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Abstract

Long-context processing is a critical ability that constrains the applicability
of large language models (LLMs). Although there exist various methods
devoted to enhancing the long-context processing ability of LLMs, they
are developed in an isolated manner and lack systematic analysis and inte-
gration of their strengths, hindering further developments. In this paper,
we introduce UniMem, a Unified framework that reformulates existing
long-context methods from the view of Memory augmentation of LLMs.
Distinguished by its four core dimensions—Memory Management, Mem-
ory Writing, Memory Reading, and Memory Injection, UniMem empowers
researchers to conduct systematic exploration of long-context methods. We
re-formulate 16 existing methods based on UniMem and analyze four rep-
resentative methods: Transformer-XL, Memorizing Transformer, RMT, and
Longformer into equivalent UniMem forms to reveal their design principles
and strengths. Based on these analyses, we propose UniMix, an innovative
approach that integrates the strengths of these algorithms. Experimental
results show that UniMix achieves superior performance in handling long
contexts with significantly lower perplexity than baselines. The code is
publicly available at https://github.com/thunlp/UniMem

1 Introduction

Transformer-based (Vaswani et al., 2017) large language models (LLMs) have ushered in
a new era of AI (Brown et al., 2020; Touvron et al., 2023; Bommasani et al., 2021; OpenAI,
2022), leading to various applications (e.g., natural language processing (Brown et al., 2020),
code generation (Li et al., 2022)). As the scope of LLM applications expands, the demand for
handling longer contexts becomes paramount (e.g., parsing long documents (Gao et al., 2023)
and managing intricate dialogues (Zheng et al., 2023)). However, the inherent computational
limitations of traditional Transformer architectures, stemming from the quadratic complexity
of self-attention mechanisms, pose significant challenges for scaling to long contexts.

Various methods have been developed to address this challenge, including optimizing
the quadratic complexity of Transformer Dai et al. (2019); Beltagy et al. (2020); Wu et al.
(2022), adjusting the position encoding of Transformer to handle longer contexts than during
pre-training (Chen et al., 2023a; Peng et al., 2023), and designing non-Transformer architec-
tures (Gu et al., 2021; Xiong et al., 2023; Gu & Dao, 2023; Sun et al., 2023). Among them,
the first type of method has been extensively explored and utilized, but lacks integration
among its various types, prompting our primary focus on it. Upon reviewing this type of
∗ Indicates equal contribution.
† Corresponding authors: mandel@xmu.edu.cn, liuzy@tsinghua.edu.cn.
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UniMem Framework

Method Memory Management Memory Writing Memory Reading Memory InjectionMemory Size Overflow Handling

RMT Bulatov et al. (2022) Single-Sgm FIFO Model forward All All-Lyr
AutoCompressor Chevalier et al. (2023) Multi-Sgm / Model forward All All-Lyr
Poolingformer Zhang et al. (2021) Multi-Sgm Clear All Pooling+Direct Position All-Lyr
LongT5 Guo et al. (2021) Multi-Sgm Clear All Pooling+Direct Position All-Lyr
Longformer Beltagy et al. (2020) Multi-Sgm Clear All Direct Position All-Lyr
Big Bird Zaheer et al. (2020) Multi-Sgm Clear All Direct Position All-Lyr
LongNet Ding et al. (2023) Multi-Sgm Clear All Direct Position All-Lyr
Transformer-XL Dai et al. (2019) Single-Sgm FIFO Direct Position All-Lyr
StreamingLLM Xiao et al. (2023) Multi-Sgm FIFO Direct Position All-Lyr
Routing Roy et al. (2021) Multi-Sgm Clear All Direct Similarity All-Lyr
Reformer Kitaev et al. (2020) Multi-Sgm Clear All Direct Similarity All-Lyr
Memorizing Transformer Wu et al. (2022) Multi-Sgm FIFO Direct Similarity Certain-Lyr
FoT Tworkowski et al. (2023) Multi-Sgm FIFO Direct Similarity Certain-Lyr
Unilimiformer Bertsch et al. (2023) Multi-Sgm / Direct Similarity All-Lyr
KNN-LM Khandelwal et al. (2019) Multi-Sgm / Direct Similarity Certain-Lyr
TRIME Zhong et al. (2022) Multi-Sgm / Direct Similarity Certain-Lyr

UniMix (Ours) Multi-Sgm FIFO Direct+Model forward Similarity+Position Certain-Lyr

Table 1: Long-context methods are categorized under four dimensions using our UniMem
framework (Section 3), introducing UniMix to combine strengths. Excluding FoT, KNN-LM,
and TRIME—focused on inference—other methods apply to both training and inference.

method, we further divide it into three categories: (1) Context Caching, which stores the in-
termediate hidden states of context and retrieves relevant ones when processing successive
contexts (Wu et al., 2022; Dai et al., 2019; Bertsch et al., 2023; Tworkowski et al., 2023); (2)
Context Compression, which compresses the context into condensed tokens and prepends
them before the successive context (Bulatov et al., 2022; Chevalier et al., 2023; Guo et al.,
2021; Zhang et al., 2021); (3) Sparse Attention: which elaborately designs sparse attention
masks to reduce computational complexity to extend input length (Beltagy et al., 2020;
Zaheer et al., 2020; Ding et al., 2023; Kitaev et al., 2020; Roy et al., 2021; Chen et al., 2023b).

While the above approaches effectively reduce computational complexity and enhance long-
context capabilities, they still face the following problems. Firstly, there is a notable absence
of equitable evaluation across various approaches. Given that these approaches adhere to
distinct design principles and are tested within disparate datasets and settings, assessing
their efficacy and adaptability fairly becomes exceedingly complex. Such complexity com-
plicates the comparative analysis to identify the strengths of each approach. Secondly, the
diverse implementations of these approaches significantly impede the strength integration
of each one into a singular model. This impediment to synergistic integration restricts the
potential for substantial progress in the effective processing of long contexts by LLMs.

This work introduces UniMem, a unified framework that integrates existing long-context
methods for optimizing Transformer computation complexity, viewed via memory augmen-
tation. Specifically, UniMem consists of four essential dimensions: (1) Memory Management
determines how much past information is stored and how old memory is replaced, impact-
ing how LLM recalls and uses previous context; (2) Memory Writing describes how the model
converts recent information into a memory format, affecting the way that past data is sum-
marized and accessed; (3) Memory Reading focuses on how the model retrieves information
from the memory bank, crucial for efficiently using stored information to understand the
current context; (4) Memory Injection determines which model layers to augment memory
information, influencing overall efficiency and effectiveness in processing long contexts.

Based on the UniMem framework, as illustrated in Table 1, we re-formulate 16 prevailing
long-context approaches from the unified view of the four fundamental dimensions. We
further select 4 representative approaches from each long-context category: Transformer-
XL (Dai et al., 2019), Memorizing Transformer (Wu et al., 2022), RMT (Bulatov et al., 2022),
and Longformer (Beltagy et al., 2020), and introduce their equivalent formula under the
UniMem framework. This unification facilitates a clearer understanding of their subtle
interconnections and distinct characteristics. Our analysis indicates a shared foundation
in design principles across these methodologies, despite their superficial differences. Ad-
ditionally, built upon the unified framework, we introduce a new method UniMix which
synthesizes the strengths of three categories of long-context algorithms. The experimental
results demonstrate that UniMix can achieve superior performance compared to the existing
long-context approaches, including position interpolation techniques. Furthermore, our
investigation into UniMix reveals two beneficial conclusions: (1) By integrating different
memory dimensions, UniMix demonstrates strong robustness and is less sensitive to hyper-
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Figure 1: Diagram illustrates long-context methods (segment length L = 3). Yellow circles
show past segments; blue circles mark the current segment. (a) Transformer-XL caches
earlier hidden states. (b) Memorizing Transformer retrieves past segments with kNN
similarity. (c) RMT employs memory tokens for prior segments. (d) Longformer extends
segments with global and sliding window attention.

parameters. (2) Increasing the number of memory layers does not necessarily correlate with
performance gains. Rather, the strategic positioning of a single memory layer can achieve
comparable effectiveness to integrating additional memory across half of the model’s layers.

2 Preliminaries

2.1 Vanilla Transformer

Given a Transformer-based LLM featuring N stacked layers, and an input sequence
X = {x1, x2, ..., xT} consisting of T tokens, the LLM processes the sequence X layer-wisely,
constructing a set of hidden states Hn = {hn

1 , hn
2 , ..., hn

T}, where n ∈ [1, N]. The n-th LLM
layer’s hidden states Hn are derived from the (n− 1)-th layer using feed-forward networks
(FFN), multi-head attention (Attn), and softmax (Sftx):

Hn FFN←−Attn(Qn , Kn , Vn ; A) = Sftx
(

Qn(Kn)T
√

d
+ A

)
Va , Aij =

{
0 if j ∈ [0, i],

−∞ else.
(1)

Qn/Kn/Vn = Hn−1(Wn
q )

T /Hn−1(Wn
k )

T /Hn−1(Wn
v )

T . (2)

where A ∈ RT×T is often a causal mask matrix controlling the visible context field and
Wn

q/k/v ∈ Rd×d is the projection matrix of multi-head attention in n-th LLM layer.

Despite LLMs’ strong context modeling, their attention mechanism’s T2 computational
complexity challenges tasks with very long contexts. To alleviate this challenge, the com-
munity has made many improvements, and we analyze three main types of long-context
approaches including context caching, context compression, and sparse attention methods.

2.2 Context Caching

Context caching methods innovatively tackle long-context modeling by splitting them
into segments, and storing the hidden states of historical segments and retrieves
relevant ones when processing the current segment. To be specific, a long input
sequence X = {x1, x2, ..., xT} can be split into a succession of segments Sτ =
{x(τ−1)×L+1, x(τ−1)×L+2, ..., x(τ−1)×L+L} with the fixed token length L (L ≪ T), where
τ ∈ [1, T/L]. These methods utilize not only the hidden states from the current segment
but also those from previous segments during sequential processing. Broadly, there are
two categories: one involves storing the hidden states of a previous segment in an external
memory cache (Dai et al., 2019), and the other involves caching key-value pairs of multiple
previous segments (Wu et al., 2022; Bertsch et al., 2023; Tworkowski et al., 2023). This paper
highlights Transformer-XL (Dai et al., 2019) and Memorizing Transformers (Wu et al., 2022)
as exemplars to demonstrate how external memory integration enhances the capacity for
long-context modeling for these two categories.

Transformer-XL utilizes both hidden states Hn
τ of the current segment Sτ and the hidden

states Hn
τ−1 processed by the previous segment Sτ−1, as shown in Figure 1(a). This recur-

rence way enables Transformer-XL to learn dependencies beyond long contexts of fixed
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length without breaking temporal coherence. Formally, the n-th hidden states Hn
τ of segment

Sτ is constructed layer-wisely as follows:

Hn
τ

FFN←− Attn(Qn
τ , K̃n

τ , Ṽn
τ ; A), Aij =

{
0 if j ∈ (i, i + L],

−∞ else.
(3)

K̃n
τ /Ṽn

τ = [SG(Hn−1
τ−1); Hn−1

τ ](Wn
k )

T /[SG(Hn−1
τ−1); Hn−1

τ ](Wn
v )

T , (4)

where mask matrix A ∈ RL×2L is illustrated in Figure 2 (a). The function SG(·) means to
stop gradient back-propagation and [·; ·] denotes the concatenation operation1.

(a)

...

(b)
(c) (d)

Figure 2: Attention patterns for long-context
methods (L = 3).(a) Transformer-XL. (b) Mem-
orizing Transformer. (c) RMT. (d) Longformer.

Memorizing Transformer designates a spe-
cific layer for memory augmentation. When
modeling each segment Sτ , the modeling
process for non-memory extension layers
aligns with the vanilla Transformer (Eq. 1).
In the memory augmentation layer, as de-
picted in Figure 1(b), each query token qn

i ∈
Qn

τ can access additional k pairs of mem-
ory keys and values from all historical pro-
cessed keys Kn

1:τ-1 = {kn
1 , kn

2 , ..., kn
(τ-1)×L}

and values Vn
1:τ-1 = {vn

1 , vn
2 , ..., vn

(τ-1)×L}
through k-nearest-neighbor (kNN) lookup2:

Hn
τ

FFN←−g⊙Attn(Qn
τ , SG(Kn

1:τ-1), SG(Vn
1:τ-1); Â) + (1− g)⊙Attn(Qn

τ , Kn
τ , Vn

τ ; A), Âij =

{
0 if j ∈ kNN(i),

−∞ else.
(5)

where g is a learnable parameter and ⊙ denotes element-wise multiplication. The mask
matrix (Figure 2 (b)) Â ∈ RL×((τ−1)×L), j ∈ kNN(i) means the dot product of the j-th
previous key of Kn

1:τ-1 and the i-th current query token of Qn
τ ranks in the top k positions

among the dot product of the i-th current query token and all previous key tokens. The
second mask A ∈ RL×L is the vanilla causal mask.

2.3 Context Compression

Context compression methods typically compress the hidden states of history tokens into
high-level memory representations, which combine multiple tokens into one concise repre-
sentation. This technique can be implemented through either a pooling-based approach,
exemplified by LongT5 (Guo et al., 2021) and PoolingFormer (Zhang et al., 2021), or a model
forward strategy, such as Recurrent Memory Transformer (RMT) (Bulatov et al., 2022) and
AutoCompressor(Chevalier et al., 2023). We choose RMT to demonstrate how compressed
memory representations are integrated into the modeling process.

RMT incorporates m tunable memory tokens “[mem]” before and after each segment Sτ
(Figure 1(c)). The succeeding memory tokens (marked as Mn

τ) are employed as a medium
to read the historical information from the last segment Sτ-1 while the succeeding memory
tokens (Mn

τ) can be used to write the current segment information for modeling next segment
Sτ+1. In this way, the n-th hidden states of segment Sτ is expanded to H̃n

τ = [Mn
τ ; Hn

τ ; Mn
τ ]:

H̃n
τ

FFN←− Attn(Q̃n
τ , K̃n

τ , Ṽn
τ ; A), Aij =


0 if j ∈ [0, max(i, m)],

0 elif i ∈ [L + m, L + 2m],

−∞ else.

(6)

Where the mask matrix A ∈ R(L+2m)×(L+2m) is illustrated in Figure 2 (c). To implement
the recurrence mechanism, RMT initializes the first layer representation of read and write
memory tokens M1

τ and M1
τ of current segment Sτ with the last layer representations of

write memory tokens MN
τ-1 of last segment Sτ-1.

1Hn−1
τ is spliced after Hn−1

τ−1, resulting in Aij = 0 if j ∈ (i, i + L].
2If the memory pool size (m) is limited, only the τ−m to τ− 1 historical segments can be accessed.
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Figure 3: Four typical methods in UniMem. (a) Transformer-XL uses a single past hidden
state, shown as memory cache, with sliding window attention. (b) Memorizing Transformers
(MemTrans) saves multiple segment states in a layer, using kNN similarity for retrieval. (c)
RMT utilizes a memory token for prior segment data, stored post-model forwarding. (d)
Longformer applies global and sliding window attention based on token positioning.

2.4 Sparse Attention

Besides segment-level methods, sparse attention techniques tackle long-context tasks by
sparse mechanisms to avoid the quadratic computational increase of vanilla attention with
long sequences Beltagy et al. (2020); Zaheer et al. (2020); Ding et al. (2023); Kitaev et al. (2020);
Roy et al. (2021). Formally, given an input sequence X = {x1, x2, ..., xL}, these methods
modify the standard attention mechanism by creating diverse sparse attention masks:

Hn FFN←− Attn(Qn , Kn , Vn ; A), (7)

where Hn ∈ RT×d is the n-th layer hidden states of X and A ∈ RT×T is the mask matrix.
We illustrate sparse attention mask construction using Longformer (Beltagy et al., 2020) as
an example. See Appendix A.1 for BigBird details.

Longformer utilizes a combination of sliding window and global attention to establish the
sparse attention pattern (Figure 1(d)). Sliding window attention constrains attention for
each token within a context of L tokens (We set window length to be equal to segment
length and ignore stride here), while global attention allows any token in the sequence to
capture global tokens G. Hence, its mask matrix (Figure 2 (d)) can be formulated as:

Aij =

{
0 if j ∈ [min(0, i-L), i] ∪ index(G),

−∞ else.
(8)

3 The Unified Memory Framework

Through reviewing the aforementioned methods, we investigate that these methods can be
integrated into a unified memory-augmented modeling framework, featuring a segment-
level streaming input mode. We name this framework as UniMem. In this section, we
first reformulate the aforementioned long-context modeling methods within the UniMem
framework, distinguishing them across precisely defined memory dimensions, and then
integrate multiple memory dimensions to propose new modeling approaches.

3.1 UniMem Formulation

Formally, UniMem can augment the memory keys Kn
mem and values Vn

mem from previously
processed segments when modeling the hidden state Hn

τ for each segment Sτ :

Hn
τ

FFN←− Attn(Qn
τ , [Kn

mem; Kn
τ ], [V

n
mem; Vn

τ ]; A). (9)

The distinctions among existing long-context modeling methods hinge on two critical
elements: the construction of memory keys and values (Kn

mem/Vn
mem), and the creation of

the attention mask matrix to access memory (A). Next, we present the aforementioned long-
context modeling methods in UniMem, focusing on constructing these essential elements.

UniMem: Transformer-XL, as shown in Figure 3(a), designates the keys and values from the
last segment Sτ-1 as memory keys and values Kn

mem/Vn
mem = SG(Kn

τ-1)/ SG(Vn
τ-1), with
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the mask remaining consistent with that in Eq. 3. Transformer-XL considers the keys Kn
τ-1

and values Vn
τ-1 from the last segment Sτ-1 as the memory keys and values:

Kn
mem/Vn

mem = SG(Kn
τ-1)/ SG(Vn

τ-1), Aij =

{
1 if j ∈ (i, i + L],

−∞ else.
(10)

UniMem: Memorizing Transformer, as illustrated in Figure 3(b), preserves the key-
value pairs of all processed segments as memory key and values Kn

mem/Vn
mem =

SG(Kn
1:τ-1)/ SG(Vn

1:τ-1) and accesses the memory using kNN’s attention mechanism:

Aij =

{
0 if j ∈ kNN(i) ∪ [(τ - 1)× L, (τ - 1)× L+ i],

−∞ else.
(11)

Given the UniMem formulation, we can deduce the original formulation of Memorizing
Transformer in reverse (we omit attention masks for simplicity):

Attn(Qn
τ , [Kn

mem; Kn
τ ], [V

n
mem; Vn

τ ]) = Sftx
(
Qn

τ [K
n
mem; Kn

τ ]
T) [Vn

mem; Vn
τ ],

= g⊙ Sftx
(
Qn

τ(K
n
mem)T) Vn

mem + (1− g)⊙ Sftx
(
Qn

τ(K
n
τ)

T) Vn
τ ,

= g⊙Attn(Qn
τ , Kn

mem, Vn
mem) + (1− g)⊙Attn(Qn

τ , Kn
τ , Vn

τ),

(12)

where g is constructed as follows:

g =
∑(τ−1)×L

k=1 exp(Qn
τ(Kn

mem)T)k

∑(τ−1)×L
k=1 exp(Qn

τ(Kn
mem)T)k + ∑L

l=1 exp(Qn
τ(Kn

τ)
T)l

. (13)

There is also experiment evidence that two implementations can be converted to each other
without loss of language modeling performance Tworkowski et al. (2023).

UniMem: RMT constructs the memory keys and values Kn
mem/Vn

mem by performing a
model forward pass on the read memory token Mn

τ within the current segment Sτ :

Qn
mem/Kn

mem/Vn
mem = Mn−1

τ (Wn
q )

T /Mn−1
τ (Wn

k )
T /Mn−1

τ (Wn
v )

T , Mn−1
τ

FFN←− Attn(Qn−1
mem, Kn−1

mem, Vn−1
mem), (14)

where Qn−1
mem denotes memory token queries for retrieving key-value pairs, Kn

mem/Vn
mem, in

the model forward pass. The entire modeling process is shown in Figure 3(c).

UniMem: Longformer uses sliding window attention, like other sparse attention methods,
to handle long sequences X = x1, x2, ..., xT , where each token attends to a limited number
of previous tokens. This approach facilitates transitioning input into a streaming format,
processing fixed-length segments S1, S2, ..., Sτ sequentially. Longformer also applies global
attention based on sliding window attention, as illustrated in Figure 3(d). The memory keys
and values Kn

mem/Vn
mem are derived from global tokens G and the last segment Sτ :

Kn
mem/Vn

mem = [Kn
glob; Kn

τ-1]/[V
n
glob; Vn

τ-1], Aij =

{
0 if j ∈ (i, i + L+ |G|],
−∞ else,

(15)

where |G| is the number of global tokens and Kn
glob/Vn

glob are their key-value pairs.

3.2 Memory Dimensions

In UniMem, the differences among these methods can be further standardized into four
dimensions related to operating the added memory keys and values (Table 1).

Memory Management: This dimension manages memory cache storage, involving two
crucial elements: (1) Memory Size refers to the amount of stored memory key-value pairs
from previous segments. Some methods store from just one prior segment (“Single-Sgm”),
such as RMT and Transformer-XL as Figure 3(a) and 3(c) illustrates, whereas other methods
implement a large memory cache incorporating multiple past segments (“Multi-Sgm”), (e.g.
Memorizing Transformer and Sparse Attention, as depicted in Figure 3(b) and 3(d)). (2)
Overflow Handling denotes the strategies for updating the memory cache when it is full.
Some use First-In-First-Out (”FIFO”) to discard old memory, while sparse attention methods
clear all when max capacity is reached (Figure 3(d)).

Memory Writing: This dimension concerns transforming processed data from past seg-
ments into memory keys and values for storage and selective access by the current segment.
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Model Memory Management Memory Reading Memory Writing Mem Injection

Memory Size Topk Window Length Global Tokens Compressed Tokens Memory Layer

Vanilla 0 0 0 0 0 -
Longformer 4,096 0 2,048 4 0 All
MemTrans 20,480 32 0 0 0 11,21
Trans-XL 2,048 0 2,048 0 0 All
RMT 40 0 0 0 40 All
UniMix 20,520 4 2,048 4 40 12-22

Table 2: Long-context methods decomposed along the defined UniMem dimensions in
hyperparameters view for TinyLLaMA (Section 3.2).

Context Caching and Sparse Attention insert keys and values directly during the forward
pass (“Direct”), as shown in Figure 3(b). Conversely, Context Compression employs op-
erations like dual forward passes (e.g., RMT, “Model Forward”) and pooling (e.g., Pool-
ingformer (Zhang et al., 2021), LongT5 (Guo et al., 2021), “Pooling”) to compress the last
segment’s data into tokens, dictated by the Compressed Tokens count.

Memory Reading: This dimension explains fetching keys and values from the memory
cache, guided by mask matrix A (Eq. 9). The “Position” method (e.g., Longformer) selects
based on relative positions, influenced by Window Length and Global Tokens (Eq.15). The
“Similarity” method (e.g., Memorizing Transformer, Routing Transformer) uses similarity to
current queries, regulated by Topk (Eq. 11). RMT accesses the whole cache (“All”). Some
models (e.g., KNN-LM (Khandelwal et al., 2019), TRIME (Zhong et al., 2022)) also map
memory cache contents to vocabulary space, integrating them with current tokens.

Memory Injection: This aspect defines how LLM layers add an external memory cache,
controlled by the Memory Layer parameter for its quantity and placement. While most meth-
ods integrate memory uniformly across all layers (”All-Lyr”), selectively adding memory to
specific layers can lower CUDA memory usage (”Certain-Lyr”).

Others: Besides design elements, methods vary in training strategies. Transformer-XL
and Memorizing Transformer use stop-gradient to block memory gradients, while RMT
and Longformer enable back-propagation through time (BPTT). Additionally, Focused
Transformer uses cross-batch training, and TRIME utilizes in-batch contrastive loss.

3.3 UniMix: Synthesizing Different Dimensions

We analyzed existing methods from the UniMem perspective, as shown in Figure 3. From
this analysis, we developed UniMix, which merges the best features in each Memory
Dimension. UniMix utilizes ”Similarity” and ”Position” for memory reading and a ”Direct”
plus ”Model Forward” approach for memory writing to yield empirically robust—but not
necessarily optimal—results. This approach serves as a starting point for further exploration.
Ongoing research will assess UniMix’s performance, the effects of different dimensions on
outcomes, and the potential of this new dimensional synergy for enhanced results.

4 Experiments

4.1 Experiments Settings

Datasets and Evaluation We use the language modeling task as the testbed. We select two
widely-used datasets: (1) PG-19 (Rae et al., 2019), from the Project Gutenberg archive, con-
sisting of pre-1919 English books (Sun et al., 2021); and (2) GitHub dataset, including a broad
collection of code and documentation from RedPajama’s GitHub repositories (Computer,
2023). We apply perplexity as the metric for evaluation.

Implementations We evaluate two scales of LLaMA: the 22-layer TinyLLaMA-1.1B (Zhang
et al., 2024) and 32-layer LLaMA2-7B (Touvron et al., 2023). Unless specifically stated,
our experiments predominantly utilized the TinyLLaMA model. We fine-tune models
for one epoch using 0.1B tokens across two datasets (We have found that this amount of
training volume is sufficient for achieving solid long-context capabilities and stable method
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comparisons). The default sequence length was 2, 048 tokens, aligned with TinyLLaMA’s
positional embeddings. See Appendix D for more implementation details.

Baselines We compare our UniMix with vanilla Transformer (Vaswani et al., 2017), Long-
former (Beltagy et al., 2020), Memorizing Transformers (MemTrans) (Wu et al., 2022),
Transformer-XL (Dai et al., 2019), RMT (Bulatov et al., 2022), and positional interpola-
tion (Chen et al., 2023a). We re-implement all of the existing methods and our UniMix under
the UniMem framework. See Table 2 for detailed hyperparameters.

4.2 Comparison of Existing Methods Under UniMem

Model TinyLLaMA LLaMA2-7B

PG19 Github PG19 Github

Vanilla 14.53 2.66 11.01 2.53
Longformer 13.92 2.42 10.34 2.27
MemTrans 14.34 2.57 10.66 2.34

Transformer-XL 13.78 2.36 10.28 2.23
RMT 14.68 2.70 10.64 2.55

UniMix 13.78 2.32 10.28 2.20

Table 3: Perplexity of different methods in UniMem.

The results are shown in Table
3, from which we conclude that:
(1) We compare the existing clas-
sical methods under the same set-
ting and find that the performance
trend remains consistent across
different datasets. The perfor-
mance ranking is Transformer-XL
> Longformer > MemTrans >
RMT. We hope this comparative
result can serve as a reference for
the community. (2) Our UniMix method outperforms or matches existing methods in both
text and code datasets, demonstrating that by effectively organizing each dimension and
combining optimization of various methods, we can achieve a better long-context processing
method that is applicable across various fields. (3) The UniMix method remains superior on
the larger-scale LLaMA2-7B model, emphasizing the method’s scalability and robustness.

4.3 Effects of Different UniMem Dimensions

The UniMem framework integrates various approaches to long-context language modeling,
each characterized by distinct hyperparameters. In this section, our objective is to dissect
the impact of each dimension within the UniMem framework. Subsequent analyses have
focused on discerning the pivotal role of Memory Read and Memory Injection within the
UniMix method by fine-tuning associated hyperparameters. Experiments on Memory
Management and Memory Writing adjustments are detailed in the Appendix B.

Memory Reading Our study delved into the hyperparameters affecting memory read-
ing—specifically, Topk and Window Length—and their impact on model perplexity (PPL).
Key insights are listed as follows: (1) TopK Increment Does Not Guarantee Improved Model
Performance: Increasing TopK from 0 to 64 did not uniformly boost performance. While the
Memorizing Transformer’s PPL steadily dropped with higher TopK, in the UniMix frame-
work (MemTrans settings), optimal performance was noted at TopK=4 and 8, with negligible
benefits beyond these points, as illustrated in Figure 4. (2) Window Length’s Minimal Impact
on UniMix: Adjusting the window length from 0 to 2048 had little effect on UniMix, unlike
Transformer-XL, which showed significant performance changes. This highlights a distinct
contrast in how these models respond to window length adjustments. (3) UniMix’s Robust-
ness: The observations underscore UniMix’s resilience against single-dimensional parameter
shifts like TopK and window length, marking a notable strength for long-context process-
ing. Such robustness minimizes the necessity for intricate hyperparameter optimization,
ensuring stable performance across diverse settings.

Memory Injection To investigate the impact of Memory Injection dimensions on perfor-
mance, we conducted further analysis on the GitHub dataset. Our findings are summarized
as follows: (1) Considerable Impact of Memory Layer Placement: For the TinyLLaMA model,
inserting the memory layer at higher levels outperforms its insertion at lower levels, as
demonstrated in Figure 4(c). (2) Significant Influence of Single Memory Layer Position: The po-
sitioning of the memory layer has a substantial effect on performance, with an optimal layer
significantly outperforming others, as shown in Figure 4(d). (3) Task-Independent Optimal
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(a) (b) (c) (d)

Figure 4: Effects of different UniMem dimensions on perplexity across datasets. (a) Topk’s
role for MemTrans and UniMix; (b) Combined effects with Window Length; (c) Memory
Layer Distribution’s impact; (d) Memory Layer Position’s influence (Single Layer Injection).

Memory Layer: The optimal layer remains consistent across different datasets (GitHub and
PG19) for the same model configuration, according to Figure 4(d). Model-Dependent Optimal
Memory Layer: On the GitHub dataset, the optimal layer for the 7b model is the 11th layer,
whereas, for the 1b model, it’s the 16th layer. Notably, the 1b model has a singular optimal
layer, whereas multiple optimal layers exist for the 7b model, as illustrated in Figure 4(d)
and Figure 10. (4) The superiority of Optimal Memory Layer in Practical Applications: When
inserting a single memory layer across different levels of the model, the performance at
the 16th layer significantly surpasses that of other levels. Remarkably, the enhancement
achieved by a single layer at the 16th level is comparable to the improvements observed
when memory layers are inserted across layers 12 to 22, far exceeding the performance
improvements seen when inserted in layers 1 to 11. This indicates that a single memory
layer, optimally positioned, can reach more than 98% of full performance using just 1/11
the computational time and resources (Figure 4(d)).

4.4 Comparison with Position Interpolation

Model Perplexity

Vanilla-64K 20.57
Position Interpolation 5.87
UniMix 2.75

Table 4: Perplexity comparison
among Vanilla, Position Interpola-
tion (PI), and UniMix models.

We evaluate methodologies for processing longer
texts, comparing their performance on a GitHub
dataset with segments over 64k (Table 4). Our ex-
periment involved: 1) Extending vanilla transform-
ers to 64k inputs and fine-tuning; 2) Using Position
Interpolation (PI) for increased input to 64k by ad-
justing position indices; 3) Implementing UniMix,
which processes up to 64k, combining 62k memory
and 2k local attention. After fine-tuning on a 0.1B
token dataset, UniMix showed significant perplexity
reduction over PI, benefiting from a memory strategy similar to the LLaMA model’s pretrain-
ing, without new positional embeddings. Crucially, UniMix demonstrates a computational
complexity that scales linearly with text length, thereby surpassing the Vanilla Transformer
and PI in terms of inference and training efficiency due to their exponential time complexity.

4.5 Downstream Task Experiments

Downstream task experiments were conducted on the TinyLLaMA model with a context
length of 512 tokens and a UniMix memory size of 10k tokens. We proportionally adjusted
other hyperparameters based on those specified in the original paper. The process begins
with fine-tuning the model on a 0.1B token dataset. Subsequently, we apply supervised fine-
tuning (SFT) using 12k instances from the LongAlpaca dataset. Although both fine-tuning
and SFT experiments are moderate in scope, potentially affecting the models’ performance
on downstream tasks, the results still demonstrate the expected performance trends.

Results on LongBench As shown in Table 5, The results of the downstream tasks indicate
that the performance ranking almost aligns with the perplexity (PPL) evaluation in our
paper: UniMix >Transformer-XL >Longformer >RMT >MemTrans. This consistency across
different evaluation metrics highlights the robustness of our proposed UniMix method.
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Model NQA Qasper MFQA HQA 2WikiMQA Musique

Vanilla 5.2 8.1 19.45 6.19 16.6 3.58
Longformer 4.5 8.01 19.52 6.11 15.74 3.8
MemTrans 5.88 8.69 19.18 5.55 14.12 3.49
Transformer-XL 4.54 8.11 18.98 5.15 14.33 3.23
RMT 4.36 7.58 18.59 5.9 13.75 3.78
UniMix (Ours) 6.19 8.26 19.27 6.82 14.45 3.77

Model GovReport QMSum MultiNews TREC TQA SAMSum

Vanilla 12.47 19 10.06 11 11.9 0.42
Longformer 9.68 19.45 11.28 16.5 14.54 0.17
MemTrans 10.84 18.72 13.14 12 11.82 0.0
Transformer-XL 13.33 19.6 13.57 13 17.79 0.0
RMT 11.6 19.54 11.08 13 12.33 0.0
UniMix (Ours) 16 20.02 12.09 20 12.24 3.01

Model PsgCount PsgRetrieval LCC RB-P Avg

Vanilla 0.0 4.0 25.34 32.53 11.62
Longformer 1.0 4.0 24.56 31.55 11.90
MemTrans 2.75 0.25 26.48 30.78 11.48
Transformer-XL 1.12 0.92 24.75 32.38 11.93
RMT 1.55 1.0 28.4 32.02 11.53
UniMix (Ours) 1.62 2.5 28.37 33.65 13.01

Table 5: Performance of Different Methods on LongBench.

Model 4k 8k 16k 32k Avg

Vanilla 0.05 0.04 0.03 0 0.03
Longformer 0.07 0.03 0.03 0 0.03
MemTrans 0.05 0 0 0 0.01
Transformer-XL 0.20 0.04 0.03 0.01 0.07
RMT 0.04 0.03 0.03 0.01 0.03
UniMix (Ours) 0.37 0.39 0.09 0.04 0.22

Table 6: Accuracy of different methods on Needles in the Haystack Dataset.

Needles in the Haystack Dataset In addition to our evaluations on LongBench, we
conduct experiments using the ”Needles in the Haystack” dataset. This dataset includes
text lengths ranging from 4k to 32k tokens, as shown in Table 6. UniMix is the only method
to accurately identify the ”needles” in texts exceeding 4k tokens in length.

5 Conclusion

In this paper, we introduce UniMem to unify various long-context approaches under the
view of memory augmentation of LLMs. UniMem encompasses four dimensions: memory
management, memory writing, memory reading, and memory injection. UniMem pro-
vides a structured categorization that enhances understanding, revealing, for instance, that
StreamingLLM and Memorizing Transformer differ mainly in their memory reading tech-
niques. This framework allows researchers to optimize long-context modeling by exploring
different strategies like Least Recently Used (LRU) for Memory Management and various
compression formats for Memory Writing. Our findings show that the memory injection
layer significantly impacts performance, with each language model having an optimal layer
independent of the dataset. By enabling granular control through tunable hyperparameters,
UniMem ensures standardized and fair evaluations. Furthermore, we propose UniMix,
which combines the strengths of these methods and significantly outperforms existing ap-
proaches across diverse datasets. Future work will integrate UniMem with other techniques,
such as diverse position encoding and alternative overflow handling methods, focusing on
differential memory strategies across layers.
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Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with
structured state spaces. arXiv preprint arXiv:2111.00396, 2021.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung,
and Yinfei Yang. Longt5: Efficient text-to-text transformer for long sequences. arXiv
preprint arXiv:2112.07916, 2021.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Gen-
eralization through memorization: Nearest neighbor language models. arXiv preprint
arXiv:1911.00172, 2019.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
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A Existing Method

A.1 BigBird

Big Bird Zaheer et al. (2020) introduces random attention in addition to sliding window
attention and global token attention, i.e., it randomly selects some key tokens for each query
token where the query can attend over these keys:

Aij =

{
0 if j ∈ [min(0, i-L), i] ∪ G ∪ R(i),
−∞ else.

(16)

where R(i) denotes the position set of randomly selected key tokens for the i-th query token.

UniMem: Big Bird can also be reformulated as the following memory-augmented modeling
process:

Kn
mem/Vn

mem = [Kn
glob; Kn

rand; Kn
τ-1]/[V

n
glob; Vn

rand; Vn
τ-1],

Aij =

{
0 if j ∈ [i, i + L+ |G|+ |R|],
−∞ else,

(17)

where |R| is the number of random attention tokens and Kn
rand/Vn

rand are their keys and
values.

B Effects of Different UniMem Dimensions

B.1 Memory Management

We focus on Overflow Handling in the Memory Management dimension. Specifically, we
tune the Overflow Handling dimension from default First-In-First-Out (“FIFO”) to “Clear
all” for Longformer, Memtrans, and Mix. We find that Longformer and UniMix achieve
worse perplexity with “Clear all”, which can be the result of the reduced horizon of attention
of “Clear all” (Figure 5). On the other hand, Memtrans gets slightly better perplexity with
“Clear all”. We hypothesize that this could have originated from the “Memory staleness
problem” as in Wu et al. (2022).

Figure 5: Impact of Overflow Handling on perplexity for Longformer, MemTrans and UniMix.

B.2 Memory Write

We adjust the “Memory Tokens” for UniMix. to alter the way Memory writes are conducted.
The larger the “Memory Tokens”, the more memory is written in the form of Model forward.
When the “Memory Tokens” is set to 0, all memory writes are direct. It can be observed in
Figure 6 that increasing the “Memory Tokens” does not demonstrate a positive effect. This
is consistent with the experimental results of existing methods discussed earlier.
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Figure 6: Impact of Compressed Tokens
on perplexity for UniMix.

Figure 7: Perplexity of Layer(1-7),
Layer(8-14) and Layer(15-21) on
UniMix

B.3 Memory Injection

Figure 8: Perplexity of Sin-
gle Layer on UniMix(PG19,
TinyLLaMA)

Figure 9: Perplexity of Single
Layer on Memtrans(Github,
TinyLLaMA)

Figure 10: Perplexity of Sin-
gle Layer on UniMix(Github,
LLaMA2-7B).

Figure 11: Perplexity of
Layer(1-11) and Layer(16) on
Transformer-XL (Github).

Figure 12: Perplexity of
Layer(1-11) and Layer(16) on
Longformer (Github).

Figure 13: Perplexity of
Layer(1-11) and Layer(16) on
Memtrans (Github).
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(a) (b)

Figure 14: Perplexity Curves of Different Methods with Varying Training Token Amounts
on the GitHub Dataset. (a) TinyLLaMA model. (b) LLaMA2-7B model.

C Impact of different training data scales

We explored the impact of varying fine-tuning data volumes on long-context modeling
methods. We plotted the Perplexity (PPL) for TinyLLAMA and LLAMA2-7B using different
scales of training data, as shown in Figure 14. Our results indicate that increasing the
volume of training tokens significantly reduces perplexity and enhances model performance.
UniMix consistently emerged as the most effective method across all data scales. Moreover,
methods such as UniMix and Transformer-XL demonstrated excellent scalability, suggesting
their potential for even better performance with larger datasets.

D Hyperparameters

Hyperparameter Value

Common

Learning rate 5E-5
Learning rate schedule Linear

Optimizer AdamW
DeepSpeed Config ZeRO-3 + CPU Offload

Eval Interval 256

Model-specific

TinyLLaMA-1.1B LLaMA2-7B
#Layers 22 32
#Heads 4 32

Embedding dim 2048 4096
Intermediate dim 5632 11008

Local context length 2048 2048
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