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ABSTRACT

Learning with noisy labels (LNL) aims to achieve good generalization perfor-
mance given a label-corrupted training set. In this work, we consider a more chal-
lenging situation of LNL on fine-grained datasets (LNL-FG). Due to large inter-
class ambiguity among those fine-grained classes, deep models are more prone to
overfitting to noisy labels, leading to poor generalization performance. To handle
this problem, we propose a novel framework called stochastic noise-tolerated su-
pervised contrastive learning (SNSCL) that can enhance discriminability of deep
models. Specifically, SNSCL contains a noise-tolerated contrastive loss and a
stochastic module. To play against fitting noisy labels, we design a noise-tolerated
supervised contrastive learning loss that incorporates a weight-aware mechanism
for noisy label correction and selectively updating momentum queue lists. By this
mechanism, SCL mitigates the effects of noisy anchors and avoids inserting noisy
labels into the momentum-updated queue. Besides, to avoid manually-defined
augmentation strategies in SCL, we propose an efficient stochastic module that
samples feature embeddings from a generated distribution, which can also en-
hance the representation ability of SCL. Our proposed SNSCL is general and
compatible with prevailing robust LNL strategies to improve their performance
for LNL-FG. Extensive experiments on four noisy benchmarks and an open-world
dataset with variant noise ratios demonstrate that our proposed framework signif-
icantly improves the performance of current LNL methods for LNL-FG.

1 INTRODUCTION

Learning from noisy labels (Long & Servedio, 2008; Bossard et al., 2014; Han et al., 2018; Xu
et al., 2019; Li et al., 2020; Wei et al., 2022) poses great challenges for training deep models, whose
performance heavily relies on large-scaled labeled datasets. Annotating training data with high
confidence would be resource-intensive, especially for some domains, such as medical and remote
sensing images. Thus, label noise would inevitably arise.

LNL on fine-grained classification tasks is challenging. Random classification noise is common in
real applications, which has been broadly studied in (Long & Servedio, 2008; Tewari & Bartlett,
2007; Tanaka et al., 2018; Liu et al., 2020). Dependent noise is caused by uncertain annotation that
catches attention in recent years (Han et al., 2018; Wei et al., 2020; Shu et al., 2019; Wei et al.,
2020; Li et al., 2020; Wei et al., 2022). Existing methods usually simulate these two types of noise
on generic image datasets to evaluate their algorithms. In this work, we extend LNL to fine-grained
classification (LNL-FG). This scenario is more realistic since annotators are easier to be misguided
by indistinguishable characteristics among fine-grained images and give an uncertain target. Fig. 1
illustrates comparison between two types of noise simulated on generic and fine-grained sets. The
results in Fig. 2 show that deep models are earlier to overfit to noise for fine-grained classification
tasks. Intuitively, due to large inter-class ambiguity in LNL-FG, the margin between noisy samples
and the decision boundary in the fine-grained dataset is smaller than that in the generic dataset,
leading to severe overfitting of deep models to noisy labels.

Contrastive learning (CL), as a powerful self-supervised approach for unsupervised representation
learning (Chen et al., 2020a; He et al., 2020; Grill et al., 2020; Jaiswal et al., 2020; Park et al.,
2020), has attracted the attention of LNL (Li et al., 2022). CL methods usually design objective
functions as supervised learning to perform pretext similarity measurement tasks derived from an
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Figure 1: LNL-FG is more challenging than LNL on
generic classification. and denote mislabeled samples.
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Figure 2: Overfitting is severe on fine-
grained datasets for vanilla CE loss.

unlabeled dataset, which can learn effective visual representations in downstream tasks, especially
for fine-grained classification. The following work, supervised contrastive learning (Khosla et al.,
2020), leverages label information to further enhance representation learning, which can avoid a
vast training batch and reduce the memory cost. Since the goal of LNL is eventually learning the
discrimitive feature embedding, enhancing representation ability of deep models via SCL can play
against overfitting to noisy labels. However, SCL cannot be directly applied to the noisy scenario as
it is lack of noise-tolerated mechanism.

To resolve the noise-sensitivity of SCL, we propose a novel framework named stochastic noise-
tolerated supervised contrastive learning (SNSCL), which contains a noise-tolerated contrastive loss
and a stochastic module. For the noise-tolerated contrastive loss, we roughly categorize the noise-
sensitive property of SCL into two parts of noisy anchors and noisy query keys in the momentum
queue. To mitigate the negative effect introduced by noisy anchors or query keys, we design a weight
mechanism for measuring the reliability score of each sample and modify the label of noisy anchors
in current training batch. Then, we selectively update the momentum queue for decreasing the
probability of noisy query keys. These operations are adaptive and can achieve a progressive learning
process. Besides, to avoid manual adjustment of strong augmentation strategies for SCL, we propose
a stochastic module for more complex feature transformation. In practice, this module generates the
probabilistic distribution of feature embedding, which can achieve better generalization performance
for LNL-FG.

Our contributions can be summarized as
• We design a novel framework dubbed stochastic noise-tolerated supervised contrastive learning

(SNSCL), which alters the noisy labels for anchor samples and selectively updates the momen-
tum queue, avoiding the effects of noisy labels on SCL.

• We design a stochastic module to avoid manually-defined augmentation, improving the perfor-
mance of SNSCL on representation learning.

• Our proposed SNSCL is generally applicable to prevailing LNL methods and further improves
their performance on LNL-FG.

Our method achieves state-of-the-art performance on four fine-grained datasets, demonstrating great
effectiveness of noise-tolerated robust learning.

2 PRELIMINARIES

Problem definition. Given a training set D = {(xi, yi)}ni=1 ∈ (X ,Y) with partial corrupted labels,
where yi ∈ {1, 2, · · ·, C}. Supposing there is a deep neural network with the learnable parameters
θ. The goal of our algorithm is finding the optimal parameter θ∗ which can achieve admirable
generalization performance on the clean testing set.
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Contrastive learning meets noisy labels. Contrastive learning (Chen et al., 2020a; He et al., 2020;
Grill et al., 2020) is a prevailing framework for representation learning, enhancing class discrimina-
tion of the feature extractor. Supposing a feature anchor q and a set of feature keys {q̂, k1, · · ·, kD}
are given, where q̂ is a positive data point for q, and the others are negative. In CL, a widely used
loss function for measuring the similarity of each data point is InfoNCE (Oord et al., 2018) and can
be summarised as

LINFO = − log
exp (q · q̂/τ)

exp (q · q̂/τ) +
∑D

d=1 exp (q · kd/τ)
, (1)

where τ is a hyper-parameter for temperature scaling. In most applications, CL is built as a pre-task.
q and q̂ are extracted from two augmented views of the same example, and negative keys {k1, · ·
·, kD} represent feature embeddings of other samples in the current training batch. CL is naturally
independent of noisy labels, but there exists a drawback in that it lacks a mechanism to utilize
potential labels into model training, leaving useful discriminative information on the shelf (Wang
et al., 2021a). Currently, supervised contrastive learning (Khosla et al., 2020) solves this issue
by constructing the positive and the negative lists according to the labels. For anchor point q, the
objective function can be written as

LSCL = − log

∑
kP∈Pos exp (q · kP/τ)∑

kP∈Pos exp (q · kP/τ) +
∑

kN∈Neg exp (q · kN/τ)
, (2)

where Pos and Neg represent the positive and negative list, respectively.

However, SCL is sensitive to noisy labels, which can be introduced into the anchor point, Pos, and
Neg. Our goal is to utilize the valuable information of the labels underlying the noisy training set D
and overcome the misguidance of noisy labels.

3 PROPOSED METHOD

Overview. In this section, we first introduce a noise-tolerated supervised contrastive learning
method that incorporates a weight-aware mechanism for measuring the reliability score of each
example. Based on this mechanism, we dynamically alter the unreliable labels and selectively insert
them into the momentum-updated queue, combating two noise-sensitive issues of SCL, respectively.
Then, we design a stochastic module for the transformation of feature embeddings, which samples
from a generated probabilistic distribution.

3.1 NOISE-TOLERATED SUPERVISED CONTRASTIVE LEARNING

Weight-aware mechanism. We aim to measure the reliability score of each sample in the training
set D and generate the corresponding weight. For this, we use the small-loss criterion, a common
strategy in LNL, and leverage a two-component GMM to generate this reliability score. We evaluate
the training set D after each training epoch. For clarity, we omit the epoch sequence and attain a list
of empirical losses {li}ni=0 among all samples, where li = L(F (xi; θ), yi). Note that F (·) denotes
the classifier network and L(·) is the cross-entropy loss. GMM fits to this list and gives the reliability
score of the probability that the sample is clean. For sample xi, the reliability score γi can be written
as γi = GMM(li | {li}ni=0), where γi ∈ [0, 1]. Then, we design a function to dynamically adjust the
weight for all training samples according to the reliability score. The weight of sample xi is

ωi =

{
1 if γi > t

γi otherwise
, (3)

where t is a hyper-parameter in the interval of [0, 1] and denotes the threshold of the reliability score.
The computation of γ and ω restarts after each training round, ensuring that the values benefit from
the improvement of the model performance.

Based on this mechanism, we design two strategies that modify two noise-sensitive issues sum-
marised in the overview. First, to solve the misguidance of the noisy anchor sample, we propose a
weighted correction strategy to alter the labels of unreliable samples. For the unreliable sample
x ∈ {(xi, yi)|ωi ̸= 1}ni=1, the weighted label ŷ is written as

ŷ = ωycls + (1− ω)y, (4)
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Figure 3: Illustration of training framework. Examples in the momentum queue with the same
color and shape belong to the same category. The Projector is set as a single-layer MLP structure.
Overall, the total training framework includes a LNL method and our proposed SNSCL, which con-
sists of two parts: 1) stochastic module, which provides more competitive feature transformation;
2) noise-tolerated contrastive loss, which is noise-aware and contains two weighting strategies.

where ycls = argmax(Softmax(F (x; θ))) and represents the prediction result of the classifier
network. Additionally, to make the alteration of labels more stable, we use the idea of moving-
average. At epoch e, the moving-average corrected label over multiple training epochs is

ŷe = αŷ(e−1) + (1− α)ŷe. (5)

The coefficient is set as α = 0.99. Therefore, the set of unreliable samples can be formulated as
{(xi, ŷ

e)|ωi ̸= 1}ni=1 in epoch e.

Second, to solve the noise tolerance properties of the momentum queue, we propose a weighted
update strategy to solve the noise-tolerant property of the previous momentum queue. This strategy
can be simply summarized as updating this queue according to the weight in Eq. 3. Given a sample
xi, its weight value is ωi. For the sample x which satisfies to ωi = 1, we update the queue by
xi via the First-in First-out principle. Otherwise, we update the queue by xi with probability ωi.
Intuitively, the weighted-update strategy avoids inserting unreliable samples into the queue, helping
enhance the quality of the momentum queue.

3.2 STOCHASTIC FEATURE EMBEDDING

Typical CL heavily relies on sophisticated augmentation strategies and need specify them for differ-
ent datasets. We build a stochastic module to avoid manually-defined strategies. Given a sample x,
let z = f(x) represent the output of the backbone network (i.e., feature extractor) and belongs to the
embedding space RD. We formulate a probability distribution p(Q|z) for embedding z as a normal
distribution, which can be written as

p(Q|z) ∼ N (µ, σ2), (6)

where µ and σ can be learned by a three-layers fully-connected network. From feature embedding
distribution p(Q|z), we sample an embedding z′ to represent the augmented version of original
feature embedding z. Here, we use reparameterization trick (Kingma et al., 2015),

z′ = µ+ ϵ · σ with ϵ ∼ N (0, I). (7)

After that, the sampled feature embedding z′ is utilized to update the momentum queue and compute
contrastive learning loss. The merits of this module are 1) more complex representations stimulate
the potential of CL, and 2) the property of stochasticity helps the model escape from memorizing
the noisy signal to some degree. Experiments of module architecture can be found in Appx. A.3

3.3 TOTAL OBJECTIVE

Our proposal can be easily integrated with current LNL algorithms and improve their performance
on LNL-FG. Therefore, the total training objective contains three following parts.
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Algorithm 1 The pseudocode of proposed SNSCL

Require: Training set DN = {(xi, yi)}ni=1, the momentum queue size D, a reliability threshold t ∈ [0, 1],
two trade-off coefficients λ1, λ2, an average-moving coefficient α, the training batch size B.

Require: (Networks) Classifier network F (feature extractor f ), Stochastic moduleM.
Ensure: Optimal parameters of classifier network θ∗

1: WarmUp (F (θ);DN ) // initialize the parameter θ via cross-entropy
2: while e < MaxEpoch do
3: γi ← GMM(li | {li = L(F (xi; θ), yi)}ni=1) // compute the cross-entropy loss and reliability score γ for each sample
4: ωi ← (γi, t) // compute the weight value ω for each sample ▷ Eq. 3
5: ŷe

i ← αŷ
(e−1)
i + (1− α)ŷe

i // refurbish the unreliable labels with average-moving ▷ Eq. 4, 5
6: for iter ∈ {1, ..., num iters} do
7: Draw a mini-batch {(xl, yl)}Bl=1 from the label-corrected training set
8: for l ∈ {1, ..., B} do
9: z′l ← p(Q|zl), where p(Q|zl) ∼ N (µ, σ2) // generate a distribution via M and then sample ▷ Eq. 6, 7

10: Weighted-update momentum queue according to yl
11: Compute three losses LLNL, LKL, LNTCL ▷ Eq. 8, 9
12: end for
13: θ(e) ← SGD( 1

B

∑B
b=1(LLNL + λ1Lours + λ2LKL); θ

(e))
14: end for
15: end while
16: return θ∗

LNL loss. There exists a LNL loss dubbed LLNL for classifier learning. Note that the input set of
the LNL framework can be written as {(xi, ŷ

e)|ωi ̸= 1}ni=1 and {(xi, yi)|ωi = 1}ni=1 at epoch e,
which contains less noisy labels compared with the original training set D.

Noise-tolerated contrastive loss. For each sample xi in the training set D, we attain its weight ωi by
the strategy in section 3.1. If ωi satisfies to ωi = 1, the label of sample xi keeps the original label yi,
otherwise it is replaced with the moving-averaged label ŷe in Eq. 5. Then, we omit the subscripts and
formulate this sample as (x, ŷ) where q denotes its feature embedding. In our weighted momentum
queue, the positive keys {kŷ1, · · ·, k

ŷ
D} are found according to the label ŷ. Complementarily, the

remaining key points in the momentum queue are regarded as negative keys with size [D× (C−1)].
Note that the size of the total momentum queue is [D×C]. Formally, our noise-tolerated contrastive
loss is summarized as

LNTCL = − 1

D

∑D

d=1
log

exp(q · kŷd/τ)
LPos + LNeg

with

LPos =
∑D

j=1
exp(q · kŷj /τ) and LNeg =

∑{1,···,C}\ŷ

c=1

∑D

j=1
exp(q · kcj/τ),

(8)

where the LPos denotes positive keys from the same class ŷ while LNeg denotes the negative keys
from other classes {1, · · ·, C}\ŷ.

KL regularization. We employ the KL regularization term between the feature embedding distri-
bution Q and unit Gaussian prior N (0, I) to prevent the predicted variance from collapsing to zero.
The regularization can be formulated as

LKL = KL[p(z|Q)||N (0, I))]. (9)

The overall loss function can be formulated with two hyper-parameters λ1 and λ2 as

L = LLNL + λ1LNTCL + λ2LKL. (10)

The training flowchart is shown in Fig. 3. Our proposed weighting strategies can be easily integrated
into the typical SCL method, deriving a general LNL framework. The main operation is summarized
in Algorithm 1. Compared to typical SCL, the weighting strategies would not cause much extra
computational cost.
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Table 1: Comparisons with test accuracy on symmetric label noise. The average best and the last
accuracy among three times are reported. ↑ denotes the performance improvement of SNSCL.

Stanford Dogs Standford Cars Aircraft CUB-200-2011
20% 40% 20% 40% 20% 40% 20% 40%

Cross-Entropy 73.01 (63.82) 69.20 (50.45) 65.74 (64.08) 51.42 (45.62) 56.51 (54.67) 45.67 (38.89) 64.01 (60.77) 54.14 (45.85)
+ SNSCL 76.33 (75.83) 75.27 (75.00) 83.24 (82.99) 76.72 (76.36) 76.45 (76.45) 70.48 (69.64) 73.32 (72.99) 68.83 (68.67)

Label Smooth 73.51 (64.42) 70.22 (50.97) 65.45 (64.24) 51.57 (45.19) 58.21 (54.73) 45.24 (38.01) 64.76 (60.60) 54.39 (45.28)
+ SNSCL 76.85 (76.12) 74.64 (74.60) 83.21 (83.01) 76.07 (75.90) 76.24 (75.70) 70.36 (70.06) 73.46 (73.09) 69.14 (68.64)

Conf. Penalty 73.22 (66.89) 68.69 (52.98) 64.74 (64.46) 48.15 (43.71) 56.32 (55.51) 43.64 (39.54) 62.75 (61.10) 52.04 (45.13)
+ SNSCL 76.14 (75.73) 74.72 (74.49) 83.07 (83.00) 75.67 (75.38) 75.04 (74.23) 67.99 (66.85) 73.90 (73.51) 68.42 (67.86)
GCE 66.96 (66.93) 61.47 (60.32) 62.77 (61.23) 47.44 (46.13) 39.54 (39.24) 32.34 (32.28) 58.74 (57.20) 49.71 (48.11)
+ SNSCL 75.99 (74.56) 71.68 (70.62) 73.78 (73.55) 58.11 (57.41) 72.67 (71.53) 60.19 (59.83) 70.83 (70.56) 61.67 (61.46)
SYM 69.20 (62.13) 65.76 (46.99) 74.65 (73.21) 52.83 (51.61) 62.29 (60.51) 54.36 (45.39) 65.34 (63.60) 50.19 (50.15)
+ SNSCL 77.55 (77.24) 76.28 (76.25) 84.59 (83.54) 79.07 (78.87) 79.64 (79.09) 74.02 (73.63) 76.67 (76.06) 72.71 (72.58)

Co-teaching 63.71 (58.43) 49.15 (48.92) 68.60 (67.95) 56.92 (55.95) 42.55 (40.62) 35.21 (32.16) 57.84 (55.98) 46.57 (46.22)
+ SNSCL 74.18 (73.09) 60.71 (58.84) 78.94 (78.13) 75.98 (75.06) 74.61 (74.19) 65.47 (63.81) 69.77 (69.34) 60.59 (58.94)

JoCoR 66.94 (60.81) 49.62 (48.62) 69.99 (68.25) 57.95 (56.71) 61.37 (59.16) 52.11 (49.93) 58.79 (57.74) 52.64 (49.35)
+ SNSCL 75.79 (74.99) 63.42 (62.84) 79.67 (78.77) 76.80 (76.21) 75.88 (75.16) 71.65 (70.67) 71.86 (70.90) 64.43 (63.81)

MW-Net 71.99 (69.20) 68.14 (65.17) 74.01 (73.88) 58.30 (55.81) 64.97 (61.84) 57.61 (55.90) 67.44 (65.20) 58.49 (54.81)
+ SNSCL 77.49 (77.08) 74.92 (74.38) 85.96 (85.37) 77.76 (77.13) 80.08 (78.94) 73.55 (73.18) 76.94 (76.24) 69.51 (68.83)
MLC 74.08 (70.51) 69.44 (66.28) 76.02 (71.24) 59.44 (55.76) 63.81 (60.33) 58.11 (54.86) 69.44 (68.19) 60.27 (58.49)
+ SNSCL 78.92 (78.56) 76.49 (78.96) 85.92 (84.91) 78.49 (77.80) 79.19 (78.40) 75.21 (74.67) 77.58 (76.68) 71.54 (70.86)

DivideMix 79.22 (77.86) 77.93 (76.28) 78.35 (77.99) 62.54 (62.50) 80.62 (80.50) 66.76 (66.13) 75.11 (74.54) 67.35 (66.96)
+ SNSCL 81.40 (81.16) 79.12 (78.91) 86.29 (85.94) 80.09 (79.51) 82.31 (82.03) 76.22 (75.67) 78.36 (78.04) 73.66 (73.28)

Avg. ↑ 5.88 (9.34) 7.76 (15.83) 12.44 (13.29) 20.82 (23.06) 18.60 (19.86) 21.41 (24.49) 9.87 (11.25) 12.22 (16.46)

4 EXPERIMENTS

To evaluate the performance of our proposed SNSCL, we conduct extensive experiments, including
1) task variety: we select four fine-grained visual datasets and an open-world noisy dataset; 2) noise
condition: we construct two noisy types with varying noise ratios on four fine-grained datasets.

4.1 IMPLEMENTATION DETAILS

Noisy test benchmarks. We introduce four typical datasets in fine-grained classification tasks and
manually construct noisy labels. By a noise transition matrix T, we change partial labels of clean
datasets. Given a noise ratio r, for a sample (x, y), the transition from clean label y = i to wrong
label y = j can be represented by Tij = P(y = j|y = i) and P = r, where r is the preset noise
ratio. According to the structure of T, the noisy labels can be divided into two types: 1) Symmetric
(random) noise. The diagonal elements of T are 1− r and the off-diagonal values are r/(c− 1); 2)
Asymmetric (dependent) noise. The diagonal elements of T are 1−r, and there exists another value
r in each row. Noise ratio r is set as r ∈ {10%, ..., 40%}. An illustration of the noise transition
matrix T and basic statistics of these datasets are shown in Appx. A.2.

Besides, we also select a large-scale dataset collected from a clothing website to evaluate the effec-
tiveness of our algorithm on real-world applications. Clothing-1M (Xiao et al., 2015) contains one
million training images from 14 categories, with approximately 39.45% noisy labels.

Training settings. The code is implemented by Pytorch 1.9.0 with single GTX 3090. For four
fine-grained noisy benchmarks, the optimizer is SGD with the momentum of 0.9, while initialized
learning rate is 0.001 and the weight decay is 1e-3. The number of total training epochs is both 100,
and the learning rate is decayed with the factor 10 by 20 and 40 epoch. For Clothing-1M, refers to
(Wei et al., 2022), we train the classifier network for 15 epochs and use SGD with 0.9 momentum,
weight decay of 5e-4. The learning rate is set as 0.002 and decayed with the factor of 10 after
10 epochs, while warm up stage is one epoch. For all experiments, we set the training batch size
as 32. The data augmentation strategies include randomly cropping from 255×255 to 224×224,
horizontally flipping. In addition, we adopt a default temperature τ = 0.07 for scaling.

Hyper-parameters. Our framework includes two hyper-parameters, i.e., the reliability threshold t
in Eq. 3 and the length of momentum queue D Eq. 8. For all experiments, we set t = 0.5 and
D = 32. In addition, the trade-off parameters in Eq. 10 are set as λ1 = 1, λ2 = 0.001.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Baselines. We evaluate the effectiveness of our method by adding the proposal into current LNL
algorithm and compare the improvements on LNL-FG task. The basic methods we compared include
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Table 2: Comparisons with test accuracy on asymmetric label noise. The average best and the last
accuracy among three times are reported. ↑ denotes the performance improvement of SNSCL.

Stanford Dogs Standford Cars Aircraft CUB-200-2011
10% 30% 10% 30% 10% 30% 10% 30%

Cross-Entropy 74.24 (71.32) 63.76 (56.86) 74.58 (74.57) 58.08 (57.43) 65.98 (62.53) 51.10 (47.85) 68.26 (68.00) 56.02 (54.13)
+ SNSCL 76.24 (74.88) 64.49 (62.37) 83.73 (83.41) 70.04 (69.61) 78.28 (78.22) 65.44 (65.11) 74.80 (74.47) 61.48 (60.70)

Label Smooth 74.70 (71.81) 64.99 (57.04) 74.28 (74.13) 58.47 (57.80) 65.29 (63.34) 51.88 (47.71) 68.78 (67.67) 56.80 (53.69)
+ SNSCL 75.84 (75.16) 65.23 (63.69) 84.27 (84.13) 70.49 (70.20) 78.67 (77.98) 66.28 (65.56) 75.51 (75.42) 62.05 (61.43)

Conf. Penalty 74.41 (72.04) 64.50 (57.92) 73.78 (73.67) 56.96 (56.53) 64.90 (63.01) 49.38 (47.53) 67.66 (67.62) 54.33 (52.80)
+ SNSCL 76.01 (75.62) 67.53 (66.32) 84.26 (83.91) 72.23 (71.96) 78.34 (78.01) 66.88 (66.34) 75.34 (74.97) 62.69 (62.67)
GCE 67.13 (66.83) 54.53 (53.92) 68.75 (68.71) 60.57 (60.21) 44.22 (44.16) 34.18 (33.66) 62.92 (60.77) 50.05 (49.79)
+ SNSCL 75.91 (74.63) 68.45 (67.13) 80.33 (80.04) 64.64 (64.38) 73.85 (73.89) 64.33 (63.91) 73.77 (73.23) 61.37 (60.96)
SYM 69.57 (66.75) 61.61 (51.11) 76.74 (76.18) 58.30 (57.42) 69.31 (67.45) 50.23 (47.55) 68.81 (68.00) 52.16 (51.83)
+ SNSCL 77.37 (76.64) 74.74 (74.41) 86.71 (86.54) 78.98 (78.66) 82.30 (81.46) 69.61 (69.37) 77.89 (77.27) 67.43 (66.95)

Co-teaching 59.95 (59.77) 50.50 (50.44) 72.88 (72.71) 61.02 (60.86) 55.94 (49.85) 45.18 (38.97) 61.00 (60.92) 50.06 (48.55)
+ SNSCL 70.46 (70.24) 65.83 (65.41) 82.17 (81.63) 66.84 (66.49) 74.73 (74.28) 62.17 (61.88) 70.92 (70.63) 64.55 (64.10)

JoCoR 61.34 (60.11) 53.39 (52.35) 74.68 (73.21) 63.54 (62.27) 67.12 (64.99) 52.25 (50.28) 62.99 (61.88) 51.70 (49.60)
+ SNSCL 74.26 (72.96) 70.40 (70.01) 83.67 (83.28) 71.74 (71.22) 78.84 (78.29) 67.50 (66.48) 74.52 (73.97) 66.07 (65.26)

MW-Net 73.68 (72.19) 65.81 (65.19) 76.27 (75.89) 65.19 (63.32) 72.76 (70.18) 54.88 (51.80) 67.44 (65.08) 57.49 (56.10)
+ SNSCL 78.52 (78.03) 72.68 (72.20) 85.73 (85.44) 75.69 (75.28) 80.69 (80.22) 70.49 (69.90) 76.07 (76.70) 68.95 (68.26)
MLC 75.84 (74.99) 69.81 (69.03) 77.80 (77.29) 67.93 (67.28) 74.40 (73.91) 59.44 (59.00) 68.84 (68.21) 58.73 (58.29)
+ SNSCL 79.22 (78.96) 75.92 (75.57) 87.05 (86.70) 79.44 (79.21) 82.75 (82.43) 72.30 (71.96) 76.91 (76.47) 69.70 (69.24)

DivideMix 79.39 (78.47) 75.51 (73.67) 79.34 (77.92) 68.69 (68.63) 76.57 (76.24) 63.97 (63.28) 72.76 (71.24) 63.65 (62.68)
+ SNSCL 81.90 (81.72) 77.19 (77.02) 88.18 (87.94) 81.44 (80.96) 84.17 (84.03) 74.80 (74.57) 78.92 (78.56) 71.28 (70.83)

Avg. ↑ 5.55 (6.57) 7.81 (10.6) 9.70 (9.87) 11.28 (11.62) 13.61 (15.31) 16.73 (18.74) 8.51 (9.23) 10.46 (11.30)

Table 3: Comparisons with test acc. (%) on Clothing-1M.
CE JoCoR Joint Optim DivideMix ELR+ SFT+ CE DivideMix

(Wei et al., 2020) (Tanaka et al., 2018) (Li et al., 2020) (Liu et al., 2020) (Wei et al., 2022) + SNSCL + SNSCL

64.54 70.30 72.23 74.76 74.81 75.08 73.49 75.31

CE, label smooth (Lukasik et al., 2020), confidence penalty (Pereyra et al., 2017), Co-teaching (Han
et al., 2018), JoCoR (Wei et al., 2020), DivideMix (Li et al., 2020), SYM (Wang et al., 2019),
GCE (Zhang & Sabuncu, 2018), MW-Net (Shu et al., 2019), and MLC (Zheng et al., 2021). Detailed
settings about these methods can be found in Appx. A.3.

Results on four noisy benchmarks. We compare 10 algorithms and attain significant improvement
of top-1 testing accuracy (%) on four fine-grained benchmarks. We show the results in Tab. 1 and
Tab. 2, where we test symmetric and asymmetric noise types. To demonstrate the effectiveness of
our method, we give experimental comparisons from two aspects. 1) Improvements on top-1 test
accuracy. Overall, our method SNSCL achieves consistent improvement in all noisy conditions.
The average minimal improvement is 5.55% in Stanford Dogs with 10% asymmetric noise, and the
maximum is 21.41% in Aircraft with 40% symmetric noise. 2) Mitigating overfitting on fine-
grained sets. In these tables, we report the best accuracy and the last epoch’s accuracy. It is
noteworthy that the investigated methods mainly overfit on these benchmarks (i.e., the accuracy
attaches a peak and then drops gradually, causing a great gap between these two values). However,
SNSCL mitigates overfitting and maintains more stable learning curves.

Results on Clothing-1M. We evaluate the effectiveness of our algorithm on Clothing-1M, a real-
world noisy benchmark set with one million training images, and show the comparison results in Tab.
3. We select cross-entropy and DivideMix as the basic methods and integrate SNSCL with them.
Obviously, the combination DivideMix+SNSCL outperforms the state-of-the-art method SFT+ by
0.23% top-1 test accuracy. Moreover, in contrast with the bases, SNSCL achieves remarkable im-
provements by 8.95% and 0.55%, respectively. These results demonstrate the effectiveness of our
methods in real-world applications.

4.3 MORE ANALYSIS

Versatility. SNSCL is flexible and can also be applied to current LNL methods for improving
their performance on generic noisy sets. We select several LNL methods and combine them with
our proposal. The study results on noisy CIFAR-10 & 100 are reported in Tab. 4. Overall, the
performance of these five methods achieve non-trivial improvements by combining with SNSCL. We
highlight Top-1 testing accuracy of Peer Loss improve over 18% on CIFAR-100 by using SNSCL.
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Table 4: Comparisons with test acc. (%) on generic classification task. The solid results denote the
improvement of our method SNSCL. The average results among five times are reported.

CIFAR-10 CIFAR-100
Symm. 40% Asym. 40% Symm. 40% Asym. 40%

Peer Loss (Shu et al., 2019) 84.29 / 92.21 85.18 / 91.59 50.53 / 69.82 50.17 / 68.90
JoCoR (Wei et al., 2020) 85.44 / 92.70 83.91 / 91.41 55.97 / 71.44 50.97 / 69.89
CDR (Xia et al., 2021) 86.13 / 93.83 85.79 / 92.08 60.18 / 71.95 59.49 / 71.57
SFT (Wei et al., 2022) 89.54 / 94.59 89.93 / 94.27 69.72 / 74.52 69.29 / 73.19
DivideMix (Li et al., 2020) 94.80 / 95.92 93.40 / 94.90 74.92 / 76.04 72.10 / 75.16

Table 5: Compared to Sel-CL+ (Li et al., 2022). The backbone is PreAct ResNet-18.
Dataset CIFAR-10 CIFAR-100
Noise S. 20% S. 50% S. 80% A. 20% A. 40% S. 20% S. 50% S. 80% A. 20% A. 40%

Sel-CL+ 95.5 93.9 89.2 95.2 93.4 76.5 72.4 59.6 77.5 74.2
Ours 96.2 95.2 91.7 95.6 94.9 76.4 74.7 64.3 77.3 75.1
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Figure 4: More analyses from four perspectives. We select Stanford dogs with 40% symmetric
label noise as the test benchmarks and further analyze the effectiveness of our algorithm.

Table 6: Ablation study about the effectiveness of each component under 40% symm. label noise.
Component Stanford Dogs CUB-200-2011

Weight cor. Weight update Stoc. Module CE+SNSCL DivideMix+SNSCL CE+SNSCL DivideMix+SNSCL
69.20 (50.45) 77.93 (76.28) 54.14(45.85) 67.35 (66.96)

✓ 71.44 (68.90) 78.27 (78.04) 63.11(60.41) 69.57 (69.22)
✓ ✓ 74.11 (72.96) 78.85 (78.61) 66.44(65.10) 72.10 (71.84)
✓ ✓ ✓ 75.27 (75.00) 79.12 (78.91) 68.83(68.67) 73.66 (73.28)

Compared to Sel-CL+. We conduct experiments to compare our method (DivideMix + SNSCL)
with Sel-CL+ (Li et al., 2022), a LNL method based on contrastive learning. Detailed discussions
about these two methods can be found in Related works. Tab. 5 reports the comparison results. Our
method outperforms Sel-CL+ in most noisy settings. As the noise ratio arises, the achievements of
SNSCL are more remarkable while the performance is improved by 2.5% on CIFAR-10 80% symm.
noise, and 4.7% on CIFAR-100 80% symm. noise. Besides, thanks to the stochastic module, we
merely adopt two simple augmentation strategies in our framework (see Appx. A.3).

Effectiveness. Our algorithm exhibits the superior effectiveness in two aspects. (1) we plot the
curve of test accuracy in Fig. 4(a). It is clear that the accuracy of CE rises dramatically to a peak
and gradually decreases, indicating overfitting to noise. For SNSCL, the testing curve is relatively
stable and result in good generalization performance. (2) we test the noise ratios with a wide range
of r ∈ {10%, · · ·, 80%} and record the best and the last top-1 testing accuracy. As shown in the
scatter plot 4(b), SNSCL can mitigate reasonable discriminability for a high noise ratio (68% acc.
for symmetric 80% label noise). More results can be found in Appx. A.3.

Sensibility. We explore the effect of two essential hyper-parameters in our method. 1) The momen-
tum queue size D. The batch size or momentum queue size is the key point in contrastive learning,
and thus we set D ∈ {4, 8, 16, 32, 48, 64} to explore its influence on our framework. The results
are shown in Fig. 4(c). As the size D reaches a certain amount, the performance will not increase.
Thus, we set a suitable yet effective value D = 32. 2) The reliability threshold t. This threshold in
the weight-aware mechanism deeply affects the subsequent two weighted strategies. We adjust its
value from the space {0.1, 0.3, 0.5, 0.7, 0.9} and plot the results in Fig. 4(d). The best performance
is attained on two conditions when t = 0.5. Therefore, we set the reliability threshold as 0.5.
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Ablation study. In our proposed SNSCL, there mainly exist three components, weighted-correction
and weighted-update strategy in a weighted-aware mechanism and a stochastic module. We conduct
the ablation study on two benchmarks to evaluate the effectiveness of each component and show
the results in Tab. 6. Under the settings of Stanford dogs with 40% symmetric noisy labels, the
combination of three components improves the performance of CE by more than 6% and the effect
of DivideMix by 3% respectively, while all components bring some positive effects. To some extent,
these results demonstrate the effectiveness of each part of our method.

Visualization. We visualize distributions of feature embeddings via t-SNE in Appx. A.3, verifying
that SNSCL faithfully improves discriminability of feature extractors under varied noisy conditions.

5 RELATED WORK

Robust methods in Learning with noisy labels. The methods in the field of learning with noisy
labels can be roughly categorized into robust loss function, sample selection, label correction, and
sample reweight. The early works (Zhang & Sabuncu, 2018; Wang et al., 2019; Ma et al., 2020;
Liu & Guo, 2020) mainly focus on designing robust loss functions which provide the deep model
with greater generalization performance compared with the cross-entropy loss and contain the the-
oretical guarantee (Ma et al., 2020; Liu & Guo, 2020). Currently, more works turn to explore the
application of the other three strategies. In label correction, researchers refurbish the noisy labels
by self-prediction of the model’s output (Song et al., 2019; Wang et al., 2021b) or an extra meta-
corrector (Wu et al., 2021; Zheng et al., 2021). The latter enables admirable results of correction
with a small set of meta-data. In sample section, the key point is how effective the preset selection
criterion is. Previous literatures leverage the small-loss criterion that selects the examples with small
empirical loss as the clean one (Han et al., 2018; Wei et al., 2020). Recently, the works (Nguyen
et al., 2020; Bai & Liu, 2021; Wei et al., 2022) represented by SELF (Nguyen et al., 2020) pay more
attention to history prediction results, providing selection with more information and thus promot-
ing the selection results. Besides, sample reweight methods (Shu et al., 2019; Ren et al., 2018) give
examples with different weights, which can be regarded as a special form of sample selection. For
example, Shu et al. (2019) designed a meta-net for learning the mapping from loss to sample weight.
The samples with large losses are seen as the noise, and thus meta-net generates small weights.

Contrastive learning. As an unsupervised learning strategy, contrastive learning (Chen et al.,
2020a;b; He et al., 2020) leverages similarity learning and markedly improves the performance of
representation learning. The core idea of these methods is maximizing (minimizing) similarities of
positive (negative) pairs at the data points. Further, to deeply explore the supervised information,
supervised contrastive learning (Khosla et al., 2020) exploits labels and aims to reduce the distance
between the embedding and its congeneric embeddings in the feature space.

CL has also been applied to LNL field for better representation learning. Sel-CL (Li et al., 2022) pro-
poses a pair-wise framework of selecting clean samples and conducts contrastive learning on those
samples. Our proposed NTSCL is different in three aspects: 1) a different selection strategy via a
novel weight-aware mechanism; 2) a stochastic module avoiding manually-defined augmentations in
SCL for LNL. 3) a plug-and-play module for typical LNL methods. NTSCL can be easily integrated
into existing methods for improving performance on LNL or LNL-FG, while Sel-CL cannot.

6 CONCLUSION

In this work, we propose a novel task called LNL-FG, posing a more challenging noisy scenario
to learning with noisy labels. For this, we design a general framework called SNSCL. SNSCL
contains a noise-tolerated contrastive loss and a stochastic module. Compared with typical SCL,
our contrastive learning framework incorporates a weight-aware mechanism which corrects noisy
labels and selectively update momentum queue lists. Besides, we propose a stochastic module for
feature transformation, generating the probabilistic distribution of feature embeddings. We achieve
greater representation ability by sampling transformed embedding from this distribution. SNSCL
is applicable to prevailing LNL methods and further improves their generalization performance on
LNL-FG. Extensive experiments and analysis demonstrate the effectiveness of our method.
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A APPENDIX
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Figure 5: Ten tested methods (left → right): cross-entropy, label smooth, confidence penalty, GCE,
SYM, Co-teaching, JoCoR, MW-Net, MLC, DivideMix. Methods with same color belong to same
LNL robust strategy. The x-axis denotes their performance on typical LNL task while the perfor-
mance increases gradually from left to right.

Table 7: An ablation study on 40% symmetric noisy labels. The performance of Co-teaching can be
improved by several robust techniques and gets close to the performance of DivideMix (the SOTA).

Co-teaching Mixup Pseudo-label Conf. reg. EMA Stanford Dogs CUB-200-2011
✓ 49.15 (48.92) 46.57 (46.22)
✓ ✓ 62.79 (60.10) 54.04 (53.09)
✓ ✓ ✓ 72.44 (71.97) 65.77 (63.91)
✓ ✓ ✓ ✓ 75.21 (73.94) 66.47 (65.73)
✓ ✓ ✓ ✓ ✓ 77.84 (77.41) 67.64 (67.20)

DivideMix 77.93 (76.28) 67.35 (66.96)

A.1 A PRIOR STUDY

In this section, we conduct a preliminary investigation to evaluate the performance of current LNL
on LNL-FG. Figure 5 and Table 7 exhibit the qualitative results. Our finds are divided into two parts,

• Not all investigated algorithms can achieve significant performance for LNL-FG as they
achieved in LNL, demonstrating the difficulty of fine-grained noisy settings. In Stanford
Dogs and CUB-200-2011, Cross-entropy, a non-robust method, attains competitive generaliza-
tion performance while outperforming more than half methods. The insufficient robustness of
these methods empirically demonstrates that LNL-FG poses a more challenging noisy condition
for model learning and has not attracted much attention.

• The generalization performance of LNL methods heavily relies on techniques that can
mitigate overfitting on noisy labels. In Table 7, we select co-teaching, a method with poor
performance on LNL-FG, and add four robust techniques step by step. Each technique im-
proves the performance of the basic method. Combining with Mixup, pseudo-label, confidence
regularization, and EMA seriatim, top-1 testing accuracy of Co-teaching on the clean test set
of Stanford Dogs is improved by 13.64%, 9.65%, and 2.77%, respectively. However, integrat-
ing these existing techniques into the training process is difficult or requires customized
adaptations, inspiring us to design a general method which can be applied to current LNL
methods for improving their performance on LNL-FG.
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Figure 6: Illustration of symmetric and asymmetric noise transition matrix. There is a 10-classes
classification task and the noise ratio is set as r = 0.4.

A.2 MORE IMPLEMENTATION DETAILS

Settings of Figure 2. We conduct an experiment to compare the convergence curves. 50 classes with
100 images per class are selected from ImageNet and Stanford Dogs, respectively, for simulating
the generic and fine-grained sets. The backbone is ResNet-18. It is clear that constructing noisy
labels on fine-grained sets yields greater negative effects of the noise, causing the model overfits
more easily.

Noise transition matrix. We give an illustration of two types of the transition matrix in Figure 6.

Settings of benchmarks. In this work, we select four fine-grained datasets, two generic datasets,
and one open-world noisy set to verify the effectiveness of our method. The detailed information of
these benchmarks is shown in Table 8. For validation and hyper-parameter adjustment, we reserve
10% clean training samples and translate the partial labels of the rest to the noisy labels.

Table 8: Extended version of Table 1.
Datasets # Train # Test # Classes # Size # Features Model Warmup
Fine-grained set (pre-trained)

Aircraft (Maji et al., 2013) 6667 3333 100 224 512 ResNet-18 10
CUB-200-2011 (Wah et al., 2011) 5994 5794 200 224 512 ResNet-18 10
Stanford-Cars (Krause et al., 2013) 8114 8441 196 224 512 ResNet-18 10
Stanford-Dogs (Khosla et al., 2011) 12000 8580 120 224 512 ResNet-18 5
Generic set
CIFAR-10 (Krizhevsky et al., 2009) 50000 10000 10 32 512 PreAct ResNet-18 10
CIFAR-100 (Krizhevsky et al., 2009) 50000 10000 100 32 512 PreAct ResNet-18 20
Real-world set (pre-trained)

Clothing-1M (Xiao et al., 2015) 1000000 10000 14 224 2048 ResNet-50 1

Settings of comparison methods. We compare our proposal with cross-entropy loss function and
the following baselines:

• Label smooth (Lukasik et al., 2020), which reassigns the sample label from a hard version to a
soft version like {0, 0, 1} → {0.05, 0.05, 0.9}. This method confronts the effects of noisy labels
by mitigating over-confidence of the model on the given label.

• Confidence penalty (Pereyra et al., 2017), which stems from the motivation of penalizing low
entropy output distributions. It connects a maximum entropy based confidence penalty to label
smoothing through the direction of the KL divergence.

• GCE (Zhang & Sabuncu, 2018), which analyzes the robustness of MAE and the poor perfor-
mance. Then, the author presents a theoretically grounded set of noise-robust loss functions that
can be seen as a generalization of MAE and CCE.

• SYM (Wang et al., 2019), which obeys the paradigm of the symmetric loss function that ensem-
bles CE and reversed CE. The latter is demonstrated as a robust loss function.
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• Co-teaching (Han et al., 2018), which ensembles two branches for alternatively selecting sam-
ples with small losses and feeds them to another network training. Co-training strategy allevi-
ates the error accumulation of the selection to some degree.

• JoCoR (Wei et al., 2020), which leverages the framework of Co-teaching and further designs a
KL term for consistent output of two networks. It explores the lower bound of small loss and
prompts accurate selection.

• MW-Net (Shu et al., 2019), which designs a meta-network for generating the sample weight
via learning a function from loss to weight. The meta-weight is inserted into the training of the
classification network by bi-level strategy.

• MLC (Zheng et al., 2021), which also designs a meta-network for label correction. It learns
from the original label and feature embeddings and outputs the corrected label.

• DivideMix (Li et al., 2020), which belongs to a hybrid approach that bases on sample selection
and ensembles co-training, pseudo-labeling, and Mixup. It attains state-of-the-art performance
on LNL.

For fair comparisons, we keep the same hyper-parameters as they reported in their published ver-
sions, where some settings are marginally adjusted, and we report them in table 9. In addition, we
adjust the selection process in Co-teaching (Han et al., 2018) and JoCoR (Wei et al., 2020) when
combines with our algorithm. Since our algorithm changes the original noise ratio in the training
set, we replace the pre-estimation of the noise ratio with the dynamic strategy (i.e., GMM fits the
losses among all samples).

Table 9: Detailed settings of compared methods in experiments.

Method Settings
SYM (Wang et al., 2019) SYM = α× CE + β × RCE, where α = 0.1, β = 1
Label Smooth (Lukasik et al., 2020) smooth coefficient λ = 0.1
MW-Net (Shu et al., 2019) extra clean sample number N = 5× category number
MLC (Zheng et al., 2021) extra clean sample number N = 5× category number
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Figure 7: Illustration of stochastic module. Compared to typical augmentation strategies in con-
trastive learning, we replace it with a stochastic module. Original feature embedding zi is input
into a stochastic network. Then, the augmented embedding z′i can be sampled from the generated
distribution. We consider that the property of stochastic provides more complex feature transforma-
tion than typical augmentation in images space, as well as avoiding manually defined augmentation
strategies for different datasets.

Table 10: Test accuracy (%) of CE + SNSCL with different MLP architecture on 40% symmetric
noisy labels. The average best score among three times are reported.

Architecture {h1, · · ·, hn} Stanford Dogs CUB-200-2011 Aircraft Stanford Cars
512 - 1024 - 512 74.79 68.79 70.30 76.44
512 - 2048 - 512 75.27 68.83 70.48 76.72
512 - 4096 - 512 75.01 69.09 70.19 76.51

512 - 1024 - 1024 - 512 74.96 68.66 69.84 75.90
512 - 2048 - 2048 - 512 75.04 69.00 69.07 75.61

A.3 MORE EXPERIMENTAL RESULTS

MLP structure of stochastic module. In this paper, we build a stochastic module for learnable
feature transformation, which is constructed as a three-layer MLP structure as shown in Figure 7
(b). Besides, we actually have tried different MLP architecture settings in the following experiments.
Table 10 exhibits the comparison results with five structures. It can be seen that varying MLP settings
do not remarkably affect the final results. Therefore, we prefer to adopt the simple yet effective one,
i.e., {h1, h2, h3} = {512, 2048, 512}. Compared to the the backbone whose params is around 11.9
M, the learnable params of this module is only 0.06 M, which do not cause complex computation.

Stochastic module vs. augmentation strategy. We compare our proposed stochastic module with
several complex augmentation strategies, including random cropping, cutout, color contrast, gaus-
sian noise, and horizontal flipping. In Table 11, we give the comparison results with different strate-
gies for feature transformation. The performance of our stochastic module consistently outperforms
traditional augmentation strategies in image space. The average improvement is more than 1%. The
results empirically demonstrate the superiority of our proposed stochastic module.

Table 11: Test accuracy (%) of CE + SNSCL with different strategies for feature augmentation on
40% symmetric noisy labels. The average best score among three times are reported.

Stanford Dogs CUB-200-2011 Aircraft Stanford Cars
Strong aug. 74.02 ± 0.28 67.26 ± 0.40 70.19 ± 0.26 75.16 ± 0.33

Ours 75.27 ± 0.24 69.09 ± 0.41 70.48 ± 0.33 76.72 ± 0.29

More results. We give more detailed experimental results in the following

• Visualization. Figure 8 demonstrates that SNSCL improves the representation ability of the
feature extractor under noisy conditions and achieves more discriminative class representation.

• Robust learning curves. Figure 9 shows the robust learning curves of our algorithm under all
noise conditions.
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CE CE + SNSCL

(a) CE vs. CE+SNSCL, CIFAR-10 with 60% symmetric noisy labels

DivideMix DivideMix + SNSCL

(b) DivideMix vs. DivideMix+SNSCL, CIFAR-10 with 60% symmetric noisy labels

CE CE + SNSCL

(c) CE vs. CE+SNSCL, CIFAR-100 with 40% asymmetric noisy labels

DivideMix DivideMix + SNSCL

(d) DivideMix vs. DivideMix+SNSCL, CIFAR-100 with 40% asymmetric noisy labels

Figure 8: Compared to CE, our improvements in (a)(c) are remarkable. For DivideMix, our method
generates more isolated clusters on CIFAR-10, as shown in (b). Since the similar performance
between DivideMix and DivideMix+SNSCL (less than 2%), the improvement is not obvious in (d).
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(a) Stanford Car, Symmetric label noise, ResNet-18
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(b) Aircraft, Symmetric label noise, ResNet-18
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(c) CUB-200-2011, Symmetric label noise, ResNet-18
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(d) Stanford Dogs, Symmetric label noise, ResNet-18

Figure 9: Comparisons with training curves as noise ratio increases. We detailedly plot more
training results about test accuracy (%) vs. noise ratio r, where there is symmetric noise and r ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. Under all noise ratio, SNSCL both remarkably improve the
performance of the baseline.
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