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3DQuestion Answering for City Scene Understanding
Anonymous Author(s)

ABSTRACT
3D multimodal question answering (MQA) plays a crucial role in
scene understanding by enabling intelligent agents to comprehend
their surroundings in 3D environments. While existing research has
primarily focused on indoor household tasks and outdoor roadside
autonomous driving tasks, there has been limited exploration of
city-level scene understanding tasks. Furthermore, existing research
faces challenges in understanding city scenes, due to the absence
of spatial semantic information and human-environment interac-
tion information at the city level. To address these challenges, we
investigate 3D MQA from both dataset and method perspectives.
From the dataset perspective, we introduce a novel 3DMQA dataset
namedCity-3DQA for city-level scene understanding, which is the
first dataset to incorporate scene semantic and human-environment
interactive tasks within the city. From the method perspective, we
propose a Scene graph enhanced City-levelUnderstanding method
(Sg-CityU), which utilizes the scene graph to introduce the spatial
semantic. A new benchmark is reported and our proposed Sg-CityU
achieves accuracy of 63.94% and 63.76% in different settings of City-
3DQA. Compared to indoor 3D MQA methods and zero-shot using
advanced large language models (LLMs), Sg-CityU demonstrates
state-of-the-art (SOTA) performance in robustness and generaliza-
tion. Our dataset and code are available on our project website1.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
Scene understanding.

KEYWORDS
multimodal question answering, scene understanding, 3D

1 INTRODUCTION
City scene understanding is a crucial technology for guided tour [40],
autonomous systems [15], and smart city [7]. 3D multimodal ques-
tion answering (MQA) is one of the keymanners of human-environment
interaction to promote city scene understanding [23]. For instance,
people with visual impairment could interact with the electronic
personal assistant (seen as an agent) integrated into wearable smart
glasses, such as Microsoft HoloLens [2] or Apple Vision Pro [1], to
obtain auxiliary scenario information in the situated city by asking
1https://sites.google.com/view/city3dqa/
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Figure 1: Comparison of the City-3DQA with other 3D mul-
timodal question answering (MQA) tasks. The existing re-
search in 3D MQA focuses on the indoor household scene (a)
and outdoor autonomous driving scene (b). However, these
researches lack spatial semantic and city-level interaction
information within the city. City-3DQA (c) is the first dataset
to focus on 3D MQA for outdoor city scene understanding.

questions with city perception from the embedded visual sensors,
shown in Figure 1 (c).

However, existing 3D MQA tasks face challenges in city scene
understanding due to lacking spatial semantic information and city-
level interaction information within the city, such as the location
and the usage of instances. Existing research mainly focuses on
two lines including the 3D MQAs in the indoor household setting
(Fig. 1 (a)) and the 3D MQAs in the outdoor autonomous driving
settings(Fig. 1 (b)). For the former, EQA [10], MP3D-EQA [42], MT-
EQA [48] and EMQA [11] realize MQA-based scene understanding
using images in indoor household scenarios through House3D sim-
ulation environment [43] for navigation tasks. Apart from using im-
ages, there is also 3DMQA research, such as 3DQA [47], ScanQA [4],
CLEvR3D [45], FE-3DGQA [50] and SQA3D [28], which adopt point
cloud for indoor household scene understanding based on the point
cloud environment ScanNet [9]. For the latter, Qian et al. [33] in-
troduce NuScenes-QA in outdoor settings firstly for autonomous
driving using the point cloud. This task focuses on roadside-related
instances including cars and pedestrians, yet it does not consider
other instances in the city such as plantings, buildings, and rivers.
In summary, current 3D MQAs are hard to satisfy city-level scene
understanding for urban activities of humans or agents.

To address these challenges, we explore the task from both the
dataset and method perspectives. From the dataset perspective, we
introduce City-3DQA, the first 3D MQA dataset for outdoor city
scene understanding in Figure 2. We realize data collection includ-
ing City-level Instance Segmentation, Scene Semantic Extraction,
and Question-Answer Pair Construction. Specifically, in City-level

1
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Figure 2: Data Construction Pipeline for City-3DQA. The pipeline consists of threemain stages: City-level Instance Segmentation,
Scene Semantic Extraction, and Question-Answer Pair Construction.

Instance Segmentation, we utilize pre-trained instance segmenta-
tion models to identify city instances. In Scene Semantic Extraction,
we construct the scene semantic information for instances in the
graph structure, including spatial information and semantic in-
formation. The spatial information denotes relationships between
pairs of instances, such as "living building - left - business building".
The semantic information represents instances with attributes, such
as "transportation building - usage - buying tickets". In Question-
Answer Pair Construction, we develop 33 unique question templates
that enable multi-hop reasoning and urban activities, which are
classified into five categories: instance identification, usage inquiry,
relationship questions, spatial comparison, and usage comparison
for the city scene understanding inspired by Gao et al. [13] and Qian
et al. [33]. The LLM leverages these templates in combination with
scene semantic information to produce question-answer pairs. The
human evaluation assesses dataset quality. The City-3DQA dataset
comprises 450k question-answer pairs and 2.5 billion point
clouds across six cities.

From the method perspective, we introduce a Scene graph en-
hanced City-level Understanding method (Sg-CityU) for City-
3DQA. Compared to indoor scene understanding, city-level scene
understanding is limited by sparse semantic information due to
large scales. This leads to challenges associated with long-range
connections and spatial inference during the modeling process [25].
Therefore, Sg-CityU utilizes the scene graph to introduce spatial re-
lationship information among instances. Specifically, for the input
point cloud and the question, Sg-CityU extracts the vision and lan-
guage representation from point clouds and questions respectively.
And then a city-level scene graph is constructed, which is encoded
through graph neural networks [20, 21]. We design the Fusion
Layer to fuse aforementioned scene representations for answering
generation.

Our main contributions can be summarized as follows:

(1) We investigate 3D multimodal question answering (MQA)
to realize city-level scene understanding for urban activities
of humans or agents.

(2) We introduce a novel large-scale dataset named City-3DQA.
To our knowledge, City-3DQA is the first dataset to consider
scene semantic information and city-level interactive tasks.

(3) We provide a baseline method (Sg-CityU), which intro-
duces spatial relationship information through the scene
graph to generate high-quality city-related answers.

(4) A new benchmark is proposed in which evaluations are
conducted with existing MQA methods and LLM-based
zero-shot methods on our City-3DQA. Experimental re-
sults show that our proposed Sg-CityU achieves the best
performance in robustness and generalization, specifically,
63.94% and 63.76% accuracy in sentence-wise and city-wise
settings respectively.

2 RELATEDWORK
2.1 City Scene Understanding
Existing research in city scene understanding primarily concen-
trates on segmentation, reconstruction, and grounding. City seg-
mentation, as explored in works such as Geng et al. [14], Hu et al.
[17], Liao et al. [25], Yang et al. [46], aims to distinguish different
instances within city-level point clouds or meshes for a compre-
hensive understanding of urban environments. City scene recon-
struction, as discussed in Kuang et al. [22], Lin et al. [26], Tang et al.
[37], Zhang et al. [49], seeks to understand the visual information
of each object in city scenes and reconstruct their geometries from
partial observations, such as point clouds from 3D scans. However,
these methods primarily focus on visual representation rather than
language representation and semantic information in city scenes,
which are important for human-environment interaction. Miyan-
ishi et al. [29] introduce CityRefer, which addresses city-level visual
grounding by localizing objects in 3D scenes based on language ex-
pressions. Inspired by these studies, our research aims to tackle this
problem from a multimodal question answering perspective. We
propose the first 3D multimodal question answering dataset, City-
3DQA, for 3D city scene understanding, which integrates language
representation and semantic information.

2.2 3D Multimodal Question Answering
3D Multimodal Question Answering is a novel task within the
field of scene understanding, concentrating on the ability to an-
swer questions about 3D scenes, which are depicted through simu-
lated environments or point clouds [4]. Das et al. [10], Datta et al.
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[11], Wijmans et al. [42], Yu et al. [48] present an embodied ques-
tion answering where the agent must first intelligently navigate to
explore the environment, gather the necessary visual information
through first-person vision, and then respond to the question in a
3D simulated environment. Azuma et al. [4], Etesam et al. [12], Ma
et al. [28], Yan et al. [45], Ye et al. [47], Zhao et al. [50] propose
a series of studies based on the ScanNet dataset [9] that focus on
processing point cloud data from entire 3D indoor scenes to re-
spond to specific textual queries about the environment. However,
these works focus on the indoor household scene and overlook
the outdoor scene. Qian et al. [33] proposes the outdoor 3D mul-
timodal question NuScenes-QA answering benchmark to address
the human-machine interaction in autonomous driving rather than
the city scene understanding. We first introduce City-3DQA, a 3D
question-answering dataset specifically designed for the under-
standing of outdoor city scenes. Unlike the NuScenes-QA which
concentrates on roadside areas, City-3DQA emphasizes the compre-
hension of city landscapes along with their spatial characteristics.
Additionally, it incorporates features related to interaction, such as
usage.

3 PROBLEM DEFINITION
The 3D MQA for city scene understanding is formulated as follows:
given inputs of the point cloud 𝑝 and question 𝑞 about the 3D city
scene, the model aims to output 𝑎 that semantically matches true
answer 𝑎∗ from the answer set A,

𝑎 = argmax
𝑎∈A

P(𝑎 |𝑝,𝑞) . (1)

Understanding city-level scenes is more challenging than indoor
scenes. This is because city scenes have less dense information
over large areas, making it hard to model long-range connections
and spatial relationships [25]. Therefore, we introduce a scene
graph 𝑠𝑔 which contains the relative spatial relationship [44]. The
𝑠𝑔 is composed of nodes and edges, where the nodes represent
instances and the edges represent the spatial relationships between
these instances. We consider a scene-graph-aware joint probability
model for the task using 𝑠𝑔 and decompose Equation 1 into two
parts, given by:

P(𝑎 |𝑝,𝑞) = P(𝑎 |𝑝,𝑞, 𝑠𝑔) × P(𝑠𝑔 |𝑝 ) . (2)

4 CITY-3DQA DATASET
4.1 Data Construction
We develop an automatic pipeline for the construction of the City-
3DQA dataset, as depicted in Figure 2. The City-3DQA dataset is
derived from the 3D city point cloud dataset UrbanBIS [46]. Our
pipeline encompasses three primary components: City-level In-
stance Segmentation, Scene Semantic Extraction, and Question-
Answer Pair Construction.

City-level Instance Segmentation. We use pre-trained in-
stance segmentation [46] for the UrbanBIS dataset and obtain awide
range of city instances including buildings, vehicles, vegetation,
roads, and bridges covering six cities, Qingdao, Wuhu, Longhua,
Yuehai, Lihu, and Yingrenshi. We extract the instance-level label
along with annotations and spatial locations to build the instance
set 𝑆𝐼 = {𝑖, (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) |𝑖 ∈ 𝐼 } from UrbanBIS, where 𝐼 is the instances

from the raw dataset. 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 is the x-axis, y-axis, and z-axis coor-
dinate for each 𝑖 .

Scene Semantic Extraction. We construct the scene seman-
tic information𝐺𝑖 for each instance 𝑖 in the graph structure, which
comprises two components: the spatial information 𝑠𝑝𝑖 and the
semantic information 𝑠𝑒𝑖 in the graph structure. 𝑠𝑝𝑖 contains a se-
ries triples (𝑖, 𝑟𝑠𝑝

𝑖, 𝑗
, 𝑗), where 𝑟𝑠𝑝

𝑖, 𝑗
is the spatial relationship between

the instances (𝑖, 𝑗), where 𝑖 ∈ 𝑆𝐼 , 𝑗 ∈ 𝑆𝐼 . These relationships are
centered around instance 𝑖 and we define counterclockwise as the
positive direction. 𝑅𝑖, 𝑗 are divided via eight relationships: “front”,
“front-right”, “right”, “back-right”, "front-left", "left", "back-left" and
"back", depending on relative instance spatial positions and the
angle between instance 𝑖 and 𝑗 ,

𝜃 = arctan
𝑦 𝑗 − 𝑦𝑖

𝑥 𝑗 − 𝑥𝑖
,

𝑟
𝑠𝑔

𝑖,𝑗
=



front if − 22.5◦ < 𝜃 ≤ 22.5◦

front-right if 22.5◦ < 𝜃 ≤ 67.5◦

right if 67.5◦ < 𝜃 ≤ 112.5◦

back-right if 112.5◦ < 𝜃 ≤ 157.5◦

front-left if − 67.5◦ < 𝜃 ≤ −22.5◦

left if − 112.5◦ < 𝜃 ≤ −67.5◦

back-left if − 157.5◦ < 𝜃 ≤ −112.5◦

back else .

(3)

𝑠𝑒𝑖 are defined as triples (𝑖, 𝑟𝑠𝑒
𝑖
, 𝑣𝑖 ), where 𝑟𝑠𝑒𝑖 and 𝑣𝑖 are the at-

tribute and value for instance 𝑖 respectively. In City-3DQA, we
define 𝑟𝑠𝑒

𝑖
as five attributes including instance label, building cate-

gory label, synonym label, location, and usage label. The instance
label and a detailed building category label are sourced from the
pre-trained instance segmentation method [46]. Drawing inspira-
tion from Henderson et al. [16], we acknowledge the usage label
as an important aspect of urban activities within the city scene. To
enhance the relevance of the City-3DQA datasets to a common lan-
guage and to promote linguistic variety, we integrate synonyms, as
suggested by [35]. The sources for usage descriptions and synonym
labels are knowledge base WikiData [39] and ConceptNet [36].

Question-Answer Pair Construction. To construct the question-
answer pairs automatically, we propose a template-based pipeline
utilizing LLM to transform structured data 𝐺𝑖 into unstructured
language question 𝑞𝑖 and answer 𝑎𝑖 for the instance 𝑖 . In our study,
we formulate two distinct questions using the 𝐺𝑖 within the City-
3DQA framework. The first question aims to extract the tail 𝑗 in
𝑠𝑝𝑖 = {𝑖, 𝑟𝑠𝑝

𝑖, 𝑗
, 𝑗} or the value 𝑣𝑖 in 𝑠𝑒𝑖 = {𝑖, 𝑟𝑠𝑒

𝑖
, 𝑣𝑖 }, to build the an-

swer in the question-answer pair. The second question concentrates
on identifying the edge between the tail and head of a triplet, such
as the relationship 𝑟

𝑠𝑝

𝑖, 𝑗
in 𝑠𝑝𝑖 = {𝑖, 𝑟𝑠𝑝

𝑖, 𝑗
, 𝑗} or the attribute 𝑟𝑠𝑒

𝑖
in

𝑠𝑒𝑖 = {𝑖, 𝑟𝑠𝑒
𝑖
, 𝑣𝑖 }, to formulate the answer in the question-answer

pair.
Building upon the work of Gao et al. [13] and Qian et al. [33], the

City-3DQA dataset is comprised of 33 question templates, which
are categorized into five categories: instance identification, usage
inquiry, relationship questions, spatial comparison, and usage com-
parison. These templates are detailed in the supplementary mate-
rial. The first three categories of templates are designed to evaluate
the presence, quantity, and characteristics of instances within city

3
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Table 1: Comparison between City-3DQA and other 3D MQA datasets. Question-Answer Pairs and Point Clouds denote the
number of question-answer pairs and points.

Dataset Scene Collection Scale Input Modal Question-Answer Pairs Point Clouds
EQA [10] indoor template Room image 1.5k -

MP3D-EQA [42] indoor template Room image 1.1k -
EMQA [11] indoor human Room image 9.7k -
MT-EQA [48] indoor template+human Room image 19k -
3DVQA [12] indoor template Room point cloud 484k 242M
3DQA [47] indoor human Room point cloud 10k 242M
ScanQA [4] indoor auto + human Room point cloud 41k 242M

CLEVR3D [45] indoor template Room point cloud 60.1k 242M
FE-3DGQA [50] indoor human Room point cloud 20k 242M
SQA3D [28] indoor human Room point cloud + image 33.4k 242M

NuScenes-QA [33] outdoor template Roadside point cloud + image 460k 1.4B
City-3DQA (ours) outdoor template + auto + human City point cloud 450k 2.5B

scenes, including their usages and relationships and urban activi-
ties. These templates necessitate straightforward answers and are
categorized as single-hop questions. For example, questions such
as "What is the usage of [instance label]?" and "Where is [instance
label]?" are formulated. To facilitate the construction of these ques-
tions, we employ slots like "[instance label]", "[location]", and "[us-
age]" for completion by LLMs. The last two categories of templates
are designed to evaluate the comparison of instances within city
scenes, including their usages and relationships. These templates
necessitate a multi-hop reasoning step to arrive at the answer and
they are classified into multi-hop questions For instance, inquiries
such as "I want [usage], which I should go, [instance label 1] or [in-
stance label 2] ?" and "Between [instance label 1] and [instance label
2], which is nearest to [instance label]?" are devised. We utilize slots
such as "[instance label 1]" and "[instance label 2]" in the templates
for the comparative analysis of instances in the city.

We design the prompt function 𝑓𝑝𝑟𝑜𝑚𝑝𝑡 (·) which incorporates
slots. The details of the prompt are shown in the supplementary
material. These slots are populated using the input 𝐺𝑖 . We utilize
the ChatGPT API with the gpt-3.5-turbo model. The whole pipeline
can be formulated as below:

(𝑞𝑖 , 𝑎𝑖 ) = 𝑠𝑒𝑎𝑟𝑐ℎ LLM(𝑓𝑝𝑟𝑜𝑚𝑝𝑡 (𝐺𝑖 ) ), (4)

where the search function 𝑠𝑒𝑎𝑟𝑐ℎ(·) could be an argmax function
that searches for the highest-scoring output or sampling that ran-
domly generates outputs following the probability distribution of
the adopted LLM. The prompt engineering 𝑓𝑝𝑟𝑜𝑚𝑝𝑡 (·) is detailed in
the supplementary material. The LLM combination with templates
offers linguistic diversity and improves the quality of the corpus
compared to using templates alone [41]. After the automated gen-
eration of question-answer pairs by LLMs, we conduct the human
evaluation to assess and guarantee the quality and accuracy of the
City-3DQA dataset.

4.2 Data Statistics
In the visionmodal, City-3DQA covers 193 unique city scenes across
six cities including Qingdao, Wuhu, Longhua, Yuehai, Lihu, and
Yingrenshi, incorporating 2.5 billion point clouds. The combined

coverage of these scenes extends over an area of 10.78 square kilo-
meters. The dataset includes information from 3, 370 instances of
various city instances such as buildings, bridges, vehicles, and boats.
The comparison between City-3DQA and other 3D MQA works is
shown in Table 1.

In the language modal, the City-3DQA dataset comprises 450k
question-answer pairs covering five different questions in city scene
understanding including instance identification, usage inquiry, rela-
tionship questions, spatial comparison, and usage comparison. Fig-
ure 3 illustrates the basic statistics of our dataset of language modal.
In Figure 3(a), the distribution of question types in the dataset
is as follows: usage inquiry (5.6%), instance identification (6.3%),
relationship question (35.3%), spatial comparison (32.5%), and us-
age comparison (20.3%). Furthermore, the dataset comprises 47.2%
single-hop questions and 52.8% multi-hop questions. Figure 3(b)
demonstrates that the lengths of our questions vary significantly,
ranging from five to twenty-five words. Figure 3(c) presents a visu-
alization of the extensive vocabulary employed in the questions of
our dataset.

5 METHOD
We propose a framework to model Equation 2, named Sg-CityU
(Scene graph enhanced City-level Understanding) method shown
in Figure 4 (a). Sg-CityU model consists of Multimodal Encoder,
Fusion Layer, and Answer Layer.

5.1 Multimodal Encoder
We use the input point cloud 𝑝 consisting of point coordinates
𝑐 ∈ R3 in the 3D space for 3D representation. Following previous
3D and language research, we use additional point features such
as the height of the point, colors, and normals [4, 8]. Sg-CityU
detects objects in the scene based on point cloud features using
VoteNet [31], which uses PointNet++ [32] as a backbone network.
We get object proposals from VoteNet for the instances and the
whole scan and project them through the multi-layer perceptron
(MLP) to obtain the object proposal representation,

𝐹𝑝 = MLP(VoteNet(𝑖𝑝 ) ), (5)
4
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Figure 3: The statistical distributions of questions within the City-3DQA dataset are presented. The question length means
the number of words in the question sentence. Multi and Single mean the multi-hop questions and single-hop questions
respectively.

where 𝐹𝑝 ∈ R𝑑𝑖𝑚×𝑁 and 𝑖𝑝 is the point cloud for the instances.
𝑑𝑖𝑚 represents the hidden size of representation, and 𝑛 indicates
the number of proposals. A question sentence 𝑞 is fed to the pre-
trained language model encoder BERT [19] and MLP to calculate
the question features 𝐹𝑞 ∈ R𝑑𝑖𝑚 ,

𝐹𝑞 = MLP(BERT(𝑞) ) . (6)

We construct the 𝑠𝑔 based on 𝑖𝑝 to introduce spatial relation-
ship among 𝑖𝑝 . The 𝑠𝑔 comprises nodes, which represent instances,
and edges, which denote the spatial relationships between these in-
stances. The relationships are divided and defined as Equation 3. We
encode 𝑠𝑔 through𝑛-layers graph convolutional networks (GCN) [21]
and output the representation 𝐹𝑠𝑔 ∈ R𝑑𝑖𝑚×𝑁 ,

𝑠𝑔𝑚+1 = GCN𝑚 (𝑠𝑔𝑚 ),
𝐹𝑠𝑔 = MLP(𝑠𝑔𝑚+1 ),

(7)

where 𝐺𝐶𝑁𝑚 is the learnable GCNs at the𝑚-th layer, and 𝐹𝑠𝑔 is
the feature of the node after encoding by𝑚-th GCN layer. Inspired
by language model type condition [24], we initialize 𝑠𝑔0 with the
word embeddings of the nodes and edges.

5.2 Fusion Layer
In the Fusion Layer, we design the multimodal fusion network
(MMFN) for the different inputs as shown in Figure 4 (b). Specifically,
MMFN consists of self-attention and cross-attention and takes 𝐹𝑝 ,
𝐹𝑞 , 𝐹𝑠𝑔 as input,

𝐹𝑞 = Self-Attention(𝐹𝑞 ),
𝐹𝑝 = Self-Attention(𝐹𝑝 ),
𝐹𝑝 = Cross-Attention(𝐹𝑝 , 𝐹𝑞 ),
𝐹𝑠𝑔 = Self-Attention(𝐹𝑠𝑔 ),
𝐹𝑠𝑔 = Cross-Attention(𝐹𝑝 , 𝐹𝑠𝑔 ),

(8)

We perform the fusion multimodal features through the Fusion
Layers consisting of 𝑙-th MMFN layer cascaded in depth,

𝐹 𝑙𝑝 , 𝐹
𝑙
𝑞, 𝐹

𝑙
𝑠𝑔 = MMFN𝑙 (𝐹 𝑙−1𝑝 , 𝐹 𝑙−1𝑞 , 𝐹 𝑙−1𝑠𝑔 ), (9)

For MMFN0, we set its input features 𝐹 0𝑝 = 𝐹𝑝 , 𝐹 0𝑞 = 𝐹𝑞 , 𝐹 0𝑠𝑔 = 𝐹𝑠𝑔 ,
respectively.

Table 2: Different split in City-3DQA. It denotes the number
of question-answer pairs and cities in different set in the
split mode.

Split train val test
Single Multi All Single Multi All Single Multi All

Sentence-wise 173k 136k 310k 34k 44k 78k 35k 26k 61k
City-wise 176k 133k 310k 37k 41k 78k 35k 26k 61k

5.3 Answer Layer
We map the fused features to the answer set A that matches the
true answer for answer prediction with MLP,

𝐹𝑓 = MLP(Concat(𝐹 𝑙𝑝 , 𝐹 𝑙𝑞, 𝐹 𝑙𝑠𝑔 ) ), (10)

where Concat(·) is the concatenation and 𝐹𝑓 ∈ R𝑑𝑖𝑚𝐴×𝑑𝑖𝑚 , 𝑑𝑖𝑚𝐴

is the dimension of the answer set A. To consider multiple answers,
we compute final scores with the cross-entropy (CE) loss function
to train the module.

6 EXPERIMENT
6.1 Implementation Details
Data Organization. To train and evaluate our proposed mod-
els, we split our City-3DQA dataset using two different modes:
sentence-wise and city-wise. In the city-wise split, we categorize
the examples by city. This results in four cities (Longhua, Wuhu,
Qingdao, Yingrenshi) being allocated to the training set, one city
(Lihu) to the validation set, and one city (Yuehai) to the test set. For
the sentence-wise split, we divide the 450K question-answer pairs
in City-3DQA into training, validation, and test sets with the same
ratio as the city-wise split respectively and each set contains the six
cities. The distribution of examples in each set, according to these
splits, is detailed in Table 2.
Training Details. We employ the Adam optimizer with weight
decay 5𝑒−4, a learning rate of 1𝑒−3, and a batch size of 50 during
the training stage. Experiments are implemented with CUDA 11.2
and PyTorch 1.7.1 and run on an NVIDIA RTX A6000.
Metrics. We adopt the Top-1 accuracy (Top@1) and Top-10 accu-
racy (Top@10) as our evaluation metric, following the practice of
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Figure 4: The framework of our proposed model Sg-CityU (a) and Fusion Layer in Sg-CityU (b). In Sg-CityU, the question,
scene graph, and point clouds are processed by the feature extraction backbone to obtain multimodal features. Finally, the
multimodal features are fed into Fusion Layer and Answer Layer for answer generation. In Fusion Layer, we build layers of
multimodal fusion network (MMFN) based on self-attention and cross-attention to fuse different model inputs.

many other MQA methods [3, 4], and evaluate the performance of
different question types separately.
Baselines. We design two categories of baselines for comparison
in City-3DQA:

• General LLMs. We utilize LLM as baselines into two
types: multimodal LLM utilizing 2D images and LLM utiliz-
ing scene graphs as input. For the former, we convert the
input point clouds into 2D images. This process ensures
alignment with the requirements of multimodal LLMs using
2D image input following Ma et al. [28]. Our selected base-
lines for this category include Qwen-VL [6], and LLaVA [27].
For the latter, we construct the scene graph from each city
scene and we organize these scene graphs in language. Our
selected baselines for this category include Qwen [5], and
Llama-2 [38]. LLMs generate answers based on the ques-
tions and input and we select the most similar answers
from answer spaces A based on the BERT score [34]. The
prompt engineering used in LLM evaluation is detailed in
supplementary material.
• Indoor Models.We choose the baseline models ScanQA,
CLIP-Guided, 3D-VLP, and the state-of-the-art (SOTA)model
3D-VisTA using in indoor 3DMQA datasets ScanQA [4] and
transfer it from indoor setting into outdoor setting. These
models take point cloud as input and our model Sg-CityU
takes point cloud and scene graph as input.

6.2 Results Analysis
6.2.1 Comparison with General LLMs. We compare our pro-
posed models with the LLMs in zero-shot setting in Table 3 and
our proposed model Sg-CityU outperforms in all metrics. For mul-
timodal LLM using the projection image as input, Qwen-VL [6]
demonstrates the acc@1 of 18.81% and 19.75% across all sets for
sentence-wise and city-wise evaluation, respectively. Furthermore,
it achieves the acc@10 of 63.86% and 63.71% in the same respec-
tive categories. On the other hand, LLaVA [27] attains an acc@1

of 20.60% and 20.56% for sentence-wise and city-wise evaluation,
respectively, and an acc@10 of 67.37% and 67.02% in the corre-
sponding test sets. Compared to the best results in multimodal LLM,
Sg-CityU achieves more than 3.1 times improvement in sentence-
wise (20.60% → 63.94%) and city-wise (20.56% → 63.76%) in acc@1
and 1.4 times improvements in sentence-wise (67.37% → 98.81%)
and city-wise (67.02% → 98.68%) in acc@10. We attribute the poor
performance of multimodal LLM to two points. First, in the zero-
shot setting of multimodal LLMs, there is a lack of parameters to
bridge the domain gap between the pre-trained domain and the
City-3DQA domain through fine-tuning. Second, the projection
image fails to accurately represent the city scene in point cloud.

For LLM using the scene graph as input, Qwen [5] achieves
30.35% and 31.31% of acc@1 in sentence-wise and city-wise, 73.84%
and 75.26% of acc@10 in sentence-wise and city-wise. Llama-2 [38]
achieves 37.66% and 38.37% of acc@1 in sentence-wise and city-
wise, 80.02% and 79.34% of acc@10 in sentence-wise and city-wise.
Compared to multimodal LLMs, LLMs with scene graphs achieve
better performance and we attribute it to the LLM generalization
performance in the language. Compared to the best results in
LLM, Sg-CityU achieves more than 20% points improvement in
sentence-wise (37.66% → 63.94%) and city-wise (38.37% → 63.76%)
in acc@1 and over 10% points improvements in sentence-wise
(80.02% → 98.81%) and city-wise (79.34% → 98.68%) in acc@10.
The suboptimal performance of LLMs can be attributed to two
points. First, due to the context window length restriction, the
language input based on the scene graph can only cover part repre-
sentation, constraining the understanding of the city-level scene. In
a city scene comprising 𝑛 instances, the corresponding scene graph
contains 𝑛 (𝑛+1)

2 triples. The context windows of Llama-2 and Qwen
are 4𝑘 and over 25% input sentences with scene graphs are over
the the window sizes. Second, LLMs overlook the visual features
present in city scenes, which are beneficial for the performance of
3D MQA tasks.
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Table 3: The comparison between our model and different methods. We compare eight different methods with Sg-CityU and
Sg-CityU achieves the best score in all metrics compared to the methods. The scene graphs are organized as language.

Category Models Input
Sentence-wise City-wise

Single-hop Multi-hop All Single-hop Multi-hop All
acc@1 acc@10 acc@1 acc@10 acc@1 acc@10 acc@1 acc@10 acc@1 acc@10 acc@1 acc@10

General
LLMs

Qwen-VL [6] Image 30.53 70.85 9.76 58.45 18.81 63.86 30.79 71.07 9.78 57.07 19.75 63.71
LLaVA [27] Image 33.93 77.02 10.33 59.92 20.60 67.37 32.56 76.94 9.84 58.07 20.56 67.02
Qwen [5] Scene Graph 55.25 85.41 11.21 63.48 30.35 73.84 55.40 85.49 12.59 66.35 31.31 75.26

Llama-2 [38] Scene Graph 60.51 86.34 20.00 75.13 37.66 80.02 60.03 86.18 18.82 73.17 38.37 79.34

Indoor
Models

ScanQA [4] Point Cloud 76.42 90.75 28.31 86.46 49.28 88.34 64.84 88.73 27.03 84.37 47.33 86.45
CLIP-Guided [30] Point Cloud 74.54 98.49 33.73 97.54 51.55 98.38 63.05 98.35 32.41 97.12 46.94 98.00

3D-VLP [18] Point Cloud 72.78 98.55 35.54 97.76 51.72 98.40 64.03 98.42 34.95 97.19 48.74 98.33
3D-VisTA [51] Point Cloud 79.23 98.52 44.67 97.85 59.63 98.37 71.28 98.47 43.87 97.56 56.74 98.48

Sg-CityU (ours) Point Cloud + Scene Graph 80.95 98.86 50.75 98.66 63.94 98.81 78.46 98.76 50.50 98.45 63.76 98.68

6.2.2 Comparison with Indoor Models. We conduct the com-
parative experiments between Sg-CityU and models in indoor set-
tings shown in Table 3. For SOTA model 3D-VisTA [4] in the indoor
setting, Sg-CityU achieves 4.31% points improvement in sentence-
wise (59.63% → 63.94%) and 7.02% points improvement city-wise
(56.74% → 63.76%) in acc@1 and 0.44% points improvements in
sentence-wise (98.37% → 98.81%) and 0.20% points improvements
city-wise (98.48% → 98.68%) in acc@10. Compared to indoor MQA
models, the efficiency of Sg-CityU is attributed to the scene graph,
which offers a semantic and spatial representation of city-level
outdoor scenes. This representation features sparse instances that
encompass a wide range of city-level scenes.

To evaluate the generalization and robustness of indoor models
and Sg-CityU in diverse city scenes, our research includes a com-
parative analysis of their performance across different cities. In this
study, we assess the performance of the models used in indoor set-
tings and Sg-CityU models under two different settings: city-wise
and sentence-wise. In the city-wise evaluation, ScanQA achieves an
accuracy of 47.33% for acc@1 and 86.45% for acc@10. These figures
represent a decline in performance compared to the sentence-wise
setting, where acc@1 decreases by 1.95% (49.28% → 47.33%) and
acc@10 decreases by 1.89% (88.34% → 86.45%). Similar trends
are observed in other indoor MQA models, with CLIP-Guided
experiencing a decrease of 4.61% (51.55% → 46.94%), 3D-VLP a
decrease of 2.98% (51.72% → 48.74%), and 3D-VisTA a decrease
of 2.89% (59.63% → 56.74%). In contrast, Sg-CityU shows a de-
cline of 0.18% in acc@1 (63.94% → 63.76%) and 0.13% in acc@10
(98.81% → 98.68%) when comparing the city-wise to the sentence-
wise setting. These results show that our model exhibits general-
ization and robustness capabilities across diverse city-level scenes
compared to the indoor models.

6.2.3 Comparison in Multi-hopQuestions. We conduct exper-
iments on both multi-hop and single-hop questions, comparing the
performance of baseline models and the proposed Sg-CityU model,
as presented in Table 3. Our findings show that the multimodal
LLMs with image input exhibit suboptimal performance in multi-
hop questions, with an acc@1 of 10.33% and 9.84% in sentence-wise
and city-wise evaluations, respectively, for LLaVA, and 9.76% and
9.78% for Qwen-VL. LLMs utilizing scene graphs demonstrate su-
perior performance, with Qwen achieving 11.21% and 12.59% in
sentence-wise and city-wise evaluations, respectively, and Llama-2

achieving 20.00% and 18.82%. However, supervised models achieve
better performances. In multi-hop questions, ScanQA achieves
8.31% (20.00% → 28.31%) improvements in sentence-wise and 8.21%
(18.82% → 27.03%) improvements in city-wise compared to the
best performance of general LLM. CLIP-Guided shows a 13.73%
(20.00% → 33.73%) improvement in sentence-wise accuracy and a
13.59% (18.82% → 32.41%) improvement in city-wise accuracy. 3D-
VLP achieves a 15.54% (20.00% → 35.54%) improvement in sentence-
wise accuracy and a 16.13% (18.82% → 34.95%) improvement in
city-wise accuracy. 3D-VisTA exhibits a 24.67% (20.00% → 44.67%)
improvement in sentence-wise accuracy and a 25.05% (18.82% →
43.87%) improvement in city-wise accuracy. Similarly, our model
Sg-CityU achieves an improvement of 30.75% (20.00% → 50.75%)
in sentence-wise accuracy and 31.68% (18.82% → 50.50%) in city-
wise accuracy compared to the best performance of general LLMs.
We attribute this limitation to the domain gap between the train-
ing datasets of LLMs and the requirements for understanding city
scenes. Therefore, LLMs cannot comprehend visual features in point
clouds and the scene graph at the city level.

6.2.4 Ablation Study in Sg-CityU. We conduct an ablation study
to evaluate the effect of the scene graph on the performance of our
proposed method Sg-CityU, as detailed in Table 4. When employ-
ing the scene graph as the input alone, Sg-CityU achieves 31.48%
and 29.00% of acc@1 in sentence-wise and city-wise, 96.45% and
95.77% of acc@10 in sentence-wise and city-wise. These results
indicate that Sg-CityU relying on the scene graph alone as input
can not yield optimal performance and we attribute the absence
of visual features. When utilizing the point cloud as the input
alone, Sg-CityU achieves 52.25% and 49.01% of acc@1 in sentence-
wise and city-wise, 98.07% and 97.40% of acc@10 in sentence-wise
and city-wise. When employing the scene graph as assistance,
Sg-CityU achieves 11.69% points improvement in sentence-wise
(52.25% → 63.94%) and 14.75% points improvement city-wise
(49.01% → 63.76%) in acc@1 and 0.61% points improvements
in sentence-wise (98.07% → 98.68%) and 1.41% points improve-
ments city-wise (97.40% → 98.81%) in acc@10. Incorporating scene
graphs into the framework can enhance the performance of our
proposed method Sg-CityU in City-3DQA tasks. This improvement
is achieved by providing a more structured representation of city-
level scenes, which facilitates an understanding of the spatial and
semantic relationships between various instances.
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Figure 5: Visualization of examples. We compare and visualize the answer generated by Qwen-VL, Llama-2 and Sg-CityU. We
visualize the city scene with the instance label and scene graph (sg).! and%mean the correct answer and wrong answer
respectively.

Table 4: Ablation study on the input modal of Sg-CityU. This
study specifically examines the effects of removing the point
cloud and scene graph inputs while retaining the question
input.

Input Sentence-wise City-wise
Question Scene Graph Point Cloud acc@1 acc@10 acc@1 acc@10

! % ! 52.25 98.07 49.01 97.40
! ! % 31.48 96.45 29.00 95.77
! ! ! 63.94 98.68 63.76 98.81

6.3 Visualization and Case Study
We randomly select the cases and visualize them in Figure 5. In each
case, we present the following components: the posed question,
the scene with instance labels, and the corresponding scene graph.
We compare the answers generated by three different models: the
language-only LLM (Llama-2), the multimodal LLM (Qwen-VL),
and the Sg-CityU model trained sentence-wise.

InCase (a), we present the question, "Howmany boats are there?"
Qwen-VL produces inaccurate answers due to a domain gap be-
tween its training datasets, which consist of 2D images sourced
from the Internet, and the 3D point cloud images it encounters in
the application. This gap leads to hallucinated answers. In contrast,
Llama-2 based on the scene graph and Sg-CityU comprehends this
city scene. In Case (b), we pose the question, "I am in the cultural
building. Which one is nearest, the office building or commercial
building?" Both Qwen-VL and Llama-2 generate incorrect answers.
We attribute this to the deficiency in the LLM’s understanding
of geographic scale information within the visual features. Scene

graphs used in LLMs lack information regarding the distances be-
tween instances, leading to hallucinated answers. In Case (c), we
investigate the query, "How many residential buildings are located to
the left of the municipal building?". Llama-2 generates accurate re-
sponses, whereas Qwen-VL generates incorrect ones. We attribute
it to the fact that LLMs based on scene graphs can leverage the
relative spatial position within a scene graph for specific instances.
In contrast, multimodal LLMs cannot comprehend the concept of
"left" within the city scene using projection 2D images. In Case
(d), we pose the question, "How many buildings can provide a living
space in this area? " Qwen-VL can detect the curved building as a
residential building however, it can not detect the other dense and
small residential buildings, leading to incorrect answers.

7 CONCLUSION
In this work, we investigate the 3D multimodal question answering
(MQA) task for city scene understanding from both dataset and
method perspectives. Firstly, we introduce a large-scale dataset,
City-3DQA, designed to encompass a wide range of urban activ-
ities, facilitating enhanced comprehension at the city level. Sec-
ondly, a scene graph enhanced city scene understanding method
Sg-CityU is proposed to deal with the long-range connections and
spatial inference challenges in city-level scene understanding. Ex-
periments show that our proposed method outperforms the indoor
MQA models and the large language models, showing robustness
and generalization across different cities. To our knowledge, we are
the first to explore the 3D MQA task for the city scene understand-
ing in both the dataset and method aspects, which can promote the
development of human-environment interaction within cities.
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