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HSDirSniper: A New Attack Exploiting Vulnerabilities in
Tor’s Hidden Service Directories

Anonymous Author(s)∗

ABSTRACT
Tor hidden services (HSs) are used to provide anonymous services
to users on the Internetwithout revealing the location of the servers,
enabling freedom of speech. However, existing approaches have
proven ineffective in mitigating the misuse of hidden services. Our
investigation reveals that the latest iteration of Tor hidden ser-
vices still exhibits vulnerabilities related to Hidden Service Direc-
tories (HSDirs). Building upon this identified weakness, we intro-
duce the HSDirSniper attack, which leverages a substantial volume
of descriptors to inundate the HSDir’s descriptor cache. This re-
sults in the HSDir purging all stored descriptors, thereby block-
ing arbitrary hidden services. Notably, our attack represents the
most practical means of blocking hidden services within the cur-
rent high-adversarial context. The advantage of the HSDirSniper
attack lies in its covert nature, as the targeted hidden service re-
mains unaware of the attack. Additionally, the successful execu-
tion of this attack does not require the introduction of a colluding
routing node within the Tor Network. We conducted comprehen-
sive experiments in both real-world Tor Network environments
and simulated settings, and the experimental results show that an
attacker equipped with a certain quantity of hidden servers can
render arbitrary hidden services inaccessible up to 90% of the time.
To ascertain the potential scope of damage that the HSDirSniper
attack can inflict upon hidden services, we provide a formal analyt-
ical framework for quantifying the cost of the HSDirSniper attack.
Finally, we discuss countermeasures and future work.
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1 INTRODUCTION
Tor [6] is one of the most popular anonymous communication net-
works designed to safeguard the anonymity of both senders and
recipients. The hidden service (HS) is a mechanism developed by
Tor to ensure receiver anonymity by concealing the IP address of
the service through an exposed onion address. However, as the
anonymity provided by theHSwas available to everyone, it quickly
became an accomplice to cybercrime [25], such as botnet servers [4],
phishing websites [26], and illegal black markets [24].

To mitigate the issue of hidden service abuse, several methods
have been suggested by researchers, only focusing on hidden ser-
vice denial-of-service (DoS) attacks. Given the inherent character-
istics of the hidden services protocol, there exist three key compo-
nents in the communication path between the client and the hid-
den services, namely the hidden service itself, the guard relay, and
the hidden service directory server (HSDir). As a consequence, the
aforementioned three components emerge as the principal focal
points for DoS attacks on hidden services.

First, DoS attacks against the hidden service itself exploit
the vulnerability arising from the asymmetry inherent in the hid-
den service protocol. For instance, Rochet et al. [15] demonstrated
in their work that attackers can degrade the quality of service pro-
vided by a hidden service by consuming its machine resources.
However, the recent advancements in Tor’s system architecture
optimization and the introduction of Onionbalance [20] have ren-
dered the implementation of DoS attacks against hidden services
ineffective as a solution to the problem of hidden service abuse [14].

Second, DoS attacks against the guard relay of the hidden
service exploit the fact that the guard relay serves as the sole entry
point for the hidden service within the Tor Network. However, suc-
cessful execution of this attack necessitates resolving the practical
challenges which the attacker must ascertain the guard relay of the
hidden service. While Many studies [5, 13, 15] have demonstrated
the feasibility of guard relay discovery attacks, the Tor Project has
developed the VanGuardmechanism [17] to counteract them, caus-
ing the attack to fail.

Third, attacking the responsible HSDirs of the hidden ser-
vices is an easily overlooked approach.The descriptor encompasses
the contact information for the hidden service, which is stored
within a designated group of nodes referred to as responsible HS-
Dirs, selected by the hidden service from the Distributed Hash Ta-
ble (DHT). Tan et al. [16] have taken advantage of the predictability
of responsible HSDirs to impersonate them. Nonetheless, this ap-
proach exhibits a non-negligible failure rate when applied within
real Tor Network. Its effectiveness is contingent upon the relative
stability of the DHT [18], and the addition of a new HSDir may
thwart the successful implantation of the attacker’s node into the
intended location, thereby resulting in a failure of the attack. More-
over, the latest iteration of Hidden Services addresses the vulnera-
bility associated with the predictability of responsible HSDir, thus
rendering Tan’s approach ineffective.
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In this paper, we are the first to discover two protocol vulnera-
bilities in HSDir for storing and cleaning descriptors: (1) the HSDir
fails to detect whether it should receive a descriptor for a hidden
service or not. This flaw allows the attacker to create hidden ser-
vices at a relatively low cost, deceiving the victim HSDir into re-
ceiving the descriptors of the attacker’s hidden services; (2) when
the HSDir cleans up the descriptor cache, it employs a descriptor-
aging mechanism that removes old descriptors at an hourly time
granularity. Consequently, if an attacker manages to flood the HS-
Dir’s descriptor cache with malicious descriptors within an hour,
the HSDir will purge all stored descriptors.

Leveraging the aforementioned vulnerabilities, we introduce the
HSDirSniper attack, which blocks arbitrary clients from contact-
ing the target hidden service by forcing the responsible HSDirs
to clear the descriptor of the target hidden service. In contrast to
the methodology of directly targeting the hidden service itself [15],
our approach remains imperceptible to the target hidden service.
The primary consequence of our attack is the imposition of an ac-
cess timeout on any client, rather than augmenting their access
duration. When juxtaposed with the work of Tan et al. [16], our
attack exhibits superior adaptability to the dynamic and variable
landscape of DHT within real Tor Network.

In addition, evaluating the cost of an HSDirSniper attack is cru-
cial for helping attackers allocate their attack resources wisely. In
our attack, the number of responsible HSDirs and their descriptor
caching thresholds are two important parameters for calculating
the cost. However, due to the complexity of hidden services in se-
lecting responsible HSDirs, there is no tool or scheme that can di-
rectly determine the number of responsible HSDirs. To fill the gap,
we are the first to propose a general theoretical framework for es-
timating the number of responsible HSDirs.

Empirically, we have designed comprehensive experiments to
lunch the HSDirSniper attack and validated the correctness of this
theoretical cost estimation framework. We also discuss the effec-
tiveness of HSDirSniper and the countermeasures of HSDirSniper .
Ourmajor contributions include: (1) A practical DoS attack capable
of blocking arbitrary Tor HSs; (2) The first formal analysis frame-
work for evaluating the cost of launching HSDirSniper attack on
multiple hidden services; (3) Suggestions on how to defend the DoS
attacks against the HSDir to make Tor HS more robust.

2 BACKGROUND
In this section, we delve into the publication process of hidden ser-
vice descriptors, the principles governing HSDir storage of descrip-
tors.The hidden service mechanism [22] is described in Section 8.1.

2.1 Publishing hidden service descriptors
To guarantee continuous availability, the V3 hidden service adopts
a two-pronged descriptor approach, encompassing both “current
descriptor” and “next descriptor”. Each descriptor, uniquely
identified by its descriptor ID, is replicated, thereby generating two
replicas. This distinction is exemplified in Eq. 1:

𝑑𝑒𝑠𝑐_𝑖𝑑 = 𝐻 (“𝑠𝑡𝑜𝑟𝑒 − 𝑎𝑡 − 𝑖𝑑𝑥 ′′ |𝐾𝑏 |𝑟𝑒𝑝𝑙𝑖𝑐𝑎 |𝑇𝐿 |𝑇𝑃) (1)

where H symbolizes the SHA256 hash function, with “|” represent-
ing the splice symbol. TL is determined by the consensus parame-
ter “hsdir-interval”, defaulting to 1440, equivalent to one day. TP
signifies the count of TL intervals since 1970-01-01 12:00:00 (valid-
after). The blinded public key of the hidden service, 𝐾𝑏 , is derived
from the master identity public key 𝐾𝑝 and the time period TP.
The descriptor’s replica number is indicated by replica, usually
set to either 1 or 2. Consequently, a hidden service boasts four dis-
tinct replicas: 𝑑𝑒𝑠𝑐_𝑖𝑑1𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑑𝑒𝑠𝑐_𝑖𝑑2𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑑𝑒𝑠𝑐_𝑖𝑑1𝑛𝑒𝑥𝑡 and
𝑑𝑒𝑠𝑐_𝑖𝑑2𝑛𝑒𝑥𝑡 . To facilitate descriptor publication, the hidden ser-
vice leverages its consensus file, constructing a distributed hash
table (DHT) to pinpoint the appropriate HSDirs. Each HSDir’s in-
dex on the DHT is determined as:

ℎ𝑠𝑑𝑖𝑟_𝑖𝑛𝑑𝑒𝑥 (𝑛𝑜𝑑𝑒) = 𝐻 (”𝑛𝑜𝑑𝑒 − 𝑖𝑑𝑥”|𝐾𝑝 |𝑆𝑅𝑉 |𝑇𝑃 |𝑇𝐿) (2)

where SRV denotes the shared random value, refreshed and pub-
lished in the consensus file daily at 00:00, with a 24-hour lifespan.

As shown in Fig. 8a (See Appendices 8.4), while every hidden
service concurrently manages two descriptors, it also computes
two separateDHTs (𝐷𝐻𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and𝐷𝐻𝑇𝑛𝑒𝑥𝑡 ).The “current des-
criptor” is allocated to𝐷𝐻𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , whereas the “next descript-
or” finds its place in 𝐷𝐻𝑇𝑛𝑒𝑥𝑡 .

To ensure high availability of descriptors, the hidden service dis-
patches each replica to four successive responsible HSDirs. As a
result, the total number of responsible HSDirs for each hidden ser-
vice stands at 4 × 4 = 16.

To maintain descriptor validity, the hidden service integrates
a descriptor re-upload mechanism. An analysis of the hidden ser-
vices protocol reveals two primary triggers prompting descriptor
re-uploads: (1) Time-based: A periodic re-upload typically occur-
ring 60-120 minutes post the preceding upload; (2) Circuit issues:
A disruption in the HS-IP circuit necessitates a descriptor rebuild.

2.2 Cleaning Hidden Service Descriptors
Upon receiving and checking a descriptor, the HSDir generates
a structure for its storage. This structure encompasses the super-
encrypted segment of the descriptor (which houses IPOs), the de-
scriptor’s lifespan, the blinded public key, and the complete de-
scriptor. Notably, since the super-encrypted portion is stored twice,
thememory imprint of the stored descriptor marginally exceeds its
actual size. The blinded public key is leveraged as a unique identi-
fier for the stored structure.

Descriptors in HSDir storage are subjected to cleanup under
three circumstances: (1) Expiry: Descriptors have a finite lifespan,
as stipulated within the descriptor itself (defaulting to 3 hours);
(2) Overwrite: A newer descriptor from the same hidden service
replaces the existing one; (3) Memory Constraints:When the de-
scriptor cache overshoots the defined threshold (MaxMemInQueues),
HSDir employs a descriptor aging mechanism.This purges the old-
est descriptors in 1-hour increments until the utilizedmemory drops
below 0.2 × MaxMemInQueues.

To fortify against memory-centric attacks, such as the sniper at-
tack [11], Tor incorporates amemorymanagementmodule.Within
this module is the MaxMemInQueues configuration, empowering
node operators to dictate Tor’s maximum memory utilization. By
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default, the value of MaxMemInQueues (expressed as Q) is given by

𝑄 =


0.75 ×𝑚, 𝑚 ≤ 8𝐺

0.4 ×𝑚, 8𝐺𝐵 < 𝑚 ≤ 20𝐺𝐵

8𝐺𝐵, 20𝐺𝐵 < 𝑚

(3)

where m indicates the memory of the host.

3 METHOD
In this section, we delve into the intricacies of the HSDirSniper
attack, elucidating its operational mechanics, and further develop
a theoretical framework to evaluate the cost of the attack.

3.1 The Mechanism of the HSDirSniper Attack
The HSDirSniper is a potent assault, designed to incapacitate any
V3 hidden service by zeroing in on the responsible HSDirs linked to
the target hidden service. The efficacy stems from two fundamen-
tal vulnerabilities inherent to HSDir: (1) Indiscriminate Descrip-
tor Acceptance: The HSDir does not detect whether it should re-
ceive a descriptor for a hidden service or not, leading it to store a
substantial number of malicious descriptors; (2) Unsophisticated
Aging Mechanism: The aging mechanism employed by the HS-
Dir cleanup descriptor is overly simplistic, rendering it vulnerable
to exploitation by attackers.

As shown in Fig. 1, theHSDirSniper attack operates on a straight-
forward premise. An attacker, having pre-deployed a multitude of
hidden services, churns out a vast array of malicious descriptors.
These are then strategically forced upon the responsible HSDirs
of the target hidden service. Once the memory burden of stored
descriptors overshadows the stipulated threshold (𝑄 in Eq. 3), the
responsible HSDir invokes its aging mechanism. It systematically
purges the oldest descriptors in hourly intervals until the mem-
ory footprint shrinks below 0.2 ×𝑄 . The crux of the HSDirSniper
attack lies in inundating the target HSDir with a torrent of descrip-
tors within a single hour. This ensures that the HSDir is coerced
into expunging all its stored descriptors—encompassing both the
malevolent ones from the attacker and the genuine descriptor of
the target hidden service. To empower this attack’s precision, we
have augmented two interfaces of Stem [21], a controller library
dedicated to manipulating the Tor process.

The two interfaces include: (1)Obtaining the responsible HS-
Dir of the target hidden service. (2) Uploading the descrip-
tors to the specified relay: The hidden service selects the respon-
sible HSDirs based on Eq. 1 and Eq. 2, but we can modify this strat-
egy by altering the source code of the hidden service. This allows
us to avoid incurring significant costs to ensure that our hidden
service chooses the same responsible HSDir as the target hidden
service.

3.2 A Theoretical Framework to Evaluate the
Cost of HSDirSniper

Cost Function. Since our attack employs malicious descriptors
to fill HSDir’s descriptor cache, the cost ℜ (MB) of the attack is
represented by

ℜ =
ℓ−1∑
𝑖=0

𝑄𝑖 , (4)

Figure 1: The principle of HSDirSniper.

where ℓ represents the number of HSDirs, 𝑄𝑖 denotes the descrip-
tor caching threshold 𝑄 of the 𝑖𝑡ℎ HSDir, as defined in Eq. 3. The
challenging initial step involves the estimation of the value of ℓ .

It is assumed that the DHT consists of 𝑁 (a constant) HSDirs.
Each HSDir (𝐻𝑆𝐷𝑖𝑟𝑖 ) is assigned an index denoted as 𝐼𝑖 , where
𝑖 ∈ [0, 𝑁 −1] and the calculation of 𝐼𝑖 is based on Eq. 2.The interval
between the 𝑖𝑡ℎ HSDir and the (𝑖 − 1)𝑡ℎ HSDir is represented as 𝑑𝑖 ,
with 𝑑𝑖 = 𝐼𝑖 − 𝐼𝑖−1. If a descriptor ID falls within the interval 𝑑𝑖 , the
𝑖𝑡ℎ HSDir is considered responsible and capable of receiving the
descriptor. Consequently, the probability of a descriptor ID falling
within the interval 𝑑𝑖 is computed by

𝜂𝑖 =
𝑑𝑖∑𝑁−1

𝑗=0 𝑑 𝑗
(5)

Expected number of of responsible HSDirs. In Section 2.1, we
mentioned that a hidden service maintains both current and next
descriptors and independently selects 8 responsible HSDir to up-
load the descriptors. Thus the responsible HSDirs for current de-
scriptor and the responsible HSDirs for next descriptor are pos-
sibly intersecting. We proposes a set of theoretical calculations to
derive the expected value (denoted as ℓ) of the number of respon-
sible HSDirs for 𝑛 hidden services. For the sake of facilitating the
comprehension of the derivation process, we consider a simplified
scenario where the DHT exclusively stores the descriptors of 𝑛 tar-
get hidden services that we are interested in. In this context, let 𝑋
denote the number of HSDirs responsible for storing the descrip-
tors of the target hidden services, and 𝑌 be the count of HSDirs
that do not hold such descriptors. Hence,

ℓ = 𝐸 (𝑋 ) and 𝑋 = 𝑁 − 𝑌 (6)

Expected number of of irresponsible HSDirs. Combining the
nature of expectation and Eq. 6, ℓ = 𝐸 (𝑋 ) = 𝑁 −𝐸 (𝑌 ). To solve the
value of 𝐸 (𝑌 ), we define an event

𝜑𝑖 =

{1, 𝐻𝑆𝐷𝑖𝑟𝑖 = ∅.
0, 𝐻𝑆𝐷𝑖𝑟𝑖 ≠ ∅. , (7)

where 𝐻𝑆𝐷𝑖𝑟𝑖 = ∅ represents 𝐻𝑆𝐷𝑖𝑟𝑖 still does not store any de-
scriptors after 𝑛 hidden services choose the responsible HSDirs,
𝐻𝑆𝐷𝑖𝑟𝑖 ≠ ∅ means that 𝐻𝑆𝐷𝑖𝑟𝑖 holds at least one descriptor. Since
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Figure 2: Dividing the 𝐷𝐻𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 into 3 regions.

𝑌 =
∑𝑁−1
𝑖=0 𝜑𝑖 , we have

𝐸 (𝑌 ) = 𝐸 (
𝑁−1∑
𝑖=0

𝜑𝑖 ) =
𝑁−1∑
𝑖=0

𝐸 (𝜑𝑖 )

=
𝑁−1∑
𝑖=0

(1 × 𝑝{𝐻𝑆𝐷𝑖𝑟𝑖 = ∅} + 0 × 𝑝{𝐻𝑆𝐷𝑖𝑟𝑖 ≠ ∅})

=
𝑁−1∑
𝑖=0

𝑝{𝐻𝑆𝐷𝑖𝑟𝑖 = ∅}

(8)

Estimating 𝑝𝑖 Let 𝑝𝑖 be the probability that the 𝐻𝑆𝐷𝑖𝑟𝑖 does not
store any descriptors after a certain hidden service has selected the
responsible HSDirs. Since such selection is independent, Eq. 8 can
be written as:

𝐸 (𝑌 ) =
𝑁−1∑
𝑖=0

𝑝{𝐻𝑆𝐷𝑖𝑟𝑖 = ∅} =
𝑁−1∑
𝑖=0

(𝑝𝑖 )𝑛 (9)

Note that each hidden service maintains current descriptor and
next descriptor, and the selection of the responsible HSDirs for
current descriptor and next descriptor is independent and
identical. Therefore, we only need to consider one of current de-
scriptor or next descriptor.
Estimating 𝑝1𝑖 We use 𝐵𝑖 to denote the event that the𝐻𝑆𝐷𝑖𝑟𝑖 does
not store any descriptor after a hidden descriptor has selected the
responsibleHSDirs for current descriptor. Discrete randomvari-
ables𝐴1 and𝐴2 indicate that the descriptor ID1 and ID2 of current
descriptor fall in a range of the 𝐷𝐻𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , respectively. Let 𝑝1𝑖
represents the probability of event 𝐵𝑖 transpiring. Therefore, we
have 𝑝1𝑖 = 𝑃 (𝐵𝑖 ) and 𝑝𝑖 = (𝑝1𝑖 )

2 = (𝑝 (𝐵𝑖 ))2. As shown in Fig. 2, we
divide the𝐷𝐻𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 into 3 regions in order to solve for 𝑝1𝑖 , where
𝑎1 and 𝑎2 are the ranges of [𝐼𝑖−3, 𝐼𝑖 ] and [𝐼𝑖−7, 𝐼𝑖−4] in which a de-
scriptor ID falls, respectively, and 𝑎3 indicates that the descriptor
ID falls in a location other than 𝑎1 and 𝑎2 (i.e., 𝐼𝐷 ∉ [𝐼𝑖−7, 𝐼𝑖 ]). Ac-
cording to Total Probability Theorem, we have

𝑝1𝑖 = 𝑝 (𝐵𝑖 ) = 𝑝 (𝐴1 = 𝑎1) × 𝑝 (𝐵𝑖 |𝐴1 = 𝑎1)
+ 𝑝 (𝐴1 = 𝑎2) × 𝑝 (𝐵𝑖 |𝐴1 = 𝑎2)
+ 𝑝 (𝐴1 = 𝑎3) × 𝑝 (𝐵𝑖 |𝐴1 = 𝑎3)

(10)

Three cases Then we analyse the three components of Eq. 10 in
depth.

First, when 𝐴1 = 𝑎1, we have 𝑑𝑒𝑠𝑐_𝑖𝑑1𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ [𝐼𝑖−3, 𝐼𝑖 ], at
which point𝐻𝑆𝐷𝑖𝑟𝑖 is able to collect and store the descriptor.Thus,
𝑝 (𝐵𝑖 |𝐴1 = 𝑎1) = 0.

Second, when 𝐴1 = 𝑎2, we use Total Probability Theorem:
𝑝 (𝐵𝑖 |𝐴1 = 𝑎2) = 𝑝 (𝐴2 = 𝑎1) × 𝑝 (𝐵𝑖 |𝐴1 = 𝑎2, 𝐴2 = 𝑎1)

+ 𝑝 (𝐴2 = 𝑎2) × 𝑝 (𝐵𝑖 |𝐴1 = 𝑎2, 𝐴2 = 𝑎2)
+ 𝑝 (𝐴2 = 𝑎3) × 𝑝 (𝐵𝑖 |𝐴1 = 𝑎2, 𝐴2 = 𝑎3)

(11)

For the first part of Eq. 11, since 𝐻𝑆𝐷𝑖𝑟𝑖 is able to collect and
store the descriptor in the case𝐴2 = 𝑎1, we have𝑝 (𝐵𝑖 |𝐴1 = 𝑎2, 𝐴2 =
𝑎1) = 0. And thenwe analyse the second part of Eq. 11,𝐴1 = 𝑎2 and
𝐴2 = 𝑎2 indicates that when 𝑑𝑒𝑠𝑐_𝑖𝑑1𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑑𝑒𝑠𝑐_𝑖𝑑2𝑐𝑢𝑟𝑟𝑒𝑛𝑡
of current descriptor both select 𝑎2, the final 𝑑𝑒𝑠𝑐_𝑖𝑑2𝑐𝑢𝑟𝑟𝑒𝑛𝑡 will
fall into the 𝑎1 region due to the presence of a skip mechanism (See
Section 8.3) in the selection of responsible HSDirs, and therefore
𝑝 (𝐵𝑖 |𝐴1 = 𝑎2, 𝐴2 = 𝑎2) = 0. Finally, we consider the third part of
Eq. 11. Since 𝐴1 = 𝑎2 and 𝐴2 = 𝑎3, 𝑑𝑒𝑠𝑐_𝑖𝑑1𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ [𝐼𝑖−7, 𝐼𝑖−4]
and 𝑑𝑒𝑠𝑐_𝑖𝑑2𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∉ [𝐼𝑖−7, 𝐼𝑖 ], 𝐻𝑆𝐷𝑖𝑟𝑖 fails to collect the descrip-
tor, so 𝑝 (𝐵𝑖 |𝐴1 = 𝑎2, 𝐴2 = 𝑎3) = 1. In summary, it can be deduced
that 𝑝 (𝐵𝑖 |𝐴1 = 𝑎2) = 𝑝 (𝐴2 = 𝑎3).

Third, using the same analysis method of 𝑝 (𝐵𝑖 |𝐴1 = 𝑎2) for
𝑝 (𝐵𝑖 |𝐴1 = 𝑎3), we have 𝑝 (𝐵𝑖 |𝐴1 = 𝑎3) = 𝑝 (𝐴2 = 𝑎2) + 𝑝 (𝐴2 = 𝑎3).
In the end, we simplify Eq. 10 as

𝑝1𝑖 = 𝑝 (𝐴1 = 𝑎2) × 𝑝 (𝐴2 = 𝑎3)
+ 𝑝 (𝐴1 = 𝑎3) × (𝑝 (𝐴2 = 𝑎2) + 𝑝 (𝐴2 = 𝑎3))

(12)

Combining Eq. 5 with Eq. 12, thus (See Section 8.5 for details)

𝑝1𝑖 = (1 −
𝑖∑

𝑗=𝑖−7
𝜂 𝑗 ) × (1 −

𝑖∑
𝑗=𝑖−7

𝜂 𝑗 + 2 ×
𝑖−4∑
𝑗=𝑖−7

𝜂 𝑗 ) (13)

Counting the distribution of indexed distances. To make the
results concise, it is necessary to count the distribution of indexed
distances for each HSDir in the DHT. From June 6, 2023, to July
6, 2023, we conducted an examination of the indexed distances of
HSDirs within the DHT, as depicted in Fig. 3. While the observed
distances exhibited significant variations, it is noteworthy that the
average distance remained remarkably consistent. Consequently,
it becomes a reasonable proposition to employ the average spacing
values as a means to streamline the simplification of Eq. 5. We let
𝜂𝑖 = 1

𝑁 , where 𝑁 denotes the length of the DHT.
Finally, we conclude the expected value (denoted as ℓ) of the

number of responsible HSDirs for 𝑛 hidden services in a DHT is

ℓ = 𝑁 −
𝑁−1∑
𝑖=0

(𝑝1𝑖 )
2𝑛 = 𝑁 − 𝑁 × (𝑁 − 8

𝑁
)2𝑛 (14)

Given that the size of the descriptors created by the malicious
hidden service is consistently pegged at𝐶 , we can deduce the requi-
site number of descriptors to instigate theHSDir’s descriptor cache
cleanup. It is calculated by

𝑛 = 𝑄/𝐶, (15)
where 𝑛 represents the number of our descriptors, the descriptor
caching threshold 𝑄 is defined in Eq. 3.

By substituting Eq. 14 and Eq. 15 into Eq. 4, we derive the cost
of the HSDirSniper attack:

ℜ =
ℓ−1∑
𝑖=0

𝑄𝑖 =
ℓ−1∑
𝑖=0

𝑛𝑖 ×𝐶 (16)
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Figure 3: Distribution of indexed distances for each HSDir
in the DHT.

3.3 Effectiveness of HSDirSniper
The control ratio, represented by the variable 𝑆 , is introduced as a
metric to quantify the effectiveness of a single successful attack on
the targeted hidden service, which is calculated by

𝑆 = 𝜒/𝑅, (17)

where 𝜒 indicates the attack duration required to execute a single
HSDirSniper attack, 𝑅 is the time interval between the present up-
load of the descriptor and its previous upload. For instance, when
𝑆 = 90%, it signifies that the target hidden service remains unavail-
able for 90% of the specified time period.

4 EXPERIMENTS
In this section, we delve into a comprehensive examination of the
HSDir attack cost. Subsequently, we conduct a meticulous mea-
surement of the control ratio within the context of launching an
HSDirSniper attack against a hidden service. Finally, we undertake
a comparative analysis between our attack and previous DoS at-
tacks against the hidden service itself.

4.1 Evaluating the cost of HSDirSniper
Estimating the number of responsible HSDirs and determining the
requisite number of descriptors essential for launching anHSDirSn-
iper attack across various memory settings play a pivotal role in
the calculation of the HSDirSniper attack cost.

4.1.1 Validating the correctness of the theoretical framework. In
Section 3.2, we conducted an estimation of the number of respon-
sible HSDirs using Eq. 14. To validate the robustness and gener-
ality of our theoretical framework, we initiated a two-fold valida-
tion process. Firstly, we employed self-generated hidden services
to validate the correctness of Eq. 14. The set of randomly gener-
ated hidden services was divided into 15 groups, each comprising
a different number of hidden services ranging from 10 to 150. Sub-
sequently, we conducted 10 independent replications of the experi-
ment for each group. In addition, we randomly selected a day’s con-
sensus file (e.g. 2023-06-10 12:00:00) to construct the DHT, where
the length of DHT was 4003. The results, as depicted in Fig. 4a, re-
veal that the experimental values fluctuated above and below the
theoretical values with an average error of ±1.86%.

Secondly, we conducted an empirical study using 100 hidden ser-
vices of a phishing site within the real Tor Network. To ensure the
reliability of our results, we instituted a monitoring period span-
ning from June 6, 2023, to June 13, 2023, and constructed the Dis-
tributed Hash Table (DHT) utilizing the daily 12:00 consensus file.
The empirical findings, as depicted in Fig. 4b, reveal a notable con-
currence between the experimental and theoretical values, with a
mere average error of ±1.48%.

The above experiments verify that our proposed theoretical fram-
ework is correct. Fig. 4c visually represents the trends associated
with both the theoretically derived value and the upper limit value,
denoted as 16𝑛, which serves as a simplistic means for estimating
the number of responsible HSDirs corresponding to n hidden ser-
vices. As the quantity of targeted hidden services increases, a note-
worthy disparity between the theoretically computed value and
the 16𝑛 becomes increasingly pronounced. Therefore, employing
this theoretical framework to estimate the number of responsible
HSDirs can assist attackers in more effectively allocating their at-
tack resources.

4.1.2 Measuring the cost of attacking HSDir with different memory
configurations. Assuming that the memory of the HSDir is known,
the number of descriptors required to launch a single attack on it
can be calculated from Eq. 15. Next we need to evaluate its correct-
ness. Within the real Tor Network, we implant HSDirs equipped
with distinct memory configurations, specifically 2GB, 4GB, 6GB,
8GB, 16GB, and 24GB. Subsequently, we proceed to fill their de-
scriptor caches with malicious descriptors, each of which is 86,550
bytes1 in size. Our objective is to record the number of malicious
descriptors necessary to deplete theHSDir’s descriptor cache. Fig. 5a
presents the outcomes stemming from Eq. 15 and the experimen-
tal values. It becomes evident that the number of malicious descrip-
tors introduced by the attacker in reality is less than the theoretical
value calculated by Eq. 15. This discrepancy arises due to the con-
current function of HSDir in providing storage services to normal
hidden services while the attack is in progress. Consequently, the
attacker is only required to fill the remaining portion of the descrip-
tor cache. Given the degree of congruence between the theoretical
values and experimental values, characterized by an error margin
of less than 1.5%, we are justified in utilizing the theoretical value
to calculate the cost of HSDirSniper attack.

By utilizing Eq. 14 and Eq. 15, we can assess the cost of an HS-
DirSniper attack. As an illustrative example, for a hidden service
whose responsible HSDirs have an average memory of 8GB, the
HSDirSniper attack requires the cost of 8 × 0.75 × 16 × 1024 =
98304𝑀𝐵 ofmalicious descriptors.Thiswould require 98304×1024×
1024/86550 = 1190979 malicious descriptors.

4.2 Evaluating the effectiveness of HSDirSniper
In the real Tor Network, we aim to measure the attack duration 𝜒
(Eq. 17), capture the statistical propensity 𝑅 (Eq. 17) for descriptor
re-uploading, and ascertain the control ratio 𝑆 (Eq. 17).

4.2.1 Experiment Setup. Our assessmentwas rooted in a real-world
scenario on the TorNetwork. Adhering to ethical guidelines, we set
up a decoy hidden service with a bandwidth of 1 Gbit/s to act as

1See Section 8.2
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Figure 4: (a) Self-generated hidden services to validate theoretical framework; (b) Validating the theoretical framework using
100 real hidden services; (c) Estimated and upper limit values for the number of Resbonsible HSDirs.

(a) (b) (c)

Figure 5: (a) Relationship between the number of malicious descriptors and the memory of target HSDir; (b) Launching HS-
DirSniper 10 times against a 2G RAM HSDir; (c) Time distribution of client access to the target HS.

Figure 6: HSDirSniper attack system.

the victim. By adjusting the source code, we channeled descriptors
to sixteen of our relays, each equipped with 2GB RAM . It’s worth
noting that these relays operated on Tor version 0.4.7.132. How-
ever, we integrated specific modifications, allowing the capture of
crucial descriptor metrics such as 𝐼𝐷 , 𝑠𝑖𝑧𝑒 , and 𝑣𝑜𝑙𝑢𝑚𝑒 . This tai-
lored setup provided clarity in segregating malicious descriptors
and yielded insights into the relationship between descriptor vol-
ume and the relay’s memory capacity.

2This is the latest version when we finished our manuscript.

For our malicious hidden services, we used the version 0.4.4.6,
to generate and dispatch a substantial volume of malicious descrip-
tors. Fig. 6 visually captures the experiment. Our initial step in-
volved pinpointing the responsible HSDirs of the victim hidden
service for HSDirSniper attack, which in this case were the 16 re-
lays we had pre-configured. If the descriptors of the target hidden
service exists, the malicious hidden services commenced the trans-
mission of descriptors to these HSDirs continuously until the de-
scriptor is cleared; otherwise, the attack was halted.

4.2.2 Assessing the Control Ratio of HSDirSniper. Attack Dura-
tion. In Section 8.2, we introduced six optimization techniques de-
signed to expedite the attack process. Of these, three optimizations—
selecting superior guard relays, adopting circuit multiplexing, and
modulating the thread count for each hidden service—are para-
mount to assess in terms of their influence on the attack dura-
tion. While certain strategies, like curtailing the circuit length, are
widely recognized for their efficacy in shortening attack times, we
opt not to delve into them here. To deliver a thorough assessment,
the subsequent impact of these three key optimization methods on
the attack duration is presented in Table 1.

In Table 1, the column labeled #threads denotes the concur-
rent hidden services initiated by a malicious hidden server. For
instance, 50 threads means that the server spawns 50 hidden ser-
vices and simultaneously uploads 2×50 descriptors, encompassing
both “current descriptor” and “next descriptor”. Our results suggest
that selecting an appropriate value of #threads, such as setting it
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Table 1: Attack time (𝑠) of three optimization schemes on .

#threads w/o high-quality
guard

w/o circuit
multiplexing

All optimiza-
tions

1 0.597 1.370 0.116
50 6.014 6.048 4.154
100 13.999 22.282 7.253
200 37.449 82.174 33.930
500 68.827 ∞ 61.430
1000 204.301 ∞ 133.643

to 100, enhances the efficiency of resource utilization on the hid-
den server, thereby minimizing the attack duration. Moreover, the
role of “high-quality guard” and “circuit multiplexing” in
reducing the time spent on the attack are notably significant.

Based on the experimental setting in Section 4.2.1 and above
optimization techniques, we initiated 5 malicious hidden services
maintaining 60MB/s bandwidth to upload descriptors, and staged
10 attacks against our own victim hidden service. Fig. 5b illustrates
an instance in which one of the responsible HSDirs was subjected
to the attack. Before launching the assault, the HSDir had already
accumulated 6,031 descriptors. By the 160-th second, our offensive
commenced. Given the pre-existing descriptors within the HSDir,
we didn’t require the full 18,609 (the theoretical value) malicious
descriptors to compel the HSDir to purge all of its descriptors. In-
stead, only 16,929 were needed. Additionally, as our attack was
simultaneous with the HSDir’s regular descriptor reception, the
actual count of malicious descriptors used in subsequent attacks
never exceeded the theoretical prediction. In the end, our results
showed that, on average, the HSDirSniperattack against a hidden
service whose responsible HSDirS equipped with 2GB RAM took
roughly 𝜒 = 4.865 minutes.
Statistical Propensity. Subsequently, we sought to derive the sta-
tistical value, denoted as 𝑅, characterizing the interval for descrip-
tor re-uploads. Analyzing the descriptor upload timings captured
by our strategically positioned HSDirs between January 1, 2023,
and July 1, 2023, we observed a distinct pattern. As Fig. 8b illus-
trates, a significant portion of the descriptor re-upload intervals
cluster within the 60 to 120-minute bracket.This behavior is consis-
tent with the recommended settings in the Tor protocol for descrip-
tor re-upload (as mentioned Section 2.1). In addition, the presence
of intervals spanning between 1 to 60 minutes could signify either
transient instability of the associated IPOs or the hidden services
refreshing their consensus file. In a quest to offer a more nuanced
perspective on the descriptor re-upload interval, we determined its
median, which stands at 𝑅 = 68.9 minutes.
Control Ratio Estimation. To gauge the potency of our attack,
we infused the obtained values of 𝜒 and 𝑅 into Eq. 17, resulting
in a control ratio estimate of S = 92.9%. This implies that during
the attack’s duration, the targeted hidden service is inaccessible
approximately 92.9% of the time. It’s imperative to highlight that
this estimation is based on an attack targeting an HSDir with a
memory capacity of 2G. We postulate that for HSDirs boasting a
memory greater than 2G, the attack duration can be further trun-
cated by simply increasing the upstream bandwidth of malicious
hidden services.

4.3 Comparison of methods
We have undertaken a comparative analysis using a method that
directly targets the hidden service itself, referred to as DoS Attack.
This DoS Attack is predicated on the principle of employing a Tor
client to download substantial quantities of the application layer
content from the hidden service[12], thereby causing a consump-
tion of the hidden service’s bandwidth. In order to ensure equitable
evaluation, we have constrained the attack bandwidth for both
the DoS Attack and our HSDirSniper Attack to 60MB/s. Subse-
quently, we have observed the time required for a standard client
to access the target hidden service under three different conditions
over a 1-hour period: No Attack, DoS Attack, and HSDirSniper
Attack, respectively. Notably, the target hidden service continues
to operate under the same experimental setup as outlined in Sec-
tion 4.2.1 and the client access timeout is set to 60 seconds.

The experimental results, as depicted in Fig. 5c, establish a base-
line by measuring the time taken for a client to access the tar-
get hidden service in the absence of any attack, yielding an av-
erage value of 5.1 seconds. When subjected to the pressure of the
DoS Attack, the average client access time significantly increases
to 17.2 seconds, indicating an extension of 12.1 seconds in access
time. In contrast, while the HSDirSniper attack is ongoing, the
client maintains access times consistent with the baseline. How-
ever, following the completion of the attack, the client remains in
an access timeout state. It is obvious that under identical attack
bandwidth conditions, HSDirSniper Attack demonstrates greater
efficacy compared to the DoS Attack, which directly targets the
hidden service itself.

5 DISCUSSION
5.1 Mitigation of HSDirSniper attack
In this section, we focus on addressing the shortcomings of HSDir
to implement mitigation of the HSDirSniper attack.

The first step. Developing a mechanism for HSDir to detect
whether a descriptor should be received or not. According to the
hidden service protocol, a hidden service descriptor has at most 16
replicas, and each replica selects at most 128 consecutive HSDir.
Due to the skipping mechanism used in selecting the responsible
HSDir, the maximum deviation between the first and the last re-
sponsible HSDir is𝐷 = 16×128. It is noteworthy that the deviation
range is too large so that can be easily exploited by an attacker.
Through empirical observation of the Tor Network spanning an
extended temporal period, it has been discerned that the default
parameters, specifically the number of replicas and the quantity
of consecutive HSDirs, adequately suffice in maintaining the high
availability of descriptors. Therefore, we suggest that the maxi-
mum deviation is taken as 𝐷 = 2 × 4 = 8. Upon receiving a de-
scriptor, the 𝐻𝑆𝐷𝑖𝑟𝑖 calculates the deviation in the DHT between
itself and the first responsible HSDir for that descriptor. If the de-
viation is greater than 𝐷 , the descriptor is not accepted.

The second step. Removing descriptors for undesirable hidden
services instead of the oldest ones. Specifically, HSDir maintains
an internal hash table to evaluate each stored descriptor. For each
legal descriptor, the update time and the number of times the de-
scriptor has been downloaded are recorded. We consider a normal
descriptor to have a regular update time (typically 60-120 minutes)
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and a certain number of clients using it. On the contrary, if a de-
scriptor is frequently uploaded or never used after upload, then
HSDir should not provide services for such a descriptor.

5.2 Limitations and Ethics
While the HSDirSniper attack is capable of blocking arbitrary hid-
den services, it undeniably poses a significant threat to non-targeted
hidden services as well. This is due to the fact that the descriptors
cleared by HSDir include both the descriptors of the target hid-
den service and those of the non-targeted ones. In this paper, we
refrain from attacking uncontrolled HSDirs as it would adversely
affect the communication of legitimate users within the Tor Net-
work. We have reported these vulnerabilities to the Tor Project.

6 RELATEDWORK
6.1 DoS Attacks against Tor Hidden Services
DoS attacks aimed at Tor hidden services (HS) have emerged as a
critical challenge in preserving the reliability and privacy of the
Tor Network [3, 10]. These attacks can be categorized into distinct
areas based on the specific component of the hidden service infras-
tructure they target.
Attacking the HS itself. Within the Tor protocol’s design, there
exists an inherent asymmetry: a malicious client can send a rela-
tively small message to the HS, which in turn is compelled to per-
form substantial computational work in response. This imbalance
can be exploited to initiate DoS attacks against the HS. Rochet and
Pereira [15] demonstrated this vulnerability by using a rogue client
to flood the HS with an overwhelming number of requests. This
forces the HS to establish multiple HS-RP (Hidden Service - Ren-
dezvous Point) circuits, thereby placing considerable stress on the
network resources of the HS host.
Attacking the guard relay of HS. The guard relay acts as the
pivotal entry point for a HS accessing the Tor Network. By focus-
ing their efforts on the guard relay, attackers can disrupt the hid-
den service’s stable connection with the Tor Network. Prior stud-
ies [1, 9, 11, 12] have used methods to exhaust the CPU, memory,
and bandwidth of the guard relay. As a result, the relay’s capability
to seamlessly relay traffic for the HS is significantly hampered.
Attacking the responsible HSDir of HS.The responsible HSDir
is integral to the Tor hidden service infrastructure as it stores the
descriptors (contact details of the HS). This pivotal role also marks
it as a vulnerable point of attack. In the investigations conducted
by [2, 16], it has been shown that malevolent entities can deploy
rogue relays to masquerade as the legitimate responsible HSDirs
for a specific HS. Such impersonation disrupts the natural flow of
communication, effectively barring clients from connecting with
their intended HS.

6.2 Countermeasures for DoS Attacks on HS
To increase prevalence of DoS attacks on hidden services, both the
Tor Project and the research community have devised a range of
countermeasures to bolster the resilience of the Tor Network.
Countermeasures for attacks on HS. Döpmann et al. [7] pro-
posedOnion Pass, a novel extension to the Tor protocol.This allows
clients to validate their authenticity via cryptographic tokens. Con-
sequently, onion services can distinguish and prioritize legitimate

users over unauthenticated ones, ensuring sustained availability
amidst a barrage of spurious requests. Fraser et al. [8] advocate for
a Proof-Of-Work system, which narrows the computational dispar-
ity between the service and its potential attackers. By requiring
clients to solve a Proof-of-Work puzzle as a precursor to access, it
becomes infeasible for adversaries to inundate the service. Further
enhancing the robustness of HS, the Tor Project unveiled Onion-
balance [20]. This tool facilitates the distribution of Tor onion ser-
vice requests across multiple backend Tor instances. Beyond load-
balancing, Onionbalance enhances the resilience and reliability of
onion services by eliminating potential single points-of-failures.
Countermeasures for attacks on the Guard Relay.Addressing
the vulnerabilities of relay resource exhaustion, the Tor Project
refined its system’s multi-threaded architecture, thus amplifying
Tor’s ability to manage an augmented volume of data cells. As an
additional safeguard, the Tor Project integrated an adaptive out-of-
memory circuit killer within Tor [19]. This feature is only invoked
when memory resources dwindle, targeting the circuit possessing
the eldest front-most cell in its queue.
Countermeasures for attacks on the Responsible HSDir. In
light of the vulnerabilities identified in V2 HS concerning the HS-
Dir, the Tor Project rolled out V3 HS [23]. This iteration incorpo-
rates randomized vectors when constructing the distributed hash
table (DHT), obfuscating the responsible HSDirs for a given HS.
This strategic change effectively counters the attack vectors high-
lighted by Tan et al. [16] and Biryukov et al. [2].

In the context of high confrontation, we propose a unique attack
that focuses on forcing the responsible HSDirs to clean up the de-
scriptors of the target hidden services. In contrast to DoS attacks
that directly target hidden services, our attack exhibits more effi-
cacy and is not perceived by hidden services. Notably, our attack
does not necessitate an extensive effort to ascertain the identities
of guard nodes, as compared to attacks that target the guards of the
hidden services, which makes our attack more versatile. Moreover,
when juxtaposed with the Eclipse attack previously conducted by
Tan et al. [16], our method demonstrates a superior capability to
accurately track the responsible HSDirs, rendering it a more prag-
matic and adaptable attack within the context of real Tor Network.

7 CONCLUSION
In this paper, we introduce a new attack that forces the responsible
HSDir to clear the descriptor and thus block arbitrary hidden ser-
vices. We conduct comprehensive experiments on a real Tor Net-
work and reveal that an adversary wielding a 60MB/s attack band-
width can render a hidden service inaccessible for approximately
92.9% of its operational duration, when the responsible HSDirs are
equipped with a 2GB RAM capacity. Furthermore, we put forth
a general and dependable theoretical framework to estimate the
number of responsible HSDirs, addressing a notable lacuna within
the current body of research in this domain. In conclusion, we en-
gage in a discourse pertaining to prospective solutions aimed at
mitigating HSDirSniper attack. These solutions are envisioned for
implementation in forthcoming research endeavors.
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8 APPENDICES
8.1 Components of the Hidden Service

Mechanism
The hidden service mechanism leverages Onion addresses in lieu
of traditional IP addresses.This unique approach ensures enhanced
anonymity for server-side applications, includingweb services and
instant messaging platforms. Broadly, the hidden service mecha-
nism is composed of five pivotal components: Hidden Service, In-
troduction Point, Rendezvous Point, Hidden Service Directory and
Tor Client.
Hidden Service. Acting as a localized proxy, the hidden service
facilitates server-side applications’ integration with the Tor Net-
work. It produces an Onion address—a 62-byte string terminating
with the ’.onion’ extension—which stands as an anonymized re-
placement for the server’s actual IP address. Diverging from con-
ventional domain name resolutions, the hidden service adopts a
unique mechanism. It first utilizes a descriptor, essentially a text
file containing both plaintext and encrypted segments, to capture
its contact details. Following specific rules, the hidden service then
earmarks multiple HSDirs within the DHT to act as the responsi-
ble HSDirs. Their role? To host and propagate the freshly-minted
descriptor. For any client to establish a connection with the hidden
service, it becomes imperative to first identify the relevant HSDir
associatedwith the desired service and subsequently procure its de-
scriptor. As such, the descriptor emerges as a linchpin, central to
the hidden service’s ability to offer its services to external clients.
Introduction Point (IPO). The Introduction Point, often abbrevi-
ated as IPO, is a specific Tor relay. It’s selected at random by the
hidden service, serving a pivotal role in channeling connection re-
quests made by the client directly to the hidden service.
RendezvousPoint (RPO).Denoted as RPO, the Rendezvous Point
is a Tor relay handpicked by the client. Its main function is to amal-
gamate connections from both the client and the hidden service,
ensuring seamless data transfer between the two entities.
Hidden Service Directory (HSDir).These are not just any Tor re-
lays but specialized ones, identifiable by their distinct HSDir flag.
Their primary role is to archive the descriptors associated with
hidden services. Recognizing the potential load on these directo-
ries, each HSDir crafts a distributed hash table (DHT), relying on a
unique formula to derive its node index. Highlighting a feature of
the v3 hidden service mechanism, it’s worth noting that every hid-
den service concurrently oversees two descriptors. Each of these
descriptors meticulously identifies and then uploads to a set of
eight chosen HSDirs.
Tor Client. Acting as the user’s gateway to the Tor Network, the
Tor client functions as a localized proxy. It equips user-end applica-
tions, including web browsers, to interface with the Tor Network,
effectively translating standard user traffic into the specialized Tor
protocol format.

Fig. 7 showcases the sequence of operations required to form a
connection between the Tor client and the designated hidden ser-
vice. It’s imperative to note that the hidden service juggles both
the “current descriptor” and the “next descriptor” due to
the intrinsic delay in client consensus files. This ensures a seam-
less connection for clients equipped with either the newer or older
consensus. The following steps elucidate the process:
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Figure 7: Components of the hidden service mechanism and
the client access process.

• ¬ Descriptor Selection: Each descriptor elects three relays
as IPOs. A 3-hop circuit to each IPO is subsequently estab-
lished.

• ­ Information Update: The hidden service logs the IPO in-
formation into the appropriate descriptor. Eight responsi-
ble HSDirs on the DHT are chosen for each descriptor, to
which the descriptors are then uploaded.

• ® Client Access: When a Tor client aims to access a tar-
get hidden service, it decides to use either the current or
next descriptor. This decision is influenced by the tempo-
ral data (specifically, the ”valid-after” field) in its consen-
sus file. Using the target hidden service’s onion address,
the client computes the location of responsible HSDirs on
the DHT and fetches the hidden service descriptor.

• ¯ RPO Selection: The Tor client opts for a Tor relay to act
as the RPO. A 3-hop circuit to the RPO is established, and a
rendezvous cookie is generated for hidden service authen-
tication.

• ° IPO Connection: Post decryption of the descriptor, the
client obtains three IPOs. One IPO is chosen at random for
a 4-hop circuit connection. The client sends a request, in-
clusive of the RPO details and rendezvous cookie, to the
hidden service via the selected IPO.

• ± RPO Circuit Establishment: On receipt of the request,
the hidden service forms a 4-hop circuit to the RPO. Us-
ing the rendezvous cookie, authentication with the RPO is
completed.

• ² Circuit Linking: The RPO connects the two circuits orig-
inating from both the client and the hidden service. Finally,
the Tor client and hidden service communicate via the re-
sulting 6-hop circuit.

8.2 Reducing attack time
To maximize the effectiveness of the HSDirSniper attack, it is im-
perative to minimize the duration required for the attacker to up-
load descriptors. Eq. 18 represents the relationship between the
time𝑇 required to attack a responsibleHSDir and the per-descriptor
upload time 𝑇𝑖 . There are three primary factors that limit the pa-
rameter 𝑇𝑖 : the time spent on descriptor construction 𝑇𝑑𝑒𝑠𝑐,𝑖 , the
time spent about the circuit𝑇𝑐𝑖𝑟𝑐,𝑖 , and the performance of both the
attacker’smalicious hidden services and the targetHSDir𝑇𝑚𝑎𝑐ℎ𝑖𝑛𝑒,𝑖 .
In this paper, six optimisation solutions are proposed to reduce the
time of attack (𝑇 ).

𝑇 =
𝑛∑
𝑖=1

𝑇𝑖 =
𝑛∑
𝑖=1

(𝑇𝑑𝑒𝑠𝑐,𝑖 +𝑇𝑐𝑖𝑟𝑐,𝑖 +𝑇𝑚𝑎𝑐ℎ𝑖𝑛𝑒,𝑖 ) (18)

(1) Reducing the number of descriptors (𝑛).
¬ Expanding the capacity of each descriptor. In Section 2.2, we

mentioned that the size of one descriptor is limited to 50,000 bytes.
According to the strategy for storing descriptors in HSDir, the ci-
phertext section of the descriptor is stored twice. We expanded
the ciphertext section of the descriptor with additional bytes, and
finally, the malicious descriptor we constructed occupies around
86,550 bytes in HSDir, which is 3.5 times larger than a normal de-
scriptor.

(2) Reducing the time spent on buliding descriptors (𝑇𝑑𝑒𝑠𝑐,𝑖 ).
­ Skipping the step of selecting the IPOs in the process of build-

ing the descriptor. Establishing aHS-IP circuit is a very time-consuming
process. Skipping the selection step of the IPOs removes the time
spent not only on establishing the circuit, but also on selecting the
IPOs.

(3) Reducing the time spent on circuit (𝑇𝑐𝑖𝑟𝑐,𝑖 )
® Reducing the length of the HS-HSDir circuit. We have re-

duced the HS-HSDir circuit to 1 hop from the default 4 hops, which
effectively decreases the transmission delay of the circuit, i.e. HS-
>Guard->HSDir.

¯ Choosing Guard relays with excellent transmission perfor-
mance. By default, HS employs a bandwidth weighting algorithm
to select Guards. However, it’s important to note that Guards with
high bandwidths do not necessarily guarantee consistent transmis-
sion performance. In this paper, we propose measuring the trans-
mission performance of Guards in real time by utilizing the circuit
build time as a metric.

° Multiplexing the HS-HSDir circuit. The hidden service does
not multiplex the HS-HSDir circuit, resulting in the creation of a
new circuit every time the hidden service uploads to the same HS-
Dir. This mechanism increases the time required for the hidden
service to establish the circuit.

(4) Evaluating the data handling capabilities of malicious hidden
services and HSDir (𝑇𝑚𝑎𝑐ℎ𝑖𝑛𝑒,𝑖 ).

± To increase the attack speed and maximize the utilization of
machine resources, an attacker can deploy multiple malicious hid-
den services and utilize a multi-threaded design in each hidden
service’s Tor instance. However, HSDir has a performance limit
and will discard excess data when it cannot handle it. Therefore,
it is crucial to deploy a reasonable number of hidden services and
carefully explore the appropriate number of multi-threads.

8.3 Responsible HSDir skipping mechanism
The HSDir selection for the “current descriptor” operates in-
dependently from the ”next descriptor”. This autonomy implies
potential overlaps between the eightHSDirs chosen by the “current
descriptor” and those selected by the “next descriptor”. Fur-
thermore, for any descriptor (be it current or next), if a HSDir is
pre-selected, the hidden service bypasses it in favor of the subse-
quent HSDir. Upon finalizing the selection of the responsible HS-
Dirs, the descriptor is uploaded.
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8.4 Experimental Supplementary Figure
In this section, we show some supplementary figure of the experi-
mental procedure. Fig. 8a show the process of selecting the respon-
sible HSDir by the hidden service, while Fig. 8b indicates the re-
uploading intervals of descriptors in the real Tor Network.

8.5 Details of the theoretical framework
derivation

In Section 3.2, we use Total ProbabilityTheorem for 𝑝 (𝐵𝑖 |𝐴1 = 𝑎2),
and have 𝑝 (𝐵𝑖 |𝐴1 = 𝑎2) = 𝑝 (𝐴2 = 𝑎3).

Using the same method to expand the full probability formula
for 𝑝 (𝐵𝑖 |𝐴1 = 𝑎3). we can have

𝑝 (𝐵𝑖 |𝐴1 = 𝑎2) = 𝑝 (𝐴2 = 𝑎1) × 𝑝 (𝐵𝑖 |𝐴1 = 𝑎3, 𝐴2 = 𝑎1)
+ 𝑝 (𝐴2 = 𝑎2) × 𝑝 (𝐵𝑖 |𝐴1 = 𝑎3, 𝐴2 = 𝑎2)
+ 𝑝 (𝐴2 = 𝑎3) × 𝑝 (𝐵𝑖 |𝐴1 = 𝑎3, 𝐴2 = 𝑎3)

(19)

For the first part of Eq. 19, since 𝐻𝑆𝐷𝑖𝑟𝑖 is able to collect and
store the descriptor in the case𝐴2 = 𝑎1, we have𝑝 (𝐵𝑖 |𝐴1 = 𝑎3, 𝐴2 =
𝑎1) = 0. And then we analyse the second part of Eq. 19, when𝐴1 =
𝑎3 and𝐴2 = 𝑎2,𝐻𝑆𝐷𝑖𝑟𝑖 fails to collect the descriptor, and therefore
𝑝 (𝐵𝑖 |𝐴1 = 𝑎3, 𝐴2 = 𝑎2) = 1. Finally, we consider the third part of

Eq. 19. Since In this case that 𝐴1 = 𝑎3 and 𝐴2 = 𝑎3, 𝐻𝑆𝐷𝑖𝑟𝑖 fails to
collect the descriptor, so 𝑝 (𝐵𝑖 |𝐴1 = 𝑎3, 𝐴2 = 𝑎3) = 1. In summary,
it can be deduced that 𝑝 (𝐵𝑖 |𝐴1 = 𝑎3) = 𝑝 (𝐴2 = 𝑎2) + 𝑝 (𝐴2 = 𝑎3).
In summary, we derive Eq. 12.

From the definition of Eq. 5, 𝜂𝑖 is the probability that 𝐻𝑆𝐷𝑖𝑟𝑖
captures the descriptor. Therefore, we have

∑𝑁−1
𝑖=0 𝜂𝑖 = 1. Finally,

combining Eq. 5 with Eq. 12, we have

𝑝1𝑖 = 𝑝 (𝐴1 = 𝑎1) × 𝑝 (𝐵𝑖 |𝐴1 = 𝑎1)
+ 𝑝 (𝐴1 = 𝑎2) × 𝑝 (𝐵𝑖 |𝐴1 = 𝑎2)
+ 𝑝 (𝐴1 = 𝑎3) × 𝑝 (𝐵𝑖 |𝐴1 = 𝑎3)
= 𝑝 (𝐴1 = 𝑎2) × 𝑝 (𝐴2 = 𝑎3)
+ 𝑝 (𝐴1 = 𝑎3) × (𝑝 (𝐴2 = 𝑎2) + 𝑝 (𝐴2 = 𝑎3))

=
𝑖−4∑
𝑗=𝑖−7

𝜂 𝑗 × (1 −
𝑖∑

𝑗=𝑖−7
𝜂 𝑗 )

+ (1 −
𝑖∑

𝑗=𝑖−7
𝜂 𝑗 ) × (

𝑖−4∑
𝑗=𝑖−7

𝜂 𝑗 + 1 −
𝑖∑

𝑗=𝑖−7
𝜂 𝑗 )

= (1 −
𝑖∑

𝑗=𝑖−7
𝜂 𝑗 ) × (1 −

𝑖∑
𝑗=𝑖−7

𝜂 𝑗 + 2 ×
𝑖−4∑
𝑗=𝑖−7

𝜂 𝑗 )

(20)
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Figure 8: (a) Hidden service upload descriptors to the DHT; (b)Stats descriptor re-upload interval.
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