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ABSTRACT

While many text-to-audio systems produce monophonic
or fixed-stereo outputs, generating audio with user-defined
spatial properties remains a challenge. Existing deep
learning-based spatialization methods often rely on latent-
space manipulations, which can limit direct control over
psychoacoustic parameters critical to spatial perception.
To address this, we introduce STASE, a system that lever-
ages a Large Language Model (LLM) as an agent to in-
terpret spatial cues from text. A key feature of STASE is
the decoupling of semantic interpretation from a separate,
deterministic signal-processing-based spatial rendering en-
gine, which facilitates interpretable and user-controllable
spatial reasoning. The LLM processes prompts through
two main pathways: (i) Description Prompts, for direct
mapping of explicit spatial information (e.g., “place the
lead guitar at 45° azimuth, 10 m distance”), and (ii) Ab-
stract Prompts, where a Retrieval-Augmented Generation
(RAG) module retrieves relevant spatial templates to in-
form the rendering. This paper details the STASE work-
flow, discusses implementation considerations, and high-
lights current challenges in evaluating generative spatial
audio.

1. INTRODUCTION

The landscape of Al-powered music generation has ad-
vanced rapidly, moving from general-purpose frameworks
towards precision-oriented paradigms [1-3]. In paral-
lel, immersive audio is gaining traction across industries,
fueling demand for spatially enhanced auditory experi-
ences [4,5]. However, current spatial audio synthesis
workflows—such as Dolby Atmos and Apple renderers—
have been reported by music producers to provide limited
operational controllability [6].

Most existing deep learning-based spatialization meth-
ods operate solely on audio inputs, without leveraging di-
rect textual descriptions [7-9]. While latent-space manip-
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ulation techniques show potential [10-12], their black-box
nature may result in information loss and limit precise con-
trol over psychoacoustic parameters critical to spatial per-
ception [13—15]. Unlike features such as melody or emo-
tion, spatial information can be explicitly modeled and ma-
nipulated via signal processing.
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Figure 1. High-level comparison between latent-space
spatialization pipelines and the proposed agentic STASE
pipeline. STASE decouples prompt interpretation (LLM
+ RAG) from a deterministic signal-processing-based ren-
derer to improve controllability and interpretability.

Leveraging established principles of binaural hearing—
including interaural time difference (ITD), interaural level
difference (ILD) [16, 17], and dynamic cues [18]—we in-
troduce STASE, a hybrid neuro-symbolic framework for
generating spatially dynamic music from natural language
prompts. As illustrated in Fig. 1, prior spatial networks di-
rectly map position information and audio signals (stem or
mono) to spatial perception via a black-box model, which
can have difficulty interpreting spatial cues from descrip-
tive language and provides limited controllability. In con-
trast, STASE integrates an LLM as an agent to process the
input prompt and route it into one of two pathways: (i)
Description Prompts, enabling direct spatial information
matching when precise positional details are given; and
(if) Abstract Prompts, where a Retrieval-Augmented Gen-
eration (RAG) module retrieves relevant spatial knowledge
before rendering. This decoupling of semantic interpre-



tation from deterministic signal-processing-based spatial
rendering supports interpretable and user-controllable spa-
tial reasoning.

Our modular architecture combines the LLM-based
prompt interpreter, a music generation module for content
creation, optional source separation or monaural instru-
ment inputs, and a dedicated spatialization engine driven
by LLM-derived parameters. In our current implementa-
tion, stems are generated via a music synthesis model and
source separation is not required. This modularity allows
components to be independently replaced or fine-tuned,
supporting both novice-friendly presets (e.g., fixed studio
arrangements) and expert-level customized synthesis.

2. RELATED WORK
2.1 Spatial Audio Perception and Production

Research on spatial auditory perception, starting with
Rayleigh’s foundational work [16], has highlighted the
roles of pinna filtering, Head-Related Transfer Functions
(HRTFs), and ITDs in sound localization. Later studies
demonstrated how dynamic head movements [18] and indi-
vidualized HRTFs [19] improve both localization precision
and subjective immersion. Despite these advancements, a
study involving music producers noted that current spatial
audio tools often lack flexibility and face challenges with
playback consistency across different devices [6].

2.2 Intelligent Music Generation Systems

The field of music Al has seen rapid progress, particularly
with the emergence of LLMs, leading to systems such as
MusicGen [2] and MusicLM [3]. These models have been
further refined for specific tasks such as instruction follow-
ing [20] or temporal control [21]. While many Al models
now generate stereo audio (e.g., MusicGen [2], Jen-1 [22],
Stable Audio [23]), they generally lack the precise spatial
control needed for detailed spatial rendering and immer-
sive experiences.

2.3 Spatial Audio Generation Techniques

Stereo panning is a fundamental music production tech-
nique, deeply integrated into Digital Audio Workstations
(DAWSs) and primarily based on amplitude panning using
principles like the "sine-cosine" pan law [24]. Beyond
panning, the broader field of spatial sound synthesis and
recording is an active research area. Recent neural net-
work methods have emerged, such as BinauralGrad [7]
for binaural signal conversion and methods for learning
spatial cues from video [8]. Other approaches, like Au-
dioLDM [9], manipulate audio effects via latent spaces,
while TAS [10] spatializes monaural audio through simi-
lar latent manipulations. More recently, ImmerseDiffusion
[11] generates Ambisonics from text, and Sun et al. [12]
proposed a language-driven stereophonic audio generation
framework. Our work builds upon these, specifically fo-
cusing on achieving precise text-to-spatial-audio control
for music.

3. METHODOLOGY

STASE is an LLM-driven spatial audio synthesis frame-
work designed to generate musical compositions with user-
specified spatial attributes from natural language prompts.
The system architecture transforms textual inputs into a
fully rendered, multi-track spatial audio mix through a
modular pipeline.

As depicted in Figure 2, STASE operates in four se-
quential stages. First, it ingests a free-form natural lan-
guage prompt. A RAG module searches a preset library
for semantically relevant spatial configurations to inform
the generation process. Second, the Conductor Agent—a
core reasoning module—fuses the raw prompt with the
retrieved presets. Driven by an LLM, this agent outputs
a structured plan: standardized music descriptions, exact
spatial parameters (azimuth, distance, etc.), and concise
mixing directives. Third, a music generation model syn-
thesizes individual audio tracks (stems) based on the Con-
ductor Agent’s descriptions. Finally, the spatial renderer
applies the agent-derived parameters—using one of pan-
ning, ITD/ILD, or HRTF for localization, plus reverbera-
tion—to the stems, yielding the finished spatial mix.

3.1 Prompt Interpretation and Adaptation

The essence of STASE lies in translating diverse natural-
language prompts into precise, actionable spatial param-
eters via an LLM. As illustrated in Figure 2, the process
starts when the user supplies a description of the desired
sonic scene, optionally augmented by presets, instrument
sets, and the RAG engine. The LLM, acting as a Conduc-
tor Agent, processes both the raw prompt and any RAG-
retrieved results to produce a music description and a struc-
tured spatial perception map. If the prompt contains ex-
plicit spatial cues (e.g., “place the lead guitar at 45° az-
imuth, 10 m distance”), the LLM directly parses these into
quantifiable parameters such as azimuth, elevation, and
distance; if the prompt is more abstract (e.g., “a grand or-
chestral arrangement”), the LLM queries the RAG mod-
ule to retrieve semantically relevant spatial templates (e.g.,
“symphony orchestra stage setup”) and maps these to de-
fault parameter sets. The music description is then for-
warded to the Music Agent to generate multitrack audio,
ensuring that spatial placement decisions are tied to clearly
defined sound sources. Finally, the spatialization engine
applies either user-specified coordinates or template-driven
defaults to the multitrack audio, incorporating techniques
such as panning, HRTF-based binaural rendering, Room
Impulse Response (RIR) convolution, and artificial rever-
beration to produce the final spatial audio. To accommo-
date varying user expertise and prompt specificity, STASE
selects the spatialization approach:

* Precise Spatialization: When the input prompt con-
tains explicit spatial cues (e.g., "place the lead guitar
at 45° azimuth, 10 meters distance"), the LLM di-
rectly extracts and applies these values for accurate
source positioning.
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Figure 2. STASE workflow: prompts are fused with template knowledge (RAG), transformed by a Conductor Agent into a
structured plan (music description, spatial map, mix notes), synthesized into stems, and rendered by a deterministic signal-
processing chain (per-source localization uses one of: panning, ITD/ILD, or HRTF; plus reverb/RIR). The agent routes

inputs via Description vs. Abstract pathways.

* Templated Spatialization: For more abstract or
less precise prompts (e.g., "a grand orchestral ar-
rangement"), the LLM utilizes a RAG approach. It
retrieves pre-defined spatial templates (e.g., "sym-
phony orchestra stage setup") semantically closest
to the input, providing default spatial parameters for
coherent layouts.

3.2 Deterministic Signal-Processing-Based Spatial
Rendering

STASE employs a flexible, deterministic signal-processing
approach for spatial rendering (as opposed to latent-space
manipulation). Our spatialization module supports estab-
lished signal-processing methods for sound source local-
ization and environmental acoustic simulation:

3.2.1 Sound Source Localization

We support three mutually exclusive localization modes:
(i) stereo amplitude panning for lateral placement and non-
binaural playback; (ii) analytic ITD/ILD rendering (with-
out HRTF) for controlled cue manipulation; and (iii) HRTF
convolution for full three-dimensional binaural rendering.
The Conductor Agent selects one mode per source based
on the requested coordinates and the target output for-
mat. When HRTF is used, additional panning or explicit
ITD/ILD processing is disabled to avoid double-counting
cues. In non-HRTF modes, ITD is realized by fractional-
delay lines aligned with head-width approximations and
ILD by frequency-dependent gain shaping.

3.2.2 Reverberation

As with localization, reverberation enriches perceived
space. Based on the input style, the system can use param-
eterized algorithmic reverberators for fine-grained control
or directly convolve with Room Impulse Responses (RIRs)
for specific acoustic environments or stylistic matching.
RIR selection can be initialized from the template retrieved
by RAG and refined by the Conductor Agent’s mix notes.

4. IMPLEMENTATION DETAILS
4.1 Resources

We describe resources used in our implementation, includ-
ing acoustic databases and predefined spatial configura-
tions.

4.1.1 RIR Database

For environmental acoustic simulation, we employed
single-channel RIRs extracted from established multi-
channel datasets including the dEchorate database [25] and
selected measurements from the OpenAIR library [26].
Our curated RIR collection includes ten distinct acoustic
environments designed to match our spatial configuration
templates: (1) large concert halls with natural reverbera-
tion for classical orchestras, (2) intimate studio rooms for
jazz ensembles, (3) dry recording studios for controlled
rock band setups, (4) small chambers for intimate music
arrangements, (5) medium-sized venues for electronic per-
formances, (6) churches with extended reverb for choir



formations, (7) recital halls for solo performances, (8)
acoustically diverse spaces for world music, (9) profes-
sional recording environments, and (10) simulated outdoor
spaces with minimal reflections for festival configurations.
Each single-channel RIR is applied to individual audio
stems during the spatial rendering process, enabling the
system to match textual descriptions of acoustic environ-
ments with appropriate reverberation characteristics that
complement the corresponding spatial arrangement tem-
plate.

4.1.2 Spatial Configuration Templates

To systematically evaluate spatial placement accuracy, we
manually defined ten distinct spatial configuration tem-
plates corresponding to common musical performance sce-
narios: (1) Classical Orchestra - traditional symphonic
layout with woodwinds front, brass middle, and strings
distributed; (2) Jazz Ensemble - intimate small group ar-
rangement; (3) Rock Band - conventional stage setup with
drums center-back; (4) Chamber Music - close-proximity
classical arrangement; (5) Electronic/DJ Setup - electronic
music performance configuration; (6) Choir Formation -
vocal ensemble positioning; (7) Solo Performance - single
instrument with accompaniment; (8) World Music Ensem-
ble - diverse cultural instrument arrangements; (9) Studio
Recording - controlled studio environment layout; and (10)
Outdoor Festival - large-scale outdoor performance setup.
Each template specifies precise azimuthal positions, eleva-
tion angles, and distance parameters for up to 6 simulta-
neous sources, providing standardized reference points for
evaluation.

4.1.3 HRTF Implementation

For binaural spatialization, we employed the KEMAR
HRTF database [27].

4.2 LLM and Prompting Details

We use an instruction-tuned, open-weight LLM in the 7—
13B parameter range with deterministic decoding (temper-
ature = 0, top-p = 1) and a constrained, schema-guided
output format. Few-shot exemplars cover both Descrip-
tion and Abstract pathways. We provide model names and
prompt templates with the supplementary materials.

4.3 Music Generation Module

Our prototype integrates an off-the-shelf text-to-music
synthesis system to produce up to 2-6 stems depending
on the prompt (e.g., drums, bass, guitar, keys, lead, pads).
The module can be substituted or bypassed without chang-
ing the rest of the pipeline.

4.4 User-Provided Stems

Beyond generation, STASE accepts user-provided monau-
ral stems. The user supplies instrument labels (or lets
the Agent infer them), and the spatial renderer applies the
same plan to the uploaded stems, enabling practical work-
flows in DAW-centric production.

4.5 Reproducibility Notes

We release the template bank, RIR list, parsing code, and
prompts used for the Conductor Agent, together with ran-
dom seeds and decoding settings. This enables step-by-
step reproduction of routing decisions and rendering given
fixed inputs.

5. RESULTS

Audio demonstrations are available on the project page:
https://chengtopia.github.io/STASE.
github.io/. We include multiple RAG-driven genera-
tions and audio samples to facilitate subjective evaluation
of spatialization quality and controllability.

6. DISCUSSION

Evaluating text-driven spatial audio remains challenging
due to the lack of standardized metrics. ITD and ILD are
effective for single-source azimuthal accuracy (e.g., 30° vs
60°), but in multi-source mixes their cues interact and are
hard to isolate; they also fail to capture full 3D or per-
ceptual quality. In complex arrangements, overlap and re-
verberation further confound per-source analysis. Conven-
tional semantic metrics (e.g., CLAP, T5/KL) measure con-
tent alignment yet are largely insensitive to fine-grained
spatial instructions. We therefore recommend paired ob-
jective proxies together with controlled listening tests tai-
lored to spatial attributes.

7. CONCLUSION

We presented STASE, an agentic framework that inter-
prets prompts with an LLM and renders spatial mixes us-
ing a deterministic signal-processing chain. Decoupling
semantics from rendering improves controllability and in-
terpretability, and the modular design supports swapping
LLMs, music models, and spatializers. The main limita-
tion is reliance on separated monaural stems; performance
can degrade on dense or reverberant mixtures. Future work
includes standardized objective/subjective evaluation for
spatial attributes and extending the interaction model to
mixed monaural inputs and broader production workflows.
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