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On the Abuse and Detection of Polyglot Files
Anonymous Author(s)

ABSTRACT
A polyglot is a file that is valid in two or more formats. Polyglot files
pose a problem for file-upload and generative AI web interfaces that
rely on format identification to determine how to securely handle
incoming files. In this work we found that existing file-format and
embedded-file detection tools, even those developed specifically for
polyglot files, fail to reliably detect polyglot files used in the wild. To
address this issue, we studied the use of polyglot files by malicious
actors in the wild, finding 30 polyglot samples and 15 attack chains
that leveraged polyglot files. Using knowledge from our survey of
polyglot usage in the wild—the first of its kind—we created a novel
data set based on adversary techniques. We then trained a machine
learning detection solution, PolyConv, using this data set. PolyConv
achieves a precision-recall area-under-curve score of 0.999 with
an F1 score of 99.20% for polyglot detection and 99.47% for file-
format identification, significantly outperforming all other tools
tested. We developed a content disarmament and reconstruction
tool, ImSan, that successfully sanitized 100% of the tested image-
based polyglots, which were the most common type found via the
survey. Our work provides concrete tools and suggestions to enable
defenders to better defend themselves against polyglot files, as well
as directions for future work to create more robust file specifications
and methods of disarmament.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Browser
security; • Computing methodologies→ Neural networks.

KEYWORDS
File-format Identification, Malware Detection, Polyglot Files, Ma-
chine Learning, APT Survey, Content Disarmament and Recon-
struction
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1 INTRODUCTION
A polyglot file simultaneously conforms to two or more file-format
specifications. This means the polyglot file can exhibit two com-
pletely different sets of behavior depending on the calling program,
as depicted in Figure 1. This dual nature poses a threat to endpoint
detection and response tools (EDR) and file-upload systems that
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Runtime 
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JPG+JAR 
Polyglot
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Malicious 
Java Code

Figure 1: Functionality of a polyglot file is determined by
the calling program, which can be explicitly provided or
automatically determined by the operating system’s auto-
launch settings.

rely on format identification prior to analysis. As shown in Figure 2,
a polyglot can evade correct classification by first evading format
identification. If only one format is detected, then the sample may
not be routed to the correct feature-extraction routine (in the case
of machine learning-based detectors) or compared to the correct
subset of malware signatures (in the case of signature-based mal-
ware detection). As evidence that existing commercial off-the-shelf
(COTS) endpoint detection and response tools are vulnerable to
polyglots, we point to Bridges et al. [5], who demonstrated that 4
competitive COTS tools detected 0% of the malicious polyglots in
the test data.

Standardized formats for files play a key role in cybersecurity.
By first identifying the format of an unknown sample, they allow
malware detection tools to extract the most discriminate and ro-
bust features from an unknown sample. This allows the detection
tool to discard unimportant bytes that can be manipulated to alter
classification in an adversarial attack [8, 18]. However, this feature-
extraction process introduces a vulnerability; the correct format
must be detected in order to route the file to the correct feature
extractor. Even when a detector does not use machine learning and
instead relies upon signatures for detection, the need to maintain a
high throughput encourages EDR tools to only search for signatures
that correspond to the detected format [15].

As prior researchers [2, 6, 9, 15, 23, 27] have demonstrated, poly-
glot files can be crafted that are fully valid (execute as intended)
in multiple formats. To date, however, no comprehensive study of
polyglot usage by malicious actors in the wild and/or methods of
detecting said polyglots has been undertaken. In this paper, we set
out to answer four key research questions related to polyglot usage
and mitigation:

RQ1: How are polyglots currently used by threat actors in the
wild? This includes the role the polyglot fills, the formats of the donor
files, and the combination method used to fuse the donors together.

RQ2: Can we train a detector to effectively filter or reroute poly-
glots prior to ingestion by a malware detection system?

1
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RQ3: Does this detector outperform existing file type detection,
file carving, and polyglot-aware analysis tools at detecting polyglot
files?

RQ4: Given the prevalence of image-based polyglots in adversary
usage and the relative simplicity of image formats, what tools can we
provide to defenders to address image-based polyglots in their existing
workflows?

To addressRQ1, we reviewed open-source intelligence feeds (see
Section 3.1 for methods) that detail adversary tactics, techniques
and procedures (TTP), finding that polyglots have played an im-
portant role in a number of malicious campaigns by well-known
advanced persistent threat (APT) groups. Polyglot files allowed the
malicious actors to covertly execute malicious activity and extract
sensitive data by masquerading as innocuous formats. In Section 3,
we provide an overview of the different roles polyglots played in
each campaign, detail the file combinations used, and provide a
detailed description of several high profile examples. To address
RQ2-RQ4, we first created a tool, Fazah, for generating polyglots
that mimic the examples seen in the wild. Although there are other
possible format combinations, our goal with this tool was to mimic,
as closely as possible, the formats and combination methods used
by real-world threat actors. Using this tool, we then created a data
set of polyglot and normal (referred to hereafter as monoglot) files
for training and testing. See Section 4 for a full description of the
data set.

To address RQ2, we tested machine learning models to solve
both the binary and the multi-label classification problems, achiev-
ing an F1 score of 99.20% for binary classification and 99.47% for
multi-label classification with our deep learning model PolyConv.
To address RQ3, we evaluated five commonly used format identifi-
cation tools on this dataset: file [7], binwalk [29], TrID, polydet, and
polyfile. These tools were selected because of their use in existing
cybersecurity tools or claim to detect polyglot files. We evaluated
the performance of these tools at both binary and multi-label clas-
sification. In our context, binary classification determines whether
a file is a polyglot or a monoglot. Multi-label classification, on the
other hand, identifies all formats to which the file conforms. We
found that existing tools did not exceed an F1 score of 93.32% at
binary classification and 83.74% at multi-label classification.

See Section 5 for details regarding our ML based approaches
and Section 6 for a comparison of ML-based approaches to existing
file-format identification tools.

As detailed in Section 7, to addressRQ4we developed and tested
a CDR tool for sanitizing image-based polyglots since these were
the most common vector for polyglot malware. We also tested
YARA rules for detecting extraneous content in image files. We
found that the YARA rule approach did not generalize well to all
formats that can be combined with an image, especially the more
flexible scripting formats like Powershell or JavaScript. However,
they may be use in high-throughput use cases where deploying a
deep learning model is not feasible. A more effective approach is
to strip all extraneous content from images using a content disar-
mament and reconstruction (CDR) tool. Our CDR tool, ImSan, was
able to sanitize all of the image polyglots in a random subset of our
image polyglots. A subset was used so we could manually verify
the results.

The following provides a summary of our contributions:

• RQ1: The first, to our knowledge, survey of polyglot usage
by malicious actors in the wild, demonstrating that polyglot
files are an actively used TTP by well-known malicious
actors. Utilizing the results of this study, we created a tool,
Fazah, to generate polyglots using formats and combination
methods exploited by malware authors in the wild. We then
used Fazah to generate a dataset of polyglots andmonoglots
to evaluate existing detection methods and train polyglot
detection models.

• RQ2:Utilizing this novel dataset, we trained a deep learning
model, PolyConv, that can distinguish between polyglots
and monoglots with an AUC score over 0.999. We also cre-
ated a multi-label model that reports all of the detected
formats in monoglot and polyglot files, enabling analysts
to quickly determine the nature of a threat or route the sus-
picious file to multiple format-specific detection systems.

• RQ3:We provide a comparison of our polyglot detection
models with existing file-format identification and carving
tools, some of which are polyglot aware. This evaluation
shows that existing methods for detecting file type manipu-
lation are inadequate and often fail to detect polyglot files,
even with special flags set that are meant to ensure multiple
file types are detected.

• RQ4: For image-based polyglots, which are common in the
wild, we explored YARA rules and content disarmament and
reconstruct (CDR) tools, finding that our ImSan CDR tool
was 100% effective while the YARA rules did not compete
with our deep learning detector. They may, however, be of
use in high throughput situations.

PE+HTA 
Polyglot

PE
Classification

Model

File 
Format 

Identification

PE File
Feature 

Extraction

Malware Detector 

PE Format 
Detected

Benign Features 
Extracted

Benign Label 
Applied

HTA Format 
Not Detected

Malicious Activity
AllowedMSHTA.exe

Executes
 HTA Script 

Figure 2: Since polyglot files simultaneously conform to mul-
tiple formats, they can evade correct format identification.
This in turn allows them to evade format-specific feature
extraction or signature matching, thereby evading malware
detection. Therefore, some preprocessing should be done
to either filter/quarantine polyglot files prior to feature ex-
traction or route them to multiple format-specific malware
detectors so all functional components of the polyglot are
analyzed.

2 RELATEDWORK
2.1 Polyglot Detection
Bridges et al. conducted an in-depth evaluation of four leading
COTS tools [5]. Among the test data were 199 malicious JPG+JAR
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polyglots that went completely undetected by all 4 tools. While
we can not prove why these tools failed across the board, we can
surmise—based on the unusual 0% detection rate—that the failure
occurred in the file-type identification that must occur prior to
feature extraction. If the files were interpreted as JPG (the benign
component) rather than JAR (the malicious component), it is un-
likely that the malicious JAR content was analyzed. This provides a
plausible explanation for the complete detection failure. Therefore,
to solve the problem of malicious polyglot detection, the problem
of correct file type identification should first be solved.

The machine learning models FiFTy and Sceadan—a support
vector machine (SVM) and a deep learning model, respectively—
were released by researchers for file-format identification [4, 21].
However, neither tool was designed with polyglots in mind or
trained on a dataset containing them. Appendices 9.1 and 9.2 detail
prior work regarding polyglot creation methods & categorization
and exploitation by academic researchers, respectively.

3 RQ1: POLYGLOT EXPLOITATION IN THE
WILD

Thanks to Bridges et al. [5], we know polyglots can evade detection
by COTS tools. However, the extent to which malicious actors
employ polyglots has never, to our knowledge, been published
before. Do malicious actors use polyglots in their attack chains?
What role do polyglots play within an attack chain? What file
formats and combination methods were utilized in these attacks? To
address these questions we conducted a survey of threat intelligence
feeds, collecting file hashes of polyglot samples and information
on the roles played by these files within attack chains. For the file
hashes and a list of the sources used in this survey, see Table 3 and
Table 4 in Section 9.

3.1 Survey Methods
The survey, performed between November 2022 and January 2023,
focused on identifying the role of a polyglot file within a threat
actor’s cyber-attack chain. We used publicly available independent
sources, general search engines and threat intelligence feeds (e.g.,
ORKL, X) to gather a wide range of information security reports and
articles. Those sources were searched using the following terms:
polyglot, combined, and contained. We found that the term polyglot
is not always utilized in reports. We therefore had to manually
distinguish between reports of true polyglots (two or more valid
formats in one file) and other forms of digital steganography. A
number of reports described malware that contained a valid format
along with an oft-encrypted set of malicious instructions. We do not
consider these files as polyglots because the malicious instruction
can only be correctly interpreted when passed as input to another
component of the malware rather than a parser conforming to a
published standard.

For each true polyglot found, we used our knowledge of threat
operations to determine the role the polyglot played in the cyber-
attack chain. Lastly, the online malware databases, VirusTotal and
MalwareBazaar, were used to obtain the actual polyglot samples
whenever hashes of the polyglot were provided in a report. The file
hashes and sources from our survey of open-source intelligence
can be found in the appendix in Tables 3 and 4, respectively.

3.2 Role of Polyglot Files in Cyber Attack
Chains

The survey discovered fifteen examples of a threat actor using a
polyglot file in their cyber-attack chain, along with 30 distinct poly-
glot files. According to MITRE’s Adversarial Tactics, Techniques,
and Common Knowledge (ATT&CK) framework, polyglots are
primarily utilized for Defense Evasion (MITRE ATT&CK TA0005).
Polyglot files also fall under the Obfuscated Files or Information
(MITRE ATT&CK T1027) heading since these files conceal hidden
functionality by appearing to conform to only one file format. We
obtained 30 polyglot samples from VirusTotal and MalwareBazaar
using the file hashes specified in the reports.

For the purpose of establishing a formal taxonomy for polyglot
files, we refer to polyglots as having an overt format and a covert
format. The overt format is the format the file presents as (e.g.,
matches the extension) while the covert format is not apparent
without analysis. In most cases, a polyglot consists of a malicious
file combined with a benign one; however, in some cases we found
that both file formats play a role in advancing the malicious at-
tack chain, as in the HTA+CHM polyglot utilized by IcedID in
Section 9.2.1. Therefore, we instead refer to polyglots as combining
an overt format with a covert format. A summary of the found-
in-the-wild samples is provided in Table 1. In Appendix 9.4 we
discuss the capabilities of interest that each file format provides
to the malware author (camouflage, non-standard execution path,
etc.) to understand why these combinations exist in the wild and
how they fill a desired role in attack chains.

We selected one cyber attack chain to demonstrate how well-
known APTs utilize polyglots to reach the next step in their cyber
attack chains. Two further attack chains are described in detail in
Appendix 9.3. CVE numbers and MITRE ATT&CK references are
provided where applicable.

3.2.1 Andariel/Lazarus. Lazarus (of which Andariel is a subgroup)
is an advanced threat group that has operated out of North Ko-
rean since 2009 [14]. In 2021 attack chains connected to this group
utilized polyglots to infect systems with a Remote Access Trojan
(RAT) [16, 24]; this process is illustrated in Figure 3.

This attack chain typically begins with a phishing email that
has an attached malicious Microsoft Word Document (DOC) file
(MITRE ATT&CK T1566). When the DOC file is launched, a macro
begins execution (MITRE ATT&CK T1204.002). First, the macro
drops a PNG file to the Temp directory. The image data in the PNG
file is a compressed polyglot file.

Next, the DOC macro converts the PNG file to a BMP file, which
has the intended side effect of decompressing the contents (MITRE
ATT&CK T1140). The DOC Macro does this by leveraging the
Windows Image Acquisition (WIA) Automation Layer Objects: Im-
ageFile and ImageProcess [19, 20].

After conversion, the DOC Macro saves the BMP as a zip file by
giving it a zip extension. However, the file is actually a BMP+HTA
polyglot, with the HTA covert contents appended to the end of
the overt BMP data. Finally, the DOC Macro executes the polyglot
file as an HTA file using the MSHTA application via the Windows
Management Instrumentation (WMI) Service (MITRE ATT&CK
T1059, T1047).

3
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WMI is used so that the resulting process does not appear to
be a child of the DOC process. The HTA file drops its payload, a
hidden PE file, into a hidden folder. Finally, the HTA file launches
the PE file which provides a foothold on the target system for future
exploitation.

Figure 3: Andariel/Lazarus Attack Chain

4 WILD POLYGLOTS: A POLYGLOT DATA SET
BASED ONMALICIOUS USAGE IN THEWILD

This section describes how we created our data set based on our
survey of polyglot usage in the wild (RQ1) using the Fazah tool in
order to address RQ2-RQ4.

4.1 Fazah: A Polyglot Generation Framework
Having uncovered which formats have been used in real-world
malicious polyglots, we created a data set consisting of monoglot
and polyglot files conforming to these formats. Our first step was
to create a framework for generating polyglots by combining donor
files. Our goal for this tool was to mimic format and combination
methods found in the wild rather than demonstrate all possible
combinations. The Fazah framework is a modular tool written in

Table 1: Polyglot Formats Deployed Maliciously in the Wild

Covert Format Overt Format

HTA
JPEG, PNG, BMP, GIF, LNK,
PE, MSI, RAR, Zip, TTF,
RAR, CHM, PDF

PHP JPEG, PNG, BMP, GIF, TTF,
RAR, Zip, LNK, PDF

PHAR JPEG, PNG, BMP, GIF
JavaScript GIF, BMP
PowerShell JPEG, BMP, GIF
Zip JPEG, PNG, GIF, PDF

JAR JPEG, PNG, GIF, PDF,
MSI

RAR JPEG, PNG, BMP, GIF
BMP Zip, JAR

Python that can currently generate 46 format combinations using
8 covert formats. The combination method—stack and a variety of
parasites—is derived from reports of malicious use in our survey and
varies between covert format. As discussed in the survey, malicious

actors use polyglots either to disguise malicious content using a
less suspicious format (images) or add hidden functionality (scripts).
Since image formats typically use comment markers, parasites are
commonly used by malicious actors. Stacks, meanwhile, are the
simplest and easiest method for malicious actors to implement,
working well with script and archive formats. Files with distinct
comment markers (necessary for zippers) are quite rare. Of the
common (but by nomeans exhaustive) set of formats we tested, only
DCM combined with either PDF/GIF/ISO could result in a zipper.
Similarly, we found that only ISO paired with PE/PNG/GIF yielded
cavities. This does not preclude their use in malicious campaigns,
but places them beyond scope for our goal of emulating known
attack chains. Table 1 provides the format pairings that Fazah can
turn into polyglots. Given the possibility for malicious abuse of the
framework, Fazah will not be published publicly at this time.

4.1.1 Wild Polyglots Data Set Creation and Contents. We collected
benign files conforming to 13 common formats using Github’s
search API: BMP, EXE, GIF, HTA, JAR, JPG, JS, MSI, PHP, PNG,
PS1, RAR, ZIP. Using a held-out set of donor files, we created 32
types of polyglots organized according to which 2 types of donor
files were combined to create the polyglot file. We kept all donor
files separate from the train and test set to ensure that the models
did not cheat by learning that data added to a monoglot in the
training set is a polyglot. Table 2 provides an overview of the Wild
Polyglots data set. Figures 4 and 5 breakdown the formats contained
in the monoglot and polyglot training sets, respectively. Since our

RAR

JAR

JS

Zip

PHP

JPG
PS1 PNG

GIF

EXE

CHM

BMP

MSI
HTA

2574

1698

1566

1770

1980

1494
2021 1931

1426

1983

1944

1704

1496
1605

Figure 4: File counts for the monoglot formats in the Wild
Polyglots training data.

objective was to train a polyglot detector rather than a malware
detector, we only utilized benign files. We first scanned the files we
scraped for malware and removed any suspicious samples. Next,
we removed any scraped files whose extension did not match the
file contents (e.g., a JPEG with a .png extension) or if the file could
not be parsed by an appropriate utility (e.g., Pillow for images). We
erred on the side of inclusion for highly flexible scripting language
formats like HTA. Since MSHTA.exe is tolerant of a high degree of
malformation, we felt it unwise to exclude malformed HTA from
our training data.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Polyglot Abuse & Detection WWW ’25, April 28–May 2, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: Wild Polyglots Data Set Contents

Train Test
Monoglot 25192 9975
Polyglot 1148604 213109

5 RQ2: USING MACHINE LEARNING FOR
POLYGLOT DETECTION

This section explores using machine learning to detect polyglot
files. Section 5.1 chronicles our development process as we tested
different ML model architectures and experimented with improve-
ments to the feature space. Section 5.2 presents the results from
out best-performing models compared to existing tools.
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Figure 5: File counts for each of the 32 polyglot combinations
in the Wild Polyglots training data.

5.1 Ml-based Detection Development
Our first objective was to determine which machine learning archi-
tecture and feature set were most effective at detecting polyglots.
Toward this end, we created a small (∼ 70, 000 files) initial data set
using the mitra tool (described in Section ??) prior to the devel-
opment of our Fazah tool. On this preliminary data set, we tested
a Support Vector Machine, Random Forest, GradBoost, CatBoost,
LightGBM, and MalConv. With the exception of MalConv [28],
these models used the byte histogram as their only feature. The
byte histogram is a vector of length 256 where the value stored
at each index corresponds to the number of times that byte value
occurs in the input file. This feature vector is agnostic with respect
to file formats since all digitally stored files are a string of bytes.
We found that, on this preliminary data set, MalConv and CatBoost
were the top performers.

We focused further development on MalConv and CatBoost, la-
beling our improved versions PolyConv and PolyCat, respectively.
At this point, we trained and tested both models on our survey-
informed Wild Polyglots data set; all results and figures reported
in this paper refer to the Wild Polyglots data set. We found that,

for PolyCat but not PolyConv, adding the mime-type output of the
file utility improved results. Although file was not competitive at
detecting polyglots (see Section 6.1) or at identifying both formats
contained within, it was extremely accurate at identifying the first
format contained in the file. Therefore, we augmented PolyCat’s fea-
ture space with a 1-hot encoding of the mime-type output from file.
We found further improvement by adding the 8000 most common
bigrams and trigrams extracted from each file using an overlapping
window. Thus, the final feature space for PolyCat consisted of the
byte histogram, the 1-hot encoding of the mime-type from file, and
the most common bigrams and trigrams.

MalConv is an oft-cited deep learning classifier designed to detect
malware [28]. We trained the model from scratch to identify poly-
glots rather than to identify malware. None of the polyglots in our
data set were malicious in order to guarantee that the model learned
to detect multiple formats rather than malicious content. Since the
model is trained on raw bytes rather than format-specific features
(e.g., the EMBER feature set for PE files [3]), MalConv’s architec-
ture is well-suited to the polyglot detection problem which requires
a format-agnostic approach. In lieu of a fixed feature-extraction
routine, the model takes in raw bytes and learns an encoding (first
layer) as well as a set of filters (the convolution layers) to recognize
significant byte patterns. MalConv also features an attention and
gating mechanism intended to filter out extraneous information in
the raw bytes.

We experimented with changes to the architecture in order to
make it more effective at our novel task, yielding the PolyConv
model mentioned above. The original architecture of MalConv is
presented in Figure 6 while PolyConv’s architecture is presented
in Figure 7.

The changes we made to MalConv consist of the following:

• Decreasing the window and stride from 512 bytes to 16 and
8 bytes, respectively, in order to capture the byte patterns
of very short (in terms of bytes) script files hidden within
larger files

• Removing the attention and gating mechanism as they did
not seem to improve the results on our task

• Increasing the number of kernels in the remaining convolu-
tion layer to 512 in order to learn enough byte patterns to
distinguish the wide variety of distinct formats upon which
we trained the model

• Increasing the number of fully connected layers to 3 as a
result of experimenting with different layers counts

• Increasing the number of nodes in each fully connected
layer to 512, 512, and 128 as a result of experimenting with
different node configurations

5.2 Comparing ML-based Polyglot Detection
Approaches

We trained and tested PolyConv, MalConv, PolyCat, and CatBoost
on our Wild Polyglots data set. For this comparison, we evaluated
binary label (polyglot or monoglot) versions of the models. Since
our data set is imbalanced, we used the precision-recall curve rather
than the ROC curve to score our models. Therefore, our top model
is the one with the highest PR-AUC on the Wild Polyglots test set.
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Figure 6: MalConv Architecture

Raw Input File
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Figure 7: PolyConv Architecture

PolyConv scored a PR-AUC of 0.99998, the highest score for all
the models we evaluated. MalConv—when trained on this novel
task—scored a slightly lower PR-AUC of 0.99989, outperforming
both PolyCat and CatBoost. The model results are summarized in
Figure 8.

6 RQ3: COMPARISON TO EXISTING
SIGNATURE-BASED FILE-FORMAT
IDENTIFICATION TOOLS

This section compares our best-performing polyglot detectionmodel,
PolyConv, to existing tools for format identification to determine
which approach is best suited to identifying polyglot files and
labeling their contents correctly. Within the context of cyberse-
curity, there are two complimentary questions of paramount im-
portance: detection and analysis. We trained two versions of our
best-performing model, PolyConv, that differ only in the final layer
to suit detection and analysis needs.

The first version is a binary classifier (polyglot or monoglot)
for use in filtering out polyglots on an endpoint. This is intended
for file upload services that only want to allow uploads of known
formats, e.g., images.

The second version is a multi-label classifier to identify all of
the formats detected within a file. This provides two benefits. First,
the labels can be used to route files to all applicable file-format
feature extraction or signature-matching routines rather than a
single format-specific model or signature subset. This means that
the remainder of an existing EDR tool’s extraction and detection
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Figure 8: Precision-Recall AUC Scores: Our deep learning
model, PolyConv, slightly outperformed the stock version
of MalConv upon which it is based as well as CatBoost and
Polycat.

routines do not need to be altered. Second, the labels provide an
analyst with introspection, revealing not only that the file is a
polyglot but also which format-specific tools/routines they should
use to examine the covert format(s) hidden in the polyglot. This is
intended to reduce the response time necessary for secure operation
center (SOC) analysts that must handle a high volume of alerts.

6.1 Tools Tested
We established a baseline for performance by testing existing file-
format identification tools on the Wild Polyglots data set: file [7],
binwalk [29], TrID [25], and polydet [1]. We also evaluated polyfile
[22], a DARPA-funded tool developed by Trail of Bits for detecting
unusual files. Of the aforementioned tools, file and TrID are well-
established signature-based utilities for file-format identification.
VirusTotal, a widely used anti-virus aggregator (www.virustot
al.com), utilizes TrID when reporting detected formats. Binwalk
is a file-carving tool that has been used by analysts to find and
extract hidden files. We selected these tool to establish a baseline
because of their wide-spread use (file), cybersecurity application
(binwalk,TrID), and polyglot-awareness (polyfile, polydet). We leave
as future work a comparison to FiFTy [21] and Sceadan [4], as
these detectors do not appear to be polyglot-aware, but might be
re-trained in order to properly label polyglot files. We also tested
Google’s magika v1 model [11], which was trained on 25 million
files. It outputs only 1 label per file, failing to detect any polyglots
in our test set.

Since file outputs labels and not probabilities, the precision-recall
curve is not an appropriate metric when comparing our deep learn-
ing model to existing tools. Instead, we calculate the F1 score using
the labels output by file and the other tools. For any cybersecu-
rity system deployable in the real-world, the ability to detect mal-
ware/polyglots (recall) must be tempered by a low probability of
false positives (precision) to prevent red-flag fatigue. Therefore, we
use F1 to provide a balanced evaluation.

6.1.1 Binary Comparison. Figure 9 considers the performance of
each tool in a binary context, determining if the tool detects the
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presence of two or more formats in one file. TrID aggressively spec-
ulates as to which formats are present in a file, assigning a percent
score to each possibility. We therefore omitted the performance of
TrID as a multi-label detector as this behavior put it at a disadvan-
tage compared to the other tools. As Figure 9 demonstrates, none
of the existing tools approached the F1 score, precision, or recall of
our PolyConv deep learning model. All of the tools had a relatively
high precision and low recall, indicating that false negatives were
the primary cause of the low F1 scores.

The recall for file was lower than expected as the tool reported
multiple formatswhen examining BMP, EXE, HTA, and PHPmonoglots.
The EXE false positives may have been caused by the presence of
other files embedded as resources. Although it was outperformed
by our PolyConv model, polyfile was the best binary performer
among the existing set of tools by F1 score.
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Figure 9: Binary Performance vs Existing Tools: PolyConv
exceeded the F1 score, precision, and recall of all existing
tools by a large margin.

6.1.2 Multi-label Comparison. Figure 10 considers the performance
of each tool in a multi-label context where a true positive means
the tool correctly identified both the count and the exact formats
present in each file. None of the tools performed well compared to
the multi-label version of PolyConv.

Of the existing tools, polydet outperformed the other tools in all
three metrics by a noticeable margin. With regard to the remaining
tools, file’s precision is unusually low given its widespread use and
long development history. Upon examination, we found that file did
not differentiate between PowerShell and JavaScript files; instead,
it applied the generic label of ASCII or Unicode text. This behavior
almost exclusively accounted for the lower precision.

The lack of required signatures for script files makes signature-
based detection difficult for these script formats. Upon further in-
spection we found that polyfile and polydet share file’s dependence
on Libmagic, which labels PowerShell and JavaScript as either ASCII
or Unicode text. While it might seem unfair to expect Libmagic
to differentiate between different forms of ASCII or Unicode text,
we consider it important for analysts to be aware of this opaque
label. A harmless log file of unstructured ASCII text presents a very
different level of danger compared to a functional JavaScript file.
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Figure 10: Multi-label Performance vs Existing Tools: Poly-
Conv also proved more adept at correctly identifying all of
the formats contained within a file. Of the existing tools,
polydet provided the most reliable file-format identification.

7 RQ4: METHODS FOR ADDRESSING
IMAGE-BASED POLYGLOTS

Given the prevalence of image-based polyglots in adversary usage
and the relative simplicity of image formats, we developed tools for
detecting and remediating polyglots that employ an overt image
format.

We first tested YARA rules in the hopes that the comment mark-
ers/delimiters present in image files would allow for rule-based
detection of extraneous content. However, we found that their re-
call of 82.08% and F1 score of 90.15% were too low to be useful
except in situations where high throughput is tantamount. We then
turned to the content disarmament and reconstruction approach.

7.1 ImSan, a Content Disarmament and
Reconstruction Tool for Image-based
Polyglots

Content disarmament and reconstruction (CDR) tools present an
alternative approach to the pre-processing filtering approach for
which we have provided solutions. CDR tools allow an end user
to strip all but the most trustworthy content from certain formats.
Where highly flexible formats, like PDF, have proliferated, these
tools have emerged to provide secure use of files that abuse the
format flexibility.

Although we have not exhaustively examined this approach,
we have developed an image sanitization tool to demonstrate the
potential of CDR in disarming polyglots. Our tool, ImSan, disarms
image-based polyglots by stripping away all file contents that are
not required to display the image. The process is quite straightfor-
ward:

(1) The image file is loaded into Pillow, a fork of the Python
Imaging Library

(2) The image contents are then written to a new file with the
option to strip all metadata activated

(3) The new image file has no extraneous content before/after
the image contents (stack/cavity polyglot) or inserted into
comment areas (parasite/zipper polyglot)
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ImSan can disarm any of the formats that are fully supported
(read/write) by Pillow: BLP, BMP, DDS, DIB, EPS, GIF, ICNS, ICO,
IM, JPEG, JPEG 2000, MSP, PCX, PNG, PPM, SGI,SPIDER, TGA, TIFF,
WebP, XBM. Note, ImSan should be run in an isolated environment
to ensure that no vulnerability in Pillow (2 CVE’s reported in 2022)
could allow a malicious image to gain execution when the image is
parsed.

ImSan disarmed 100% of the image polyglots in a subset (n=392)
of image polyglots drawn randomly from the benignWild Polyglots
data set. A small subset was chosen so we could manually verify
disarmament through visual inspection of the image’s code rather
than relying on one of our detectors. An evaluation of commercial
CDR tools against polyglots (including those that are not image
based) and the potential methods of circumventing CDR solutions,
while out of scope for this work, would be a valuable direction for
future work to explore.

8 DISCUSSION
8.1 Contribution Summary
We presented the first, to our knowledge, survey of polyglot usage
by malicious actors in the wild, demonstrating that polyglot files are
an actively used TTP by well-known malicious actors, answering
RQ1.

In order to answerRQ2-RQ4, we created a novel data set of poly-
glot and monoglot files based on file formats and file-combination
methods utilized by malicious actors in the wild.

Using this Wild Polyglots data set, we evaluated a number of
different machine learning models before focusing on the top two
performers, PolyConv and PolyCat. we improved these two models
via alterations to their architecture and feature space, respectively.

We found that PolyConv, in both binary and multi-label versions,
was effective at detecting polyglots and correctly labeling their
contents RQ2, providing analysts with a tool to detect, reroute, and
investigate potential polyglots.

PolyConv only slightly outperformed the model upon which
it was based, MalConv, demonstrating that MalConv effectively
learned to distinguish between polyglot and monoglot files when
trained on this objective, despite being designed to detect malware.
This is a novel use of MalConv considering that the model was
designed to detect PE malware.

Based on our experiments, the improvement from MalConv to
PolyConv was due to the reduction of the window and stride size
as well as increasing the number of filters and layers. We theorize
that the much smaller window/stride allowed the model to learn
filters that register even small areas of code with a distinct byte
pattern. The need for more filters may be due to the wide variety of
formats, each with their own distribution of unique byte patterns,
upon which we trained. On the other hand, removing the attention
and gating mechanism did not reduce the model’s classification
performance.

We answered RQ3 by demonstrating that existing tools do not
reliably detect polyglot files, evenwhen designedwith an awareness
of polyglot files.

To answer RQ4, we produced a set of YARA rules for detecting
extraneous content in image files, but found their performance
lacking. The rules are available upon request. We then created

ImSan, a content disarmament and reconstruction tool that sanitizes
image files, demonstrating that it disarmed all of the image-based
polyglots with which we tested it.

8.2 Limitations
We cannot guarantee that our deep learning models will perform
well on polyglots formed from file formats not included in the
training data. File formats based on Open XML (Microsoft Office)
are a common malware vector that have not yet been thoroughly
explored as polyglot components. PolyConv is format agnostic so
we hope that this model’s release will prompt further research using
additional file formats.

File size is a limiting factor for malware classification models
trained on raw bytes rather than extracted features. Detection could
be evaded by utilizing a polyglot whose overt format exceeds the
full input capacity of the model, meaning the covert format would
not be ingested. We tested head and tail scanning on our data set,
but found that this did not improve results since the vast majority of
our data set is within the maximum capacity of our PolyConvmodel.
Head and tail scanning could still be evaded if an adversary inserted
the second file near the middle of a particularly large first file or
appended a large amount of data after the second file contents.

We also tested the YARA rule approach, but found it A) limited
by the need to write novel rules for each possible combination of
file formats and B) the lack of required signatures in many flexible
file formats.

8.3 Future Work
Since PolyConv utilizes a global max pooling layer, it is translation
invariant. That said, a demonstration of its ability to generalize to
novel insertion areas remains future work. We consider translation
invariance an important feature in order to future-proof a polyglot
detector. Given the flexibility in file formats, it is possible that novel
polyglot creation methods will emerge in the future that hide the
second file in a novel area of the first file. Therefore, a demonstration
that PolyConv is resilient in the face of novel combination methods
would demonstrate that future models for polyglot detection should
also be translation invariant.

Future work should include the implementation of an intelligent
method for subselecting or compressing large input files so they
fit within the maximum capacity of a model trained on raw bytes.
Head and tail scanning would catch data appended to the very end
of the file, but could be evaded by inserting data earlier in the file
or appending more benign content after the additional malicious
content. Therefore, a more robust input reduction method should
not follow a fixed pattern such as always scanning N bytes from
the head and M bytes from the tail. Such a method may exist in
other domains; we look forward to developments in this area.

Finally, PolyConv needs to be trained and tested on the same
wide variety of files as the ubiquitous file utility in order to see
widespread adoption.
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9 APPENDIX
9.1 Polyglot Creation
Jana and Shmatikov demonstrated a number of attacks that exploited discrepancies in file type inference and file parsing. Specifically, they
found that polyglots—referred to as "ambiguous files conforming to multiple formats" [15]—evaded detection by 20 out of 36 malware
detectors. Using the open-source ClamAV tool as an example, they point out that malware detectors may terminate format inference at the
first match, extracting features and/or checking malware signatures only for the first format detected in the polyglot. Jana and Shmatikov
argue that exhaustively testing incoming files against all possible formats would introduce an unacceptable overhead. Flexibility in format
specification and parser tolerance of malformed files are also presented as reasons why simply improving existing tools is difficult.

Ange Albertini demonstrated that a wide variety of files can be combined into polyglots [2]. He created an open-source tool known as
mitra that can create 4 types of polyglot from a wide range of files. He defined the four types thusly:

• Stack: File B is appended to the end of file A
• Parasite: File B is placed inside comment markers of file A
• Zipper : Both files are placed within one another’s comment markers
• Cavity: File B is placed inside a padding area of file A

9.2 Polyglot Exploitation
A number of previous academic works demonstrated the risk polyglots may pose. For example, a DICOM file is an image archive format
designed for medical use. The format was designed to be flexible so medical staff could combine a variety of image formats into a single file
for a patient [12]. However, that flexibility means a DICOM file will tolerate combination with a Windows Portable Executable (PE) file
to create a malicious polyglot [23]. This polyglot could allow an adversary to propagate their malicious PE through a medical network,
activating the PE component through a second stage of the attack.

In an attack on data integrity, Popescu demonstrated that a PDF+TIFF polyglot can bypass digital certification verification [26]. In this
scenario, the attacker sends a valid request (PDF file) for a bank transfer to a target. The attacker’s goal is to change the amount authorized
in the PDF without invalidating the certification applied by the target. When the victim opens the file, auto-launch settings intepret the file
as a PDF and present the legitimate PDF contents to the victim.

The victim then applies a digital signature that protects the file contents from any future change, and returns the file to the attacker.
However, the file is also a TIFF file. The TIFF is an image of the same PDF, albeit with a much larger money transfer authorized. The attacker
does not edit the contents of the file (which would break the signature). They merely change the file extension, switching the auto-launch
behavior from opening the PDF contents to opening the TIFF contents, before sending the file on to a hypothetical bank.

Since the file contents have not changed, the digital certification is still valid. When the bank opens the file, auto-launch behavior shows
the larger fraudulent TIFF transaction rather than the proper PDF amount the victim agreed to when they signed the file.

9.2.1 IcedID. IcedID is a banking trojan that, according to Check Point’s Global Threat Index, was the fourth most widespread malware
variant in 2022 [30]. The trojan uses an evolving variety of methods to establish initial access. One of these methods relies on a polyglot
formed by combining a CHM and an HTA file.

The attack chain is illustrated in Figure 11. It begins with a password-protected Zip file attached to a phishing email. The Zip contains an
ISO file which exploits CVE-2022-41091 to evade flagging by Microsoft’s alternate data stream (ADS) defensive mechanism [13].

The ISO file in turn contains two files: a DLL (hidden by default on Windows) and a CHM+HTA polyglot. The polyglot masquerades
as a CHM file which presents a benign decoy window when executed. The Microsoft compiled HTML (CHM) format used for software
documentation. Each file consists of a number of HTML pages organized into a document that is compressed into a binary stream. As with
any HTML page, CHM files may download/execute other files or run Powershell/Javascript commands when viewed.

In the background, this CHM file starts a MSHTA.exe process with itself as the input. This new process executes the malicious component
of the polyglot, the HTA file, which in turn launches the hidden DLL file that contains the actual IcedID payload.

9.3 Batloader/Zloader Cyber Attack Chain
Batloader and Zloader are two very similar pieces of malware that are used to gain initial access [17, 31]. The full attack chain is presented in
Figure 12; however, our discussion will focus on the role of the polyglot within that chain. This polyglot is formed by combining an HTA file
with a Windows PE file.

Windows PE files are the default executable for the Windows ecosystem. Since their format specification requires the bytes "MZ" to be
present at offset zero, this format must be the first—by offset—ingredient in a polyglot in order to preserve functionality. PE polyglots can be
created via the cave or stack method. The cave method places the second file in a slack region of the PE. Candidate locations include the DOS
Stub, after the last section table entry, or in the padding space after each section assuming the chosen region is large enough to contain the
second file. The stack method simply appends the second file to the end (also referred to as the overlay) of the PE file.

In this particular example, an HTA file is added to the signature section of the PE file. Rather ironically, CVE-2020-1599 allows malware
authors to add contents to the signature section without invalidating the signature since the contents of this area need to be writable in
order to store the calculated signature.
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Figure 11: IcedID Attack Chain

By preserving the validity of the rest of the file, the infected PE is able to operate with a higher degree of trust than it would otherwise [10].
Note that, although Microsoft addressed this vulnerability by creating an option to disallow extraneous data in the signature section, this
option is turned off by default. The higher degree of trust accorded to the signed PE allows the covert HTA to execute the final payloads in
the Batloader/Zloader attack chain.

Figure 12: Batloader/Zloader Attack Chain

9.4 How File Formats Enable Polyglot Capabilities
The following sections detail how each overt format was used in combination with a covert format to surreptitiously execute or stage a
malicious payload. This is followed by details on the roles filled by polyglot files in notable cyber-attack chains.

9.4.1 HTA. HTML Application (HTA) support in Windows is intended to make the Internet Explorer browser a Windows desktop
development platform. It gives developers the flexibility to create full-scale applications using web-based technologies, such as HTML,
JavaScript, and Visual Basic Script (VBScript) without following the strict security model of the browser.
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HTA contents are not executed directly; rather, they are fed to MSHTA.exe, a trusted signed Microsoft binary packaged with the Windows
ecosystem, which then executes the contents. A few features of HTAs have attracted threat actors to include HTA files within their
cyber-attacks.

(1) HTA files are loaded by a trusted, Microsoft-signed application, allowing attackers to bypass restrictions on application execution.
(2) HTA files can be loaded remotely, allowing malicious activities to be run without even being copied to the target’s disk.
(3) MSHTA.exe has a generous parser, and does not require the HTA file signature <hta:application for execution. MSHTA.exe will

attempt to execute any HTML or VBScript/JavaScript code passed to the binary. This can make reliable identification of HTA files or
fragments challenging for signature-based tools.

The extensive usage of HTA files by attackers has led to an arms race between new detection methods and evasion techniques, with
polyglots being one of the latest developments. A simple HTA attack can be detected using a rule which checks whether a MSHTA.exe
process has been launched with an HTA file as input. This detection can be evaded by renaming/moving MSHTA.exe to a new name/location
and by turning the HTA file into a polyglot that masquerades as a different file format. Since MSHTA.exe skips all data it does not understand,
HTA files can be combined with a wide variety of file formats for obfuscation.

9.4.2 PHP and PHAR. PHP is a popular programming language for web applications that provides dynamic rendering of web pages, database
access, and many other features. The PHAR file format is the archive format of the language, comparable to JAR files within the Java
ecosystem. As with HTA files, PHP has a generous parser that ignores a wide variety of syntax errors and invalid characters. Invalid
characters are ignored until valid PHP code is found. Therefore, PHP and PHAR files can readily be combined with a number of file formats.

Polyglots whose covert format is PHP or PHAR typically utilize an image format (JPEG, PNG, GIF, BMP) as their overt component, likely
due to the prevalence and (possibly) lower level of scrutiny applied to images within web application file structures. Since image files are
commonly publicly accessible through file upload services, PHP and PHAR polyglots can serve as covert methods for staging and then
executing malicious code on web servers. A web server’s logs could merely show that a customer accessed a stored image when in reality
they remotely executed malicious activity. Additionally, web servers that attempt to block malicious activity by preventing the upload of
certain file formats are vulnerable to polyglots that masquerade as an approved format.

9.4.3 JAR. The Java community created the Java Archive (JAR) to package a Java application, Java libraries, and other application resources
in a single file. JAR files are an extension of the common Zip format. The contents of a Zip file are located by first scanning the end of the
file for the central directory which contains the relative offsets to the compressed files held within the archive, allowing another file to be
prepended to an archive file without invalidating the data already contained in the archive.

Recently, threat actors created polyglots using JAR files. One possible reason is the discovery of the Windows vulnerability, CVE-2020-1464.
This was a weakness in Windows Installer (MSI) files and is related to the manner by which their digital signature is validated within the
Windows operating system.

Normally, an MSI file is cryptographically signed by the developer, allowing an end-user to verify that the MSI not only came from the
expected developer, but also has not been altered in transit. However CVE-2020-1464 allowed an attacker to append a malicious JAR file to
the end of an MSI file without invalidating the signature of the MSI file, creating a polyglot with a covert format of JAR and an overt format
of MSI. This vulnerability remained unpatched in the Windows operating system for at least two years.

9.4.4 Zip and RAR. The survey did not produce many instances of Zip and RAR polyglots. This may be due to the deletion of Zip and RAR
polyglots once their contents have been extracted. In the attack chains observed with archive format polyglots, polyglot files with a covert
format of Zip or RAR allowed covert transfer of the polyglot archive’s malicious contents thanks, typically, to their image-based overt format.

Note, RAR files are not derived from Zip files; they are a distinct archive format. That said, RAR and Zip files both tolerate prepended data.
Whereas Zip files are read from the bottom up, RAR files are read forward, skipping extraneous content until the RAR header is found.

9.4.5 JavaScript. The JavaScript language is a ubiquitous web technology used to build many web applications and is supported in all
modern browsers. This provides a large attack surface for attackers. The survey discovered at least one instance of an attacker using a
polyglot with a JavaScript covert format and an image-based overt format to infiltrate advertisement networks.

Normally, reputable advertising companies restrict scripts in their advertisements to avoid sending end-users malicious code. However,
this polyglot could bypass script detection without loss of functionality by posing as an advertising image. We were unable to get the sample
for this attack.
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Table 3: Malicious Polyglot Hashes

Malware Name Formats File Name File Hash (SHA-256)
IcedId CHM+HTA pss10r.chm 3d279aa8f56e468a014a916362540975958b9e9172d658eb57065a8a230632fa

Batloader PE+HTA AppResolver.dll 1258fb78dd50f6c12c3181cc5c1362dc9d70ca46c5fd7e6af4880ee6d6d9e7a2
Batloader PE+HTA AppResolver.dll 588af958bc4365ecff4264a9fb75351eaee1ca9d0672c3040a77f979795219bd
Batloader PE+HTA AppVEntStreamingManager.dll 3ec8b76ac735348db87bd0bf766554a2cb280f94d12dad8a159e917e00ab28f2
ZLoader PE+HTA AppVSentinel.dll 64a0a6ac17128ce7fd4dc34556bfe4736900121e5766557bceeac0cce99fbe21
ZLoader PE+HTA AppResolver.dll 89ccde97787a3eb0f9de38ab51c9f3278a3b18531b0fa468f08b55a133263b1c
ZLoader PE+HTA AppResolver.dll 950ad539dfc8e16c07d24dbb37ae19daa0b2f32164ba0cb3c81fa7e689f274e1
ZLoader PE+HTA AppResolver.dll a187c9bb2a8bc29184bd18d6f515532d0f9b3f97b53f0ec6347b9982c4dff00f
ZLoader PE+HTA AppResolver.dll c1a34057b31dd53e227a7001a7f0860e553b7efdb9ea2e9ec3b80221266b7d51
ZLoader PE+HTA advapi32.dll d1a1381c1f02abaa3449451136c1d1054ed72818348297113c135e8211173b3f
ZLoader PE+HTA AppResolver.dll eb7354a95762565558d46753caf0c0d4dd09e1f358d564ae034b64446599e907
Lazarus BMP+HTA imgFBE0.tmp fe16b1dc30ee50ab126129c7fc0f2e6932083d4429241707d8046760c6b25042
Lazarus BMP+HTA image003.zip - undetected c9803b32365f4870d4ca833eb418eb845f16c4ec1628253a152667d935d9985b
Lazarus BMP+HTA image003.zip - undetected a95a3fd25ab87c5010d42fe0131338b78187672dd6dc213af4253ef5db494591
Lazarus BMP+HTA image003.zip 888cfc87b44024c48eed794cc9d6dea9f6ae0cc3468dee940495e839a12ee0db
PHP Shell JPEG+PHP 63f4c7b002cc47.jpg 4e26b08cce3fbd04fb9d954e1fa6a72d91f909015e7564aae9570aee26e8efd6
PHP Shell JPEG+PHP simp.php.gif 47102e200c35185654e74237a838e4c6b484cadd5a97d77aa7ad633b4f83ba62
PHP Shell JPEG+PHP images.jpg 0b5fd1d621affa41ebe811a39c085d62be489c55e26705b1db61accaa1dbcb6a
PHP Shell JPEG+PHP 001.swf.jpeg 71f463e8d5c0f7ec6221a1cb9d5683766d5f7270ca80395bee5d0d00ec4ba0f3
PHP Shell JPEG+PHP 20190225150235_34013.php 5f8e797b0f2b2efee4839841cc7b597f80b8b6f1558ec18b43a834e4bd540fdb
PHP Shell JPEG+PHP v1QR1M.gif e028dc0e26b03a8a9cd5de11515f485dbaa57b721cb4ff4b1ffa115e64459eb9
PHP Shell GIF+PHP Adipati.php b660e691007a1fd8301f39782019a5f7bee6fd7dea18545e372a67014cee4c42
PHP Shell JPEG+PHP Logo_Coveright.jpg ab85eb33605f3013989f4e8a9bfd5e89dd82d1f80231d4e4a2ceb82744bf287c
PHP Shell JPEG+PHP ce167d905d117823d780e188002b3120.jpg 39588ed13465b15ec59ec35a885de028d0b6537cf6410c96402adfe1053694d6
PHP Shell PNG+PHP in1.png 57507a3db555182882c0c335b0b943ee2f977a1a9cf973be070fa9db6491cdf5
SyncCrypt JPEG+ZIP 003_JPG.arrival.jpg c6565d22146045e52110fd0a13eba3b6b63fbf6583c444d7a5b4e3a368cc4b0d

DarkTrack RAT PNG+RAR darknet.jpg ee0c0be30ba2875a2bc7813ae80814659ce35988fbd9d5232950ed7722b89a9a
JAR/MSI MSI+JAR 488adc.msi dd71284ac6be9758a5046740168164ae76f743579e24929e0a840afd6f2d0d8e
Ratty MSI+JAR 29-05-2020.jar 90f613caa131c663e32aabc31b5fccc99edcfa874110d51cd627531d3a67b16d
Ratty MSI+JAR 6afad7.msi 04a3cad80470a085b6ef57a7e1007049a29863a94fe76f93be1f2a0c54da99d6
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Table 4: Sources for Malicious Polyglot Usage in the Wild

Title Publisher Date Published URL
New Banking Trojan IcedID Discovered by IBM X-Force Research Security Intelligence 13 November 2017 https://securityintelligence.com/new-banking-trojan-icedid-

discovered-by-ibm-x-force-research/
More Than Meets the Eye: Exposing a Polyglot File That Delivers IcedID Palo Alto Networks 27 September 2022 https://unit42.paloaltonetworks.com/polyglot-file-icedid-

payload/
Zoom For You — SEO Poisoning to Distribute BATLOADER and Atera Agent Mandiant 1 February 2022 https://www.mandiant.com/resources/blog/seo-poisoning-

batloader-atera
Can You Trust a File’s Digital Signature? New Zloader Campaign exploits
Microsoft’s Signature Verification putting users at risk

Check Point Research 5 January 2022 https://research.checkpoint.com/2022/can-you-trust-a-files-
digital-signature-new-zloader-campaign-exploits-microsofts-
signature-verification-putting-users-at-risk/

BATLOADER: The Evasive Downloader Malware VMWare 14 November 2022 https://blogs.vmware.com/security/2022/11/batloader-the-
evasive-downloader-malware.html

Monitoring malware abusing CVE-2020-1599 VirusTotal 7 January 2022 https://blog.virustotal.com/2022/01/monitoring-malware-
abusing-cve-2020-1599.html

Lazarus APT conceals malicious code within BMP image to drop its RAT MalwareBytes 19 April 2021 https://www.malwarebytes.com/blog/threat-intelligence/202
1/04/lazarus-apt-conceals-malicious-code-within-bmp-file-
to-drop-its-rat

Andariel evolves to target South Korea with ransomware Kaspersky 15 June 2021 https://securelist.com/andariel-evolves-to-target-south-
korea-with-ransomware/102811/

LNK HTA Polyglot Hatching 12 November 2018 https://hatching.io/blog/lnk-hta-polyglot/
PHP WebShell Malware using Image Files ASEC 9 December 2020 https://asec.ahnlab.com/en/18861/
Hiding Webshell Backdoor Code in Image Files Trustwave 11 October 2013 https://www.trustwave.com/en-us/resources/blogs/spiderlab

s-blog/hiding-webshell-backdoor-code-in-image-files/
Malware in Images: When You Can’t See "the Whole Picture" Reversing Labs 2 March 2021 https://blog.reversinglabs.com/blog/malware-in-images
Picture perfect: How JPG EXIF data hides malware Cisco 24 July 2019 https://umbrella.cisco.com/blog/picture-perfect-how-jpg-

exif-data-hides-malware
Lab: Remote code execution via polyglot web shell upload PortSwigger Unknown https://portswigger.net/web-security/file-upload/lab-file-up

load-remote-code-execution-via-polyglot-web-shell-upload
Playing with GZIP: RCE in GLPI (CVE-2020-11060) Almond 14 May 2020 https://offsec.almond.consulting/playing-with-gzip-rce-in-

glpi.html
It’s a PHP Unserialization Vulnerability Jim, but Not as We Know It Blackhat 9 August 2018 https://i.blackhat.com/us-18/Thu-August-9/us-18-Thomas-

Its-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-
We-Know-It.pdf

CVE-2022-41343 - RCE via Phar Deserialization Tanto 6 October 2022 https://tantosec.com/blog/cve-2022-41343/
Taiwan Heist: Lazarus Tools and Ransomware BAE Systems 16 October 2017 https://baesystemsai.blogspot.com/2017/10/taiwan-heist-

lazarus-tools.html
SyncCrypt Ransomware Hides Inside JPG Files, Appends .KK Extension Bleeping Computer 16 August 2017 https://www.bleepingcomputer.com/news/security/synccry

pt-ransomware-hides-inside-jpg-files-appends-kk-extension/
DarkTrack RAT – New Variant Thumbing a Ride in PNG Files SECTRIO 25 August 2020 https://www.subexsecure.com/pdf/malware-reports/August-

2020/DarkTrack-Report.pdf
Distribution of malicious JAR appended to MSI files signed by third parties VirusTotal 15 January 2019 https://blog.virustotal.com/2019/01/distribution-of-malicious-

jar-appended.html
Interesting tactic by Ratty & Adwind for distribution of JAR appended to signed
MSI – CVE-2020-1464

Security-in-bits 28 June 2020 https://www.securityinbits.com/malware-analysis/interesti
ng-tactic-by-ratty-adwind-distribution-of-jar-appended-to-
signed-msi/

Microsoft Put Off Fixing Zero Day for 2 Years Krebs on Security 17 August 2020 https://krebsonsecurity.com/2020/08/microsof t-put-of f-
fixing-zero-day-for-2-years/

GlueBall: The story of CVE-2020–1464 Tal Be’ery 16 August 2020 https://medium.com/@TalBeerySec/glueball-the-story-of-
cve-2020-1464-50091a1f98bd

Uncovering and Disclosing a Signature Spoofing Vulnerability in Windows
Installer: CVE-2021-26413

Okta 19 April 2021 https://sec.okta.com/articles/2021/04/uncovering-and-disclosi
ng-signature-spoofing-vulnerability-windows

Hacking Group Using Polyglot Images to Hide Malvertising Attacks Devcon 24 February 2019 https://www.devcondetect.com/blog/2019/2/24/hacking-
group-using-polyglot-images-to-hide-malvertsing-attacks

Bypassing Content Security Policy with a JS/GIF Polyglot Ajin Abraham 10 June 2015 https://ajinabraham.com/blog/bypassing-content-security-
policy-with-a-jsgif-polyglot

WordPress Postie 1.9.40 Plugin - Persistent Cross-Site Scripting Exploit Vulners 16 January 2020 https://vulners.com/zdt/1337DAY-ID-33819
CVE-2021-27190 – PEEL SHOPPING Secuneus 11 February 2021 https://www.secuneus.com/cve-2021-27190-peel-shopping-

ecommerce-shopping-cart-stored-cross-site-scripting-
vulnerability-in-address/

14

https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://unit42.paloaltonetworks.com/polyglot-file-icedid-payload/
https://unit42.paloaltonetworks.com/polyglot-file-icedid-payload/
https://www.mandiant.com/resources/blog/seo-poisoning-batloader-atera
https://www.mandiant.com/resources/blog/seo-poisoning-batloader-atera
https://research.checkpoint.com/2022/can-you-trust-a-files-digital-signature-new-zloader-campaign-exploits-microsofts-signature-verification-putting-users-at-risk/
https://research.checkpoint.com/2022/can-you-trust-a-files-digital-signature-new-zloader-campaign-exploits-microsofts-signature-verification-putting-users-at-risk/
https://research.checkpoint.com/2022/can-you-trust-a-files-digital-signature-new-zloader-campaign-exploits-microsofts-signature-verification-putting-users-at-risk/
https://blogs.vmware.com/security/2022/11/batloader-the-evasive-downloader-malware.html
https://blogs.vmware.com/security/2022/11/batloader-the-evasive-downloader-malware.html
https://blog.virustotal.com/2022/01/monitoring-malware-abusing-cve-2020-1599.html
https://blog.virustotal.com/2022/01/monitoring-malware-abusing-cve-2020-1599.html
https://www.malwarebytes.com/blog/threat-intelligence/2021/04/lazarus-apt-conceals-malicious-code-within-bmp-file-to-drop-its-rat
https://www.malwarebytes.com/blog/threat-intelligence/2021/04/lazarus-apt-conceals-malicious-code-within-bmp-file-to-drop-its-rat
https://www.malwarebytes.com/blog/threat-intelligence/2021/04/lazarus-apt-conceals-malicious-code-within-bmp-file-to-drop-its-rat
https://securelist.com/andariel-evolves-to-target-south-korea-with-ransomware/102811/
https://securelist.com/andariel-evolves-to-target-south-korea-with-ransomware/102811/
https://hatching.io/blog/lnk-hta-polyglot/
https://asec.ahnlab.com/en/18861/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/hiding-webshell-backdoor-code-in-image-files/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/hiding-webshell-backdoor-code-in-image-files/
https://blog.reversinglabs.com/blog/malware-in-images
https://umbrella.cisco.com/blog/picture-perfect-how-jpg-exif-data-hides-malware
https://umbrella.cisco.com/blog/picture-perfect-how-jpg-exif-data-hides-malware
https://portswigger.net/web-security/file-upload/lab-file-upload-remote-code-execution-via-polyglot-web-shell-upload
https://portswigger.net/web-security/file-upload/lab-file-upload-remote-code-execution-via-polyglot-web-shell-upload
https://offsec.almond.consulting/playing-with-gzip-rce-in-glpi.html
https://offsec.almond.consulting/playing-with-gzip-rce-in-glpi.html
https://i.blackhat.com/us-18/Thu-August-9/us-18-Thomas-Its-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-We-Know-It.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Thomas-Its-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-We-Know-It.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Thomas-Its-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-We-Know-It.pdf
https://tantosec.com/blog/cve-2022-41343/
https://baesystemsai.blogspot.com/2017/10/taiwan-heist-lazarus-tools.html
https://baesystemsai.blogspot.com/2017/10/taiwan-heist-lazarus-tools.html
https://www.bleepingcomputer.com/news/security/synccrypt-ransomware-hides-inside-jpg-files-appends-kk-extension/
https://www.bleepingcomputer.com/news/security/synccrypt-ransomware-hides-inside-jpg-files-appends-kk-extension/
https://www.subexsecure.com/pdf/malware-reports/August-2020/DarkTrack-Report.pdf
https://www.subexsecure.com/pdf/malware-reports/August-2020/DarkTrack-Report.pdf
https://blog.virustotal.com/2019/01/distribution-of-malicious-jar-appended.html
https://blog.virustotal.com/2019/01/distribution-of-malicious-jar-appended.html
https://www.securityinbits.com/malware-analysis/interesting-tactic-by-ratty-adwind-distribution-of-jar-appended-to-signed-msi/
https://www.securityinbits.com/malware-analysis/interesting-tactic-by-ratty-adwind-distribution-of-jar-appended-to-signed-msi/
https://www.securityinbits.com/malware-analysis/interesting-tactic-by-ratty-adwind-distribution-of-jar-appended-to-signed-msi/
https://krebsonsecurity.com/2020/08/microsoft-put-off-fixing-zero-day-for-2-years/
https://krebsonsecurity.com/2020/08/microsoft-put-off-fixing-zero-day-for-2-years/
https://medium.com/@TalBeerySec/glueball-the-story-of-cve-2020-1464-50091a1f98bd
https://medium.com/@TalBeerySec/glueball-the-story-of-cve-2020-1464-50091a1f98bd
https://sec.okta.com/articles/2021/04/uncovering-and-disclosing-signature-spoofing-vulnerability-windows
https://sec.okta.com/articles/2021/04/uncovering-and-disclosing-signature-spoofing-vulnerability-windows
https://www.devcondetect.com/blog/2019/2/24/hacking-group-using-polyglot-images-to-hide-malvertsing-attacks
https://www.devcondetect.com/blog/2019/2/24/hacking-group-using-polyglot-images-to-hide-malvertsing-attacks
https://ajinabraham.com/blog/bypassing-content-security-policy-with-a-jsgif-polyglot
https://ajinabraham.com/blog/bypassing-content-security-policy-with-a-jsgif-polyglot
https://vulners.com/zdt/1337DAY-ID-33819
https://www.secuneus.com/cve-2021-27190-peel-shopping-ecommerce-shopping-cart-stored-cross-site-scripting-vulnerability-in-address/
https://www.secuneus.com/cve-2021-27190-peel-shopping-ecommerce-shopping-cart-stored-cross-site-scripting-vulnerability-in-address/
https://www.secuneus.com/cve-2021-27190-peel-shopping-ecommerce-shopping-cart-stored-cross-site-scripting-vulnerability-in-address/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Polyglot Detection

	3 RQ1: Polyglot Exploitation in the Wild
	3.1 Survey Methods
	3.2 Role of Polyglot Files in Cyber Attack Chains

	4 Wild Polyglots: A Polyglot Data Set Based on Malicious Usage in the Wild
	4.1 Fazah: A Polyglot Generation Framework

	5 RQ2: Using Machine Learning for Polyglot Detection
	5.1 Ml-based Detection Development
	5.2 Comparing ML-based Polyglot Detection Approaches

	6 RQ3: Comparison to Existing Signature-based File-format Identification Tools
	6.1 Tools Tested

	7 RQ4: Methods for Addressing Image-based Polyglots
	7.1 ImSan, a Content Disarmament and Reconstruction Tool for Image-based Polyglots

	8 Discussion
	8.1 Contribution Summary
	8.2 Limitations
	8.3 Future Work

	References
	9 Appendix
	9.1 Polyglot Creation
	9.2 Polyglot Exploitation
	9.3 Batloader/Zloader Cyber Attack Chain
	9.4 How File Formats Enable Polyglot Capabilities


