an ef�cient stochastic algorithm for solving the compo-
sitional training for DAM whose objective is of the min-max compositional form, and establish its
convergence rate similar to that of standard SGD for minimizing the standard averaged loss.

In particular, for the considered AUC loss, the compositional objective becomes:

min
w ;a;b

max
� 2 


� ( w � � r L AVG(w); a; b; �) =
1
n

nX

i =1

� (w � � r L AVG(w); a; b; � ; x i ; yi ) : (6)

We denote by a tuple�w = ( w; a; b). For simplicity of presentation, we write� (w ; a; b; �; x i ; yi ) as
� ( �w ; � ; x i ; yi ) = g1( �w ; x i ; yi ) + �g 2( �w ; x i ; yi ) � g3(� );

where
g1( �w ; x i ; yi ) =(1 � p) ( f (w ; x i ) � a)2 I [y i =1] + p(f (w ; x i ) � b)2I [y i = � 1]

+ 2pf (w ; x i )I [y i =1] � 2(1 � p)f (w ; x i )I [y i = � 1] ;
(7)

andg2( �w ; x i ; yi ) = 2
�
pf (w ; x i )I [y i = � 1] � (1 � p)f (w ; x i )I [y i =1]

�
andg3(� ) = p(1 � p)� 2.

Denote by g1( �w ; S) = 1
jSj

P
i 2S g1( �w ; x i ; yi ), g2( �w ; S) = 1

jSj

P
i 2S g2( �w ; x i ; yi ). Let

h( �w) = ( w � � r L AVG(w); a; b), r �w h( �w) = ( I � � r 2
w L AVG(w); 1; 1), and h( �w ; S) =

(w � � r L AVG(w ; S); a; b).

We propose a primal-dual stochastic algorithm shown in Algorithm 1, which is referred to as
PDSCA. We provide some explanations of our algorithmic design. First, the step 5 of updating
u t +1 corresponds to feature puri�cation step. We use a moving average technique to updateu t +1
that takes all historical updates into account, which is inspired by existing stochastic algorithms for
optimizing compositional functions (Wang et al., 2017). This is important for us to prove the con-
vergence rate ofO(1=

p
T) without using a large batch size at each iteration. If we simply using

u t +1 = h( �w t ; S1) (i.e., setting� 0 = 1 ) to estimateh( �w t ), there will be a large error in estimating
the gradientr u g1(u t +1 ; S2) andr u g2(u t +1 ; S2) in step 6. Second, the step 6 is to estimate the
gradient of the outer function. We use two independent mini-batchesS1; S2 to ensure thatOt is an
unbiased estimator ofr h( �w t )> r �w � (u t +1 ; � ). Using two independent mini-batches is also help-
ful for improving generalization as demonstrated in experiments. Third, the steps 7 - 9 are similar
to the momentum and adaptive methods for updating the model parameter. The step 8 is used for
computing the adaptive step size1=

p
z2;t +1 + � 0, which is similar to adaptive methods used for

deep learning, such as Adam, AMSGrad, AdaBound (Kingma & Ba, 2015; Reddi et al., 2018; Luo
et al., 2019). We use a general functionht in the algorithm, which can be implemented by different
methods corresponding to different adaptive step size choices. We present differentht in the Ap-
pendix B. The simplest oneht = 1 corresponds to that we do not use adaptive step size and only
use the momentum update. Fourth, the step 10 is for updating the dual variable� using a stochastic
gradient ascent method. Finally, we point out that PDSCA is similar to some existing non-convex
strongly-concave min-max optimization algorithms (Guo et al., 2021) but with additional care on
the inner gradient descent stepw � � r L AVG(w). We present an informal convergence of PDSCA
below.
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Theorem 1. (Informal) Under appropriate conditions on the functionsL AVG, g1; g2 and a boundness
condition on� t ; w t ; r `(w t ; x ; y); r 2`(w t ; x ; y), with � 0; � 1 = O(1=

p
T); � 1; � 2 = O(1=

p
T)

and a small constant� , Algorithm 1 ensures thatE
h

1
T +1

P T
t =0 kr F ( �w t )k2

i
� O( 1p

T
). where

F ( �w) = max � 2 
 � ( w � � r L AVG(w); a; b; �).

Remark: We will present the detailed conditions in the supplement when proving the above the-
orem due to limit of space. The above theorem indicates that we can optimize the compositional
objective (6) with the same convergence rate as optimizing the averaged loss (1) for deep learning.

Practical Implementations. It is notable thatr h( �w ; S1) = ( I � � r 2L(w; S1); 1; 1) (step 6)
involves the Hessian matrixr 2L(w; S1). Indeed, we only need to compute the Hessian vector
product involving in step 6. Similar computation occurs in the meta learning algorithms (Finn et al.,
2017; Fallah et al., 2020). Inspired by practical implementations of MAML (Finn et al., 2017) that
simply ignore the second-order term, we use the same trick in our experiments. An additional useful
trick inspired by MAML is that we can takek � 1 gradient descent steps for the inner function,
correspondingly we maintain and update severalu variables similar to step 5, i.e., usingh( �w t ; S1)
for updating the �rstu (1)

t +1 , and usingh(u (1)
t +1 ; S1) for updating secondu (2)

t +1 , and so on so forth. In
our experiments, we found that tuningk 2 f 1; 2; 3g is useful.

Finally, it is notable that although we focus on optimizing AUC loss for binary classi�cation in this
work, our compositional training method can be also extended to optimize other weighted losses in
an end-to-end fashion, and we include some discussion and results in the Appendix D.

4 EXPERIMENTS

In this section, we present some experimental results. We choose �ve baselines: optimizing the
AUC loss from scratch (AUCsc), optimizing the CE loss (CE), optimizing a linear combination of
the AUC loss and the CE loss with a tuned weight (AUC-CE), the two-stage method with deferred
re-weighting trick (Cao et al., 2019) (TS-DRW), the two-stage method by decoupling the learning of
feature network by minimizing CE loss and the learning of a classi�er by minimizing the AUC loss
(TS-DEC) (Kang et al., 2019). We denote our method by CT (AUC). For AUC loss, we use AUCM
loss with the margin parameter �xed to be 1 (Yuan et al., 2020). We conduct experiments on four
benchmark datasetes and four medical image datasets. The statistics of these datasets are included
in the Appendix A.1. More training con�gurations can be found in Appendix A.2.

Benchmark datasets.We choose four benchmark image classi�cation datasets, namely CatvsDog,
CIFAR10 (C10), CIFAR100 (C100), and STL10 (S10). For AUC maximization, we construct im-
balanced binary versions of these datasets by varying the imbalanced ratios (the ratio of positive
examples to the total number of training examples) similar to (Yuan et al., 2020). We use ResNet20
as the prediction network. The weight decay is set to 1e-4 for all experiments. For algorithms to
maximize AUC, we use a batch size = 128 and train a total of 100 epochs, and we use step size 0.1
and decrease it by 10 times at 50% and 75% of total training time. We tune the beta parameters of
our method in a range[0:1; 0:99] with a grid search and �nd that good values are around 0.9. For
linear combination methods, we tune the weightc of two losses inf 0:25; 0:5; 0:75g. We tune the
number of inner gradient steps for CT ink 2 f 1; 2; 3g with � = 0 :1. For all benchmark data, we
run three times for different random seeds and compute the mean and standard deviations.

Medical image datasets.We also conduct experiments on naturally imbalanced medical datasets.
We choose four medical image datasets, namely Melanoma data, CheXpert, DDSM+, and PatchCam
data. The Melanoma dataset is from the Kaggle 2020 competition (Rotemberg et al., 2021), which
contains 33,126 labeled images in training set, including 584 positive samples and 32,542 negative
samples. We manually construct training, validation and testing datasets following 70/10/20 split.
For this dataset, we use the images with 256x256 resolution in the experiments. CheXpert is a large-
scale chest X-ray dataset (Irvin et al., 2019), which has 224,316 images with 224 x 224 resolution.
The dataset contains 5 binary classi�cation tasks corresponding to 5 diseases, i.e., Cardiomegaly
(C0), Edema , Consolidation, Atelectasis, Pleural Effusion. We evaluate the performance on the
of�cial validation set consisting of 200 patient studies and report the averaged AUC scores of all
5 diseases. The DDSM+ data is a combination of two datasets namely DDSM and CBIS-DDSM
(Lee et al., 2017; Bowyer et al., 1996; Heath et al., 1998), which consists of 55,890 mammographic
training images (224×224) with an imratio of 13% and 15,364 images for testing with an imra-
tio of 13%. The PatchCamelyon dataset consists of 294,912 color images (96×96) extracted from
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