
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

On the Abuse and Detection of Polyglot Files
Anonymous Author(s)

ABSTRACT
A polyglot is a file that is valid in two or more formats. Polyglot files
pose a problem for file-upload and generative AI web interfaces that
rely on format identification to determine how to securely handle
incoming files. In this work we found that existing file-format and
embedded-file detection tools, even those developed specifically for
polyglot files, fail to reliably detect polyglot files used in the wild. To
address this issue, we studied the use of polyglot files by malicious
actors in the wild, finding 30 polyglot samples and 15 attack chains
that leveraged polyglot files. Using knowledge from our survey of
polyglot usage in the wild—the first of its kind—we created a novel
data set based on adversary techniques. We then trained a machine
learning detection solution, PolyConv, using this data set. PolyConv
achieves a precision-recall area-under-curve score of 0.999 with
an F1 score of 99.20% for polyglot detection and 99.47% for file-
format identification, significantly outperforming all other tools
tested. We developed a content disarmament and reconstruction
tool, ImSan, that successfully sanitized 100% of the tested image-
based polyglots, which were the most common type found via the
survey. Our work provides concrete tools and suggestions to enable
defenders to better defend themselves against polyglot files, as well
as directions for future work to create more robust file specifications
and methods of disarmament.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Browser
security; • Computing methodologies→ Neural networks.

KEYWORDS
File-format Identification, Malware Detection, Polyglot Files, Ma-
chine Learning, APT Survey, Content Disarmament and Recon-
struction
ACM Reference Format:
Anonymous Author(s). 2018. On the Abuse and Detection of Polyglot Files.
In Proceedings of The ACM Web Conference 2025 (WWW ’25). ACM, New
York, NY, USA, 14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
A polyglot file simultaneously conforms to two or more file-format
specifications. This means the polyglot file can exhibit two com-
pletely different sets of behavior depending on the calling program,
as depicted in Figure 1. This dual nature poses a threat to endpoint
detection and response tools (EDR) and file-upload systems that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, April 28–May 2, 2025, Sydney, Australia
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN XXXX-Xx/xx/24
https://doi.org/XXXXXXX.XXXXXXX

Image 
Viewer

Java 
Runtime 

Environment

JPG+JAR 
Polyglot

Benign 
Image

Malicious 
Java Code

Figure 1: Functionality of a polyglot file is determined by
the calling program, which can be explicitly provided or
automatically determined by the operating system’s auto-
launch settings.

rely on format identification prior to analysis. As shown in Figure 2,
a polyglot can evade correct classification by first evading format
identification. If only one format is detected, then the sample may
not be routed to the correct feature-extraction routine (in the case
of machine learning-based detectors) or compared to the correct
subset of malware signatures (in the case of signature-based mal-
ware detection). As evidence that existing commercial off-the-shelf
(COTS) endpoint detection and response tools are vulnerable to
polyglots, we point to Bridges et al. [5], who demonstrated that 4
competitive COTS tools detected 0% of the malicious polyglots in
the test data.

Standardized formats for files play a key role in cybersecurity.
By first identifying the format of an unknown sample, they allow
malware detection tools to extract the most discriminate and ro-
bust features from an unknown sample. This allows the detection
tool to discard unimportant bytes that can be manipulated to alter
classification in an adversarial attack [8, 18]. However, this feature-
extraction process introduces a vulnerability; the correct format
must be detected in order to route the file to the correct feature
extractor. Even when a detector does not use machine learning and
instead relies upon signatures for detection, the need to maintain a
high throughput encourages EDR tools to only search for signatures
that correspond to the detected format [15].

As prior researchers [2, 6, 9, 15, 23, 27] have demonstrated, poly-
glot files can be crafted that are fully valid (execute as intended)
in multiple formats. To date, however, no comprehensive study of
polyglot usage by malicious actors in the wild and/or methods of
detecting said polyglots has been undertaken. In this paper, we set
out to answer four key research questions related to polyglot usage
and mitigation:

RQ1: How are polyglots currently used by threat actors in the
wild? This includes the role the polyglot fills, the formats of the donor
files, and the combination method used to fuse the donors together.

RQ2: Can we train a detector to effectively filter or reroute poly-
glots prior to ingestion by a malware detection system?

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, April 28–May 2, 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

RQ3: Does this detector outperform existing file type detection,
file carving, and polyglot-aware analysis tools at detecting polyglot
files?

RQ4: Given the prevalence of image-based polyglots in adversary
usage and the relative simplicity of image formats, what tools can we
provide to defenders to address image-based polyglots in their existing
workflows?

To addressRQ1, we reviewed open-source intelligence feeds (see
Section 3.1 for methods) that detail adversary tactics, techniques
and procedures (TTP), finding that polyglots have played an im-
portant role in a number of malicious campaigns by well-known
advanced persistent threat (APT) groups. Polyglot files allowed the
malicious actors to covertly execute malicious activity and extract
sensitive data by masquerading as innocuous formats. In Section 3,
we provide an overview of the different roles polyglots played in
each campaign, detail the file combinations used, and provide a
detailed description of several high profile examples. To address
RQ2-RQ4, we first created a tool, Fazah, for generating polyglots
that mimic the examples seen in the wild. Although there are other
possible format combinations, our goal with this tool was to mimic,
as closely as possible, the formats and combination methods used
by real-world threat actors. Using this tool, we then created a data
set of polyglot and normal (referred to hereafter as monoglot) files
for training and testing. See Section 4 for a full description of the
data set.

To address RQ2, we tested machine learning models to solve
both the binary and the multi-label classification problems, achiev-
ing an F1 score of 99.20% for binary classification and 99.47% for
multi-label classification with our deep learning model PolyConv.
To address RQ3, we evaluated five commonly used format identifi-
cation tools on this dataset: file [7], binwalk [29], TrID, polydet, and
polyfile. These tools were selected because of their use in existing
cybersecurity tools or claim to detect polyglot files. We evaluated
the performance of these tools at both binary and multi-label clas-
sification. In our context, binary classification determines whether
a file is a polyglot or a monoglot. Multi-label classification, on the
other hand, identifies all formats to which the file conforms. We
found that existing tools did not exceed an F1 score of 93.32% at
binary classification and 83.74% at multi-label classification.

See Section 5 for details regarding our ML based approaches
and Section 6 for a comparison of ML-based approaches to existing
file-format identification tools.

As detailed in Section 7, to addressRQ4we developed and tested
a CDR tool for sanitizing image-based polyglots since these were
the most common vector for polyglot malware. We also tested
YARA rules for detecting extraneous content in image files. We
found that the YARA rule approach did not generalize well to all
formats that can be combined with an image, especially the more
flexible scripting formats like Powershell or JavaScript. However,
they may be use in high-throughput use cases where deploying a
deep learning model is not feasible. A more effective approach is
to strip all extraneous content from images using a content disar-
mament and reconstruction (CDR) tool. Our CDR tool, ImSan, was
able to sanitize all of the image polyglots in a random subset of our
image polyglots. A subset was used so we could manually verify
the results.

The following provides a summary of our contributions:

• RQ1: The first, to our knowledge, survey of polyglot usage
by malicious actors in the wild, demonstrating that polyglot
files are an actively used TTP by well-known malicious
actors. Utilizing the results of this study, we created a tool,
Fazah, to generate polyglots using formats and combination
methods exploited by malware authors in the wild. We then
used Fazah to generate a dataset of polyglots andmonoglots
to evaluate existing detection methods and train polyglot
detection models.

• RQ2:Utilizing this novel dataset, we trained a deep learning
model, PolyConv, that can distinguish between polyglots
and monoglots with an AUC score over 0.999. We also cre-
ated a multi-label model that reports all of the detected
formats in monoglot and polyglot files, enabling analysts
to quickly determine the nature of a threat or route the sus-
picious file to multiple format-specific detection systems.

• RQ3:We provide a comparison of our polyglot detection
models with existing file-format identification and carving
tools, some of which are polyglot aware. This evaluation
shows that existing methods for detecting file type manipu-
lation are inadequate and often fail to detect polyglot files,
even with special flags set that are meant to ensure multiple
file types are detected.

• RQ4: For image-based polyglots, which are common in the
wild, we explored YARA rules and content disarmament and
reconstruct (CDR) tools, finding that our ImSan CDR tool
was 100% effective while the YARA rules did not compete
with our deep learning detector. They may, however, be of
use in high throughput situations.

PE+HTA 
Polyglot

PE
Classification

Model

File 
Format 

Identification

PE File
Feature 

Extraction

Malware Detector 

PE Format 
Detected

Benign Features 
Extracted

Benign Label 
Applied

HTA Format 
Not Detected

Malicious Activity
AllowedMSHTA.exe

Executes
 HTA Script 

Figure 2: Since polyglot files simultaneously conform to mul-
tiple formats, they can evade correct format identification.
This in turn allows them to evade format-specific feature
extraction or signature matching, thereby evading malware
detection. Therefore, some preprocessing should be done
to either filter/quarantine polyglot files prior to feature ex-
traction or route them to multiple format-specific malware
detectors so all functional components of the polyglot are
analyzed.

2 RELATEDWORK
2.1 Polyglot Detection
Bridges et al. conducted an in-depth evaluation of four leading
COTS tools [5]. Among the test data were 199 malicious JPG+JAR

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Polyglot Abuse & Detection WWW ’25, April 28–May 2, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

polyglots that went completely undetected by all 4 tools. While
we can not prove why these tools failed across the board, we can
surmise—based on the unusual 0% detection rate—that the failure
occurred in the file-type identification that must occur prior to
feature extraction. If the files were interpreted as JPG (the benign
component) rather than JAR (the malicious component), it is un-
likely that the malicious JAR content was analyzed. This provides a
plausible explanation for the complete detection failure. Therefore,
to solve the problem of malicious polyglot detection, the problem
of correct file type identification should first be solved.

The machine learning models FiFTy and Sceadan—a support
vector machine (SVM) and a deep learning model, respectively—
were released by researchers for file-format identification [4, 21].
However, neither tool was designed with polyglots in mind or
trained on a dataset containing them. Appendices 9.1 and 9.2 detail
prior work regarding polyglot creation methods & categorization
and exploitation by academic researchers, respectively.

3 RQ1: POLYGLOT EXPLOITATION IN THE
WILD

Thanks to Bridges et al. [5], we know polyglots can evade detection
by COTS tools. However, the extent to which malicious actors
employ polyglots has never, to our knowledge, been published
before. Do malicious actors use polyglots in their attack chains?
What role do polyglots play within an attack chain? What file
formats and combination methods were utilized in these attacks? To
address these questions we conducted a survey of threat intelligence
feeds, collecting file hashes of polyglot samples and information
on the roles played by these files within attack chains. For the file
hashes and a list of the sources used in this survey, see Table 3 and
Table 4 in Section 9.

3.1 Survey Methods
The survey, performed between November 2022 and January 2023,
focused on identifying the role of a polyglot file within a threat
actor’s cyber-attack chain. We used publicly available independent
sources, general search engines and threat intelligence feeds (e.g.,
ORKL, X) to gather a wide range of information security reports and
articles. Those sources were searched using the following terms:
polyglot, combined, and contained. We found that the term polyglot
is not always utilized in reports. We therefore had to manually
distinguish between reports of true polyglots (two or more valid
formats in one file) and other forms of digital steganography. A
number of reports described malware that contained a valid format
along with an oft-encrypted set of malicious instructions. We do not
consider these files as polyglots because the malicious instruction
can only be correctly interpreted when passed as input to another
component of the malware rather than a parser conforming to a
published standard.

For each true polyglot found, we used our knowledge of threat
operations to determine the role the polyglot played in the cyber-
attack chain. Lastly, the online malware databases, VirusTotal and
MalwareBazaar, were used to obtain the actual polyglot samples
whenever hashes of the polyglot were provided in a report. The file
hashes and sources from our survey of open-source intelligence
can be found in the appendix in Tables 3 and 4, respectively.

3.2 Role of Polyglot Files in Cyber Attack
Chains

The survey discovered fifteen examples of a threat actor using a
polyglot file in their cyber-attack chain, along with 30 distinct poly-
glot files. According to MITRE’s Adversarial Tactics, Techniques,
and Common Knowledge (ATT&CK) framework, polyglots are
primarily utilized for Defense Evasion (MITRE ATT&CK TA0005).
Polyglot files also fall under the Obfuscated Files or Information
(MITRE ATT&CK T1027) heading since these files conceal hidden
functionality by appearing to conform to only one file format. We
obtained 30 polyglot samples from VirusTotal and MalwareBazaar
using the file hashes specified in the reports.

For the purpose of establishing a formal taxonomy for polyglot
files, we refer to polyglots as having an overt format and a covert
format. The overt format is the format the file presents as (e.g.,
matches the extension) while the covert format is not apparent
without analysis. In most cases, a polyglot consists of a malicious
file combined with a benign one; however, in some cases we found
that both file formats play a role in advancing the malicious at-
tack chain, as in the HTA+CHM polyglot utilized by IcedID in
Section 9.2.1. Therefore, we instead refer to polyglots as combining
an overt format with a covert format. A summary of the found-
in-the-wild samples is provided in Table 1. In Appendix 9.4 we
discuss the capabilities of interest that each file format provides
to the malware author (camouflage, non-standard execution path,
etc.) to understand why these combinations exist in the wild and
how they fill a desired role in attack chains.

We selected one cyber attack chain to demonstrate how well-
known APTs utilize polyglots to reach the next step in their cyber
attack chains. Two further attack chains are described in detail in
Appendix 9.3. CVE numbers and MITRE ATT&CK references are
provided where applicable.

3.2.1 Andariel/Lazarus. Lazarus (of which Andariel is a subgroup)
is an advanced threat group that has operated out of North Ko-
rean since 2009 [14]. In 2021 attack chains connected to this group
utilized polyglots to infect systems with a Remote Access Trojan
(RAT) [16, 24]; this process is illustrated in Figure 3.

This attack chain typically begins with a phishing email that
has an attached malicious Microsoft Word Document (DOC) file
(MITRE ATT&CK T1566). When the DOC file is launched, a macro
begins execution (MITRE ATT&CK T1204.002). First, the macro
drops a PNG file to the Temp directory. The image data in the PNG
file is a compressed polyglot file.

Next, the DOC macro converts the PNG file to a BMP file, which
has the intended side effect of decompressing the contents (MITRE
ATT&CK T1140). The DOC Macro does this by leveraging the
Windows Image Acquisition (WIA) Automation Layer Objects: Im-
ageFile and ImageProcess [19, 20].

After conversion, the DOC Macro saves the BMP as a zip file by
giving it a zip extension. However, the file is actually a BMP+HTA
polyglot, with the HTA covert contents appended to the end of
the overt BMP data. Finally, the DOC Macro executes the polyglot
file as an HTA file using the MSHTA application via the Windows
Management Instrumentation (WMI) Service (MITRE ATT&CK
T1059, T1047).

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28–May 2, 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

WMI is used so that the resulting process does not appear to
be a child of the DOC process. The HTA file drops its payload, a
hidden PE file, into a hidden folder. Finally, the HTA file launches
the PE file which provides a foothold on the target system for future
exploitation.

Figure 3: Andariel/Lazarus Attack Chain

4 WILD POLYGLOTS: A POLYGLOT DATA SET
BASED ONMALICIOUS USAGE IN THEWILD

This section describes how we created our data set based on our
survey of polyglot usage in the wild (RQ1) using the Fazah tool in
order to address RQ2-RQ4.

4.1 Fazah: A Polyglot Generation Framework
Having uncovered which formats have been used in real-world
malicious polyglots, we created a data set consisting of monoglot
and polyglot files conforming to these formats. Our first step was
to create a framework for generating polyglots by combining donor
files. Our goal for this tool was to mimic format and combination
methods found in the wild rather than demonstrate all possible
combinations. The Fazah framework is a modular tool written in

Table 1: Polyglot Formats Deployed Maliciously in the Wild

Covert Format Overt Format

HTA
JPEG, PNG, BMP, GIF, LNK,
PE, MSI, RAR, Zip, TTF,
RAR, CHM, PDF

PHP JPEG, PNG, BMP, GIF, TTF,
RAR, Zip, LNK, PDF

PHAR JPEG, PNG, BMP, GIF
JavaScript GIF, BMP
PowerShell JPEG, BMP, GIF
Zip JPEG, PNG, GIF, PDF

JAR JPEG, PNG, GIF, PDF,
MSI

RAR JPEG, PNG, BMP, GIF
BMP Zip, JAR

Python that can currently generate 46 format combinations using
8 covert formats. The combination method—stack and a variety of
parasites—is derived from reports of malicious use in our survey and
varies between covert format. As discussed in the survey, malicious

actors use polyglots either to disguise malicious content using a
less suspicious format (images) or add hidden functionality (scripts).
Since image formats typically use comment markers, parasites are
commonly used by malicious actors. Stacks, meanwhile, are the
simplest and easiest method for malicious actors to implement,
working well with script and archive formats. Files with distinct
comment markers (necessary for zippers) are quite rare. Of the
common (but by nomeans exhaustive) set of formats we tested, only
DCM combined with either PDF/GIF/ISO could result in a zipper.
Similarly, we found that only ISO paired with PE/PNG/GIF yielded
cavities. This does not preclude their use in malicious campaigns,
but places them beyond scope for our goal of emulating known
attack chains. Table 1 provides the format pairings that Fazah can
turn into polyglots. Given the possibility for malicious abuse of the
framework, Fazah will not be published publicly at this time.

4.1.1 Wild Polyglots Data Set Creation and Contents. We collected
benign files conforming to 13 common formats using Github’s
search API: BMP, EXE, GIF, HTA, JAR, JPG, JS, MSI, PHP, PNG,
PS1, RAR, ZIP. Using a held-out set of donor files, we created 32
types of polyglots organized according to which 2 types of donor
files were combined to create the polyglot file. We kept all donor
files separate from the train and test set to ensure that the models
did not cheat by learning that data added to a monoglot in the
training set is a polyglot. Table 2 provides an overview of the Wild
Polyglots data set. Figures 4 and 5 breakdown the formats contained
in the monoglot and polyglot training sets, respectively. Since our

RAR

JAR

JS

Zip

PHP

JPG
PS1 PNG

GIF

EXE

CHM

BMP

MSI
HTA

2574

1698

1566

1770

1980

1494
2021 1931

1426

1983

1944

1704

1496
1605

Figure 4: File counts for the monoglot formats in the Wild
Polyglots training data.

objective was to train a polyglot detector rather than a malware
detector, we only utilized benign files. We first scanned the files we
scraped for malware and removed any suspicious samples. Next,
we removed any scraped files whose extension did not match the
file contents (e.g., a JPEG with a .png extension) or if the file could
not be parsed by an appropriate utility (e.g., Pillow for images). We
erred on the side of inclusion for highly flexible scripting language
formats like HTA. Since MSHTA.exe is tolerant of a high degree of
malformation, we felt it unwise to exclude malformed HTA from
our training data.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Polyglot Abuse & Detection WWW ’25, April 28–May 2, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: Wild Polyglots Data Set Contents

Train Test
Monoglot 25192 9975
Polyglot 1148604 213109

5 RQ2: USING MACHINE LEARNING FOR
POLYGLOT DETECTION

This section explores using machine learning to detect polyglot
files. Section 5.1 chronicles our development process as we tested
different ML model architectures and experimented with improve-
ments to the feature space. Section 5.2 presents the results from
out best-performing models compared to existing tools.

0K 20K 40K 60K 80K 100K 120K 140K 160K

File Count

RAR+BMP
PHP+JPG
JAR+PNG

HTA+ZIP
ZIP+GIF

JAR+MSI
HTA+GIF
ZIP+JPG
PS1+GIF

JAR+BMP
ZIP+BMP

HTA+RAR
ZIP+PNG

PHP+BMP
PHP+ZIP

HTA+PNG
PHP+GIF

HTA+BMP
HTA+EXE
JS+BMP

PHP+RAR
RAR+JPG
PS1+JPG
JAR+GIF

PHP+PNG
JS+GIF

PS1+BMP
RAR+GIF
JAR+JPG
HTA+JPG

RAR+PNG
HTA+MSI

D
on

or
 P

ai
r

30208
87160

35124
41510

19294
5282

35238
19162

22485
5267

20360
10776

22532
23280

54990
125406

43738
18978

42184
15415

8720
28356

65841
9936

154320
25850

21470
28629

8832
65952

33635
18674

Figure 5: File counts for each of the 32 polyglot combinations
in the Wild Polyglots training data.

5.1 Ml-based Detection Development
Our first objective was to determine which machine learning archi-
tecture and feature set were most effective at detecting polyglots.
Toward this end, we created a small (∼ 70, 000 files) initial data set
using the mitra tool (described in Section ??) prior to the devel-
opment of our Fazah tool. On this preliminary data set, we tested
a Support Vector Machine, Random Forest, GradBoost, CatBoost,
LightGBM, and MalConv. With the exception of MalConv [28],
these models used the byte histogram as their only feature. The
byte histogram is a vector of length 256 where the value stored
at each index corresponds to the number of times that byte value
occurs in the input file. This feature vector is agnostic with respect
to file formats since all digitally stored files are a string of bytes.
We found that, on this preliminary data set, MalConv and CatBoost
were the top performers.

We focused further development on MalConv and CatBoost, la-
beling our improved versions PolyConv and PolyCat, respectively.
At this point, we trained and tested both models on our survey-
informed Wild Polyglots data set; all results and figures reported
in this paper refer to the Wild Polyglots data set. We found that,

for PolyCat but not PolyConv, adding the mime-type output of the
file utility improved results. Although file was not competitive at
detecting polyglots (see Section 6.1) or at identifying both formats
contained within, it was extremely accurate at identifying the first
format contained in the file. Therefore, we augmented PolyCat’s fea-
ture space with a 1-hot encoding of the mime-type output from file.
We found further improvement by adding the 8000 most common
bigrams and trigrams extracted from each file using an overlapping
window. Thus, the final feature space for PolyCat consisted of the
byte histogram, the 1-hot encoding of the mime-type from file, and
the most common bigrams and trigrams.

MalConv is an oft-cited deep learning classifier designed to detect
malware [28]. We trained the model from scratch to identify poly-
glots rather than to identify malware. None of the polyglots in our
data set were malicious in order to guarantee that the model learned
to detect multiple formats rather than malicious content. Since the
model is trained on raw bytes rather than format-specific features
(e.g., the EMBER feature set for PE files [3]), MalConv’s architec-
ture is well-suited to the polyglot detection problem which requires
a format-agnostic approach. In lieu of a fixed feature-extraction
routine, the model takes in raw bytes and learns an encoding (first
layer) as well as a set of filters (the convolution layers) to recognize
significant byte patterns. MalConv also features an attention and
gating mechanism intended to filter out extraneous information in
the raw bytes.

We experimented with changes to the architecture in order to
make it more effective at our novel task, yielding the PolyConv
model mentioned above. The original architecture of MalConv is
presented in Figure 6 while PolyConv’s architecture is presented
in Figure 7.

The changes we made to MalConv consist of the following:

• Decreasing the window and stride from 512 bytes to 16 and
8 bytes, respectively, in order to capture the byte patterns
of very short (in terms of bytes) script files hidden within
larger files

• Removing the attention and gating mechanism as they did
not seem to improve the results on our task

• Increasing the number of kernels in the remaining convolu-
tion layer to 512 in order to learn enough byte patterns to
distinguish the wide variety of distinct formats upon which
we trained the model

• Increasing the number of fully connected layers to 3 as a
result of experimenting with different layers counts

• Increasing the number of nodes in each fully connected
layer to 512, 512, and 128 as a result of experimenting with
different node configurations

5.2 Comparing ML-based Polyglot Detection
Approaches

We trained and tested PolyConv, MalConv, PolyCat, and CatBoost
on our Wild Polyglots data set. For this comparison, we evaluated
binary label (polyglot or monoglot) versions of the models. Since
our data set is imbalanced, we used the precision-recall curve rather
than the ROC curve to score our models. Therefore, our top model
is the one with the highest PR-AUC on the Wild Polyglots test set.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28–May 2, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Raw Input File
 1x1048576 bytes

Convolution Layer
Window: 512

Stride: 512
Filters: 128

Embedding Layer
Vocab Size: 257

Embedded Dim: 8 1D Global
 Max Pooling

Fully Connected Layers
128, 1 Nodes

MalConv Deep Learning Architecture
Convolutional 

Attention Layer
Window: 512

Stride: 512
Filters: 128

Gating Mechanism
(Multiplication)

Figure 6: MalConv Architecture

Raw Input File
 1x1048576 bytes

Convolution Layer
Window: 16

Stride:8
Filters: 512

Embedding Layer
Vocab Size: 257

Embedded Dim: 8

1D Global
 Max Pooling

Fully Connected Layers
512, 512, 128, 1 Nodes

PolyConv Deep Learning Architecture

Figure 7: PolyConv Architecture

PolyConv scored a PR-AUC of 0.99998, the highest score for all
the models we evaluated. MalConv—when trained on this novel
task—scored a slightly lower PR-AUC of 0.99989, outperforming
both PolyCat and CatBoost. The model results are summarized in
Figure 8.

6 RQ3: COMPARISON TO EXISTING
SIGNATURE-BASED FILE-FORMAT
IDENTIFICATION TOOLS

This section compares our best-performing polyglot detectionmodel,
PolyConv, to existing tools for format identification to determine
which approach is best suited to identifying polyglot files and
labeling their contents correctly. Within the context of cyberse-
curity, there are two complimentary questions of paramount im-
portance: detection and analysis. We trained two versions of our
best-performing model, PolyConv, that differ only in the final layer
to suit detection and analysis needs.

The first version is a binary classifier (polyglot or monoglot)
for use in filtering out polyglots on an endpoint. This is intended
for file upload services that only want to allow uploads of known
formats, e.g., images.

The second version is a multi-label classifier to identify all of
the formats detected within a file. This provides two benefits. First,
the labels can be used to route files to all applicable file-format
feature extraction or signature-matching routines rather than a
single format-specific model or signature subset. This means that
the remainder of an existing EDR tool’s extraction and detection

Binary
PolyConv

Stock
MalConv

PolyCat Stock
CatBoost

Model

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

P
R

-A
U

C

0.99997 0.99989 0.99974

0.99517

Figure 8: Precision-Recall AUC Scores: Our deep learning
model, PolyConv, slightly outperformed the stock version
of MalConv upon which it is based as well as CatBoost and
Polycat.

routines do not need to be altered. Second, the labels provide an
analyst with introspection, revealing not only that the file is a
polyglot but also which format-specific tools/routines they should
use to examine the covert format(s) hidden in the polyglot. This is
intended to reduce the response time necessary for secure operation
center (SOC) analysts that must handle a high volume of alerts.

6.1 Tools Tested
We established a baseline for performance by testing existing file-
format identification tools on the Wild Polyglots data set: file [7],
binwalk [29], TrID [25], and polydet [1]. We also evaluated polyfile
[22], a DARPA-funded tool developed by Trail of Bits for detecting
unusual files. Of the aforementioned tools, file and TrID are well-
established signature-based utilities for file-format identification.
VirusTotal, a widely used anti-virus aggregator (www.virustot
al.com), utilizes TrID when reporting detected formats. Binwalk
is a file-carving tool that has been used by analysts to find and
extract hidden files. We selected these tool to establish a baseline
because of their wide-spread use (file), cybersecurity application
(binwalk,TrID), and polyglot-awareness (polyfile, polydet). We leave
as future work a comparison to FiFTy [21] and Sceadan [4], as
these detectors do not appear to be polyglot-aware, but might be
re-trained in order to properly label polyglot files. We also tested
Google’s magika v1 model [11], which was trained on 25 million
files. It outputs only 1 label per file, failing to detect any polyglots
in our test set.

Since file outputs labels and not probabilities, the precision-recall
curve is not an appropriate metric when comparing our deep learn-
ing model to existing tools. Instead, we calculate the F1 score using
the labels output by file and the other tools. For any cybersecu-
rity system deployable in the real-world, the ability to detect mal-
ware/polyglots (recall) must be tempered by a low probability of
false positives (precision) to prevent red-flag fatigue. Therefore, we
use F1 to provide a balanced evaluation.

6.1.1 Binary Comparison. Figure 9 considers the performance of
each tool in a binary context, determining if the tool detects the

6

www.virustotal.com
www.virustotal.com


697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Polyglot Abuse & Detection WWW ’25, April 28–May 2, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

presence of two or more formats in one file. TrID aggressively spec-
ulates as to which formats are present in a file, assigning a percent
score to each possibility. We therefore omitted the performance of
TrID as a multi-label detector as this behavior put it at a disadvan-
tage compared to the other tools. As Figure 9 demonstrates, none
of the existing tools approached the F1 score, precision, or recall of
our PolyConv deep learning model. All of the tools had a relatively
high precision and low recall, indicating that false negatives were
the primary cause of the low F1 scores.

The recall for file was lower than expected as the tool reported
multiple formatswhen examining BMP, EXE, HTA, and PHPmonoglots.
The EXE false positives may have been caused by the presence of
other files embedded as resources. Although it was outperformed
by our PolyConv model, polyfile was the best binary performer
among the existing set of tools by F1 score.

Bina
ry

Poly
Con

v
Poly

File

BinW
alk

Poly
Det

TrI
D File

Tool

70

75

80

85

90

95

100

P
er

ce
nt

ag
e

Metric
F1 Score
Precision
Recall

Figure 9: Binary Performance vs Existing Tools: PolyConv
exceeded the F1 score, precision, and recall of all existing
tools by a large margin.

6.1.2 Multi-label Comparison. Figure 10 considers the performance
of each tool in a multi-label context where a true positive means
the tool correctly identified both the count and the exact formats
present in each file. None of the tools performed well compared to
the multi-label version of PolyConv.

Of the existing tools, polydet outperformed the other tools in all
three metrics by a noticeable margin. With regard to the remaining
tools, file’s precision is unusually low given its widespread use and
long development history. Upon examination, we found that file did
not differentiate between PowerShell and JavaScript files; instead,
it applied the generic label of ASCII or Unicode text. This behavior
almost exclusively accounted for the lower precision.

The lack of required signatures for script files makes signature-
based detection difficult for these script formats. Upon further in-
spection we found that polyfile and polydet share file’s dependence
on Libmagic, which labels PowerShell and JavaScript as either ASCII
or Unicode text. While it might seem unfair to expect Libmagic
to differentiate between different forms of ASCII or Unicode text,
we consider it important for analysts to be aware of this opaque
label. A harmless log file of unstructured ASCII text presents a very
different level of danger compared to a functional JavaScript file.

Mult
i-la

be
l

Poly
Con

v
Poly

Det

Poly
File

BinW
alk File

Tool

0

20

40

60

80

100

P
er

ce
nt

ag
e

Metric
F1 Score
Precision
Recall

Figure 10: Multi-label Performance vs Existing Tools: Poly-
Conv also proved more adept at correctly identifying all of
the formats contained within a file. Of the existing tools,
polydet provided the most reliable file-format identification.

7 RQ4: METHODS FOR ADDRESSING
IMAGE-BASED POLYGLOTS

Given the prevalence of image-based polyglots in adversary usage
and the relative simplicity of image formats, we developed tools for
detecting and remediating polyglots that employ an overt image
format.

We first tested YARA rules in the hopes that the comment mark-
ers/delimiters present in image files would allow for rule-based
detection of extraneous content. However, we found that their re-
call of 82.08% and F1 score of 90.15% were too low to be useful
except in situations where high throughput is tantamount. We then
turned to the content disarmament and reconstruction approach.

7.1 ImSan, a Content Disarmament and
Reconstruction Tool for Image-based
Polyglots

Content disarmament and reconstruction (CDR) tools present an
alternative approach to the pre-processing filtering approach for
which we have provided solutions. CDR tools allow an end user
to strip all but the most trustworthy content from certain formats.
Where highly flexible formats, like PDF, have proliferated, these
tools have emerged to provide secure use of files that abuse the
format flexibility.

Although we have not exhaustively examined this approach,
we have developed an image sanitization tool to demonstrate the
potential of CDR in disarming polyglots. Our tool, ImSan, disarms
image-based polyglots by stripping away all file contents that are
not required to display the image. The process is quite straightfor-
ward:

(1) The image file is loaded into Pillow, a fork of the Python
Imaging Library

(2) The image contents are then written to a new file with the
option to strip all metadata activated

(3) The new image file has no extraneous content before/after
the image contents (stack/cavity polyglot) or inserted into
comment areas (parasite/zipper polyglot)

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28–May 2, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

ImSan can disarm any of the formats that are fully supported
(read/write) by Pillow: BLP, BMP, DDS, DIB, EPS, GIF, ICNS, ICO,
IM, JPEG, JPEG 2000, MSP, PCX, PNG, PPM, SGI,SPIDER, TGA, TIFF,
WebP, XBM. Note, ImSan should be run in an isolated environment
to ensure that no vulnerability in Pillow (2 CVE’s reported in 2022)
could allow a malicious image to gain execution when the image is
parsed.

ImSan disarmed 100% of the image polyglots in a subset (n=392)
of image polyglots drawn randomly from the benignWild Polyglots
data set. A small subset was chosen so we could manually verify
disarmament through visual inspection of the image’s code rather
than relying on one of our detectors. An evaluation of commercial
CDR tools against polyglots (including those that are not image
based) and the potential methods of circumventing CDR solutions,
while out of scope for this work, would be a valuable direction for
future work to explore.

8 DISCUSSION
8.1 Contribution Summary
We presented the first, to our knowledge, survey of polyglot usage
by malicious actors in the wild, demonstrating that polyglot files are
an actively used TTP by well-known malicious actors, answering
RQ1.

In order to answerRQ2-RQ4, we created a novel data set of poly-
glot and monoglot files based on file formats and file-combination
methods utilized by malicious actors in the wild.

Using this Wild Polyglots data set, we evaluated a number of
different machine learning models before focusing on the top two
performers, PolyConv and PolyCat. we improved these two models
via alterations to their architecture and feature space, respectively.

We found that PolyConv, in both binary and multi-label versions,
was effective at detecting polyglots and correctly labeling their
contents RQ2, providing analysts with a tool to detect, reroute, and
investigate potential polyglots.

PolyConv only slightly outperformed the model upon which
it was based, MalConv, demonstrating that MalConv effectively
learned to distinguish between polyglot and monoglot files when
trained on this objective, despite being designed to detect malware.
This is a novel use of MalConv considering that the model was
designed to detect PE malware.

Based on our experiments, the improvement from MalConv to
PolyConv was due to the reduction of the window and stride size
as well as increasing the number of filters and layers. We theorize
that the much smaller window/stride allowed the model to learn
filters that register even small areas of code with a distinct byte
pattern. The need for more filters may be due to the wide variety of
formats, each with their own distribution of unique byte patterns,
upon which we trained. On the other hand, removing the attention
and gating mechanism did not reduce the model’s classification
performance.

We answered RQ3 by demonstrating that existing tools do not
reliably detect polyglot files, evenwhen designedwith an awareness
of polyglot files.

To answer RQ4, we produced a set of YARA rules for detecting
extraneous content in image files, but found their performance
lacking. The rules are available upon request. We then created

ImSan, a content disarmament and reconstruction tool that sanitizes
image files, demonstrating that it disarmed all of the image-based
polyglots with which we tested it.

8.2 Limitations
We cannot guarantee that our deep learning models will perform
well on polyglots formed from file formats not included in the
training data. File formats based on Open XML (Microsoft Office)
are a common malware vector that have not yet been thoroughly
explored as polyglot components. PolyConv is format agnostic so
we hope that this model’s release will prompt further research using
additional file formats.

File size is a limiting factor for malware classification models
trained on raw bytes rather than extracted features. Detection could
be evaded by utilizing a polyglot whose overt format exceeds the
full input capacity of the model, meaning the covert format would
not be ingested. We tested head and tail scanning on our data set,
but found that this did not improve results since the vast majority of
our data set is within the maximum capacity of our PolyConvmodel.
Head and tail scanning could still be evaded if an adversary inserted
the second file near the middle of a particularly large first file or
appended a large amount of data after the second file contents.

We also tested the YARA rule approach, but found it A) limited
by the need to write novel rules for each possible combination of
file formats and B) the lack of required signatures in many flexible
file formats.

8.3 Future Work
Since PolyConv utilizes a global max pooling layer, it is translation
invariant. That said, a demonstration of its ability to generalize to
novel insertion areas remains future work. We consider translation
invariance an important feature in order to future-proof a polyglot
detector. Given the flexibility in file formats, it is possible that novel
polyglot creation methods will emerge in the future that hide the
second file in a novel area of the first file. Therefore, a demonstration
that PolyConv is resilient in the face of novel combination methods
would demonstrate that future models for polyglot detection should
also be translation invariant.

Future work should include the implementation of an intelligent
method for subselecting or compressing large input files so they
fit within the maximum capacity of a model trained on raw bytes.
Head and tail scanning would catch data appended to the very end
of the file, but could be evaded by inserting data earlier in the file
or appending more benign content after the additional malicious
content. Therefore, a more robust input reduction method should
not follow a fixed pattern such as always scanning N bytes from
the head and M bytes from the tail. Such a method may exist in
other domains; we look forward to developments in this area.

Finally, PolyConv needs to be trained and tested on the same
wide variety of files as the ubiquitous file utility in order to see
widespread adoption.

REFERENCES
[1] 2018. Polydet. https://github.com/Polydet/polydet
[2] Ange Albertini. 2015. Funky File Formats. International Journal of Proof-of-

Concept or Get The Fuck Out (March 2015). https://github.com/angea/pocorgtfo
/blob/master/contents/issue07.pdf#page=18

8

https://github.com/Polydet/polydet
https://github.com/angea/pocorgtfo/blob/master/contents/issue07.pdf#page=18
https://github.com/angea/pocorgtfo/blob/master/contents/issue07.pdf#page=18


929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Polyglot Abuse & Detection WWW ’25, April 28–May 2, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[3] Hyrum S Anderson and Phil Roth. 2018. Ember: an open dataset for training
static pe malware machine learning models. arXiv preprint arXiv:1804.04637
(2018).

[4] Nicole L Beebe, Laurence A Maddox, Lishu Liu, and Minghe Sun. 2013. Sceadan:
Using concatenated n-gram vectors for improved file and data type classification.
IEEE Transactions on Information Forensics and Security 8, 9 (2013), 1519–1530.

[5] Robert A Bridges, Sean Oesch, Miki E Verma, Michael D Iannacone, Kelly MT
Huffer, Brian Jewell, Jeff A Nichols, Brian Weber, Justin M Beaver, Jared M Smith,
et al. 2020. Beyond the Hype: A Real-World Evaluation of the Impact and Cost
of Machine Learning-Based Malware Detection. arXiv preprint arXiv:2012.09214
(2020).

[6] David A Clunie. 2019. Dual-personality DICOM-TIFF for whole slide images:
a migration technique for legacy software. Journal of pathology informatics 10
(2019).

[7] Ian Darwin et al. 2019. file. https://darwinsys.com/file/
[8] Luca Demetrio, Scott E. Coull, Battista Biggio, Giovanni Lagorio, Alessandro

Armando, and Fabio Roli. 2021. Adversarial EXEmples. ACM Transactions on
Privacy and Security 24, 4 (nov 2021), 1–31. https://doi.org/10.1145/3473039

[9] Benoit Desjardins, Yisroel Mirsky, Markel Ortiz, Zeev Glozman, Lawrence Tarbox,
Robert Horn, and Steven Horii. 2020. DICOM Images Have Been Hacked! Now
What? American Journal of Roentgenology 214:4 (2020), 727–735. https://www.
ajronline.org/doi/pdfplus/10.2214/AJR.19.21958

[10] Vicente Díaz. 2022. Monitoring malware abusing CVE-2020-1599. https://blog
.virustotal.com/2022/01/monitoring-malware-abusing-cve-2020-1599.html.
Accessed: Apr. 25, 2023.

[11] Yanick Fratantonio, Luca Invernizzi, Marina Zhang, Giancarlo Metitieri, Thomas
Kurt, Francois Galilee, Alexandre Petit-Bianco, Loua Farah, Ange Albertini, and
Elie Bursztein. [n. d.]. Magika content-type scanner. https://github.com/google/
magika

[12] R.N.J. Graham, R.W. Perriss, and A.F. Scarsbrook. 2005. DICOM demystified:
A review of digital file formats and their use in radiological practice. Clinical
Radiology 60, 11 (2005), 1133–1140. https://doi.org/10.1016/j.crad.2005.07.003

[13] Stan Hegt. 2020. Mark of the Web from a Red Team’s Perspective. https://outf
lank.nl/blog/2020/03/30/mark-of-the-web-from-a-red-teams-perspective/

[14] Kyaw Pyiyt Htet. 2017. Lazarus Group. https://attack.mitre.org/groups/G0032/
[15] Suman Jana and Vitaly Shmatikov. 2012. Abusing File Processing in Malware

Detectors for Fun and Profit. In 2012 IEEE Symposium on Security and Privacy.
80–94. https://doi.org/10.1109/SP.2012.15

[16] Hossein Jazi. 2021. Lazarus APT conceals malicious code within BMP image to
drop its RAT. https://www.malwarebytes.com/blog/threat-intelligence/2021/04
/lazarus-apt-conceals-malicious-code-within-bmp-file-to-drop-its-rat

[17] Ng Choon Kiat, Angelo Del Rosario, and Martin Co. 2021. SEO Poisoning and
the BatLoader APT Group. https://www.mandiant.com/resources/blog/seo-
poisoning-batloader-atera

[18] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, DavideMaiorca, Giorgio Giac-
into, Claudia Eckert, and Fabio Roli. 2018. Adversarial Malware Binaries: Evading
Deep Learning for Malware Detection in Executables. arXiv:1803.04173 [cs.CR]

[19] Microsoft. 2018. ImageFile object. https://learn.microsoft.com/en-us/previous-
versions/windows/desktop/wiaaut/-wiaaut-imagefile

[20] Microsoft. 2018. ImageProcess object. https://learn.microsof t.com/en-
us/previous-versions/windows/desktop/wiaaut/-wiaaut-imageprocess

[21] Govind Mittal, Pawel Korus, and Nasir Memon. 2020. FiFTy: Large-scale File
Fragment Type Identification using Neural Networks. arXiv:1908.06148 [cs.CR]

[22] Trail of Bits. 2022. PolyFile. https://github.com/trailofbits/polyfile
[23] MO Ortiz. 2019. HIPAA-Protected Malware? Exploiting DICOM Flaw to Embed

Malware in CT/MRI Imagery. Cylera Labs (2019).
[24] Seongsu Park. 2021. Andariel evolves to target South Korea with ransomware.

https://securelist.com/andariel-evolves-to-target-south-korea-with-ransom
ware/102811/

[25] Marco Pontello. 2020. TrID File Identifier. https://mark0.net/soft-trid-e.html
[26] Dan-Sabin Popescu. 2012. Hiding Malicious Content in PDF Documents. CoRR

abs/1201.0397 (2012). arXiv:1201.0397 http://arxiv.org/abs/1201.0397
[27] Dan-Sabin Popescu. 2012. Hiding Malicious Content in PDF Documents.

arXiv:1201.0397 [cs.CR]
[28] Edward Raff, Jon Barker, J. Sylvester, Robert Brandon, Bryan Catanzaro, and

Charles K. Nicholas. 2018. Malware Detection by Eating a Whole EXE. In AAAI
Workshops. https://doi.org/10.48550/arXiv.1710.09435

[29] ReFirmLabs. 2021. Binwalk. https://github.com/ReFirmLabs/binwalk
[30] Check Point Research Team. 2022. October’s Most Wanted Malware: AgentTesla

Knocks Formbook off Top Spot and New Text4Shell Vulnerability Disclosed.
https://blog.checkpoint.com/2022/11/08/octobers-most-wanted-malware-
agenttesla-knocks-formbook-off-top-spot-and-new-text4shell-vulnerability-
disclosed/

[31] Checkpoint Research Team. 2022. Can You Trust a File’s Digital Signature? New
Zloader Campaign Exploits Microsoft’s Signature Verification Putting Users at
Risk. https://research.checkpoint.com/2022/can-you-trust-a-files-digital-
signature-new-zloader-campaign-exploits-microsofts-signature-verification-
putting-users-at-risk/

9

https://darwinsys.com/file/
https://doi.org/10.1145/3473039
https://www.ajronline.org/doi/pdfplus/10.2214/AJR.19.21958
https://www.ajronline.org/doi/pdfplus/10.2214/AJR.19.21958
https://blog.virustotal.com/2022/01/monitoring-malware-abusing-cve-2020-1599.html
https://blog.virustotal.com/2022/01/monitoring-malware-abusing-cve-2020-1599.html
https://github.com/google/magika
https://github.com/google/magika
https://doi.org/10.1016/j.crad.2005.07.003
https://outflank.nl/blog/2020/03/30/mark-of-the-web-from-a-red-teams-perspective/
https://outflank.nl/blog/2020/03/30/mark-of-the-web-from-a-red-teams-perspective/
https://attack.mitre.org/groups/G0032/
https://doi.org/10.1109/SP.2012.15
https://www.malwarebytes.com/blog/threat-intelligence/2021/04/lazarus-apt-conceals-malicious-code-within-bmp-file-to-drop-its-rat
https://www.malwarebytes.com/blog/threat-intelligence/2021/04/lazarus-apt-conceals-malicious-code-within-bmp-file-to-drop-its-rat
https://www.mandiant.com/resources/blog/seo-poisoning-batloader-atera
https://www.mandiant.com/resources/blog/seo-poisoning-batloader-atera
https://arxiv.org/abs/1803.04173
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/wiaaut/-wiaaut-imagefile
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/wiaaut/-wiaaut-imagefile
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/wiaaut/-wiaaut-imageprocess
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/wiaaut/-wiaaut-imageprocess
https://arxiv.org/abs/1908.06148
https://github.com/trailofbits/polyfile
https://securelist.com/andariel-evolves-to-target-south-korea-with-ransomware/102811/
https://securelist.com/andariel-evolves-to-target-south-korea-with-ransomware/102811/
https://mark0.net/soft-trid-e.html
https://arxiv.org/abs/1201.0397
http://arxiv.org/abs/1201.0397
https://arxiv.org/abs/1201.0397
https://doi.org/10.48550/arXiv.1710.09435
https://github.com/ReFirmLabs/binwalk
https://blog.checkpoint.com/2022/11/08/octobers-most-wanted-malware-agenttesla-knocks-formbook-off-top-spot-and-new-text4shell-vulnerability-disclosed/
https://blog.checkpoint.com/2022/11/08/octobers-most-wanted-malware-agenttesla-knocks-formbook-off-top-spot-and-new-text4shell-vulnerability-disclosed/
https://blog.checkpoint.com/2022/11/08/octobers-most-wanted-malware-agenttesla-knocks-formbook-off-top-spot-and-new-text4shell-vulnerability-disclosed/
https://research.checkpoint.com/2022/can-you-trust-a-files-digital-signature-new-zloader-campaign-exploits-microsofts-signature-verification-putting-users-at-risk/
https://research.checkpoint.com/2022/can-you-trust-a-files-digital-signature-new-zloader-campaign-exploits-microsofts-signature-verification-putting-users-at-risk/
https://research.checkpoint.com/2022/can-you-trust-a-files-digital-signature-new-zloader-campaign-exploits-microsofts-signature-verification-putting-users-at-risk/


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, April 28–May 2, 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

9 APPENDIX
9.1 Polyglot Creation
Jana and Shmatikov demonstrated a number of attacks that exploited discrepancies in file type inference and file parsing. Specifically, they
found that polyglots—referred to as "ambiguous files conforming to multiple formats" [15]—evaded detection by 20 out of 36 malware
detectors. Using the open-source ClamAV tool as an example, they point out that malware detectors may terminate format inference at the
first match, extracting features and/or checking malware signatures only for the first format detected in the polyglot. Jana and Shmatikov
argue that exhaustively testing incoming files against all possible formats would introduce an unacceptable overhead. Flexibility in format
specification and parser tolerance of malformed files are also presented as reasons why simply improving existing tools is difficult.

Ange Albertini demonstrated that a wide variety of files can be combined into polyglots [2]. He created an open-source tool known as
mitra that can create 4 types of polyglot from a wide range of files. He defined the four types thusly:

• Stack: File B is appended to the end of file A
• Parasite: File B is placed inside comment markers of file A
• Zipper : Both files are placed within one another’s comment markers
• Cavity: File B is placed inside a padding area of file A

9.2 Polyglot Exploitation
A number of previous academic works demonstrated the risk polyglots may pose. For example, a DICOM file is an image archive format
designed for medical use. The format was designed to be flexible so medical staff could combine a variety of image formats into a single file
for a patient [12]. However, that flexibility means a DICOM file will tolerate combination with a Windows Portable Executable (PE) file
to create a malicious polyglot [23]. This polyglot could allow an adversary to propagate their malicious PE through a medical network,
activating the PE component through a second stage of the attack.

In an attack on data integrity, Popescu demonstrated that a PDF+TIFF polyglot can bypass digital certification verification [26]. In this
scenario, the attacker sends a valid request (PDF file) for a bank transfer to a target. The attacker’s goal is to change the amount authorized
in the PDF without invalidating the certification applied by the target. When the victim opens the file, auto-launch settings intepret the file
as a PDF and present the legitimate PDF contents to the victim.

The victim then applies a digital signature that protects the file contents from any future change, and returns the file to the attacker.
However, the file is also a TIFF file. The TIFF is an image of the same PDF, albeit with a much larger money transfer authorized. The attacker
does not edit the contents of the file (which would break the signature). They merely change the file extension, switching the auto-launch
behavior from opening the PDF contents to opening the TIFF contents, before sending the file on to a hypothetical bank.

Since the file contents have not changed, the digital certification is still valid. When the bank opens the file, auto-launch behavior shows
the larger fraudulent TIFF transaction rather than the proper PDF amount the victim agreed to when they signed the file.

9.2.1 IcedID. IcedID is a banking trojan that, according to Check Point’s Global Threat Index, was the fourth most widespread malware
variant in 2022 [30]. The trojan uses an evolving variety of methods to establish initial access. One of these methods relies on a polyglot
formed by combining a CHM and an HTA file.

The attack chain is illustrated in Figure 11. It begins with a password-protected Zip file attached to a phishing email. The Zip contains an
ISO file which exploits CVE-2022-41091 to evade flagging by Microsoft’s alternate data stream (ADS) defensive mechanism [13].

The ISO file in turn contains two files: a DLL (hidden by default on Windows) and a CHM+HTA polyglot. The polyglot masquerades
as a CHM file which presents a benign decoy window when executed. The Microsoft compiled HTML (CHM) format used for software
documentation. Each file consists of a number of HTML pages organized into a document that is compressed into a binary stream. As with
any HTML page, CHM files may download/execute other files or run Powershell/Javascript commands when viewed.

In the background, this CHM file starts a MSHTA.exe process with itself as the input. This new process executes the malicious component
of the polyglot, the HTA file, which in turn launches the hidden DLL file that contains the actual IcedID payload.

9.3 Batloader/Zloader Cyber Attack Chain
Batloader and Zloader are two very similar pieces of malware that are used to gain initial access [17, 31]. The full attack chain is presented in
Figure 12; however, our discussion will focus on the role of the polyglot within that chain. This polyglot is formed by combining an HTA file
with a Windows PE file.

Windows PE files are the default executable for the Windows ecosystem. Since their format specification requires the bytes "MZ" to be
present at offset zero, this format must be the first—by offset—ingredient in a polyglot in order to preserve functionality. PE polyglots can be
created via the cave or stack method. The cave method places the second file in a slack region of the PE. Candidate locations include the DOS
Stub, after the last section table entry, or in the padding space after each section assuming the chosen region is large enough to contain the
second file. The stack method simply appends the second file to the end (also referred to as the overlay) of the PE file.

In this particular example, an HTA file is added to the signature section of the PE file. Rather ironically, CVE-2020-1599 allows malware
authors to add contents to the signature section without invalidating the signature since the contents of this area need to be writable in
order to store the calculated signature.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Polyglot Abuse & Detection WWW ’25, April 28–May 2, 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Figure 11: IcedID Attack Chain

By preserving the validity of the rest of the file, the infected PE is able to operate with a higher degree of trust than it would otherwise [10].
Note that, although Microsoft addressed this vulnerability by creating an option to disallow extraneous data in the signature section, this
option is turned off by default. The higher degree of trust accorded to the signed PE allows the covert HTA to execute the final payloads in
the Batloader/Zloader attack chain.

Figure 12: Batloader/Zloader Attack Chain

9.4 How File Formats Enable Polyglot Capabilities
The following sections detail how each overt format was used in combination with a covert format to surreptitiously execute or stage a
malicious payload. This is followed by details on the roles filled by polyglot files in notable cyber-attack chains.

9.4.1 HTA. HTML Application (HTA) support in Windows is intended to make the Internet Explorer browser a Windows desktop
development platform. It gives developers the flexibility to create full-scale applications using web-based technologies, such as HTML,
JavaScript, and Visual Basic Script (VBScript) without following the strict security model of the browser.

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’25, April 28–May 2, 2025, Sydney, Australia Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

HTA contents are not executed directly; rather, they are fed to MSHTA.exe, a trusted signed Microsoft binary packaged with the Windows
ecosystem, which then executes the contents. A few features of HTAs have attracted threat actors to include HTA files within their
cyber-attacks.

(1) HTA files are loaded by a trusted, Microsoft-signed application, allowing attackers to bypass restrictions on application execution.
(2) HTA files can be loaded remotely, allowing malicious activities to be run without even being copied to the target’s disk.
(3) MSHTA.exe has a generous parser, and does not require the HTA file signature <hta:application for execution. MSHTA.exe will

attempt to execute any HTML or VBScript/JavaScript code passed to the binary. This can make reliable identification of HTA files or
fragments challenging for signature-based tools.

The extensive usage of HTA files by attackers has led to an arms race between new detection methods and evasion techniques, with
polyglots being one of the latest developments. A simple HTA attack can be detected using a rule which checks whether a MSHTA.exe
process has been launched with an HTA file as input. This detection can be evaded by renaming/moving MSHTA.exe to a new name/location
and by turning the HTA file into a polyglot that masquerades as a different file format. Since MSHTA.exe skips all data it does not understand,
HTA files can be combined with a wide variety of file formats for obfuscation.

9.4.2 PHP and PHAR. PHP is a popular programming language for web applications that provides dynamic rendering of web pages, database
access, and many other features. The PHAR file format is the archive format of the language, comparable to JAR files within the Java
ecosystem. As with HTA files, PHP has a generous parser that ignores a wide variety of syntax errors and invalid characters. Invalid
characters are ignored until valid PHP code is found. Therefore, PHP and PHAR files can readily be combined with a number of file formats.

Polyglots whose covert format is PHP or PHAR typically utilize an image format (JPEG, PNG, GIF, BMP) as their overt component, likely
due to the prevalence and (possibly) lower level of scrutiny applied to images within web application file structures. Since image files are
commonly publicly accessible through file upload services, PHP and PHAR polyglots can serve as covert methods for staging and then
executing malicious code on web servers. A web server’s logs could merely show that a customer accessed a stored image when in reality
they remotely executed malicious activity. Additionally, web servers that attempt to block malicious activity by preventing the upload of
certain file formats are vulnerable to polyglots that masquerade as an approved format.

9.4.3 JAR. The Java community created the Java Archive (JAR) to package a Java application, Java libraries, and other application resources
in a single file. JAR files are an extension of the common Zip format. The contents of a Zip file are located by first scanning the end of the
file for the central directory which contains the relative offsets to the compressed files held within the archive, allowing another file to be
prepended to an archive file without invalidating the data already contained in the archive.

Recently, threat actors created polyglots using JAR files. One possible reason is the discovery of the Windows vulnerability, CVE-2020-1464.
This was a weakness in Windows Installer (MSI) files and is related to the manner by which their digital signature is validated within the
Windows operating system.

Normally, an MSI file is cryptographically signed by the developer, allowing an end-user to verify that the MSI not only came from the
expected developer, but also has not been altered in transit. However CVE-2020-1464 allowed an attacker to append a malicious JAR file to
the end of an MSI file without invalidating the signature of the MSI file, creating a polyglot with a covert format of JAR and an overt format
of MSI. This vulnerability remained unpatched in the Windows operating system for at least two years.

9.4.4 Zip and RAR. The survey did not produce many instances of Zip and RAR polyglots. This may be due to the deletion of Zip and RAR
polyglots once their contents have been extracted. In the attack chains observed with archive format polyglots, polyglot files with a covert
format of Zip or RAR allowed covert transfer of the polyglot archive’s malicious contents thanks, typically, to their image-based overt format.

Note, RAR files are not derived from Zip files; they are a distinct archive format. That said, RAR and Zip files both tolerate prepended data.
Whereas Zip files are read from the bottom up, RAR files are read forward, skipping extraneous content until the RAR header is found.

9.4.5 JavaScript. The JavaScript language is a ubiquitous web technology used to build many web applications and is supported in all
modern browsers. This provides a large attack surface for attackers. The survey discovered at least one instance of an attacker using a
polyglot with a JavaScript covert format and an image-based overt format to infiltrate advertisement networks.

Normally, reputable advertising companies restrict scripts in their advertisements to avoid sending end-users malicious code. However,
this polyglot could bypass script detection without loss of functionality by posing as an advertising image. We were unable to get the sample
for this attack.

Received xx April 2024; revised XX Month 2024; accepted XX Month 2024

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Polyglot Abuse & Detection WWW ’25, April 28–May 2, 2025, Sydney, Australia

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 3: Malicious Polyglot Hashes

Malware Name Formats File Name File Hash (SHA-256)
IcedId CHM+HTA pss10r.chm 3d279aa8f56e468a014a916362540975958b9e9172d658eb57065a8a230632fa

Batloader PE+HTA AppResolver.dll 1258fb78dd50f6c12c3181cc5c1362dc9d70ca46c5fd7e6af4880ee6d6d9e7a2
Batloader PE+HTA AppResolver.dll 588af958bc4365ecff4264a9fb75351eaee1ca9d0672c3040a77f979795219bd
Batloader PE+HTA AppVEntStreamingManager.dll 3ec8b76ac735348db87bd0bf766554a2cb280f94d12dad8a159e917e00ab28f2
ZLoader PE+HTA AppVSentinel.dll 64a0a6ac17128ce7fd4dc34556bfe4736900121e5766557bceeac0cce99fbe21
ZLoader PE+HTA AppResolver.dll 89ccde97787a3eb0f9de38ab51c9f3278a3b18531b0fa468f08b55a133263b1c
ZLoader PE+HTA AppResolver.dll 950ad539dfc8e16c07d24dbb37ae19daa0b2f32164ba0cb3c81fa7e689f274e1
ZLoader PE+HTA AppResolver.dll a187c9bb2a8bc29184bd18d6f515532d0f9b3f97b53f0ec6347b9982c4dff00f
ZLoader PE+HTA AppResolver.dll c1a34057b31dd53e227a7001a7f0860e553b7efdb9ea2e9ec3b80221266b7d51
ZLoader PE+HTA advapi32.dll d1a1381c1f02abaa3449451136c1d1054ed72818348297113c135e8211173b3f
ZLoader PE+HTA AppResolver.dll eb7354a95762565558d46753caf0c0d4dd09e1f358d564ae034b64446599e907
Lazarus BMP+HTA imgFBE0.tmp fe16b1dc30ee50ab126129c7fc0f2e6932083d4429241707d8046760c6b25042
Lazarus BMP+HTA image003.zip - undetected c9803b32365f4870d4ca833eb418eb845f16c4ec1628253a152667d935d9985b
Lazarus BMP+HTA image003.zip - undetected a95a3fd25ab87c5010d42fe0131338b78187672dd6dc213af4253ef5db494591
Lazarus BMP+HTA image003.zip 888cfc87b44024c48eed794cc9d6dea9f6ae0cc3468dee940495e839a12ee0db
PHP Shell JPEG+PHP 63f4c7b002cc47.jpg 4e26b08cce3fbd04fb9d954e1fa6a72d91f909015e7564aae9570aee26e8efd6
PHP Shell JPEG+PHP simp.php.gif 47102e200c35185654e74237a838e4c6b484cadd5a97d77aa7ad633b4f83ba62
PHP Shell JPEG+PHP images.jpg 0b5fd1d621affa41ebe811a39c085d62be489c55e26705b1db61accaa1dbcb6a
PHP Shell JPEG+PHP 001.swf.jpeg 71f463e8d5c0f7ec6221a1cb9d5683766d5f7270ca80395bee5d0d00ec4ba0f3
PHP Shell JPEG+PHP 20190225150235_34013.php 5f8e797b0f2b2efee4839841cc7b597f80b8b6f1558ec18b43a834e4bd540fdb
PHP Shell JPEG+PHP v1QR1M.gif e028dc0e26b03a8a9cd5de11515f485dbaa57b721cb4ff4b1ffa115e64459eb9
PHP Shell GIF+PHP Adipati.php b660e691007a1fd8301f39782019a5f7bee6fd7dea18545e372a67014cee4c42
PHP Shell JPEG+PHP Logo_Coveright.jpg ab85eb33605f3013989f4e8a9bfd5e89dd82d1f80231d4e4a2ceb82744bf287c
PHP Shell JPEG+PHP ce167d905d117823d780e188002b3120.jpg 39588ed13465b15ec59ec35a885de028d0b6537cf6410c96402adfe1053694d6
PHP Shell PNG+PHP in1.png 57507a3db555182882c0c335b0b943ee2f977a1a9cf973be070fa9db6491cdf5
SyncCrypt JPEG+ZIP 003_JPG.arrival.jpg c6565d22146045e52110fd0a13eba3b6b63fbf6583c444d7a5b4e3a368cc4b0d

DarkTrack RAT PNG+RAR darknet.jpg ee0c0be30ba2875a2bc7813ae80814659ce35988fbd9d5232950ed7722b89a9a
JAR/MSI MSI+JAR 488adc.msi dd71284ac6be9758a5046740168164ae76f743579e24929e0a840afd6f2d0d8e
Ratty MSI+JAR 29-05-2020.jar 90f613caa131c663e32aabc31b5fccc99edcfa874110d51cd627531d3a67b16d
Ratty MSI+JAR 6afad7.msi 04a3cad80470a085b6ef57a7e1007049a29863a94fe76f93be1f2a0c54da99d6

13



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

WWW ’25, April 28–May 2, 2025, Sydney, Australia Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 4: Sources for Malicious Polyglot Usage in the Wild

Title Publisher Date Published URL
New Banking Trojan IcedID Discovered by IBM X-Force Research Security Intelligence 13 November 2017 https://securityintelligence.com/new-banking-trojan-icedid-

discovered-by-ibm-x-force-research/
More Than Meets the Eye: Exposing a Polyglot File That Delivers IcedID Palo Alto Networks 27 September 2022 https://unit42.paloaltonetworks.com/polyglot-file-icedid-

payload/
Zoom For You — SEO Poisoning to Distribute BATLOADER and Atera Agent Mandiant 1 February 2022 https://www.mandiant.com/resources/blog/seo-poisoning-

batloader-atera
Can You Trust a File’s Digital Signature? New Zloader Campaign exploits
Microsoft’s Signature Verification putting users at risk

Check Point Research 5 January 2022 https://research.checkpoint.com/2022/can-you-trust-a-files-
digital-signature-new-zloader-campaign-exploits-microsofts-
signature-verification-putting-users-at-risk/

BATLOADER: The Evasive Downloader Malware VMWare 14 November 2022 https://blogs.vmware.com/security/2022/11/batloader-the-
evasive-downloader-malware.html

Monitoring malware abusing CVE-2020-1599 VirusTotal 7 January 2022 https://blog.virustotal.com/2022/01/monitoring-malware-
abusing-cve-2020-1599.html

Lazarus APT conceals malicious code within BMP image to drop its RAT MalwareBytes 19 April 2021 https://www.malwarebytes.com/blog/threat-intelligence/202
1/04/lazarus-apt-conceals-malicious-code-within-bmp-file-
to-drop-its-rat

Andariel evolves to target South Korea with ransomware Kaspersky 15 June 2021 https://securelist.com/andariel-evolves-to-target-south-
korea-with-ransomware/102811/

LNK HTA Polyglot Hatching 12 November 2018 https://hatching.io/blog/lnk-hta-polyglot/
PHP WebShell Malware using Image Files ASEC 9 December 2020 https://asec.ahnlab.com/en/18861/
Hiding Webshell Backdoor Code in Image Files Trustwave 11 October 2013 https://www.trustwave.com/en-us/resources/blogs/spiderlab

s-blog/hiding-webshell-backdoor-code-in-image-files/
Malware in Images: When You Can’t See "the Whole Picture" Reversing Labs 2 March 2021 https://blog.reversinglabs.com/blog/malware-in-images
Picture perfect: How JPG EXIF data hides malware Cisco 24 July 2019 https://umbrella.cisco.com/blog/picture-perfect-how-jpg-

exif-data-hides-malware
Lab: Remote code execution via polyglot web shell upload PortSwigger Unknown https://portswigger.net/web-security/file-upload/lab-file-up

load-remote-code-execution-via-polyglot-web-shell-upload
Playing with GZIP: RCE in GLPI (CVE-2020-11060) Almond 14 May 2020 https://offsec.almond.consulting/playing-with-gzip-rce-in-

glpi.html
It’s a PHP Unserialization Vulnerability Jim, but Not as We Know It Blackhat 9 August 2018 https://i.blackhat.com/us-18/Thu-August-9/us-18-Thomas-

Its-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-
We-Know-It.pdf

CVE-2022-41343 - RCE via Phar Deserialization Tanto 6 October 2022 https://tantosec.com/blog/cve-2022-41343/
Taiwan Heist: Lazarus Tools and Ransomware BAE Systems 16 October 2017 https://baesystemsai.blogspot.com/2017/10/taiwan-heist-

lazarus-tools.html
SyncCrypt Ransomware Hides Inside JPG Files, Appends .KK Extension Bleeping Computer 16 August 2017 https://www.bleepingcomputer.com/news/security/synccry

pt-ransomware-hides-inside-jpg-files-appends-kk-extension/
DarkTrack RAT – New Variant Thumbing a Ride in PNG Files SECTRIO 25 August 2020 https://www.subexsecure.com/pdf/malware-reports/August-

2020/DarkTrack-Report.pdf
Distribution of malicious JAR appended to MSI files signed by third parties VirusTotal 15 January 2019 https://blog.virustotal.com/2019/01/distribution-of-malicious-

jar-appended.html
Interesting tactic by Ratty & Adwind for distribution of JAR appended to signed
MSI – CVE-2020-1464

Security-in-bits 28 June 2020 https://www.securityinbits.com/malware-analysis/interesti
ng-tactic-by-ratty-adwind-distribution-of-jar-appended-to-
signed-msi/

Microsoft Put Off Fixing Zero Day for 2 Years Krebs on Security 17 August 2020 https://krebsonsecurity.com/2020/08/microsof t-put-of f-
fixing-zero-day-for-2-years/

GlueBall: The story of CVE-2020–1464 Tal Be’ery 16 August 2020 https://medium.com/@TalBeerySec/glueball-the-story-of-
cve-2020-1464-50091a1f98bd

Uncovering and Disclosing a Signature Spoofing Vulnerability in Windows
Installer: CVE-2021-26413

Okta 19 April 2021 https://sec.okta.com/articles/2021/04/uncovering-and-disclosi
ng-signature-spoofing-vulnerability-windows

Hacking Group Using Polyglot Images to Hide Malvertising Attacks Devcon 24 February 2019 https://www.devcondetect.com/blog/2019/2/24/hacking-
group-using-polyglot-images-to-hide-malvertsing-attacks

Bypassing Content Security Policy with a JS/GIF Polyglot Ajin Abraham 10 June 2015 https://ajinabraham.com/blog/bypassing-content-security-
policy-with-a-jsgif-polyglot

WordPress Postie 1.9.40 Plugin - Persistent Cross-Site Scripting Exploit Vulners 16 January 2020 https://vulners.com/zdt/1337DAY-ID-33819
CVE-2021-27190 – PEEL SHOPPING Secuneus 11 February 2021 https://www.secuneus.com/cve-2021-27190-peel-shopping-

ecommerce-shopping-cart-stored-cross-site-scripting-
vulnerability-in-address/

14

https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://unit42.paloaltonetworks.com/polyglot-file-icedid-payload/
https://unit42.paloaltonetworks.com/polyglot-file-icedid-payload/
https://www.mandiant.com/resources/blog/seo-poisoning-batloader-atera
https://www.mandiant.com/resources/blog/seo-poisoning-batloader-atera
https://research.checkpoint.com/2022/can-you-trust-a-files-digital-signature-new-zloader-campaign-exploits-microsofts-signature-verification-putting-users-at-risk/
https://research.checkpoint.com/2022/can-you-trust-a-files-digital-signature-new-zloader-campaign-exploits-microsofts-signature-verification-putting-users-at-risk/
https://research.checkpoint.com/2022/can-you-trust-a-files-digital-signature-new-zloader-campaign-exploits-microsofts-signature-verification-putting-users-at-risk/
https://blogs.vmware.com/security/2022/11/batloader-the-evasive-downloader-malware.html
https://blogs.vmware.com/security/2022/11/batloader-the-evasive-downloader-malware.html
https://blog.virustotal.com/2022/01/monitoring-malware-abusing-cve-2020-1599.html
https://blog.virustotal.com/2022/01/monitoring-malware-abusing-cve-2020-1599.html
https://www.malwarebytes.com/blog/threat-intelligence/2021/04/lazarus-apt-conceals-malicious-code-within-bmp-file-to-drop-its-rat
https://www.malwarebytes.com/blog/threat-intelligence/2021/04/lazarus-apt-conceals-malicious-code-within-bmp-file-to-drop-its-rat
https://www.malwarebytes.com/blog/threat-intelligence/2021/04/lazarus-apt-conceals-malicious-code-within-bmp-file-to-drop-its-rat
https://securelist.com/andariel-evolves-to-target-south-korea-with-ransomware/102811/
https://securelist.com/andariel-evolves-to-target-south-korea-with-ransomware/102811/
https://hatching.io/blog/lnk-hta-polyglot/
https://asec.ahnlab.com/en/18861/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/hiding-webshell-backdoor-code-in-image-files/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/hiding-webshell-backdoor-code-in-image-files/
https://blog.reversinglabs.com/blog/malware-in-images
https://umbrella.cisco.com/blog/picture-perfect-how-jpg-exif-data-hides-malware
https://umbrella.cisco.com/blog/picture-perfect-how-jpg-exif-data-hides-malware
https://portswigger.net/web-security/file-upload/lab-file-upload-remote-code-execution-via-polyglot-web-shell-upload
https://portswigger.net/web-security/file-upload/lab-file-upload-remote-code-execution-via-polyglot-web-shell-upload
https://offsec.almond.consulting/playing-with-gzip-rce-in-glpi.html
https://offsec.almond.consulting/playing-with-gzip-rce-in-glpi.html
https://i.blackhat.com/us-18/Thu-August-9/us-18-Thomas-Its-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-We-Know-It.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Thomas-Its-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-We-Know-It.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Thomas-Its-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-We-Know-It.pdf
https://tantosec.com/blog/cve-2022-41343/
https://baesystemsai.blogspot.com/2017/10/taiwan-heist-lazarus-tools.html
https://baesystemsai.blogspot.com/2017/10/taiwan-heist-lazarus-tools.html
https://www.bleepingcomputer.com/news/security/synccrypt-ransomware-hides-inside-jpg-files-appends-kk-extension/
https://www.bleepingcomputer.com/news/security/synccrypt-ransomware-hides-inside-jpg-files-appends-kk-extension/
https://www.subexsecure.com/pdf/malware-reports/August-2020/DarkTrack-Report.pdf
https://www.subexsecure.com/pdf/malware-reports/August-2020/DarkTrack-Report.pdf
https://blog.virustotal.com/2019/01/distribution-of-malicious-jar-appended.html
https://blog.virustotal.com/2019/01/distribution-of-malicious-jar-appended.html
https://www.securityinbits.com/malware-analysis/interesting-tactic-by-ratty-adwind-distribution-of-jar-appended-to-signed-msi/
https://www.securityinbits.com/malware-analysis/interesting-tactic-by-ratty-adwind-distribution-of-jar-appended-to-signed-msi/
https://www.securityinbits.com/malware-analysis/interesting-tactic-by-ratty-adwind-distribution-of-jar-appended-to-signed-msi/
https://krebsonsecurity.com/2020/08/microsoft-put-off-fixing-zero-day-for-2-years/
https://krebsonsecurity.com/2020/08/microsoft-put-off-fixing-zero-day-for-2-years/
https://medium.com/@TalBeerySec/glueball-the-story-of-cve-2020-1464-50091a1f98bd
https://medium.com/@TalBeerySec/glueball-the-story-of-cve-2020-1464-50091a1f98bd
https://sec.okta.com/articles/2021/04/uncovering-and-disclosing-signature-spoofing-vulnerability-windows
https://sec.okta.com/articles/2021/04/uncovering-and-disclosing-signature-spoofing-vulnerability-windows
https://www.devcondetect.com/blog/2019/2/24/hacking-group-using-polyglot-images-to-hide-malvertsing-attacks
https://www.devcondetect.com/blog/2019/2/24/hacking-group-using-polyglot-images-to-hide-malvertsing-attacks
https://ajinabraham.com/blog/bypassing-content-security-policy-with-a-jsgif-polyglot
https://ajinabraham.com/blog/bypassing-content-security-policy-with-a-jsgif-polyglot
https://vulners.com/zdt/1337DAY-ID-33819
https://www.secuneus.com/cve-2021-27190-peel-shopping-ecommerce-shopping-cart-stored-cross-site-scripting-vulnerability-in-address/
https://www.secuneus.com/cve-2021-27190-peel-shopping-ecommerce-shopping-cart-stored-cross-site-scripting-vulnerability-in-address/
https://www.secuneus.com/cve-2021-27190-peel-shopping-ecommerce-shopping-cart-stored-cross-site-scripting-vulnerability-in-address/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Polyglot Detection

	3 RQ1: Polyglot Exploitation in the Wild
	3.1 Survey Methods
	3.2 Role of Polyglot Files in Cyber Attack Chains

	4 Wild Polyglots: A Polyglot Data Set Based on Malicious Usage in the Wild
	4.1 Fazah: A Polyglot Generation Framework

	5 RQ2: Using Machine Learning for Polyglot Detection
	5.1 Ml-based Detection Development
	5.2 Comparing ML-based Polyglot Detection Approaches

	6 RQ3: Comparison to Existing Signature-based File-format Identification Tools
	6.1 Tools Tested

	7 RQ4: Methods for Addressing Image-based Polyglots
	7.1 ImSan, a Content Disarmament and Reconstruction Tool for Image-based Polyglots

	8 Discussion
	8.1 Contribution Summary
	8.2 Limitations
	8.3 Future Work

	References
	9 Appendix
	9.1 Polyglot Creation
	9.2 Polyglot Exploitation
	9.3 Batloader/Zloader Cyber Attack Chain
	9.4 How File Formats Enable Polyglot Capabilities


