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Abstract

The matrix completion problem aims to reconstruct a low-rank matrix based on a
revealed set of possibly noisy entries. Prior works consider completing the entire
matrix with generalization error guarantees. However, the completion accuracy
can be drastically different over different entries. This work establishes a new
framework of partial matrix completion, where the goal is to identify a large
subset of the entries that can be completed with high confidence. We propose an
efficient algorithm with the following provable guarantees. Given access to samples
from an unknown and arbitrary distribution, it guarantees: (a) high accuracy over
completed entries, and (b) high coverage of the underlying distribution. We also
consider an online learning variant of this problem, where we propose a low-regret
algorithm based on iterative gradient updates. Preliminary empirical evaluations
are included.

1 Introduction

In the classical matrix completion problem, a subset of entries of a matrix are revealed and the
goal is to reconstruct the full matrix. This is in general impossible, but if the matrix is assumed to
be low rank and the distribution over revealed entries is uniformly random, then it can be shown
that reconstruction is possible. A common application of matrix completion is in recommendation
systems. For example, the rows of the matrix can correspond to users, the columns to movies, and an
entry of the matrix is the preference score for the user over the corresponding movie. The completed
entries can then be used to predict user preferences over unseen movies. The low rank assumption in
this case is justified if the preference of users over movies is mostly determined by a small number of
latent factors such as the genre, director, artistic style, and so forth.

However, in many cases, it is both infeasible and unnecessary to complete the entire matrix. First
consider the trivial example of movie recommendations with users and movies coming from two
countries A and B, where each user rates random movies only from their country. Without any cross
ratings of users from country A on movies from country B or vice versa, it is impossible to accurately
complete these entries. A solution here is straightforward: partition the users and movies into their
respective groups and then complete only the part of the matrix corresponding to user ratings of
movies from their own country.

In reality, many users have categories of movies with few or no ratings based on genre, language, or
time period. For such users, it is difficult to accurately complete unrated movie categories which they
do not like to watch from those which they have not even been exposed to. Thus it may be preferable
to abstain from making rating predictions for such users on these unpredictable categories. This is
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further complicated by the fact that such categories are not crisply defined and relevant categories
may vary across user demographics like country and age.

Latent observations Actual observations Completions C Unpermuted completions

Comedies Horror movies

Figure 1: A simple example where some users rate only comedies and some rate only horror movies.
However, these two groups are unknown and the rows and columns are permuted according to
m = me o wg. The partial completions made by our algorithm, shown on simulated data, correspond
to completing the ratings for the half of the matrix as one would like. Note that our algorithms can
handle arbitrary revealed subsets, not only stochastic block models. The experimental setup and
more preliminary experiments are described in Section@

This motivates a more general question: can we identify a subset of the matrix that can be completed
by the existing observations with high confidence? We call this problem partial matrix completion.
Let M™ be a target matrix. A non-convex formulation would be to find a matrix M and a set of entries
C C [m] x [n] which maximizes:

1 * oro\2
o IC| s.t. @ Z (M}, — My;)? <e. (1)
(i,5)eC
This is non-convex because the set C' is discrete and also because the choice of M interacts C.
Fortunately, there are already several matrix completion algorithms which output M that guarantee
low “generalization error” with respect to future examples from the same distribution of entries as
those from the training distribution, though they are not accurate over the entire matrix. We will fix

any one of these completions M.

We thus relax the goal of partial matrix completion to identify a matrix C' which gives a confidence
score for each entry between 0 and 1. A value of 0 indicates that this entry should not be completed,
whereas 1 indicates we have absolute confidence. We call this matrix the confidence matrix. Ideally,
we would like that the confidence matrix to have a value of 1 on all entries that are well supported by
the observation distribution.

We formalize this problem through the following definitions. The precise definitions of some of the
terms will be introduced in subsequent sections. Let M* be a target matrix and M be a completion
given by a matrix completion algorithm that guarantees low generalization error over future examples
from the same entry distribution (formal definition given in Def. , and let € > 0. The coverage of
C'is defined to be [|C]|; £ 37, |Ci1.
Definition 1 (Partial matrix completion problem). Let M™* be a target matrix and M be a full
completion (Def., and € > 0 be an error tolerance. Find a confidence matrix C' € [0, 1]™*"™ with
maximal coverage, i.e.

1 N
argmax ||Cl1 s.t. —— Z Cij (M} — M;;)* <e.
Celo,1]mxn 1€ T e

The matrix C' that solves the above optimization problem has the following property: C;; indicates
whether the (i, j)-th entry shall be completed, and a fractional value can be interpreted as either a
fractional completion or a probability of completion. C' provides the largest coverage among all that
satisfy the property that the average error is at most € over the completed entries.



Challenges of partial matrix completion. The above formulation is intuitive and convex, but
notice that we do not know M™*, and thus cannot apply convex optimization directly.

Key challenges are illustrated by two intuitive, but naive approaches. First, consider completing just
those matrix entries (7, j) where all rank-k completions have nearly the same value Mij. Evenina
simple case where all revealed entries are 1, any single entry could be &1 for some rank 2 completion
of the matrix. Based on this, one often will not be able to complete any entries whatsoever.

Second, consider the generalization of our previous example where the sampling distribution is
uniform over an arbitrary subset U of m x n possible indices. For simplicity, think of |U| = mn/2 as
covering half the matrix. It follows from previous generalization bounds on matrix completion that one
could accurately complete all entries in U. However, in general U is unknown and arbitrarily complex.
The second naive approach would be to try to learn U, but this requires ~ |U| = mn/2 > m +n
observations.

1.1 Our contribution

We present an inefficient algorithm and its efficient relaxation to solve the partial matrix completion
problem with provable guarantees over arbitrary sampling distributions. In particular, if y is uniform
over some arbitrary subset U C [m] x [n] of a rank-k matrix M* € [—1,1]™*™, the theoretical
results obtained in this work have the following implications. The first, is an inefficient algorithm
that solves the partial matrix completion problem for uniform distribution:

Corollary 2 (Inefficient algorithm, uniform sampling distribution). For any €, > 0, with probability
>1—6over N > cp- w revealed entries from M™* drawn from p, for some constant
Co, Algorithm(Sec. outputs M and C € [0,1)]™*", such that

(1) [ICll > U],
1 N ~
(2) : ich > Cuy(M— M;,)? <e.
i€[m],j€[n]

Next, we describe the guarantees of an efficient algorithm It has a worse sample complexity, up to
polynomial factors in k, €. The advantage is that it runs in polynomial time. Otherwise, its guarantees
are similar to that of the first algorithm.

Corollary 3 (Efficient algorithm, uniform sampling distribution). For any €, > 0, with probability
>1—0d0over N > cp- ]:—z - (kE(m + n) + log(1/6)) revealed entries from M* drawn from u, for
some constant cg, Algorithm( Sec.|4) outputs M and C € [0, 1]™*™, such that

(1) [ICll = U],
1 N -
(2) : m Z C7J(M7j — Mij)z S E.
i€[m].j€[n]

Corollaryis a simplification of Theorem and Corollary is a simplification of Theorem

The results can be extended to the setting where the observed entries are noisy with zero-mean
bounded noise. A remarkable feature of our algorithms is that once the full completion M is obtained
using existing procedures, they only rely on the locations of observed entries and not the values.
Thus, the decisions regarding which entries to complete, i.e., to add to C' is completely agnostic
to the actual values of the revealed entries. Our framework is able to handle arbitrary sampling
distributions, which captures scenarios such as overlapping groups or idiosyncratic rating habits.

The online setting. We formulate the partial matrix completion problem in the online learning
setting and propose an iterative gradient based online algorithm with provable guarantees. Corollary
is a special case of Theorem A simple simulation of the online algorithm in this special case of
uniform sampling over a subset of entries is demonstrated in Fig.

Corollary 4 (Online algorithm, uniform sampling distribution). Suppose M* € [—1,1]"*" is a
bounded matrix with max-norm (Eq.|2) bounded by K. The sampling distribution p is uniform
over a fraction 0 < ¢ < 1 of the n? entries. For any § > 0, after T = O(6~2K?n) iterations, the



confidence matrix C € [0,1]™*"™ output by the online algorithm ODD satisfies with probability at
least1 — 1 exp(fCQ(VT) for some universal constants c1,co > 0,

(1) [Clh = (e = 8%)n?,

(2): !

) (51/6
——— sup Cii(M;; — M%) <
ICl1 arev 5 (Mg )

= — 51/6 ’

ictml jei] ¢

where V is the set of all matrices M € [—1, 1]™*™ with max-norm bounded by K satisfying that
Ei joul(Mij — M5)?] < 6.

1.2 Related work

Matrix completion and recommendation systems. The common approach to collaborative
filtering is that of matrix completion with trace norm minimization [Srebro} |2004]. It was shown
that the trace norm regularization requires Q((n 4 m)3/2) observations to complete the matrix under
arbitrary distributions, even when the rank of the underlying matrix is constant, and this suffices even
in the more challenging agnostic online learning setting [Hazan et al.||2012a}/Shamir and Shalev-
Shwartz,|2014].|Srebro and Shraibman|[2005] study matrix completion with the max-norm, which
behaves better under arbitrary distributions, namely for low-rank matrices, O(n + m) observations
suffice.

Matrix completion and incoherence assumptions. A line of works in the matrix completion
literature considered the goal of finding a completion of the ground truth matrix with low Frobenius
norm error guarantee [Candes and Recht||2009,|Candes and Tao}|2010||Keshavan et al.}|2010}|Gross,
2011} |Recht||2011} Negahban and Wainwright||2012| [Jain et al.} 2013} |Chen et al.,|2020}/Abbe
et al.}|2020]. Such guarantee is strong but usually requires two restrictive assumptions on sampling
distribution of observations and the ground truth matrix structure: (1) the sampling of observations is
uniform across all entries, and (2) the ground truth matrix M ™ satisfies some incoherence conditions.
The incoherence condition is an assumption imposed on the singular vectors of M* = UXV T,
which ensures the vectors u;, v;’s to be sufficiently spread out on the unit sphere. The main reason
the incoherence condition is necessary in establishing meaningful guarantees in low-rank matrix
completion is that without such assumptions, there might exist multiple low-rank matrices that could
explain the observed entries equally well but differ substantially on unobserved entries. When the
incoherence condition is satisfied, it implies that the observed entries capture enough information
about the low-rank structure, making it possible to recover the original matrix with sufficiently well.
However, uniform sampling and incoherence assumptions do not hold in many realistic scenarios.

Subsequently, to circumvent these restrictive assumptions, another line of work evaluates the general-
ization error as an alternative metric for completion performance [Srebro et al.||2004}|Shamir and
Shalev-Shwartz|2014]]. To formalize, consider the task of completing M * with an arbitrary observa-
tion sampling distribution 1 over [m] x [n]. This can be conceptualized as predicting a hypothesis
mapping from the domain [m] x [n] to the codomain [—1, 1]. The goal is to characterize the guarantees
on the expected prediction error, quantified for a given completion M as Ei )~ H[(Mij — MZ*J)Q]
When p is the uniform distribution over [m] x [n], the generalization error bound translates to a
guarantee over the average error across all entries. However, if y is arbitrary (e.g. supported over a
fraction of the entries), then no guarantee could be established for entries that lie in the complement
of the support of x. This prohibits the use of M in settings where abstention is imperative.

Our work takes an alternative approach to this fundamental limitation in matrix completion. The
focus of our work is to identify entries where we can predict with high confidence to guarantee a
low completion error weighted by evaluated confidence. We provide formulation of the problem,
its convex relaxation, and an efficient gradient-based online algorithm due to a formulation of the
problem as an online two-player game.

Randomized rounding and semi-definite relaxations. For the efficient algorithm, the main anal-
ysis technique we deploy is based on randomized rounding solutions of semi-definite programming,
due to the seminal work of|Goemans and Williamson|[1995]. These were originally developed in the
context of approximation algorithms for MAX-CUT and other combinatorial problems. Here, we use
this analysis technique for analyzing inner products of high dimensional vectors, but in a different
context and to argue about a convex relaxation of a continuous optimization problem.



Abstention in classification and regression.  Abstaining from prediction has a long history in other
learning problems such as binary classification|Chow|[1957]]. There are several notable similarities.
First, many of the algorithms work as ours does, by first fitting a complete classifier and then deciding
afterwards where to abstain [e.g., [Hellman| 1970} Goldwasser et al.}|2020]. Second, numerous
abstention models have been considered, including a fixed cost for abstaining [e.g.,|Chow,|1957,
Kalai and Kanade|2021], as well as fixing the error rate and maximizing the coverage [e.g.,/Geifman
and El-Yaniv|[2017], as in our work, and fixing the coverage rate while minimizing the error [e.g.,
Geifman and El-Yaniv|[2019]. Third, there are algorithmic similarities, in particular the observation
that worst-case performance guarantees do not depend on knowing the underlying distribution | Kalai
and Kanade|[2021]. Online models of abstention have also been considered [e.g.,|Li et al.;|2011]. For
detailed survey on selective classification see [El-Yaniv and Wiener, 2010].

2 Problem Setup and Preliminaries

For a natural number n, let [n] = {1,2,...,n}. Consider a fixed set of indices X = [m] x [n]
throughout. Thus, in this paper x € X is = (i,j) where i € [m],j € [n]. The set of m x n
real-valued matrices is thus written as R*. We will thus view a matrix M over index set X’ as a
function from X — R, and for « € X, by slight abuse of notation denote by both M, and M (x) the
entry of M at index z.

We focus on the squared loss in this paper, though it may be interesting to consider other loss functions
in future work. Suppose v is a distribution over X, for matrices, M, M’, we denote by ¢(v, M, M) def
Eu0[(M(z) — M'(2))2]; we will also use the shorthand ||M — M'||2 < ¢(v, M, M").

When T € XV is a sequence of elements of X of length N, we denote by ¢(T, M, M) &t

LS en(M(2) — M'(z))? and the shorthand | M — M'|[2. £ ¢(T, M, M").

2.1 Matrix Classes, Version Space and Generalization

Matrix Norms. Given a matrix M, we denote by || M |2, the maximum row norm of M. We
denote by || M || max the max-norm of M defined as,

def .
HM Hmax = min HU”ZOO ’ ||V
UvT=M

2,00- (2)

The trace norm of a matrix M, denoted by || M ||, is the sum of its singular values. The Frobenius
norm of a matrix M, denoted by || M|, is the square root of the sum of its squared entries.

We will restrict attention to matrices with entries in [—1, 1]. The following three classes of matrices
with restrictions on respectively the rank, max-norm and trace-norm are of interest in this work.

Formally, let K = {M € [~1,1]*}, and define,
MEE frank(M) < Ky NK, MES E M |nax < KyNK, MY E (M| <7}0K.

The standard assumption in matrix completion is that the target matrix is low-rank; however, most

completion algorithms exploit convex optimization methods and optimize over max-norm or trace-
norm bounded matrices. It is known that || M||max < /rank(M) if M € [—1,1]% [cf. [Linial et al.,

2007, Lemma 4.2] and it is easy to see that ||M||¢; < rank(M)/mn for M € [~1,1]*. Thus,

M}Zk - M%" and Mffk - /\/l?c‘r N Hence, we will work with the latter two classes which satisfy
the following lemma which is proved in Appendix

Lemma 5. The classes, M'E** and MY, are closed under negations and are convex.

Version Space. We define the notion of version spaces that are used in our key results. For a
sequence ' € X N for any class of matrices M, a matrix M € M and 8 > 0, we define the version
space around M of radius 3 based on T" w.r.t. M as

V(M,B,T; M) = {M" € M| UT,M,M') < }. 3)

Intuitively, version space is the set of matrices in a particular matrix class that are “close” to a given
matrix with respect to 7.



Generalization Bounds. For a general class of matrices M, we define a notion of sample complex-
ity that will guarantee the proximity of empirical and population measures of interest for all matrices
in the class; we denote this notion by sc(e, §, M).

Definition 6 (Sample Complexity). For ¢,d > 0 and a class of matrices M, denote by sc(e, 3, M),
the sample complexity, to be the smallest natural number Ny, such that for any distribution y over X,

for S ~ p™N°, and for any fixed Me M (possibly depending on S), with probability at least 1 — 4,

sup K(S,M,M) - K(,u,M,M) <e.
MeMm

If no such Ny exists, sc(g, 9, F) o

Bounds on the sample complexity for matrix completion can be derived in terms of rank, max-norm
and trace-norm using standard results in the literature, and the fact that the squared loss is 2-Lipschitz
and bounded by 4 when both its arguments take values in [—1, 1]. In the proposition below, the
max-norm result follows from Theorem 5 in |Srebro and Shraibman||2005] and the trace-norm result
follows from Theorem 4 in [Shamir and Shalev-Shwartz,|[2014].

Proposition 7. For the classes, M3, MY, the following hold,
1. sc(e, 6, M) = O (& (K2(m +n) +1log 3)).
2. sc(e, 6, M¥) =0 (& (v/m+n+logs)).

It is worth comparing the two bounds in Proposition above. Consider the matrix M™ consisting
of all 1’s — from a matrix completion point of view this is particularly easy as every “user” likes
every “movie”. Note however that | M*||max = 1 and || M* ||, = +/mn. For this example, ignoring
the dependence on ¢, J, the sample complexity bound obtained using the trace-norm result would
be O((m + n)+/m + n), while that using max-norm would be O(m + n). In general, it is always
the case that || M ||+, /v/mn < || M ||max, S0 it may seem that the bounds in terms of trace-norm are
weaker. However, there are matrices for which this gap can be large and the sample complexity bound
in terms of trace-norm is shown to be tight in general (see [Srebro and Shraibman,|2005}|Shamir and
Shalev-Shwartz,|2014] for further details).

2.2 Full Completion Problem (with Noise)

We now define the matrix completion problem with zero-mean noise, in fact a matrix estimation
problem in the noisy case. Let D be a distribution supported on X' x [—1, 1]; the results in the paper
can all be easily extended when D is supported on X x [—B, B], increasing squared error by a B>
factor. Let p be the marginal distribution of D over X. Let Sxy = {(x4, y;))1, be an iid sample
drawn from DY Note here that z; = (i, j;) denotes the index of the matrix and y; the observed
value. We let S = (z1, ..., 2 ) denote the sequence of z;’s from Sxy (with repetitions allowed);
note that S is distributed as pV. Let M* € [—1,1]* be the matrix where M} =EplY|X = (i,7)].
We say that M is an e-accurate completion of M*, if £(p, M*, M) < e.

Definition 8 (Full Completion Algorithm). We say that FullComp(Sxy, ¢, d, M) is a full completion
algorithm with sample complexity scrc (e, §, M) for M, if provided Sxy ~ D for some D over
X x [-1,1] with M* € M, N > scec(e, 8, M), FullComp(Sxy, €, , M) outputs M € M that
with probability at least 1 — § satisfies, £(u, M*, M) <e.

The following result follows from [Srebro and Shraibman| 2005, Shamir and Shalev-Shwartz, 2014
(see also Prop.[7).

Proposition 9. There exists polynomial time (in mn/e) full completion algorithms for M¥** and
MY (e.g. ERM methods) with the following sample complexity bounds:

1. scec(e, 6, M) = O (& (K2(m +n) +log 5)).
2. scpqu (e, M) =0 (6% (T\/m +n + log %))
2.3 The Partial Matrix Completion Problem

Recall the definition of the (fractional) partial matrix completion in Eq. and Def.|1} In this work,
we will assume that a full completion matrix M is already obtained. The focus of the present work



is finding a completion matrix C' € {0,1}* (or C' € [0,1]? for fractional coverage) with large

def

coverage. The coverage in both cases are defined as: |C| = Y __, C,, and a low loss, defined as:

zeX

o def 1 . -
oC, M*, M) = ol > Co(Mg = M,)*.

reX

Note that C' € [0, 1]* can be viewed as a “fractional” set and we are overloading the notation ¢ to
allow that. Such a fractional coverage can be randomly rounded to a set whose size is within 1 of
|C|. In an ideal world, we would have at most € loss measured over the cells we complete as defined
above, and large or even full coverage |C| = mn.

Note that although the requirement in the optimization problems in Eq. (1) and Def. is to guarantee
L(C,M*, M) < ¢, as we don’t know M™*, the only guarantee we have by using a full completion
algorithm (and generalization bounds) is that (with high probability) M * is in some version space,
say V), centered at M. So we actually show a stronger guarantee that, sup ;¢ ¢(C, M, M ) <e.

A second observation is that if M is a version space around M, then by convexity of the matrix

classes, the matrix (M — M )/2, must be in some version space, say Vy, centered around the zero
matrix, 0. Thus, we will actually find a C' that guarantees, £(C, M,0x) < ¢ for every M € V.
This means that for maximizing coverage our algorithm has the remarkable property we only need to
know the locations of the revealed entries as indicated by S.

Sectionpresents a computationally inefficient but statistically superior algorithm in terms of sample
complexity for the coverage problem and its consequences for partial matrix completion. Section
presents a computationally efficient algorithm at the cost of a slightly worse sample complexity when
using the class M.

3 An Inefficient Algorithm

The main novelty in the partial matrix completion problem is that of finding an optimal coverage,
defined as the matrix C' in the formulation in Def. In this section we give an (inefficient) algorithm
for finding the optimal coverage, and the generalization error bounds for Partial Matrix Completion
that arise from it. In the next section we give an efficient approximation algorithm for doing the same,
with slightly worse sample complexity bounds and more complex analysis. This differs substantially
from prior work on abstention in classification and regression [|Kalai and Kanade}|2021] where the
optimal solution can be found in polynomial time.

Let C € [0, 1] be a target confidence matrix. For such a C, we will denote by v¢ the probability
distribution where v (x) = C,./||C||1 for x € X. Let S ~ pV be a sample obtained from the target
distribution . We output a C' which is an optimal solution to the following optimization problem,
inspired by a similar problem studied by |Kalai and Kanade|[2021] for classification with abstention.

Parameters and inputs : v, 5,5, M
maximize |C|y 4)
subject to C' € [0,1]¥, and VM € V(0Ox, 3, S; M), l(ve, M,0x) < v

Algorithm 1
Inputs: Sxy = ((z¢,y:))Y, ~ DV, ¢, 5, M, FullComp (cf. Def..
Obtain M € M using FullComp(Sxy,e/4,5/3, M).

Obtain C' using MPWith ~y def e/4, 8 def €/8,S = (z1,22,...,xyN) from Sxy.
return (M, C).

e N =2

MP defines a family of optimization problems; we will typically use M to be ME** or M.
The above optimization problem is in fact a linear program. The only unknowns are C, for z € X.
However, the set of constraints is infinite and it is unclear how a separation oracle for the constraint set



may be designed. Such an oracle could be designed by solving the following optimization problem:

max L(ve,M,0y). (5)
MeV(0x,B,5;M)

This optimization problem requires maximizing a quadratic function, and we prove it to be NP-hard
with the additional PSD and symmetric constraints in Appendix[A.2]

The following result subsumes Corollary We defer the proof of this theorem to Appendix as the
proof is similar to that of our efficient algorithm in the next section.

Theorem 10. Let M be either M or M. Let D be distribution over X x [—1,1], u
the marginal of D over X, [imax = max; ;P,((4,7) is sampled). Suppose that M*, defined
as M = Exy)~p[Y|X = (i,j)] satisfies that M* € M. Furthermore, suppose that
Sxy ~ DY and that FullComp is a full completion algorithm as in Defn. Then, provided
N > max{scrc(e/4,5/3, M), sc(e/8,8/3, M)}, for (M, C) output by Alg.[1] it holds that:

1. ||C||1 Z 1/Mmax;

1 9 *\2
. ”C"l;(Cx(Mx—Mx) <e.

2

4 An Efficient Algorithm

In this section, we show how the result from Proposition can be achieved using an efficient
algorithm at a modest cost in terms of sample complexity when using the matrix class ME**. In
particular, we consider the optimization problem defined in MP@ where the constraint || M][7_ < v
forall M € V(0x, 83, S; ME*) from MP is replaced by E,..,, [M,] < 7. The efficiency comes
from the fact that we can now implement a separation oracle for the constraint set by solving, for a
given C, the problem,

max Epmve [ M)
MEV(0x,6,5, M) volM:]
Mathematical program @is a convex optimization problem since the constraint set is convex and
the objective function is linear. However, it is not immediately clear how this relaxed optimization
problem relates to the original, which is the main technical contribution of this section.

Parameters and inputs : v, 8, S, ME*™
maximize ||C||; (6)
subject to C' € [0,1]%, and VM € V(0x, B, S; M), Epmre [M] <

Algorithm 2 (Efficient) Offline Algorithm for Partial Matrix Completion

1: Inputs: Sxy = (x4, 4:))Y; ~ DV, FullComp (cf. Def. , g, 0.

2: Obtain M € MW using FullComp(Sxy,e?/(4n?K?),§/3, Mpax),

3: Obtain C using MP@with v e/(2rK), BY 2/ (872K?), S = (z1, 2, ...,zx) from Sxy-.
4

. return (M, C).

The following result subsumes Corollary

Theorem 11. Let D be a distribution over X x [—1,1], p the marginal of D over X, pfimax =
max; ; P, ((7, j) is sampled). Suppose that M*, defined as M}; = E(x y)~p[Y|X = (i,j)] sat-
isfies that M* € MW, Furthermore, suppose that Sxy ~ DY and that FullComp is a full
completion algorithm as in Defn.|8| Then, provided N > max{scrc(e?/(4n*K?),5/3, M),
sc(e2 /(872 K?),8/3, M2}, for (M, C') output by Alg.|2| it holds that:

I~ ||C||1 2 1/,”rnax;
1

2. ——
IC11

> Co(M, — M) <

reX



S Online Setting

The previous section introduces the offline setting for the partial matrix completion problem. In
Appendix we describe the online version of the problem, which is motivated by two important
considerations. First, in many applications, the observation pattern is more general than a fixed
distribution. It can be a changing distribution or be comprised of adversarial observations. Second,
our online algorithm incrementally updates the solution via iterative gradient methods, which is more
efficient than the offline methods. For space considerations, details are deferred to Appendix [B|which
contains the setting, definitions, algorithm specification, and main results, and Appendix|C| which
details the proofs. In particular, the online algorithm, called Online Dual Descent (ODD), is described
in Algorithm and its regret guarantee in Theorem The online regret guarantee implies the
statistical learning guarantees of the previous sections when the support size is a constant fraction of
the full matrix, and this implication is spelled out precisely in Corollary

6 Experiments and Implementation

The MovieLens dataset (|[Harper and Konstan|[2015]) consists of, among other data, a set of users
with their rankings of a set of movies. It is a common benchmark for matrix completion because
some of the rankings are missing, and one can make predictions on the rankings of user preferences.

We used the dataset differently, aiming to test our online algorithm on generating a satisfying
confidence matrix. The experimental procedure is outlined as follows: we used training data from
250 users and their ratings on 250 movies, giving us a total of 5189 completed samples from the
incomplete matrix of size 250 x 250. We ran our algorithm, ODD (Algorithm , to get a confidence
matrix C'. In parallel, we used another standard matrix completion tool, fancyimpute (|Rubinsteyn
and Feldman,|2016]), to fill in the missing entries of the matrix and obtain a completion M ¢. After C

and My are obtained, we reveal the true ratings at the missing entries using the validation set and
computed the mean squared error of the predicted rating and true rating at each entry. The following
plots show the distribution of the mean squared error with respect to the confidence score C' assign at
the particular entry.
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Figure 2: (a) ODD heuristic on 250 x 250 user-movie rating data from the MovieLens Dataset.
Squared error in entry-wise prediction and entry-wise confidence level estimated by the ODD heuristic.
(b) The average squared error over various confidence levels suggests that a higher confidence level
is correlated with a lower squared error.

7 Conclusion

In this work we define the setting of partial matrix completion, with our high-level contributions
outlined as the following:

A new framework. We propose a new framework called partial matrix completion. In this problem,
one is given possibly noisy observations from a low-rank matrix, and the goal is to identify entries
that can be predicted with high confidence. The partial matrix completion problem answers two key
questions:

* Based on possibly noisy samples from an arbitrary unknown sampling distribution p, how
many entries can be completed with < ¢ error?
* How can we efficiently identify the entries that can be accurately completed?



When the underlying matrix has low rank &, we show that it is possible to complete a large fraction of
the matrix using only O(k(m + n)) observations while simultaneously guaranteeing high accuracy
over the completed set. We then study the complexity of identifying the optimal completion matrix.
We show that a naive mathematical programming formulation of the problem is hard. However,
we propose a relaxation that gives rise to efficient algorithms, which results in a slightly worse
dependence on k for the sample complexity. These guarantees are outlined both in Corollaryand
Corollary[3] and Theorem[I0]and Theorem[TT]for their more general versions.

Online game formulation. Furthermore, we consider the partial matrix completion problem
in the online setting, where the revealed observations are not required to follow any particular
fixed distribution. The goal henceforth is to minimize regret, the gap between the algorithm’s
performance and the single best decision in hindsight. This is a more general setting, as when
imposed with distribution assumptions, regret guarantees in online learning algorithms naturally
translate to statistical guarantees.

Our proposed online partial matrix completion algorithm is derived from an online repeated game.
The version space is the set of all valid completions with low generalization error. High confidence
should be assigned to entries where all completions in the version space are similar. Therefore, we
formulate the problem as a two-player online game. One player iteratively updates a confidence
matrix, and the other learns the version space. We gave an iterative gradient-based method with
provable regret guarantees and concluded with preliminary experimental evidence of the validity of
our framework.
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