
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNSUPERVISED META-LEARNING VIA IN-CONTEXT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Unsupervised meta-learning aims to learn feature representations from unsuper-
vised datasets that can transfer to downstream tasks with limited labeled data. In
this paper, we propose a novel approach to unsupervised meta-learning that lever-
ages the generalization abilities of in-context learning observed in transformer ar-
chitectures. Our method reframes meta-learning as a sequence modeling problem,
enabling the transformer encoder to learn task context from support images and
utilize it to predict query images. At the core of our approach lies the creation of
diverse tasks generated using a combination of data augmentations and a mixing
strategy that challenges the model during training while fostering generalization
to unseen tasks at test time. Experimental results on benchmark datasets show-
case the superiority of our approach over existing unsupervised meta-learning
baselines, establishing it as the new state-of-the-art in the field. Remarkably,
our method achieves competitive results with supervised and self-supervised ap-
proaches, underscoring the efficacy of the model in leveraging generalization over
memorization.

1 INTRODUCTION

Meta-learning, or learning-to-learn, empowers learning systems with the ability to accumulate
knowledge from multiple tasks, enabling rapid adaptation and generalization to new tasks (Vet-
toruzzo et al., 2024; Vanschoren, 2019). Traditional meta-learning approaches typically rely on
labeled data to construct tasks during meta-training. However, collecting large labeled datasets in
real-world applications is challenging and often impractical. Addressing this issue, unsupervised
meta-learning (UML) approaches aim to leverage unlabeled data to learn transferable feature repre-
sentations, enabling adaptation to new tasks with limited labeled data (Vettoruzzo et al., 2024).

Various approaches have been proposed to address the UML problem (Hsu et al., 2018; Jang et al.,
2022; Khodadadeh et al., 2019; Kong et al., 2021; Lee et al., 2022; 2020). However, UML still faces
several challenges. Existing UML methods often rely on simple data augmentations to construct the
training tasks, while following the standard meta-learning task sampling pipeline for the evaluation
phase. This results in a significant difference between training and testing tasks, constraining the
model’s ability to generalize to unseen tasks during inference and requiring additional fine-tuning
on the test domain. Furthermore, existing UML approaches typically assume that the training and
test datasets belong to the same domain. In our framework, we loosen this assumption resulting in
a more challenging setting that necessitates a better model generalization compared to usual meta-
learning applications. We refer to this as the cross-domain scenario.

In this paper, we propose a novel approach to UML that addresses these challenges by leveraging
in-context learning within a transformer architecture (Dong et al., 2022; Min et al., 2022). In-
context learning allows the model to use the context provided by a sequence of input-output pairs
to make predictions on new input data. Inspired by recent advancements in large language models
(LLMs) (Wei et al., 2022; Brown et al., 2020; Liu et al., 2022), we formulate meta-learning as a
sequence modeling problem, where a task is seen as a non-causal sequence of support images and
an unknown query image. The support set is treated as the context utilized by the model to predict the
class of the query image. We call our approach CAMeLU, which stands for Context-Aware Meta-
Learning in Unsupervised scenarios. Central to our approach is a novel task creation mechanism
that enables the generation of a large number of different tasks from an unlabeled dataset. Drawing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝑥𝑛,𝑘
𝑠𝑝

= 𝒜𝑘 𝑥𝑛

𝑦𝑛,𝑘
𝑠𝑝

= 𝑛

Support set Query set

. . .

𝑥𝑗
(𝑞𝑟)

= 𝜆𝑧𝑗 + 1 − 𝜆 ෤𝑥𝑛,𝑗

𝑦𝑗
(𝑞𝑟)

= 𝑛

𝒟𝑡𝑟𝑎𝑖𝑛 = {𝑥𝑖}

Transformer encoder 𝑀𝜃

. . .

Linear ෝ𝑦𝑗
(𝑞𝑟)

Learned class encoder 𝑔𝜙

Fixed feature extractor 𝑓𝜓

*

mixupaugment

𝑁
samples

𝑆𝑖,𝑗 = 𝑓𝜓 𝑥𝑗
𝑞𝑟

, 𝑔𝜙 ∗ , 𝑓𝜓 𝑥𝑛,𝑘
𝑠𝑝

, 𝑔𝜙 𝑦𝑛,𝑘
𝑠𝑝

𝑛,𝑘

Figure 1: Visualization of CAMeLU (with 3-way 5-shot tasks). The left side illustrates the task
creation mechanism, where N samples are drawn from an unlabeled dataset Dtrain. Each sample
xn is augmented K times to obtain x

(sp)
n,k . A strategy inspired by mixup (Zhang et al., 2018) is utilized

for generating the query set by using an augmented version of xn, i.e., x̃n,j . The same pseudo-label
n ∈ [1, N] is assigned to all data generated from the sample xn. On the right side, the so-created
task is fed into the transformer encoder for predicting the query input. Inspired by CAML (Fifty
et al., 2024), the transformer encoder processes demonstrations created by concatenating features
from a fixed pre-trained feature extractor and a learned class encoder. The symbol ∗ denotes the
unknown query label that the transformer encoder aims to predict.

inspiration from the natural decision process of learning by analogy (Winston, 1980), we construct
tasks that closely resemble the structure of those encountered during inference. Specifically, we use a
combination of different data augmentation techniques based on basic image manipulations (Shorten
& Khoshgoftaar, 2019) for generating the samples in the support set. Conversely, a strategy similar
to mixup (Zhang et al., 2018) is employed to generate query images by combining a support element,
after applying a distinct augmentation function, and an image randomly sampled from the training
dataset. This process ensures that the query contains sufficient information from the support image
to be classified as the latter, while introducing diversity by blending them. Consequently, query
images appear distinct from their corresponding support images while still belonging to the same
class, better mimicking the tasks seen at test time and hence enhancing generalization. Following
task creation, support and query images are encoded using a fixed pre-trained feature extractor. The
resulting latent representations are aggregated into a sequence and passed as input to a transformer
encoder along with their label encodings. The transformer encoder learns to extract contextual
information from support images and predict the query image in a single pass, eliminating the need
for the fine-tuning step during inference. An overview of our approach is visualized in Figure 1.

Throughout extensive experiments we demonstrate the effectiveness of the proposed approach to
generalize to new tasks in real-time. Particularly, CAMeLU outperforms other UML baselines
across several datasets, establishing itself as the state-of-the-art in the field. It also achieves com-
parable results to its supervised counterpart and to SSL approaches. While the latter requires fine-
tuning on the test domain, CAMeLU obtains comparable performance with a single forward step,
highlighting its applicability to real-time applications. Furthermore, by recasting the meta-learning
phase as in-context learning within a transformer architecture, we improve efficiency, ensuring the
whole training and inference phase can be executed with a consumer device with 8GB VRAM.

The main contributions of this paper are as follows:

• We introduce CAMeLU, a novel UML method that leverages in-context learning within a
transformer architecture, reframing meta-learning as a sequence modeling problem.

• We propose a novel task creation mechanism that generates diverse few-shot tasks from
unlabeled datasets using a combination of data augmentations and a mixing strategy. This

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ensures better alignment between training and testing tasks, thus improving generalization
performance.

• We demonstrate that CAMeLU outperforms existing UML baselines across five datasets,
without the need for fine-tuning to the test domains.

• We investigate the ability of CAMeLU to generalize across various datasets, including
those significantly different from the training data.

2 RELATED WORK

Unsupervised meta-learning. Meta-learning is a well-studied field in the machine learning com-
munity due to its ability to enable models to quickly adapt to tasks with limited labeled data. Pi-
oneering work in the field (Finn et al., 2017; Snell et al., 2017; Vinyals et al., 2016; Mishra et al.,
2018; Sung et al., 2018) considers the scenarios where a large labeled dataset is available for meta-
training, a challenging requirement in real-world applications. UML addresses this challenge by
extracting meaningful information from unsupervised data that can be transferred to downstream
tasks with limited labeled data. Different techniques have been explored in the literature to construct
diverse tasks. CACTUs (Hsu et al., 2018) applies clustering in the embedding space and assigns the
same pseudo-label to all images in the same cluster. Other methods focus on generating synthetic
samples, either using data augmentations, as in UMTRA (Khodadadeh et al., 2019), or leveraging
interpolation in the latent space of a generative model (Khodadadeh et al., 2020). Differently, Meta-
GMVAE (Lee et al., 2020) and Meta-SVEBM (Kong et al., 2021) use variational autoencoders and
memory-based models for pseudo-label generation. Recent methodologies have also incorporated
SSL techniques (Doersch et al., 2015) into UML methods. In particular, Set-SimCLR (Lee et al.,
2022) builds on top of the SimCLR (Chen et al., 2020) approach and reframes meta-learning as a
set-level problem, while PsCo (Jang et al., 2022), inspired by MoCo (He et al., 2020), utilizes a mo-
mentum encoder and a queue of previous samples to improve pseudo-labeling and construct diverse
tasks for UML applications. Similarly, BECLR (Poulakakis-Daktylidis & Jamali-Rad, 2024) intro-
duces an approach for unsupervised few-shot learning by proposing a constrastive representation
learning framework, instead of meta-learning.

Data augmentation. Several UML approaches rely on data augmentation to construct the training
tasks (Khodadadeh et al., 2019; Lee et al., 2022; Jang et al., 2022). However, traditional transforma-
tions such as rotation, translation, cropping, resizing, and flipping (Shorten & Khoshgoftaar, 2019)
might generate images that are too similar to the original ones, ending up in tasks with low in-class
variability between the support and query images. This creates a problem when the model needs to
generalize to test tasks, where the query data are different instances than the support ones, not only
augmented versions of them. In this paper, we addressed this limitation by generating query images
using a strategy inspired by mixup (Zhang et al., 2018) to enhance model generalization. Similarly
to mixup, which performs linear interpolation of the feature vectors at the pixel level, other strate-
gies based on mixing images comprise CutMix (Yun et al., 2019), PatchMix (Liu et al., 2021), and
Manifold Mixup (Verma et al., 2019).

In-context learning. In-context learning refers to the ability to perform a new task via inference
alone by conditioning on a few input-output pairs and making predictions for new inputs (Dong
et al., 2022). Although typical of LLMs (Devlin et al., 2019; Radford et al., 2019; Touvron et al.,
2023), this ability has also been explored in different fields, such as in-painting (Bar et al., 2022;
Zhang et al., 2024), image segmentation (Butoi et al., 2023), and notably meta-learning (Chan et al.,
2022; Singh et al., 2024; Kirsch et al., 2022; Fifty et al., 2023; 2024; Min et al., 2022). Recent
methods, such as Chan et al. (2022) and Singh et al. (2024), examine the emergence of in-context
learning abilities from a data distribution perspective, extending these insights to images. GPICL
(Kirsch et al., 2022) further demonstrates that transformers can be meta-trained as general-purpose
in-context learners, while CAML (Fifty et al., 2024) adapts this concept to non-causal sequence
modeling problems. Building on these advancements, our work takes a different direction by tack-
ling the unsupervised meta-learning problem. Specifically, we introduce a novel task creation mech-
anism that, together with an in-context learner, enables learning directly from an unlabeled dataset.
This approach differentiates our method from prior in-context learning techniques, aligning it with
the unique requirements of UML.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PROPOSED APPROACH

Our proposed approach, Context-Aware Meta-Learning in Unsupervised scenarios (CAMeLU),
leverages the in-context learning ability of transformers to address the challenges of UML. These
challenges include the need to construct meaningful tasks from unlabeled data and the requirement
for models to generalize effectively to new tasks during inference. CAMeLU consists of two phases
that are intertwined during the model training. Initially, tasks are automatically constructed from
an unlabeled dataset utilizing a combination of two strategies. Subsequently, we reformulate the
meta-learning framework as a sequence modeling problem, aiming to harness the in-context learn-
ing capability of a transformer. This enables the model to extract context from the support sam-
ples and predict the unknown query samples without requiring any fine-tuning during the inference
phase. The combination of these two phases is essential and guarantees good generalization per-
formance without labeled information. Transformers excel at modeling dependencies and capturing
relationships between support and query samples, which is particularly beneficial in few-shot learn-
ing scenarios. The novel task creation mechanism complements this by constructing diverse and
challenging pseudo-tasks, effectively preparing the model for the complexities of target tasks. We
delve into the two phases in Sect. 3.1 and Sect. 3.2, respectively.

3.1 TASK CREATION

Central to our proposed approach is the task creation mechanism. In meta-learning, a task Ti corre-
sponds to a data generating distribution Ti ≜ {pi(x), pi(y|x)}, and consists of data from N distinct
classes. The data sampled from each task is divided into a support set, D(sp)

i , containing K train-
ing examples per class, and a query set, D(qr)

i . At meta-test time, only the support set D(sp)
new of a

task Tnew ∼ Dtest is labeled and used to fine-tune the model and make accurate predictions on the
unlabeled query set. Contrary to supervised meta-learning, tasks in UML are only available at test
time, while a large unlabeled dataset Dtrain is available during training. The main goal is to extract
prior knowledge from this unlabeled dataset that can be generalized to a target task, Tnew ∼ Dtest,
during inference. A critical aspect of UML approaches lies in the task creation mechanism to create
tasks from Dtrain, which must ensure that the constructed training tasks reflect the structure of those
encountered during testing, thereby facilitating effective generalization to novel tasks at test time.
To do so, we employ two distinct strategies for constructing the support and query sets of each task.

For the support set, we randomly sample N images from Dtrain under the assumption that they
belong to distinct categories, as shown in Figure 1. This assumption is reasonable when N << C,
where C denotes the total number of classes in Dtrain, which is satisfied using a large training
dataset. If we assume that all samples are equally distributed among the classes, i.e., m samples per
class, the probability that two or more samples are in the same class is equal to

P = 1− (C ·m) · ((C − 1) ·m) · · · ((C −N + 1) ·m)

(C ·m) · (C ·m− 1) · · · (C ·m−N + 1)
= 1− C! ·mN · (C ·m−N)!

(C −N)! · (C ·m)!
.

For example, the probability for a 5-way classification on the ImageNet-964 dataset used in our
experiment is around 0.01, which is negligible. To emulate the K-shot scenario typical of meta-
learning tasks, we augment each of the N images K times, with an augmentation function Ak

sampled from a predefined set of transformations A, and we assign the same pseudo-label n ∈ [1, N]
to all data generated from the same sample xn. Specifically, for each image xn, K augmentation
functions are applied to obtain x

(sp)
n,k = Ak(xn) with Ak ∼ A and k = 1, . . . ,K. One requirement

of Ak is that the function must preserve class membership, i.e., xn ∈ c → Ak(xn) ∈ c, for c ∈ C.
Although this property cannot be directly verified due to the lack of class information in the training
set, it is reasonable to assume that it holds by selecting transformations that minimally alter the
image content.

For the query set, we employ a different approach. We demonstrate in Appendix A.5 that simply
applying data augmentations sampled from A is not sufficient for creating a query set resembling
those in test tasks. At test time, the query set samples are different instances belonging to the same
N classes encountered in the support set, not augmented versions of the support samples. However,
since Dtrain is unlabeled, we need a strategy to create new samples with the same implicit classes
as those in the support set. For each query image x(qr)

j that we want to generate, we randomly select

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

an image xn from the ones sampled for the support set generation and we apply an augmentation
function Aj ∼ A, possibly different from the one used for the support generation. We then propose
a new strategy inspired by mixup, where we combined the augmented image x̃n,j = Aj(xn) and an
image zj sampled from Dtrain according to:

x
(qr)
j = λzj + (1− λ)x̃n,j (1)

where λ ∼ Beta(α, β) with α = 1, β = 1 and λ ∈ (0, 0.5), and x
(qr)
j is assigned the same label

n as the support samples generated from xn. By merging a small proportion of a new image zj
into x̃n,j , we enhance diversity in the query set with respect to the images in the support set. This
strategy enforces the model to extract robust features and effectively generalize to scenarios where
query images differ from the support samples, as commonly encountered at test time.

This task-creation mechanism can be seen as a task augmentation strategy (Yao et al., 2021; Rajen-
dran et al., 2020) that allows the generation of a large number (almost infinite) of diverse tasks. This
is particularly useful for meta-learning and in-context learning applications where the model needs
to acquire knowledge from a multitude of tasks to generalize to unseen tasks sampled from different
domains.

Differences with mixup. While the strategy used for generating the query images draws inspira-
tion from the mixup strategy proposed in Zhang et al. (2018), there are some substantial differences.
The aim of mixup is to develop a new data augmentation strategy to expand the number of training
examples and diversify the data distribution used for training, thereby enhancing the robustness and
generalization of neural networks. In CAMeLU, the primary objective of merging images is to en-
courage the model to learn even in scenarios where only a fraction of the class context is present
in the image. In CAMeLU, λ is sampled from a uniform distribution (obtained with a Beta distri-
bution with α = 1, β = 1) in (0, 0.5), guaranteeing that the amount of information from zj that is
embedded into x

(qr)
j is less than 50%, thus ensuring that the assigned label is consistent with the

class of the support images generated from xn. Indeed, we assign the same label n to x
(qr)
j , forcing

the network to learn to retrieve information in x
(qr)
j that is related to the category of xn. Contrar-

ily, mixup creates new examples by interpolating both images and labels at the scope of limiting
memorization over the training distribution.

3.2 IN-CONTEXT LEARNING METHOD

Following task creation, we rephrase the meta-learning framework as a non-causal sequence mod-
eling problem, where the order of the examples does not entail a causal relationship. Inspired by
recent developments in LLMs (Garg et al., 2022; Li et al., 2023; Devlin et al., 2019; Radford et al.,
2019; Touvron et al., 2023), we treat each task as a prompt, where the support embeddings, together
with the learned projected labels, form the demonstration context, whereas the query represents the
classification problem that the network is required to solve. A model is said to in-context learn a task
if it can approximate y(qr)j for a new query input x(qr)

j by conditioning on a sequence Si,j containing
in-context (support) examples and one query input defined as follows:

Si,j =
(
(x

(sp)
1 , y

(sp)
1), . . . , (x

(sp)
NK , y

(sp)
NK), x

(qr)
j

)
, j = 1, . . . , Q, (2)

with Q the number of query samples to classify and NK the total number of context (support)
samples. Formally, Mθ can in-context learn a task Ti if it can predict y(qr)j with an average error

E

 Q∑
j=1

ℓ(Mθ(Si,j), y
(qr)
j)

 < ϵ, (3)

where ℓ is the loss function, Si,j is the sequence associated to x
(qr)
j in Ti, and y

(qr)
j ∈ [1, N].

To achieve this, we design a model comprising three components: (1) a feature extractor fψ ,
(2) a class encoder gϕ, and (3) a transformer encoder with a linear projection layer on top, i.e.,
Mθ. The feature extractor aims to map support and query samples into a latent space where im-
ages with similar characteristics and semantic meaning are assigned similar representations. In

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Appendix A.4 we explore various feature extractors for this purpose, including those pre-trained
via a supervised approach or leveraging an SSL technique. The resulting representations are
then concatenated with a class embedding. The class embeddings for the support representa-
tions are generated by encoding the corresponding classes using the class encoder gϕ. However,
as the classes of the queries are unknown, a randomly initialized learnable vector is appended
to each query representation. The so-combined embeddings are then organized into sequences
Si,j =

(
(fψ(x

(sp)
1), gϕ(y

(sp)
1)), . . . , (fψ(x

(sp)
NK), gϕ(y

(sp)
NK)), fψ(x

(qr)
j)

)
, j = 1, . . . , Q, resembling

the one in Equation 2. These sequences are fed into the transformer encoder, and only the trans-
former output corresponding to the query sample is selected and passed through a projection layer
to predict the query label. This process iterates for all queries in the task, and the aggregated loss is
employed for model training. In particular, the training process can be formulated as an optimization
process where the objective is as follows:

min
θ,ϕ

ESi

 1

Q

Q∑
j=1

ℓ(Mθ(Si,j), y
(qr)
j)

 (4)

with Si = {Si,j}Qj=1 denoting the set of sequences associated to each task Ti generated from Dtrain
and ℓ is the cross-entropy loss function.

During evaluation, when a new task is presented, the available examples in D
(sp)
new are utilized as

contextual information to guide the classification of the query samples without requiring any fine-
tuning or adaptation steps.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of CAMeLU across different datasets, and we com-
pare the results with several baseline methods. In particular, we provide a quantitative comparison
with UML baselines in Sect. 4.3, and we highlight the ability of CAMeLU to leverage generalization
over memorization in Sect. 4.4. We then present the results with a small-scale training dataset in
Sect. 4.5 and a comparison with SSL methods in Sect. 4.6.

4.1 DATASETS AND BASELINES

For the evaluation, we use two generic object recognition datasets, i.e., miniImageNet (Ravi &
Larochelle, 2016) and CIFAR-fs (Bertinetto et al., 2019), and three fine-grained image classification
datasets, i.e., CUB (Wah et al., 2011), Aircraft (Maji et al., 2013), and Meta-iNat (Wertheimer &
Hariharan, 2019). While miniImageNet and CIFAR-fs share some similarities with ImageNet-1k, as
some classes appear in all three datasets, CUB, Aircraft, and Meta-iNat focus on more specialized
domains, ensuring a rigorous cross-domain evaluation. Each dataset is split into training, valida-
tion, and test sets following the splits in Ravi & Larochelle (2016) and Bertinetto et al. (2019)
for miniImageNet and CIFAR-fs, respectively, and in Triantafillou et al. (2019) and Poulakakis-
Daktylidis & Jamali-Rad (2024) for the remaining datasets. All labels are removed from the datasets
during the training phase.

We compare the results of CAMeLU with standard UML approaches such as CACTUs (Hsu et al.,
2018), UMTRA (Khodadadeh et al., 2019), Meta-GMVAE (Lee et al., 2020), and PsCo (Jang et al.,
2022). These methods are evaluated in-domain as recommended in the original papers, with train-
ing and testing performed on the same dataset. While this setup is relatively simpler than the cross-
domain evaluation employed for CAMeLU, applying these methods in a cross-domain scenario may
not be fair, as they were not explicitly designed for such a challenging scenario. Only PsCo (Jang
et al., 2022) is further evaluated in a cross-domain setting, as the authors demonstrate its adaptabil-
ity to this scenario through an additional adaptation phase to the test domain. We also compare
CAMeLU with BECLR (Poulakakis-Daktylidis & Jamali-Rad, 2024) in Section 4.5, a contrastive
framework for unsupervised few-shot learning. Although BECLR does not utilize meta-learning, it
serves as a strong baseline for unsupervised few-shot learning. Additionally, CAMeLU is compared
to CAML (Fifty et al., 2024), a supervised meta-learning approach that assumes tasks are avail-
able both during the training and testing phases and leverages the in-context ability of transformer

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison on miniImageNet, CIFAR-fs, CUB, Aircraft, and Meta-iNat
datasets for 5-way 1-shot and 5-way 5-shot scenarios. Cross-domain approaches are trained using
ImageNet-964 and a ResNet-50 feature extractor. The symbol † indicates results that are affected
by data leakage. The bold font highlights the best performing UML approach for each setting. Re-
sults show the average across three complete runs of the algorithms. Complete results with standard
deviations are reported in Table 12 in Appendix A.10.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

In-Domain
CACTUs-MAML 43.30 54.21 42.00 56.64 31.19 36.81 24.06 27.26 20.13 21.84
CACTUs-ProtoNet 48.85 62.52 50.90 64.52 33.93 44.41 26.27 30.88 27.30 29.08
UMTRA 39.93 50.73 32.93 46.13 27.06 36.6 22.40 31.73 28.96 37.12
Meta-GMVAE 55.38† 65.10† 52.02 64.18 33.59 39.09 24.83 27.60 34.22 40.23
PsCo 47.29 64.85 42.21 62.92 33.09 51.02 26.19 38.80 36.97 55.88

Cross-Domain
PsCo 67.89 90.17 53.34 76.22 43.35 70.19 29.87 38.20 46.21 70.05
CAMeLU 76.51 92.14 61.79 80.43 65.52 80.35 33.17 39.11 57.27 75.45

CAML (supervised) 81.75 92.31 59.44 75.27 54.63 66.81 28.92 32.06 50.86 67.07

architectures to generalize to new tasks. Due to their similarities, we refer to CAML as the super-
vised counterpart of CAMeLU. Furthermore, Section 4.6 provides a comparative analysis with two
fine-tuned state-of-the-art self-supervised trained networks, namely SimCLR (Chen et al., 2020) and
SwAV (Caron et al., 2020).

4.2 TRAINING DETAILS

We report the results following the N -way K-shot classification task typical of meta-learning algo-
rithms, where N = 5 and K = 1 or K = 5. All models are trained for 100 epochs, 500 episodes per
epoch, and 100 fine-tuning steps at test time if required by the method. For CAMeLU, we choose
not to apply any fine-tuning strategy to prove the strength of the training stage that does not require
additional parameter updates during the inference phase. Furthermore, we introduce ImageNet-964,
a variant of the original ImageNet-1k dataset (Deng et al., 2009) where the classes belonging to the
validation and test splits of miniImageNet are removed to prevent data leakage when evaluating the
model on miniImageNet - a problem that is not taken into consideration by previous studies (Fifty
et al., 2024; Jang et al., 2022). To provide a fair comparison, all cross-domain methods are trained
using ImageNet-964. For CAMeLU, we use a feature extractor pre-trained using ResNet-50 (He
et al., 2016) on ImageNet-964 and a class encoder consisting of a single learnable layer that maps
one-hot encoded vectors of labels in the range [0, N − 1] to a dimensionality of 256. In Appendix
A.4, we also report the results with different feature extractors. The transformer encoder consists
of 8 encoder layers, each incorporating a multi-head self-attention block with 8 attention heads, an
MLP with a reverse bottleneck of 3072 and an input-output feature size of 2304, where the last 2048
features is the ResNet-50 feature vector appended to the 256 encoding of the labels. Finally, a single
projection layer maps the transformer output to the predicted category. The model is trained with
the Adam optimizer with a learning rate of 10−5 and a warmup cosine scheduler as proposed in the
original paper (Vaswani et al., 2017). To account for statistical variations, each algorithm is run three
times in full and the complete results reporting the standard deviations are presented in Appendix
A.10. The experiments are executed using Python and the PyTorch library on an Nvidia GeForce
RTX 3070 Ti Laptop GPU with 8GB of VRAM. Further ablation experiments and competitors re-
quired a more capable architecture and are executed on an Nvidia A100-SXM4 GPU with 40GB of
VRAM. More details about the training settings can be found in Appendix A.1, while the code will
be released upon acceptance of the paper.

4.3 COMPARATIVE RESULTS

Table 1 provides an overview of the experimental results for both the 5-way 1-shot and the 5-way
5-shot scenarios. The results demonstrate that CAMeLU outperforms the existing UML methods,
regardless of the difference in the evaluation setting. As highlighted in Section 4.1, CACTUs, UM-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

TRA, and Meta-GMVAE are evaluated only in-domain, requiring knowledge about the test domain
prior to training. This is not necessary for CAMeLU as it demonstrates high performance in the
challenging cross-domain scenario. Even compared to PsCo, the only UML method designed for
cross-domain applications, CAMeLU exhibits a performance improvement across all datasets. Fur-
thermore, PsCo requires a fine-tuning phase to adapt to the test domain, whereas CAMeLU achieves
good performance with a single forward pass, enhancing its applicability to real-time applications.
It is also worth noting that CAMeLU achieves comparable performance to its supervised counter-
part, CAML, when evaluated on miniImageNet and it even outperforms CAML when evaluated on
more dissimilar domains, such as CUB, Aircraft, and Meta-iNat. This finding highlights the efficacy
of the task construction strategy used in CAMeLU, which acts as a sort of task augmentation and
enhances the generalization capability of the model.

4.4 MEMORIZATION TO GENERALIZATION PHASE SHIFT

During the training of CAMeLU, we observed a distinct trend in the validation accu-
racy, similar to the findings in Kirsch et al. (2022). Figure 2 illustrates this pat-
tern, showing the validation accuracy relative to its initial value, or, in other words,
how much the model learns from datasets different from the one we are training on.

0 20 40 60 80 100
Epochs

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e

va
lid

at
io

n
ac

cu
ra

cy

Memorization Learning Generalization

miniImageNet
CIFAR-fs
CUB
Aircraft

Figure 2: Analysis of learning behavior when
transferring knowledge from a different prior
dataset. The relative validation accuracy
shows the difference between the current and
first epoch accuracy on the validation set of
miniImageNet, CIFAR-fs, CUB, and Aircraft.
CAMeLU is trained with ImageNet-964.

Specifically, the curves in Figure 2 resemble a
logistic curve, which can be divided into three
phases that we denote as memorization, learn-
ing, and generalization. In the memorization
phase, the model memorizes the tasks seen dur-
ing training and extends this knowledge to un-
seen tasks, resulting in a slight improvement for
datasets with high similarity with ImageNet-964
(e.g., miniImageNet and CIFAR-fs). For the other
datasets, instead, transferring this knowledge can
even result in a performance decrease due to the
intrinsic domain distance of the dataset (see CUB
and Aircraft, which are fine-grained datasets). As
training progresses and the model observes more
tasks, the learning phase occurs. This phase is
characterized by a transition to the learning-to-
learn state where the model learns to identify the
tasks and to extract the features that are more
useful for solving them. The duration of this
phase varies, with datasets like miniImageNet and
CIFAR-fs exhibiting rapid learning within approximately 10 epochs, while datasets such as CUB and
Aircraft may necessitate up to 40 epochs. This timespan depends on several factors, including the
similarity between the training and evaluation datasets, the size of the test dataset, and the model’s
learning ability (Kirsch et al., 2022; Power et al., 2022). For instance, CUB, with its fine-grained
nature and small test set size (around 1770 images), necessitates a longer learning phase compared
to the miniImageNet dataset (which has a test set with 12 000 images). Subsequently, in the gener-
alization phase, the model can generalize to tasks significantly different from those observed dur-
ing training using a single forward pass. Further analyses about the generalization capabilities of
CAMeLU and the number of epochs required for reaching the generalization phase are presented in
Section 4.5 and Appendix A.8.

4.5 GENERALIZATION ON SMALL-SCALE DATASETS

While most studies on training transformer architectures focus on large-scale training datasets, we
investigate the generalization capabilities of CAMeLU using a small-scale training dataset. Specifi-
cally, we train CAMeLU on miniImageNet and evaluate its performance both in-domain (i.e., on the
test set of miniImageNet) and cross-domain on CIFAR-fs, CUB, Aircraft, and Meta-iNat. CAMeLU
demonstrates effective generalization in this scenario, showing impressive performance in both in-
domain and cross-domain settings, as shown in Table 2, surpassing PsCo and BECLR by a large
margin.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Accuracy results obtained training PsCo, BECLR, and CAMeLU with a small-scale dataset,
namely miniImageNet, denoted as (mini) in the table. Results show both in-domain performance
(on the test set of miniImageNet) and cross-domain performance on CIFAR-fs, CUB, Aircraft, and
Meta-iNat. The average results across three complete runs of the algorithms are reported. Complete
results with standard deviations are presented in Table 13 in Appendix A.10.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

PsCo (mini) 47.29 64.85 42.21 62.92 33.09 51.02 26.19 38.80 36.97 55.88
BECLR (mini) 81.04 87.88 57.05 72.82 42.47 58.03 27.48 38.46 49.87 65.05
CAMeLU (mini) 75.99 90.38 61.25 78.79 60.60 74.77 31.39 36.52 55.60 72.12

Table 3: Comparison between CAMeLU and SSL approaches for the 5-way 1-shot and 5-way 5-
shot scenario on miniImageNet, CIFAR-fs, CUB, Aircraft, and Meta-iNat. The symbol † indicates
results that are affected by data leakage. Results show the average across three complete runs of the
algorithms. Complete results with standard deviations are reported in Table 14 in Appendix A.10.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

SimCLR 83.32† 94.86† 64.52 84.36 47.35 66.87 29.36 39.99 52.44 73.19
SwAV 74.83† 94.96† 66.97 87.14 47.84 69.31 30.33 47.43 53.57 74.53

CAMeLU 76.51 92.14 61.79 80.43 65.52 80.35 33.17 39.11 57.27 75.45

0 20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e

va
lid

at
io

n
ac

cu
ra

cy

CAML
CAMeLU

Figure 3: Relative validation accuracy com-
parison between CAMeLU (orange) and
CAML (blue) when evaluated in-domain on
miniImagenet. The relative validation accu-
racy is computed as described in Section 4.4.
The curve obtained with CAMeLU reflects
the three phases of memorization, learning,
and generalization even when using a small-
scale dataset.

Additionally, a comparison of CAMeLU’s perfor-
mance when trained on a small-scale dataset like
miniImageNet (Table 2), on ImageNet-964 (Table
1), and on a large-scale dataset (Table 5 in Ap-
pendix A.3) show that our method is only slightly
affected by the size of the training dataset. This ro-
bustness enhances CAMeLU’s applicability to sce-
narios where only a small unlabeled training dataset
is available, which is common in real-world appli-
cations.

Finally, Figure 3 shows the relative validation ac-
curacy of CAMeLU and CAML while trained and
evaluated on miniImageNet. While the curve ob-
tained with CAMeLU reflects the three phases of
memorization, learning, and generalization dis-
cussed in Section 4.4, the relative validation accu-
racy of CAML remains flat. This difference may
be attributed to the task creation mechanism of
CAMeLU, which acts as a task augmentation strat-
egy, increasing the variability of tasks presented to
the model during training and thereby enhancing its generalization capabilities.

4.6 COMPARISON WITH SSL METHODS

In this section, we compare CAMeLU with SimCLR (Chen et al., 2020) and SwAV (Caron
et al., 2020). For training SSL methods in our experiments, we employed a backbone network
with a ResNet-50 architecture pre-trained on ImageNet-1k obtained from PyTorch Lightning Bolts
(Borovec et al., 2022). While this setup leads to data leakage when evaluated on miniImageNet,
due to overlap between the test and training classes, pre-training these SSL approaches from scratch
using a different training dataset was beyond our available computational resources. To facilitate
model adaptation to the test domain, we fine-tuned a classification layer on top of the pre-trained
backbone using SGD with an initial learning rate of 0.01, momentum of 0.9, weight decay of 10−4,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and 100 fine-tuning steps per task, following Jang et al. (2022). This setup differs from the evalua-
tion setting used in CAMeLU, where predictions are obtained with a single forward pass, leveraging
the in-context learning ability of transformer architectures. However, SSL approaches must adapt
to the test domain before label predictions, resulting in a less challenging evaluation setting than
CAMeLU. Results for SSL approaches are averaged over 500 test tasks and presented in Table 3.
While SSL approaches outperform CAMeLU on miniImageNet and CIFAR-fs, their performance
decreases when evaluated on the other datasets. CUB, Aircraft, and Meta-iNat are fine-grained
datasets significantly different from ImageNet-1k, challenging the transferability of features learned
by SSL methods to these datasets. Moreover, the high performance on miniImageNet and CIFAR-fs
may be attributed to the presence of data leakage with ImageNet-1k and the high similarity with
CIFAR-fs, as discussed in Section 4.2. CAMeLU, in contrast, demonstrates effective generalization
to tasks sampled from these datasets, once again highlighting its generalization ability over mere
memorization.

5 CONCLUSION

In this paper, we introduce CAMeLU, a novel approach for UML that leverages the in-context learn-
ing capabilities of transformer architectures to extract context from the support samples and make
effective predictions on the query data. CAMeLU reframes meta-learning as a sequence model-
ing problem, where support images provide task context for predicting query images. At the core of
CAMeLU is a novel task creation mechanism that generates diverse tasks from an unlabeled dataset,
promoting effective generalization to unseen tasks. Our experimental results showcase the superior-
ity of CAMeLU over existing UML methods, highlighting the applicability of the proposed method
to domains different from the training one. Notably, CAMeLU can generalize to new domains with a
single forward pass (real-time predictions), and it even outperforms its supervised counterpart thanks
to its task creation mechanism. Furthermore, the proposed model can be stored and trained with a
single GPU with only 8GB of VRAM, underscoring its efficiency in learning-to-learn in-context,
rather than using a meta-training phase typical of previous meta-learning approaches.

Future research directions may explore extensions of CAMeLU to more complex domains, as well
as investigations into further improving the task creation mechanism for enhanced generalization. It
would be interesting to incorporate SSL techniques to obtain more robust feature representations and
enhance generalization capabilities. Additionally, conducting further investigation into CAMeLU’s
ability to encourage generalization over memorization would provide valuable insights into its learn-
ing dynamics and potential areas for improvement.

6 ETHICS STATEMENT AND REPRODUCIBILITY GUIDELINES

In this work, we used well-established, publicly available datasets to train and evaluate our archi-
tecture. While these datasets and pre-trained models provide a valuable foundation for research, we
acknowledge the potential for inherent biases that may not fully represent diverse real-world scenar-
ios. We have taken every precaution to ensure that our experiments are conducted responsibly, with
no intention of causing harm or perpetuating any biases present in the data. Furthermore, we declare
no conflicts of interest in the execution or reporting of this research. Our objective is to present the
findings in a transparent manner and contribute positively to the broader research community.

To ensure the reproducibility of our experiments, we have provided the code and detailed instructions
on how to run the experiments. The general configuration of our model is described in Section
4, with additional technical details outlined in Section A.1 of the Appendix. Moreover, we have
employed random seed initialization to ensure consistency across runs. The code is provided for
inspection as a zip file in the supplementary material and, upon the acceptance of this paper, the
complete codebase, models, and pre-trained weights will be made publicly available on GitHub to
facilitate further research and replication.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Globerson, and Alexei Efros. Visual prompting
via image inpainting. Advances in Neural Information Processing Systems, 35:25005–25017,
2022.

L Bertinetto, J Henriques, P Torr, and A Vedaldi. Meta-learning with differentiable closed-form
solvers. In International Conference on Learning Representations (ICLR), 2019. International
Conference on Learning Representations, 2019.

Jirka Borovec, William Falcon, Akihiro Nitta, Ananya Harsh Jha, otaj, Annika Brundyn, Donal
Byrne, Nathan Raw, Shion Matsumoto, Teddy Koker, Brian Ko, Aditya Oke, Sidhant Sundrani,
Baruch, Christoph Clement, Clément Poiret, Rohit Gupta, Haswanth Aekula, Adrian Wälchli,
Atharva Phatak, Ido Kessler, Jason Wang, JongMok Lee, Shivam Mehta, Zhengyu Yang, and
Garry O’Donnell. Pytorch lightning bolts. https://lightning-bolts.readthedocs.
io/en/latest/, 2022. Online; accessed 25 Apr 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Victor Ion Butoi, Jose Javier Gonzalez Ortiz, Tianyu Ma, Mert R Sabuncu, John Guttag, and
Adrian V Dalca. Universeg: Universal medical image segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 21438–21451, 2023.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. Advances in Neural Information Processing Systems, 35:18878–18891, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by
context prediction. In Proceedings of the IEEE international conference on computer vision, pp.
1422–1430, 2015.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Christopher Fifty, Jure Leskovec, and Sebastian Thrun. In-context learning for few-shot molecular
property prediction. arXiv preprint arXiv:2310.08863, 2023.

Christopher Fifty, Dennis Duan, Ronald Guenther Junkins, Ehsan Amid, Jure Leskovec, Christopher
Re, and Sebastian Thrun. Context-aware meta-learning. In The Twelfth International Conference
on Learning Representations, 2024.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

11

https://lightning-bolts.readthedocs.io/en/latest/
https://lightning-bolts.readthedocs.io/en/latest/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Kyle Hsu, Sergey Levine, and Chelsea Finn. Unsupervised learning via meta-learning. In Interna-
tional Conference on Learning Representations, 2018.

Huiwon Jang, Hankook Lee, and Jinwoo Shin. Unsupervised meta-learning via few-shot pseudo-
supervised contrastive learning. In The Eleventh International Conference on Learning Repre-
sentations, 2022.

Siavash Khodadadeh, Ladislau Boloni, and Mubarak Shah. Unsupervised meta-learning for few-
shot image classification. Advances in neural information processing systems, 32, 2019.

Siavash Khodadadeh, Sharare Zehtabian, Saeed Vahidian, Weijia Wang, Bill Lin, and Ladislau
Boloni. Unsupervised meta-learning through latent-space interpolation in generative models. In
International Conference on Learning Representations, 2020.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

Deqian Kong, Bo Pang, and Ying Nian Wu. Unsupervised meta-learning via latent space energy-
based model of symbol vector coupling. In Fifth Workshop on Meta-Learning at the Conference
on Neural Information Processing Systems, 2021.

Dong Bok Lee, Dongchan Min, Seanie Lee, and Sung Ju Hwang. Meta-gmvae: Mixture of gaussian
vae for unsupervised meta-learning. In International Conference on Learning Representations,
2020.

Dong Bok Lee, Seanie Lee, Kenji Kawaguchi, Yunji Kim, Jihwan Bang, Jung-Woo Ha, and Sung Ju
Hwang. Self-supervised set representation learning for unsupervised meta-learning. In The
Eleventh International Conference on Learning Representations, 2022.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Chen Liu, Yanwei Fu, Chengming Xu, Siqian Yang, Jilin Li, Chengjie Wang, and Li Zhang. Learn-
ing a few-shot embedding model with contrastive learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pp. 8635–8643, 2021.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3? In Proceedings of Deep Learning Inside Out
(DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures, pp. 100–114, 2022.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in
context. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2791–2809, 2022.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In International Conference on Learning Representations, 2018.

Stylianos Poulakakis-Daktylidis and Hadi Jamali-Rad. Beclr: Batch enhanced contrastive few-shot
learning. In The Twelfth International Conference on Learning Representations, 2024.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Janarthanan Rajendran, Alexander Irpan, and Eric Jang. Meta-learning requires meta-augmentation.
Advances in Neural Information Processing Systems, 33:5705–5715, 2020.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
conference on learning representations, 2016.

Brigit Schroeder and Yin Cui. Fgvcx fungi classification challenge 2018. https://github.
com/visipedia/fgvcx_fungi_comp, 2018. Online; accessed 25 Apr 2024.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1–48, 2019.

Aaditya Singh, Stephanie Chan, Ted Moskovitz, Erin Grant, Andrew Saxe, and Felix Hill. The
transient nature of emergent in-context learning in transformers. Advances in Neural Information
Processing Systems, 36, 2024.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 1199–1208, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A dataset
of datasets for learning to learn from few examples. In International Conference on Learning
Representations, 2019.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Joaquin Vanschoren. Meta-learning. Automated machine learning: methods, systems, challenges,
pp. 35–61, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

13

https://github.com/visipedia/fgvcx_fungi_comp
https://github.com/visipedia/fgvcx_fungi_comp

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-
Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states.
In International conference on machine learning, pp. 6438–6447. PMLR, 2019.

Anna Vettoruzzo, Mohamed-Rafik Bouguelia, Joaquin Vanschoren, Thorsteinn Rognvaldsson, and
KC Santosh. Advances and challenges in meta-learning: A technical review. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2024.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. California Institute of Technology, 2011.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. Transactions on Machine Learning Research, 2022.

Davis Wertheimer and Bharath Hariharan. Few-shot learning with localization in realistic settings.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
6558–6567, 2019.

Patrick H Winston. Learning and reasoning by analogy. Communications of the ACM, 23(12):
689–703, 1980.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Huaxiu Yao, Long-Kai Huang, Linjun Zhang, Ying Wei, Li Tian, James Zou, Junzhou Huang, et al.
Improving generalization in meta-learning via task augmentation. In International conference on
machine learning, pp. 11887–11897. PMLR, 2021.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. What makes good examples for visual in-context
learning? Advances in Neural Information Processing Systems, 36, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 EXPERIMENTAL DETAILS

Datasets. For training CAMeLU, we use ImageNet-964, which is a variant of the original
ImageNet-1k dataset (Deng et al., 2009) where classes belonging to the validation and test splits
of miniImageNet (Ravi & Larochelle, 2016) are removed. This results in a total of 1 234 487 images
for training the model compared to the 1 281 167 in the original ImageNet-1k dataset. When a multi-
dataset approach is utilized for training CAMeLU (see Appendix A.3), MSCOCO (Lin et al., 2014)
and Fungi (Schroeder & Cui, 2018) are loaded into the program and used together with ImageNet-
964 for creating the whole training dataset. MSCOCO is a dataset originally proposed for object
detection, where each image is assigned to G classes corresponding to the G objects present in it.
To use it for image classification, we replicate each image G times and we assign to each of them
one of the G classes. In this way, we obtain a dataset with 117 266 images for training, and we
rely on the fact that the transformer is capable of applying self-attention to the object of the class
in question. Fungi is a fine-grained dataset with a size of only 64 307, which is two orders of mag-
nitude smaller than ImageNet-964 and MSCOCO. For evaluation and for in-domain training of the
baselines, we use miniImageNet, CIFAR-fs, CUB, Aircraft, and Meta-iNat. miniImageNet is split
into train/validation/test using the splits proposed in Ravi & Larochelle (2016), resulting in 38 400
images for training, 9600 for validation, and 12 000 for testing. The same number of images are also
present in CIFAR-fs, and the splits follow the work in Bertinetto et al. (2019). CUB and Aircraft,
instead, are two fine-grained datasets with a smaller size compared to the others. CUB (Wah et al.,
2011) consists of 8239 in the training set, 1779 in the validation set, and 1770 in the test set, while
Aircraft has respectively 7000/1500/1500 images in the train/validation/test sets (Triantafillou et al.,
2019). Finally, Meta-iNat (Wertheimer & Hariharan, 2019) consists of 243 986 images split into
1135 classes, with 227 reserved for testing. All images are resized to 224 × 224 and normalized
with zero mean and unit variance before input into the model. For the UML baselines, due to the
smaller model size utilized in the experiments, images are resized to 84 × 84, as suggested in the
original papers (Khodadadeh et al., 2019; Hsu et al., 2018; Lee et al., 2020; Jang et al., 2022).

CAMeLU. The architecture used for CAMeLU consists of a fixed pre-trained feature extractor,
a class encoder, and a transformer encoder. The feature extractor is pre-trained using ResNet-50
on ImageNet-964 following the same architecture and hyperparameters in He et al. (2016). The
class encoder is a single learnable layer with a dimensionality of 256 and initialized with Kaiming
initialization (He et al., 2015). Image embeddings are concatenated with class embeddings before
being fed into the transformer encoder. This results in a vector with a total length of 2304, composed
of 2048 features from the image embeddings and 256 from the label embeddings. When ablating the
feature extractor with CLIP (Radford et al., 2021) in Appendix A.4, a ViT-B/16 encoder architecture
is utilized and downloaded from the Hugging Face website (Wolf et al., 2019). The pre-training is
performed using a large dataset with 400 million (image, text) pairs (Radford et al., 2021), and it is
fixed during the training phase of CAMeLU. The output size of the image embedding is reduced to
1024, with 768 features from the image embedding, which results in a reduced memory complexity
compared to ResNet-50. The transformer encoder comprises 8 encoder layers. Each layer consists of
8 attention heads and an MLP with a reversed bottleneck of 3072 (with GeLU activation function). A
projection layer completes the model architecture to map the transformer output to a class prediction.
This architecture enables us to store the entire model in an Nvidia GeForce RTX 3070 Ti Laptop
GPU with 8GB of VRAM, while a further reduction of memory can be achieved by utilizing CLIP
on ViT-B/16 as feature extractor, which requires only 4 GB of VRAM to store the entire model.

For the task creation mechanism, 3 augmentation functions are selected from a list comprising crop-
ping, rotation, horizontal flip, grayscale, color jittering, gaussian blur, and random affine transfor-
mation. The exact parameters used in our experiments for each augmentation function are detailed
in Table 4. For the query set, an additional pixel-level mixing strategy with λ ∼ Beta(α, β) with
α = 1, β = 1 and λ ∈ (0, 0.5) is utilized. More details about this selection choice can be found in
Appendix A.6.

The training of CAMeLU is performed for 100 epochs, with 500 episodes each, using the Adam
optimizer with an initial learning rate of 10−5 and a warmup cosine scheduler with 1500 warmup
steps and a final learning rate of 10−6. For the evaluation, instead, a single forward pass is performed
and the accuracy between the output and the true label is calculated on the query set of each given

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Complete list of transformations used for generating the support set of each task in
CAMeLU. The names of the augmentations are taken from the torchvision library in Python.

Augmentation Parameters

RandomResizedCrop image size = 224, scale = (0.2, 0.8), ratio= (0.75, 1.33)
RandomRotation degrees = 60, probability = 1.0
RandomHorizontalFlip probability = 1.0
Grayscale output channels = 3
ColorJitter brightness = 0.2, contrast = 0.2, saturation = 0.2, hue = 0.2
GaussianBlur kernel size = 3, sigma = (0.1, 2.0)
RandomAffine degrees = 0, shear = [−45, 45,−45, 45]

task. Results are then averaged across 500 tasks, and the mean and standard deviation across three
complete runs (consisting of training and evaluation) of the algorithm are used in our experiments.

Baselines. We compare our results with UML methods, an unsupervised few-shot learning
method, a supervised meta-learning method, and two SSL methods. For the UML baselines, we
consider CACTUs-MAML (Hsu et al., 2018), CACTUs-ProtoNet (Hsu et al., 2018), UMTRA (Kho-
dadadeh et al., 2019), Meta-GMVAE (Lee et al., 2020), and PsCo (Jang et al., 2022). All these meth-
ods are evaluated in-domain, i.e., using the same dataset for training and evaluation, to adhere to the
setting proposed in the original papers. Only PsCo is also extended to the cross-domain scenario
that we discuss in this paper. All methods are trained for 100 epochs, using the parameters reported
in the original papers (Khodadadeh et al., 2019; Hsu et al., 2018; Lee et al., 2020; Jang et al., 2022),
and evaluated with 100 adaptation steps on each task when required by the model. When evaluated
in-domain, all approaches use a Conv5 architecture consisting of 5 convolutional layers with 64
filters and a kernel size of 3, followed by batch normalization, ReLU non-linearity, max pooling,
and a classifier head. The only exception is Meta-GMVAE. For this method, the authors trained a
Conv5 feature extractor with SimCLR and input the learned features into a variational autoencoder
(VAE) (Lee et al., 2020). Due to time limitations and the computational resources required to train
a model with SimCLR, in our experiments, we used a feature extractor consisting of a pre-trained
version of SimCLR on ResNet-50 (Borovec et al., 2022) using ImageNet-1k, followed by a pro-
jection layer fine-tuned for 100 steps to the training dataset, as done for the SSL baselines. This
approach results in a better performance than the one reported in the original paper (Lee et al., 2020)
(see Table 1), likely due to the improved ability of the feature extractor to extract meaningful fea-
tures. For PsCo, when evaluated on a cross-domain setting, we utilized the ResNet-50 architecture
trained on ImageNet-964 to avoid data leakage, and we then applied the model to the test domain
using 100 adaptation steps to it. We also included BECLR (Poulakakis-Daktylidis & Jamali-Rad,
2024) in our comparison utilizing the same hyperparameters and model architectures proposed in the
original paper, given the importance of hyperparameter choice for final performance. Specifically,
the ResNet-50 feature extractor was trained only on miniImageNet and evaluated on cross-domain
scenarios in Table 2.

To compare our results with CAML (Fifty et al., 2024), the same architecture and hyperparameter of
our approach are applied to this method. This results in a lower performance for CAML compared
to the original paper (Fifty et al., 2024), as the reduced size of the model and the different feature
extractor (ResNet-50 instead of ViT-CLIP), but it guarantees fair comparisons and lets us train the
model with the available computational resources.

We also provide a comparison with two SSL approaches - SimCLR (Chen et al., 2020) and SwAV
(Caron et al., 2020). The details for training and evaluation are provided in Section 4.6.

A.2 IN-CONTEXT LEARNING ANALYSIS

To verify the contribution of the in-context learner in CAMeLU, we examine the embedding space
learned during inference, both after the feature extractor and the transformer encoder. Figure 4
presents a t-SNE visualization of a single test task, where clusters represent the embeddings of the
support classes. For simplicity, we illustrate a 5-way 5-shot task with one query sample for each
dataset, and we report the Euclidean distance between the query and the centroid of each class.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Feature extractor (miniImageNet) (b) Transformer encoder (miniImageNet)

(c) Feature extractor (CUB) (d) Transformer encoder (CUB)

(e) Feature extractor (Aircraft) (f) Transformer encoder (Aircraft)

Figure 4: Visualization of clustered embeddings obtained with CAMeLU after the fixed feature
extractor (left) and the transformer encoder (right) across different datasets. The plots represent 5-
way 5-shot tasks during inference. Crosses indicate the centroids for each class, triangles represent
the query sample embeddings, and the numbers denote the Euclidean distances between the query
and each class centroid. The plots are obtained using t-SNE (Van der Maaten & Hinton, 2008) with
a perplexity equals to 9.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Comparison of CAMeLU and CAML when trained on the single ImageNet-964 dataset
(IN-964) and on a multi-dataset (mds) consisting of ImageNet-964 + MSCOCO + Fungi. Results
show the mean and standard deviations for the 5-way 1-shot and the 5-way 5-shot settings across
three complete runs of the algorithms.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

CAMeLU (IN-964) 76.51± 0.79 92.14± 0.30 61.79± 0.59 80.43± 0.21 65.52± 0.37 80.35± 0.63 33.17± 0.94 39.11± 1.97 57.27± 0.39 75.45± 0.42
CAMeLU (mds) 76.56± 0.36 91.82± 0.21 62.41± 0.70 80.36± 0.32 65.35± 0.70 79.78± 0.38 32.54± 0.41 37.87± 0.59 57.36± 0.33 75.40± 0.29

CAML (IN-964) 81.75± 0.18 92.31± 0.11 59.44± 0.63 75.27± 0.77 54.63± 1.78 66.81± 3.12 28.92± 0.37 32.06± 0.43 50.86± 0.50 67.07± 0.39
CAML (mds) 81.90± 0.54 92.93± 0.33 63.08± 0.43 79.73± 0.63 56.85± 1.92 69.43± 1.85 28.36± 2.26 31.56± 2.14 54.72± 0.63 70.50± 0.67

As the dataset complexity increases, we observe greater variation between the embeddings learned
from the fixed feature extractor and those refined by the transformer encoder. For instance, with
the miniImageNet dataset, the feature extractor alone is able to recognize the class of the query,
clustering the query sample with the support samples belonging to the same class. However, in
more challenging datasets such as CUB and Aircraft, the embedding space after the feature extractor
appears more sparse, reflected by the large Euclidean distance between the query sample and the
centroid of each class. In contrast, the transformer encoder significantly improves the representation,
producing more compact and well-separated clusters, underscoring its crucial role in CAMeLU. For
instance, in the Aircraft dataset, the query would be misclassified as class 5 (in grey) based on
the feature extractor alone, but it is correctly classified after passing through the transformer. This
highlights the role of the transformer encoder in updating the support and query representations
based on the context of the task, not only the image context, improving classification accuracy.

A.3 MULTI-DATASET TRAINING

We conduct additional experiments to evaluate the performance of CAMeLU when trained on a
large-scale dataset. As our focus is on cross-domain classification through in-context learning, we
hypothesize that training on a dataset spanning various concepts could enhance classification per-
formance, as suggested in Min et al. (2022) and Fifty et al. (2024). To test this hypothesis, we com-
bine three training datasets with varying levels of granularity: ImageNet-964 (Deng et al., 2009),
MSCOCO (Lin et al., 2014), and Fungi (Schroeder & Cui, 2018). During each training episode,
a dataset is uniformly sampled, and N data points are extracted. These samples are then utilized
in our method as described in Section 3. Table 5 presents the results for CAMeLU and the super-
vised CAML method. Notably, training with a combination of multiple datasets (denoted as mds
in Table 5) yields improved performance for CAML (supervised) compared to training solely on
ImageNet-964, likely due to the increased variability in the sampled tasks. However, CAMeLU
does not exhibit a similar performance boost, as its task creation mechanism already introduces sub-
stantial variability, reducing the benefit of additional dataset diversity. Moreover, the large size of
ImageNet-964 (around 80% of the overall dataset), leads to its more frequent selection compared
to the other datasets and limits the potential for performance gains from the other datasets. Conse-
quently, to optimize computational resources and time, we conducted all the other experiments by
training solely on ImageNet-964.

A.4 ABLATION STUDIES - FEATURE EXTRACTOR

To assess the impact of the pre-trained feature extractor, we evaluate CAMeLU with various extrac-
tors pre-trained using different strategies. In particular, we compare the effectiveness of a ResNet-50
encoder pre-trained in a supervised manner both on ImageNet-1k and on ImageNet-964, a ResNet-
50 pre-trained on ImageNet-1k using two SSL strategies, i.e., SimCLR (Chen et al., 2020) and SwAV
(Caron et al., 2020), and a ViT-B/16 architecture pre-trained with CLIP (Radford et al., 2021) on a
large dataset with 400 million (image, text) pairs. The extractors were downloaded from the Hug-
ging Face (Wolf et al., 2019) and PyTorch Lightning Bolts (Borovec et al., 2022) websites, except
for the ResNet-50 architecture pre-trained on ImageNet-964. Results in Table 6a demonstrate that
the models pre-trained on ImageNet-1k exhibit significantly higher performance on miniImageNet,
compared to other datasets, primarily due to the data leakage issue described in Section 4.2. This
issue is mitigated by pre-training the ResNet-50 architecture on ImageNet-964, which results in
a drop in the performance on miniImageNet and CIFAR-fs due to the removal of data leakage,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: Ablation study of feature extractors utilized in CAMeLU. The feature extractors include
ResNet-50 pre-trained on ImageNet-964 (ResNet50 (IN-964)), ResNet-50 pre-trained on ImageNet-
1k (ResNet50 (IN-1k)), ResNet-50 pre-trained on ImageNet-1k with SimCLR and SwAV, as well
as a ViT-B/16 architecture pre-trained with CLIP. All models are trained using CAMeLU on (a)
ImageNet-964 or (b) using a combination of ImageNet-964 + MSCOCO + Fungi (multi-dataset).
The symbol † indicates results that are affected by data leakage. Results show the mean and standard
deviations across three complete runs of the algorithms.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Extractor 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

ResNet-50 (IN-964) 76.51± 0.79 92.14± 0.30 61.79± 0.59 80.43± 0.21 65.52± 0.37 80.35± 0.63 33.17± 0.94 39.11± 1.97 57.27± 0.39 75.45± 0.42
ResNet-50 (IN-1k) 78.17± 1.69† 95.75± 0.48† 66.02± 0.78 84.40± 0.64 60.69± 1.13 79.08± 0.75 33.23± 0.70 40.05± 0.85 56.21± 0.43 74.35± 0.21
ResNet-50 (IN-1k) - SimCLR 56.10± 1.16† 79.45± 2.37† 46.14± 1.24 63.03± 2.73 36.85± 2.69 50.34± 3.22 24.30± 1.06 27.25± 2.21 42.61± 0.41 58.95± 0.72
ResNet-50 (IN-1k) - SwAV 60.16± 0.70† 84.32± 0.34† 56.81± 0.84 75.49± 1.76 44.39± 0.75 60.44± 0.18 27.82± 0.62 34.56± 1.67 47.31± 0.41 65.84± 0.09
ViT-B/16 - CLIP 76.44± 0.51 91.96± 0.31 69.74± 0.95 86.25± 0.92 61.05± 1.91 75.17± 2.77 37.82± 2.14 43.10± 1.95 61.22± 0.67 77.09± 0.15

(a) ImageNet-964 training

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Extractor 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

ResNet-50 (IN-964) 76.56± 0.36 91.80± 0.20 62.28± 0.69 80.15± 0.37 65.06± 0.82 79.27± 1.22 31.89± 1.43 37.13± 1.67 57.36± 0.33 75.04± 0.49
ResNet-50 (IN-1k) 79.07± 0.88† 96.44± 0.16† 66.15± 0.31 84.90± 0.42 60.62± 0.45 79.26± 0.20 33.41± 0.98 41.23± 1.14 59.14± 0.14 74.31± 0.51
ResNet-50 - SimCLR 53.83± 1.87 78.10± 1.94 45.06± 1.06 61.90± 0.33 37.64± 1.74 51.40± 1.70 25.31± 0.49 28.87± 0.99 41.89± 0.15 58.87± 0.36
ResNet-50 - SwAV 58.82± 0.34 83.45± 0.24 57.33± 0.57 76.62± 1.01 44.79± 0.24 60.71± 0.85 27.30± 0.77 34.50± 0.85 47.18± 0.35 65.65± 0.19
ViT-B/16 - CLIP 77.92± 1.89 93.83± 0.70 78.04± 0.91 91.88± 0.45 74.08± 1.81 88.86± 2.33 49.21± 2.46 58.97± 2.74 67.95± 1.25 82.59± 1.05

(b) Multi-dataset training

making it comparable with the results on CLIP-ViT-B/16. For CLIP-ViT-B/16, however, thorough
verification of potential data leakage was not possible due to the undisclosed nature of its train-
ing dataset. As such, these results should be interpreted with caution. CLIP-ViT-B/16 stands out
as the best-performing method due to its dataset-agnostic nature and its ability to learn represen-
tations that generalize across a broad range of tasks. Furthermore, when training CAMeLU with
a multi-dataset approach (Table 6b), as described in Appendix A.3, results for CLIP-ViT-B/16 im-
prove further, highlighting its applicability also to datasets significantly different from those used
for training (Radford et al., 2021). These findings demonstrate that CAMeLU’s performance scales
with the strength of the feature extractor, indicating potential for further investigation as more ro-
bust feature extractors become available. However, in this work, we decided to use the ResNet-50
architecture to guarantee a fair comparison with previous baselines.

A.5 EVALUATION OF THE TASK CREATION MECHANISM

0 20 40 60 80 100
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
ac

cu
ra

cy

Proposed startegy (mini)
Data augmentation (mini)
Proposed startegy (CUB)
Data augmentation (CUB)

Figure 5: Validation accuracy on miniImageNet
(mini) and CUB while training CAMeLU with
two different task creation mechanisms. Red
and purple curves are obtained with our proposed
strategy in Section 3.1, while orange and pink
curves are obtained by applying only data aug-
mentations based on image manipulations to gen-
erate the support and query samples. The training
is performed using ImageNet-964.

To assess the effectiveness of the task cre-
ation strategy employed in our proposed ap-
proach, we conduct a comparative analysis of
CAMeLU’s performance under two different
task creation mechanisms. Specifically, we
evaluate CAMeLU when tasks are generated
solely using data augmentations for both the
support and query sets, following a strategy
similar to UMTRA (Khodadadeh et al., 2019),
versus employing our proposed approach out-
lined in Section 3.1. By applying our task cre-
ation strategy, we generate more complex tasks,
making the generalization problem harder and
the in-context learner more robust (Chan et al.,
2022; Singh et al., 2024). The results presented
in Table 7a confirm our claim. Across all the
datasets, our proposed strategy enhances the
generalization on cross-domain datasets such as
CUB, Aircraft, and Meta-iNat. This conclusion
is further supported by Figure 5, which shows
the validation accuracy on miniImageNet and
CUB using the two mechanisms discussed be-
fore, along with the CLIP-ViT feature extractor described in Appendix A.4. These results confirm

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Ablation experiments of the proposed task creation mechanism by (a) generating tasks
only using data augmentations for the support and query set on ImageNet-964 and (b) applying
k-means clustering on the ResNet-50 embeddings on miniImageNet. Results show the mean and
standard deviations across three complete runs of the algorithms in the 5-way 1-shot and 5-way 5-
shot scenarios.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

ImageNet-964
Augment 78.20± 0.38 91.35± 0.35 64.30± 0.31 81.08± 0.23 62.19± 1.29 75.53± 1.52 31.90± 1.69 37.46± 1.71 56.46± 0.53 74.00± 0.80
Proposed 76.51± 0.79 92.14± 0.30 61.79± 0.59 80.43± 0.21 65.52± 0.37 80.35± 0.63 33.17± 0.94 39.11± 1.97 57.27± 0.39 75.45± 0.42

(a) Data augmentation vs. the proposed strategy

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

miniImageNet
k-means 75.86± 1.27 89.57± 0.65 46.14± 1.96 62.19± 2.19 33.76± 3.58 40.39± 4.06 24.48± 3.34 27.11± 4.23 36.32± 1.68 47.66± 1.59
Proposed 75.99± 0.20 90.38± 0.21 61.25± 0.55 78.79± 0.21 60.60± 0.80 74.77± 1.70 31.39± 1.17 36.52± 0.88 55.60± 0.20 72.12± 0.35

(b) k-means clustering vs. the proposed strategy

Table 8: Evaluation of the proposed task creation strategy when applied to build pseudo-tasks on top
of MAML. The results are compared with other MAML-based baselines for UML, such as UMTRA
and CACTUs-MAML.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

CACTUs-MAML 43.30 54.21 42.00 56.64 31.19 36.81 24.06 27.26 20.13 21.84
UMTRA 39.93 50.73 32.93 46.13 27.06 36.60 22.40 31.73 28.96 37.12

Proposed + MAML 34.04 46.13 37.02 52.00 31.22 41.54 26.12 34.34 30.94 42.43

that our task creation strategy is more robust, particularly in cross-domain evaluations, even when
stronger feature extractors are utilized.

Additionally, we experimented with k-means clustering as an alternative to the proposed task cre-
ation strategy. Inspired by CACTUs (Hsu et al., 2018), we applied clustering on the embeddings
generated by the feature extractor to generate pseudo-labels. The results are presented in Table 7b
when training on miniImageNet due to the high computational cost of k-means and indicate that our
proposed mechanism generalizes better across domains. Furthermore, k-means clustering requires
an insight into the number of classes in the training dataset, as choosing a high number of clus-
ters would lead to a lack of samples per class, whereas a low number may hinder generalization.
In contrast, CAMeLU does not rely on such assumptions, enhancing its robustness compared to
clustering-based approaches.

Finally, we show that the benefits of our task creation strategy extend beyond CAMeLU. In Table 8
we apply our proposed mechanism to generate pseudo-tasks on top of MAML (Finn et al., 2017).
This allows for a direct comparison with MAML-based approaches, such as UMTRA (Khodadadeh
et al., 2019) and CACTUs-MAML (Hsu et al., 2018), by replacing their original task creation mech-
anisms. The increased performance of our strategy applied to the baselines demonstrates its superi-
ority over previous task creation methods. It may be objected that CACTUs-MAML achieves higher
performance on miniImageNet and CIFAR-fs. However, this is caused by the use of a feature extrac-
tor pre-trained on ImageNet-1k, which introduces an unfair advantage by leaking information about
the test data into the training phase. This performance gap narrows when the test distribution deviates
from the training data (e.g., CIFAR-fs) and disappears for datasets with low correlation to ImageNet-
1k, supporting our hypothesis. Indeed, on datasets that share low similarity with ImageNet-1k, our
method consistently outperforms both UMTRA and CACTUs-MAML. While these results high-
light the strength of our task creation strategy, the performance still remains significantly lower than
CAMeLU, especially in cross-domain scenarios. This emphasizes the critical role of combining
our robust task creation mechanism with the in-context learning capabilities of transformer-based
architectures to achieve superior performance.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) Image x̃n,j (b) Random
image zj

(c) Query im-
age x

(qr)
j with

pixel level mix

(d) Query im-
age x

(qr)
j with

patch level mix

Figure 6: Visualization of a query image x̃n,j generated by
mixing (a) the support image and (b) a randomly sampled
image at (c) the pixel level or at (d) the patch level using
λ = 0.49.

Table 9: mSSIM values
computed as the average be-
tween SSIM (x̃n,j , x

(qr)
j) and

SSIM (zj , x
(qr)
j) when x

(qr)
j is

obtained using a pixel level or a
patch level mixing strategy with
λ = 0.25 and λ = 0.49.

λ = 0.25 λ = 0.49

Pixel level 0.60 0.61
Patch level 0.56 0.57

A.6 QUERY SAMPLES GENERATION STRATEGY

We also conducted additional experiments to validate the choice of utilizing Equation 1 for gener-
ating query samples. In particular, we compare the results obtained as a linear combination of the
augmented image x̃n,j with the randomly sampled image zj (pixel level), as in Equation 1, and at
the patch level, as in Yun et al. (2019). Specifically, for the latter, we randomly select a patch from
zj with an area ratio proportional to λ, and we paste it into x̃n,j . Figure 6 illustrates an example of
these two techniques by mixing two images sampled from ImageNet-964. As shown in Figure 6c,
merging the images at the pixel level results in a mixed image where some information from x̃n,j
and zj is retained in every part of the image. Contrarily, in Figure 6d, there is no information about
x̃n,j in the lower left corner, forcing the network to attend only to the upper right part of the image
to classify it with the same class as x̃n,j . Therefore, we hypothesize that the pixel level strategy is
more suitable for our approach as the goal is to attend to the whole image to extract robust features
that allow the model to classify the query image with the same class as the support one while ensur-
ing diversity between the two. To validate this, we utilized the Structural Similarity Index (SSIM)
(Wang et al., 2004). SSIM is used as a metric to measure the similarity between two given images
based on three image features: luminance, contrast, and structure. Formally, considering x and y
two given images, SSIM is calculated as follows:

SSIM(x, y) =

[
2µxµy + c1
µ2
x + µ2

y + c1

]α
+

[
2σxσy + c2
σ2
x + σ2

y + c2

]β
+

[
σxy + c3
σxσy + c3

]γ
(5)

where µ represents the mean of an image, σ denotes the standard deviation, c1, c2, c3 are constant
values, and α, β, γ denote the relative importance of each metrics. By assuming α = β = γ = 1
and c2 = c2/2, we get

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
. (6)

Instead of applying the above formula all over the image at once, (Wang et al., 2004) proposed
a local variant that consists of computing the SSIM index locally and averaging these values to
obtain the global SSIM value. For our purpose, we computed this metric between each of the two
images used for the generation, i.e., x̃n,j and zj , and the resulting mixed image, i.e., x(qr)

j . We then
average the results, obtaining an indicator, denoted as mSSIM , of how similar the query image is
with the images used for the generation, or in other words, how much local information is retained
from x̃n,j and zj into x

(qr)
j . Results are shown in Table 9 for λ = 0.25 and λ = 0.49, confirming

the hypothesis that, even for high λ values, mixing at the pixel level guarantees more information
retained across the whole image compared to using a patch level strategy. This is also confirmed by
the results in Table 10, which shows a decrease in the performance when CAMeLU is trained with
the patch level strategy for query generation.

We also ablate the values of the α and β parameters used in the Beta distribution from which λ is
sampled. Table 10 presents the results for different values of α and β when λ ∼ Beta(α, β) and
λ ∈ (0, 0.5). The results indicate that the optimal choice for CAMeLU is to select α = 1, β = 1,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 10: Accuracy results of CAMeLU when trained with different strategies for generating the
query samples. Pixel level mix refers to the scenario where query samples are generated with Equa-
tion 1, while patch level mix refers to a strategy similar to the one proposed in Yun et al. (2019).
Results are reported in the 5-way 5-shot scenario with λ ∼ Beta(α, β) and different α and β values.
Results show the mean and standard deviations across three complete runs of the algorithms.

miniImageNet CIFAR-fs CUB Aircraft

Pixel level mix
α = 0.1, β = 0.1 90.68± 0.67 75.88± 2.08 76.31± 2.44 35.31± 2.57
α = 0.5, β = 0.5 91.34± 0.24 77.70± 0.73 79.52± 0.73 37.56± 1.92
α = 1, β = 1 92.14± 0.30 80.43± 0.21 80.35± 0.63 39.11± 1.97
α = 2, β = 5 90.68± 1.02 77.00± 1.40 79.62± 2.50 38.02± 1.85
α = 5, β = 5 90.63± 0.30 78.12± 0.15 79.71± 0.42 37.57± 0.11

Patch level mix
α = 1, β = 1 91.25± 0.50 77.80± 0.45 76.12± 1.06 33.60± 1.27

Table 11: Computational and time complexity of CAMeLU in comparison with PsCo. The compar-
ison is performed considering the time required for the task creation, the training time (expressed in
time per epoch), the inference time on a single task, and the GPU and CPU memory usage during
training and inference.

Time task construction Training time Inference time
(ms) (ms/epoch) (ms/task)

PsCO 20772 4613656 605
CAMeLU 1376 153000 57

GPU training CPU training GPU inference CPU inference
(MiB) (MiB) (MiB) (MiB)

PsCO 43904 20904 1630 2061
CAMeLU 6250 2588 3224 1667

which appears to be a uniform distribution. Additionally, α = 2, β = 5 also yields comparable
results, highlighting the importance of selecting a sufficiently small λ to ensure the incorporation of
sufficient information from x̃n,j into x

(qr)
j facilitating the model’s ability to classify the latter with

the same class as x(sp)
n,i .

A.7 COMPLEXITY ANALYSIS

In this section, we analyze the computational and time complexity of CAMeLU and we compare it
with PsCo Jang et al. (2022). Table 11 presents the time required for task generation, model training,
and inference, along with GPU and CPU memory usage. The results demonstrate that CAMeLU is
not only faster than PsCo but also significantly more memory efficient. Notably, CAMeLU requires
only 57ms for task inference, making it particularly suitable for real-time applications.

The computational complexity of CAMeLU is primarily attributed to the transformer architecture,
which is known for its computational demands due to the self-attention mechanism. The transformer
model has a computational complexity of O(n2 · d) per layer (Vaswani et al., 2017), where n is the
sequence length and d is the hidden dimension. In our context, n includes both the support samples
and the query sample. Consequently, the total computational complexity for evaluating Q queries is
O(Q · (NK+1)2 · d), where N is the number of classes, K the number of shots, NK+1 indicates
one query per input sequence, and Q is the total number of queries. This results in a quadratic
complexity in the number of support samples which can be computationally demanding. However,
we have demonstrated in Table 1 that CAMeLU achieves good performance even with only K = 1
support sample per class. Additionally, further experiments with only one query sample per episode

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) CAMeLU on miniImageNet (b) CAMeLU on CUB

(c) CAML on miniImageNet (d) CAML on CUB

Figure 7: Comparison of logistic function approximations and phase boundaries for learning and
generalization phases in CAMeLU and CAML for miniImageNet and CUB datasets.

and one support sample per class (i.e., N = 5, K = 1, Q = 1) yield results of 80.74 ± 0.65 for
miniImageNet, 63.07 ± 1.14 for CIFAR-fs, 54.84 ± 1.41 for CUB, 30.32 ± 0.76 for Aircraft, and
55.76±0.08 for Meta-iNat. These results are comparable to those reported in Table 1 for the 5-ways
1-shot scenario using 25 queries, highlighting that a single query is sufficient for good performance,
as also demonstrated in CAML.

A.8 QUANTITATIVE ANALYSIS OF LEARNING PHASES

To quantitatively assess the number of epochs required to enter the generalization phase, we propose
to approximate the validation accuracy curves with the generalized logistic function

f(x) = a+
d− a

1 + e−b(x−x0)
= a+

d− a

1 + ce−bx
, (7)

where parameters a, b, c, d are responsible for particular features of the logistic function. Parameters
a and d indicate the lower and, respectively, the upper asymptote. Parameter b is the logistic growth
rate, and finally, parameter c = ebx0 is related to the inflection point x0 at which the maximum
growth of the function occurs. To find the best fitting logistic curve we use a standard regression
function. The logistic function is strictly increasing, thus the derivative, which is given by f ′(x) =
bc(d−a)e−bx

(1+ce−bx)2
, is always positive. The derivative firstly increases (from values close to zero), and

after reaching its maximum value at the inflection point, it decreases. To determine the bounds for
reaching the learning and generalization phases, we find the values for which the derivative is equal
to a given fraction of the maximum possible growth rate. After testing several cases, the results
show that the choice of this threshold does not affect the relation between the phases’ boundaries.
Therefore, we decided to conduct our analysis for 20% of maximum growth rate.

Figures 7a and 7b show the results for CAMeLU on the miniImageNet and CUB datasets, respec-
tively. For miniImageNet, we obtain the approximation function to be f(x) = 0.04+ 0.54

1+9636e−0.43x .
Moreover, the number of epochs where the learning phase begins is 15 and the number of epochs
where the generalization phase begins is 29. On the other hand, for CUB dataset, the approximation
function is f(x) = 0.01 + 0.48

1+25530e−0.47x , and the number of epochs where the following phases
begin is 16 and 28.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figures 7c and 7d show the results for CAML on the miniImageNet and the CUB datasets, re-
spectively. Similarly, we obtain the approximation function for the miniImageNet to be f(x) =
0.06 + 0.56

1+1326e−0.25x . and the number of epochs where the learning phase and the general-
ization phase begin is 18 and 42. Finally, for the CUB dataset, the approximation function is
f(x) = −0.07 + 0.50

1+648e−0.13x , and the number of epochs where the following phases begin is
29 and 74.

Remarkably, CAML requires more training time to reach the generalization phase than CAMeLU.
This difference likely arises from CAMeLU’s task creation mechanism, which generates tasks with
high cross-task variance. This strategy acts as a form of task augmentation, facilitating quicker
generalization to unseen tasks.

A.9 LIMITATIONS

Despite the promising results demonstrated by our novel UML approach on several datasets, some
limitations remain. Its applicability and robustness in real-world scenarios with diverse and noisy
data remain to be thoroughly evaluated. In real-world applications, data can be incomplete, mis-
labeled, or drawn from significantly different distributions, leading to potential degradation in the
model’s performance in the presence of noisy or corrupted data. Additionally, the feature extractor
used in CAMeLU is pre-trained in a supervised manner. While the pre-training dataset is indepen-
dent of the data seen at inference, replacing it with an extractor pre-trained using an SSL strategy
could make the pipeline fully unsupervised, albeit at the price of performance degradation. Lastly,
the proposed approach is designed to handle a fixed number of classes (ways) per task during train-
ing and testing, requiring knowing the value of N in advance. Modifications to the task creation and
training process would be necessary to extend our approach to handle an arbitrary number of ways.

A.10 COMPLETE RESULTS WITH STANDARD DEVIATIONS

Table 12: Performance comparison on miniImageNet, CIFAR-fs, CUB, Aircraft, and Meta-iNat
datasets for 5-way 1-shot and 5-way 5-shot scenarios. Cross-domain approaches are trained using
ImageNet-964 and a ResNet-50 feature extractor. The symbol † indicates results that are affected by
data leakage. The bold font highlights the best performing UML approach for each setting. Results
show the mean and standard deviations across three complete runs of the algorithms. This table
refers to Table 1 in Section 4.3.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

In-Domain
CACTUs-MAML 43.30± 0.29 54.21± 1.00 42.00± 1.47 56.64± 0.49 31.19± 0.37 36.81± 0.68 24.06± 0.78 27.26± 0.04 20.13± 0.44 21.840± 0.14
CACTUs-ProtoNet 48.85± 0.69 62.52± 0.71 50.90± 0.46 64.52± 0.94 33.93± 0.37 44.41± 1.31 26.27± 0.28 30.88± 0.51 27.30± 0.12 29.08± 0.13
UMTRA 39.93± 1.15 50.73± 0.67 32.93± 1.68 46.13± 2.81 27.06± 1.41 36.6± 2.43 22.40± 3.42 31.73± 2.25 28.96± 0.32 37.12± 0.21
Meta-GMVAE 55.38± 0.90† 65.10± 0.64† 52.02± 0.88 64.18± 0.62 33.59± 0.63 39.09± 0.57 24.83± 0.51 27.60± 0.52 34.22± 0.58 40.23± 0.54
PsCo 47.29± 0.41 64.85± 0.38 42.21± 0.46 62.92± 0.44 33.09± 0.44 51.02± 0.42 26.19± 0.30 38.80± 0.38 36.97± 0.39 55.88± 0.41

Cross-Domain
PsCo 67.89± 0.48 90.17± 0.23 53.34± 0.49 76.22± 0.40 43.35± 0.47 70.19± 0.46 29.87± 0.36 38.20± 0.39 46.21± 0.44 70.05± 0.45
CAMeLU 76.51± 0.79 92.14± 0.30 61.79± 0.59 80.43± 0.21 65.52± 0.37 80.35± 0.63 33.17± 0.94 39.11± 1.97 57.27± 0.39 75.45± 0.42

CAML (supervised) 81.75± 0.18 92.31± 0.11 59.44± 0.63 75.27± 0.77 54.63± 1.78 66.81± 3.12 28.92± 0.37 32.06± 0.43 50.86± 0.50 67.07± 0.39

Table 13: Accuracy results obtained training PsCo, BECLR, and CAMeLU with a small-scale
dataset, namely miniImageNet, denoted as (mini) in the table. Results show both in-domain per-
formance (on the test set of miniImageNet) and cross-domain performance on CIFAR-fs, CUB, Air-
craft, and Meta-iNat. The mean and standard deviation across three complete runs of the algorithms.
This table refers to Table 2 in Section 4.5.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

PsCo (mini) 47.29± 0.41 64.85± 0.38 42.21± 0.46 62.92± 0.44 33.09± 0.44 51.02± 0.42 26.19± 0.30 38.80± 0.38 36.97± 0.39 55.88± 0.41
BECLR (mini) 81.04± 1.24 87.88± 0.66 57.05± 1.58 72.82± 0.95 42.47± 1.30 58.03± 1.12 27.48± 0.83 38.46± 0.95 49.87± 1.35 65.05± 1.07
CAMeLU (mini) 75.99± 0.20 90.38± 0.21 61.25± 0.55 78.79± 0.21 60.60± 0.80 74.77± 1.70 31.39± 1.17 36.52± 0.88 55.60± 0.20 72.12± 0.35

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 14: Comparison between CAMeLU and SSL approaches for the 5-way 1-shot and 5-way 5-
shot scenario on miniImageNet, CIFAR-fs, CUB, Aircraft, and Meta-iNat. The symbol † indicates
results that are affected by data leakage. Results show the mean and standard deviations across three
complete runs of the algorithms. This table refers to Table 3 in Section 4.6.

miniImageNet CIFAR-fs CUB Aircraft Meta-iNat

Method 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s 5w1s 5w5s

SimCLR 83.32± 0.23† 94.86± 0.61† 64.52± 0.69 84.36± 0.40 47.35± 0.53 66.87± 0.82 29.36± 0.90 39.99± 0.86 52.44± 0.47 73.19± 0.43
SwAV 74.83± 0.71† 94.96± 0.91† 66.97± 0.15 87.14± 0.10 47.84± 0.31 69.31± 0.01 30.33± 0.31 47.43± 0.11 53.57± 0.82 74.53± 0.92

CAMeLU 76.51± 0.79 92.14± 0.30 61.79± 0.59 80.43± 0.21 65.52± 0.37 80.35± 0.63 33.17± 0.94 39.11± 1.97 57.27± 0.39 75.45± 0.42

25

	Introduction
	Related work
	Proposed approach
	Task creation
	In-context learning method

	Experiments
	Datasets and baselines
	Training details
	Comparative results
	Memorization to generalization phase shift
	Generalization on small-scale datasets
	Comparison with SSL methods

	Conclusion
	Ethics statement and reproducibility guidelines
	Appendix
	Experimental details
	In-context learning analysis
	Multi-dataset training
	Ablation studies - Feature extractor
	Evaluation of the task creation mechanism
	Query samples generation strategy
	Complexity analysis
	Quantitative analysis of learning phases
	Limitations
	Complete results with standard deviations

