
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT GRADIENT-BASED ALGORITHM FOR TRAIN-
ING DEEP LEARNING MODELS WITH MANY NONLIN-
EAR ACTIVATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

This research paper presents a novel algorithm for training deep neural networks
with many nonlinear layers (e.g., 30). The method is based on backpropagation of
an approximated gradient, averaged over the range of a weight update. Unlike the
gradient, the average gradient of a loss function is proven within this research to
provide more accurate information on the change in loss caused by the associated
parameter update of a model. Therefore, it may be utilized to improve learning. In
our implementation, the efficiently approximated average gradient is paired with
RMSProp and compared to the typical gradient-based approach. For the tested deep
model with numerous stacked fully-connected layers featuring nonlinear activations
on MNIST and Fashion MNIST, the presented algorithm: (a) generalizes better,
at least in a reasonable epoch count, (b) in the case of optimal implementation,
learning would require less computation time than the gradient-based RMSProp,
with the memory requirement of the Adam optimizer, (c) performs well on a
broader range of learning rates, therefore it may bring time and energy savings
from reduced hyperparameter searches, (d) improves sample efficiency about
three times according to median training losses. On the other hand, for a deep
sequential convolutional model trained on the IMDB dataset, sample efficiency is
improved by about 55%. However, in the case of the tested shallow model, the
method performs approximately the same as the gradient-based RMSProp in terms
of both training and test loss. The source code is provided at [...].

1 INTRODUCTION

1.1 AVERAGE GRADIENT

In this research, we focus on solving deep learning problems by calculating the precise influence
of potential updates on the loss for each model parameter separately. Our goal is to obtain more
precise information about the influence of each parameter on loss than what the gradient provides.
Each potential update of a model parameter influences the locally-optimal direction of other model
parameters during the same weight update, highlighting the complexity of the problem. The average
gradient (defined in Appendix A), unlike the gradient, stores the accurate contribution of each model
parameter to the loss delta related to a given weight update (Fig. 1; Eq. 14). Therefore, the average
gradient can be utilized to efficiently minimize the loss. In this research, we propose a very fast
algorithm to approximate the average gradient. We prove its approximation accuracy, validate the
proof using our handcrafted metric to compare batch-loss minimization efficiency between methods,
and test our method on various domains and models. Our algorithm in its current form primarily
targets very deep models with many nonlinear layers.

Due to the tendency to increase model depth along with its width (Tan & Le, 2019) and the popularity
of certain nonlinear activation functions, our approach may offer insights for future improvements in
practical deep learning. Our primary target is to significantly improve sample efficiency, even at the
cost of a moderate increase in computation time, which is essential for practical applications in fields
like deep reinforcement learning or reinforcement learning from human feedback (Kirk et al., 2023).
These methods have been used in popular chatbots, such as OpenAI’s ChatGPT (OpenAI, 2023) and
Anthropic’s Claude (Kirk et al., 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Example 1. The average gradient suggests a differ-
ent direction for updating a particular parameter.

(b) Example 2. If the average gradient decreases in the
same direction as the gradient, it additionally provides
more information about the loss landscape.

Figure 1: Comparison of Gradient and Average Gradient. The latter accurately reflects the influence
of a parameter update on loss (as described by Equation 3, under the assumptions that f represents
the visualized loss function, with x and x′ denoting the parameter values before and after an update,
respectively). The plots refer to a simple case with only one parameter of the model. However,
they can also be understood to present the loss contribution of a parameter during a weight update
involving multiple model parameters. Appendix F presents visualizations involving two parameters.

1.2 GRADIENT OPTIMIZATION AND AVERAGING

Gradient optimization dominates deep learning with optimizers like Stochastic Gradient Descent (Liu
et al., 2020), RMSProp (Tieleman et al., 2012), Adam (Kingma & Ba, 2014) or Nadam (Dozat, 2016).
The leading algorithms for training do not change frequently over the years. However, our algorithm
or its variants may be used along with first-order optimizers.

Gradient averaging is commonly used in machine learning, but in a distinct scenario than in our
approach. Momentum is the running average of gradients over subsequent batches (Liu et al., 2020;
Kingma & Ba, 2014; Dozat, 2016). It prevents falling into local minimums and may accelerate
learning. Similarly, averaging model parameters may improve convergence and learning speed
(Ruppert, 1988; Polyak & Juditsky, 1992; Merity et al., 2017; Wei et al., 2023; Sun et al., 2010),
though it requires a significant amount of memory. The technique can be described as averaging
a function of gradients, as the averaged model parameters over subsequent updates depend on the
gradient values.

Accumulating gradients over a batch is inherent in machine learning. In practice, it is equivalent
to averaging gradients computed for multiple inputs. However, this approach alone does not take
into account the information about a parameter update (Fig. 1), which remains unknown during its
computation. Consequently, it does not guarantee the accuracy of computing the influence of the
unknown parameter update on the loss. Nevertheless, batching remains fully compatible with our
method and is employed in our implementation.

Our approach is more closely related to some second-order optimization methods (Tan & Lim, 2019)
rather than momentum-based or parameter-averaging techniques. This is due to the utilization of
information about the curvature of a loss function during each parameter update (Fig. 1). Recently,
one of the most popular algorithms for second-order optimization of neural networks is L-BFGS
(Berahas et al., 2016). However, the current methods in this field are impractical for training large
models due to their computational inefficiency or substantial memory requirements.

The integrated gradient, closely related to the average gradient, is used in some neural-network
explainability techniques (Sundararajan et al., 2017; Khorram et al., 2021; Sattarzadeh et al., 2021).
However, the approximation algorithms for the integral of the gradient used in the literature are very
inefficient to compute for every parameter update of a model due to the calculation of the Riemann
sum (Hughes-Hallett et al., 2021).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 METHODS

2.1 ALGORITHM

All of the best and most popular optimizers for training large neural networks rely on the gradient.
Consequently, they explicitly ignore how loss function in terms of model parameters behaves in the
range between before and after a potential weight update (Fig. 1). The definition of the gradient
implies, that it reflects the accurate influence on loss only for learning rates approaching to zero,
which does not hold in practice. Consequently, gradient-based optimizers do not calculate the accurate
influence on loss of a potential weight update, which may significantly slow down the learning of very
deep models with many nonlinear operators, as our experiments show. The average gradient solves
the described problem. Our algorithm efficiently approximates the average gradient, providing more
reliable information on the update direction that minimizes the loss. The average gradient (contrary
to the gradient) is directly proportional to the loss delta (Fig. 1; Equation 14 in Appendix B), hence it
accurately describes the influence on loss of a parameter delta.

In our algorithm, given a sequential model, the average gradient is approximated and propagated
according to the equation proven in Appendix B:

AVG
θk
∇θkℓ

∼= AVG
θk

∂xk

∂θk
· AVG

xk

∂xk+1

∂xk
· . . . · AVG

xn−1

∂xn

∂xn−1
· AVG

xn

∇xn
ℓ (1)

where ℓ is a loss function, θk are parameters of a layer no. i and (xk,xk+1, . . . ,xn) are inputs and
outputs of subsequent layers of a neural network. The notation∇xf refers to the gradient of some
function f for an argument x, and ∂f

∂x denotes the Jacobian. The average operator AVG of gradients
or Jacobians is defined in Appendix A and aligns with intuition. The averages are aggregated with
respect to the parameters of a model (θk) or the outputs of subsequent layers (xk,xk+1, . . . ,xn). The
average gradients are propagated in the same manner as the gradients in the standard backpropagation
algorithm. The computation based on Equation 1 is fast and memory efficient because the procedure
is similar to the standard backpropagation of gradients, which is done according to:

∇θkℓ =
∂xk

∂θk
· ∂xk+1

∂xk
· . . . · ∂xn

∂xn−1
· ∇xnℓ (2)

The version of our algorithm that consists of two iterations (Algorithm 1) first performs the standard
backpropagation (Equation 2) through layer outputs x, and model parameters θ along with parameter
update of an optimizer (in the experiments it is RMSProp) to new weight values θ′. Then it is assumed
that the absolute value of the parameter delta |θ − θ′| of the RMSProp optimizer is good enough to
retain it. The second backpropagation is performed for eventual negations of update directions only,
where, conversely, the average gradient is propagated (Algorithm 2). Importantly, the range on which
the gradient is averaged equals [θ, θ′] (between parameters before and after the estimated potential
update; Algorithm 3). The average derivatives of each nonlinear activation are calculated as follows:

AVG
t∈[x,x′]

f ′(t) =

∫ x′

x
f ′(t)dt

x′ − x
=

f(x′)− f(x)

x′ − x
(3)

where f means an activation function (in the experiments it is either ELU or Tanh activation), x means
an input scalar assuming forward propagation using the θ weights, and x′ means the corresponding
input number assuming forward pass for the θ′. The equation is the one-dimensional analogy of the
average gradient and the Jacobian, both of which are defined in Appendix A.

In the case of applying an activation function f : R → R, or f : Rn → Rn, to a layer output
x = ⟨x1, x2, ..., xn⟩ (assuming parameters θ), which changes to x′ = ⟨x′

1, x
′
2, ..., x

′
n⟩ during the

forward pass with updated parameters θ′:

AVG
t∈[x,x′]

∂f

∂t
= diag(⟨ AVG

t1∈[x1,x′
1]
f ′(t1), AVG

t2∈[x2,x′
2]
f ′(t2), . . . , AVG

tn∈[xn,x′
n]
f ′(tn)⟩) (4)

where each term AVG(·) f ′(·) is defined in Equation 3.

Let us define a typical layer, denoted as k, which is parameterized by θk. This layer could be a
convolutional layer, a fully-connected layer, or another operator that is linear over all or most of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

its domain. Let us assume that the layer no. k outputs yk, which is then passed to an activation fk.
Consequently each part of Equation 1 can be approximated as:

AVGxk

∂xk+1

∂xk
= AVGxk

∂fk
∂xk

∼= AVGxk

∂yk

∂xk
· AVGt∈[yk,y′

k]
∂f
∂t

AVGθk
∂xk+1

∂θk
= AVGθk

∂fk
∂θk
∼= AVGθk

∂yk

∂θk
· AVGt∈[yk,y′

k]
∂f
∂t

(5)

where the approximation, instead of equality, is the consequence of chaining averages of Jacobians,
which can be proven analogously to Equation 1 (see Appendix B). The average operator AVG of
Jacobians is defined in Appendix A. AVGt∈[yk+1,y′

k+1]
∂f
∂t is defined in Equation 4. Generally, the

vast majority of applied neural network operators are either nonlinear activations or linear functions
in by far most of their domains (e.g., max pooling, convolution, fully connected, or ReLU). In the
case of the nonlinear activations, equations no. 3 and 4 are used to compute the average Jacobians.
For linear transformations, such as yk(xk) and yk(θk), the average gradients and Jacobians are easy
and fast to compute. However, for implementation simplicity and a slight speedup of computations,
broader estimates of the average Jacobians from Equation 5 are applied:

AVGxk

∂xk+1

∂xk
= AVGxk

∂fk
∂xk

∼= ∂yk

∂xk
· AVGt∈[yk,y′

k]
∂f
∂t

AVGθk
∂xk+1

∂θk
= AVGθk

∂fk
∂θk
∼= ∂yk

∂θk
· AVGt∈[yk,y′

k]
∂f
∂t

(6)

which use the non-averaged Jacobian ∂yk

∂xk
. Therefore, intuitively, the broad estimation

of AVGxk

∂xk+1

∂xk
is approximately between ∂xk+1

∂xk
and AVGxk

∂xk+1

∂xk
, and analogously for

AVGθk
∂xk+1

∂θk
.

Algorithm 1 Simplified algorithm version for 2 iterations. Back and forward propagation would
be called two times in optimal implementation, where memory requirement would be the same as
for Adam optimizer. Over the whole paper, we refer to the optimal implementation as the one that
minimizes recomputations, avoids costly statistics during training, and is machine-code optimized
to the same extent as optimizers from mainstream libraries. The lines marked as redundant within
comments in curly brackets are unnecessary for the optimal operation of the below pseudocode.

Input: model: Neural Network Model
dataset: Training Dataset
lossFn: Loss Function
optimizer: Optimizer

for all batch ∈ dataset do
modelOutput ← model(batch.x) {It is assumed that model’s layers’ results are kept inside
model}
modelLoss← LossFn(modelOutput, batch.y)
modelCopy ← model {Copy model}
modelCopyOutput← modelCopy(batch.x) {This inference is redundant if modelCopy gets
also intermediate layers’ results copied}
modelCopyLoss← LossFn(modelCopyOutput, batch.y) {This computation is also redun-
dant, since it is the same as modelLoss}
Backpropagate(modelCopyLoss) {Compute the gradients using the standard backpropaga-
tion procedure. Assume that the gradients are stored inside modelCopy}
optimizer.Step(modelCopy) {Perform weight update on modelCopy (using the gradients
stored inside modelCopy)}
modelCopy(batch.x) {Execute inference to store new layer-wise results in modelCopy}
AveragedBackpropagation(model,modelCopy,modelLoss) {The procedure is de-
scribed as Algorithm 2. The parameters of the model are modified within}

end for

An algorithm version with n backpropagation iterations computes (n− 1) times the approximated
gradient average, each time based on the previous. The intuition behind this is that a better estimate
of the averaged derivatives of nonlinear activations is computed after every iteration (Equation 3;
backpropagated according to equations no. 4, 6 and 1). Consequently, each time a more precise
estimate of the optimal parameter update (∆θ)∗ is obtained (where optimality means that the average
gradient is accurately estimated and the parameter update is compliant with it). Therefore, once again

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 2 Averaged Backpropagation Algorithm calculates the approximation of the average
gradient.

procedure AVERAGEDBACKPROPAGATION(
model: Neural Network Model
modelAfterUpdate: model After Candidate Update of

Parameters
modelLoss: model’s Loss)
Backpropagate(modelLoss,
model.Layers.Last().Output) {Compute the gradient of modelLoss in terms of the last

layer’s output. Let us assume that the gradient is assigned to the grad property of the output
variable (model.Layers.Last().Output)}
for index← (Count(model.Layers)− 1) to 0 do
θ = model.Layers[index].θ {To simplify notation}
if IsNonlinear(model.Layers[index]) then {Calculation of either the gradient or its aver-
age, which corresponds to the terms in Equation 6}
BackpropagateThroughNonlinearLayer(model.Layers[index].Output,
model.Layers[index].Input,modelAfterUpdate.Layers[index].Output,
modelAfterUpdate.Layers[index].Input) {Procedure described as Algorithm 3. Let

us assume that activations are separate layers (like in equations no. 4 and 6)}
else
Backpropagate(model.Layers[index].Output,model.Layers[index].Input) {The typ-
ical backpropagation procedure. It propagates the gradient through a layer. Let us assume
that the gradient is assigned to the grad property of the input variable}
θ.averagedGrad← θ.grad {In this case, for a linear layer, the gradient is treated as its
average (compare equations no. 6 and 5)}

end if
θ′ = modelAfterUpdate.Layers[index].θ {Notation simplification}
θ ← θ + |θ′ − θ| · sgn(θ.averagedGrad) {Update by the absolute value of optimizer’s
update from Algorithm 1: |θ′ − θ|, but in the direction of the approximated gradient average
sgn(θ.averagedGrad)}

end for
end procedure

the average gradient can be refined to more precisely match the parameter update (∆θ)∗, and so on
(in a loop).

The n-iteration version of the method is labeled as Algorithm 4 in Appendix G (for two iterations it
is a little slower than Algorithm 1 due to additional model-state copies, moreover it is more complex).
The optimal implementation of the n-iteration algorithm variant would be slightly more than n times
slower than the gradient-based RMSprop training, where n is the number of iterations. There are
exactly n backward passes, optimally n inferences, and some additional copy operations C of a model
(optimally |C| ≤ n+ 1, but Algorithm 4 in Appendix G is suboptimal in this respect). However, the
copies are generally significantly faster than forward or backward passes, because it is just needed
to copy blocks of data, that are not bigger than the memory used during forward or backward pass.
Furthermore, creating the copies by saving results of weight updates directly into different memory
addresses only slightly increases the execution time.

An interesting way of comparing the gradient-based RMSProp optimization with our algorithm is
to examine the average loss deltas for all weight updates of both algorithms. The purpose of the
evaluation approach is to validate the proof in Appendix B.3. However, such a comparison focuses
on loss measurements for a single batch each time, making it an imperfect predictor of performance
on the whole dataset. The first iteration of our method is the gradient-based RMSProp procedure,
hence the change in loss for RMSProp ∆RMSProp is known for both the same model parameters
and data as in the case of the loss delta of our method. Therefore, the sum of loss differences after
the updates of both approaches can be easily and measurably compared relatively to the sum of loss

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 3 Backpropagation Through Nonlinear Layer. It is assumed that each input number
influences a corresponding single output scalar. This is because, in the experiments, the only
operators assumed to be nonlinear during backpropagation of the gradient average are certain
activation functions: R→ R).

procedure BACKPROPAGATETHROUGHNONLINEARLAYER(LayerOutput: Tensor
LayerInput: Tensor
LayerOutputAfterUpdate: Tensor
LayerInputAfterUpdate: Tensor)
f ← Layer function
for all (outputNum, inputNum, outputNumUpdated, inputNumUpdated) ∈ Zip(
LayerOutput, LayerInput, LayerOutputAfterUpdate, LayerInputAfterUpdate) do

{The commonly used Zip function illustrates iterating through multiple tensors at once}
if |inputNumUpdated − inputNum| > ϵ then {Check if the difference in the inputs is
higher than a tiny constant ϵ. The condition prevents division by zero. In the experiments
ϵ ≈ 1.19e−7}
AVGx∈[inputNum,inputNumUpdated] f

′(x) = outputNumUpdated−outputNum
inputNumUpdated−inputNum {Eq. 3 and

4}
inputNum.averagedGrad← AVGx f ′(x) · outputNum.averagedGrad
{Propagate the average gradient backward using the chain rule. Equations 3 and 4 define
the term AVGt∈[yk,y′

k]
∂f
∂t in Equation 6, which is part of Equation 1}

else
inputNum.averagedGrad ← f ′(inputNum) · outputNum.averagedGrad {In this
case inputNum ≈ inputNumUpdated, thus AVGx∈[...] f

′(x) ≈ f ′(inputNum) for
activation functions. The backpropagation towards input complies with the chain rule
(equations no. 6 and 1)}

end if
end for

end procedure

deltas of RMSProp:

RDAG,RMSProp =
AVGb∈B ∆AG −AVGb∈B ∆RMSProp

| AVGb∈B ∆RMSProp|

=

∑
b∈B (ℓb(θ

′
AG,b)− ℓb(θb))

|
∑

b∈B (ℓb(θ′RMSProp,b)− ℓb(θb))|
− sgn(

∑
b∈B

(ℓb(θ
′
RMSProp,b)− ℓb(θb)))

(7)

RDAG,RMSProp is the relative difference in avg. loss deltas of RMSProp and the method based
on the average gradient (AG). The AVG operator denotes the arithmetic average. B is the set of all
batches. ∆AG,b is the loss delta assuming a batch b after our algorithm’s update of model parameters
θb to new values θ′AG,b. Notation for RMSProp is analogous. ℓb is the loss, assuming data of a
batch b. sgn is the sign function. RD would not be as useful when using momentum because the
metric compares the aggregated loss of a single batch per parameter update, whereas momentum
contributes to a decrease in loss over many batches per a single parameter update. Without the
momentum,RD significantly increases the statistical confidence in comparing training algorithms
because, for the same model weights, the losses are compared for each weight update. Keeping the
same parameter values for each loss delta reduces the variance of RD, resulting in a decrease in
errors when comparing methods.

2.2 MODELS AND TRAINING

Our algorithm was tested on three different models with nonlinear ELU (Clevert et al., 2015) and
Tanh activations. Model A has a small number of layers (Table 1), and the second one, Model B, is
much deeper, with 30 nonlinear layers (Table 2; not counting max pooling as nonlinear). The third
model is a convolutional neural network with 46 nonlinear layers (see Appendix H.1 for the training
details of this model). It was assumed that Model A is trained for 15 epochs, while Model B – 500 in
the case of the gradient-based RMSProp training, and 300 for our method. Grid search was used to
find the optimal learning rates for the standard RMSProp training over the course of all 500 epochs,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

while our method was optimized only for 200 epochs (out of 300 during testing). The objective of the
hyperparameter search was to minimize the loss that is the smallest over a training. The results of
the search for optimal learning rates are shown in Table 3. The epoch counts are tailored to ensure
that the training achieves minimal or near-minimal test loss values before the final epoch of the
gradient-based RMSProp training. The only loss function used in this research is cross-entropy loss,
and the batch size is set to 128 in all experiments.

Table 1: Model A

Layers
Output
Shape

Parameter
Count

Convolution 2D (3× 3)
+ ELU (8, 26, 26) 80

Convolution 2D (3× 3)
+ ELU (8, 24, 24) 584

Convolution 2D (5× 5)
+ ELU

stride = 2 padding = 2 (16, 12, 12) 3216
Convolution 2D (3× 3)

+ ELU (16, 10, 10) 2320
Convolution 2D (3× 3)

+ ELU (16, 8, 8) 2320
Convolution 2D (5× 5)

+ ELU
stride = 2 padding = 2 (16, 4, 4) 6416

Flatten 256
Linear + Softmax 10 2570

17506

Table 2: Model B is designed to test the perfor-
mance of our algorithm on deep neural networks
to achieve a reasonable time of many trainings for
statistical significance of the results. The practical-
ity of the architecture is not prioritized.

Layers
Output
Shape

Parameter
Count

Convolution 2D (3× 3)
+ ELU (8, 26, 26) 80

Max Pooling 2D (2× 2) (8, 13, 13)
Convolution 2D (3× 3)

+ ELU (16, 11, 11) 1168
Max Pooling 2D (2× 2) (16, 5, 5)

Flatten 400
Linear + Tanh 10 4010

26×
Linear + Tanh 10 26×110

Linear + Softmax 10 330

8228

Models A and B were trained on two popular image datasets: MNIST (LeCun & Cortes, 2010)
and Fashion MNIST (Xiao et al., 2017). Both datasets have the same input size (28× 28× 1), but
their image characteristics are significantly different. Moreover, since the method does not have any
hyperparameters apart from the learning rate, it is less likely to overfit to a specific experimental
setup (model, dataset, and learning rate) and show good results on it while experiencing deficient
performance on other setups. We further validated the performance of our algorithm on a deep
sequential convolutional model using an NLP benchmark, specifically the IMDB dataset. All details
are presented in Appendix H.

3 RESULTS

For the shallow model A, all of the training algorithms are approximately equal (Fig. 2a, Fig. 2b).
The relative difference in summed loss deltas (Equation 7) revealed that the algorithm based on
the average gradient is only marginally better than the standard RMSprop according to RD =
1.20e−3± 2.7e−4 (0.12% faster minimization of loss with 0.027% of SEM error) on MNIST and
RD = 5.86e−3 ± 2.79e−3 on Fashion MNIST in the case of two iterations. For five iterations,
RD = 6.47e−4± 9.8e−5 on MNIST andRD = 2.37e−3± 4.5e−4 on Fashion MNIST.

The results of Model B are much more interesting. The version of the algorithm with two iterations
is about three times faster at minimizing the median of training losses on both datasets (Fig. 2c;
Fig. 2d). Moreover, the mean losses tend to be considerably lower than those for standard RMSProp
training, even when repeating the experiments using different weight initialization (see Appendix I).
Despite the minority of epochs with high oscillations, the method utilizing the average gradient is
approximately two to three times faster in minimizing the mean loss, although this is not clearly
visible in the plots. Furthermore, for both versions of our algorithm on both datasets, during from
49.3% to 70% of epochs, the average training loss was lower with statistical significance (SEM) than
for the gradient-based RMSProp. Conversely, our algorithm was worse in that respect during from
0.667% to 2.33% of epochs with statistical significance. The average of minimal training losses on
MNIST for the five iterations is 0.0393± 0.0058, which is significantly lower than 0.0883± 0.0117

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Learning rates. All hyperparameter searches of Model A consist of five trainings for each
learning rate (LR), while in the case of Model B, it is one training, unless stated otherwise. For Model
B, the losses do not directly predict the performance of the methods, because different epoch counts
are used between the methods. The standard error of the mean is used as the confidence range for the
losses, while for the LRs, the maximum distance to the next best LRs on both sides represents the
errors. The LRs used in the experiments are listed in the ”Learning Rate” column.

Dataset Model Method
Learning

Rate
The Most Important Hyperparameter Search Results

[Learning Rate: Avg. of Min. Training Loss]

MNIST

Model
A

RMSProp 8e−4
6e−4 : 8.04e−3; 7e−4 : 6.48e−3; 8e−4 : 5.69e−3
9e−4 : 5.94e−3; 10e−4 : 7.70e−3; 11e−4 : 7.39e−3

2 Iterations 8e−4 8e−4 : 0.00555; 9e−4 : 0.00692; 1e−3 : 0.00832
5 Iterations 8e−4 8e−4 : 0.00514; 9e−4 : 0.00580; 1e−3 : 0.00678

Model
B

RMSProp 2.5e−4

1.5e−4 : 0.194; 2e−4 : 0.0979; 2.5e−4 : 0.0651
3e−4 : 0.0683; 3.5e−4 : 0.191; 4e−4 : 0.0759

The best learning rate of the search after the experiments
(10 trainings per LR in {1.5e−4, 2e−4, . . . , 5.5e−4}):
(3.5e−4± 1.5e−4) : (0.0856± 0.0139), (matches the

performance in our experiments in Section 3)
The loss for a high learning rate (10 trainings):

1.5e−3 : (2.09± 0.05)
2 Iterations 7.5e−4 The learning rate is guessed
5 Iterations 7.5e−4 The learning rate is guessed

Fashion
MNIST

Model
A

RMSProp 1.5e−3
1e−3 : 0.201; 1.25e−3 : 0.186; 1.5e−3 : 0.183
1.75e−3 : 0.189; 2e−3 : 0.183; 2.25e−3 : 0.193

2 Iterations 1.9e−3 1.8e−3 : 0.186; 1.9e−3 : 0.179; 2e−3 : 0.180
5 Iterations 1.5e−3 1.5e−3 : 0.178; 1.6e−3 : 0.179; 1.7e−3 : 0.200

Model
B

RMSProp 3e−4

2e−4 : 0.356; 2.5e−4 : 0.331; 3e−4 : 0.285
3.5e−4 : 0.349; 4e−4 : 0.487; 4.5e−4 : 0.459

The best learning rate of the search after the experiments
(10 trainings per LR in {2e−4, 2.5e−4, . . . , 6e−4}):
(4e−4± 1.5e−4) : (0.318± 0.016), (matches the

performance in our experiments in Section 3)
The loss for a high learning rate (10 trainings):

9e−4 : (0.641± 0.168)
2 Iterations 9e−4 6e−4 : 0.330; 9e−4 : 0.242; 1.2e−3 : 0.355
5 Iterations 9e−4 9e−4 : 0.243; 1.5e−3 : 0.276

for the standard RMSProp. Meanwhile, the two iterations are also perform better than the gradient-
based RMSProp, but without statistical significance, achieving 0.0747±0.0188. Even better averages
of minimal training losses were obtained on Fashion MNIST, with the five-iteration and two-iteration
versions achieving 0.254± 0.017 and 0.257± 0.014 respectively, compared to 0.314± 0.008 by the
gradient-based training.

Plots of the test losses of Model B look very similar to the training losses (Appendix C), showing
significant improvements in generalization, which correspond to the lower training losses. On MNIST,
the average of best accuracies over training for five iterations is equal to (97.87 ± 0.09)%, which
is significantly higher than (96.80± 0.78)% and (96.75± 0.55)% for the two-iteration version and
gradient-based algorithm, respectively. On Fashion MNIST, the analogous results are (88.09±0.35)%,
(87.54± 0.55)% and (86.57± 0.29)%, respectively. Appendix D presents the accuracy plots.

For Model B, the RD metric (Equation 7) provides a very high confidence of superiority of the
average gradient for the high learning rates used for the trainings based on our algorithm (Table 3).
On MNIST for two and five iterations, it equals 10.41 ± 1.94 and 1.43 ± 0.29, respectively. On
Fashion MNIST, it is 0.58± 0.14 and 0.24± 0.04 for both variants, respectively.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Model A on MNIST (b) Model A on Fashion MNIST

(c) Model B on MNIST (d) Model B on Fashion MNIST

Figure 2: Training losses. Only mean curves contain confidence ranges (SEM).

Importantly, for Model B, the average-gradient algorithm dominated also for the learning rates that
are optimal for the standard RMSProp training. Multiple metrics favored our algorithm with statistical
significance , i.e.,RD ∈ [0.0611± 0.0004, 1.07± 0.31], despite training counts equal to only two
or three (for each of the four experiments).

In the case of Model B, our implementation of the two-iteration variant of the algorithm based on
the average gradient (Alg. 1) is nearly three times slower per epoch than the training based on the
gradient, while the five iterations (Alg. 4 in Appendix G) are almost eight times slower per epoch.
The estimated runtime of optimal implementation is slightly more than two times longer for the two
iterations per epoch when compared to the gradient-based RMSProp, and around six to seven times
longer for the five iterations.

For the deep convolutional model on the IMDB dataset, sample efficiency of the two iteration variant
of our algorithm achieved about 55% gain in sample efficiency compared to the gradient baseline.
The analogous result using four iterations falls between 25% and 30%. See Appendix H.2 for details.

4 CONCLUSIONS

Surprisingly, modifying the gradient on nonlinear activations in very deep models can significantly
increase sample efficiency for some deep models, which is a direct conclusion of our experiments.
For the MNIST and Fashion MNIST benchmarks, the algorithm based on the average gradient offers
significant benefits compared to the standard RMSProp training for the deep model with many stacked
fully-connected layers and nonlinear activations: (a) About a threefold increase in sample efficiency

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

in terms of median loss, and about two to three times faster mean loss reduction. This is reached
by only two iterations, which optimally require a little more than double the time of computation
per epoch in comparison with the gradient-based RMSProp training. Meanwhile, our suboptimal
implementation of the two-iteration version of the algorithm needs nearly three times more runtime
per epoch than the training based on the gradient. Therefore, the presented method is not only more
sample-efficient, but it is also faster and saves energy. (b) Outstanding performance on higher
learning rates, which may offer significant benefits in terms of both electricity and time spent on
hyperparameter searches. (c) Considerably better generalization, at least in a reasonable epoch
count. The increase in sample efficiency and good performance across a wider range of learning
rates is confirmed by experiments using different weight initialization (see Appendix I).

On the other hand, for a deep sequential convolutional model trained on the IMDB dataset, sample
efficiency is improved by about 55% when using only two iterations of our algorithm (Appendix H.2).
This is the only significant benefit of our algorithm in this experiment, as the variant using more
iterations achieved efficiency between that of the vanilla RMSProp and the two-iteration variant.

The RD (Equation 7) confirms the outstanding results of the other measures. The score of RD =
10.41±1.94, achieved by the two iterations on MNIST, corresponds to the average speed of batch-loss
minimization that is (1141± 194)% of the speed of the gradient-based RMSProp while using the
same absolute values of weight updates. In the other cases of deep models, the average speed of
batch-loss minimization ranges from (2.10± 0.18)% to (243± 29)%. Therefore, even a relatively
slight speedup in batch-loss minimization (such as 2.1% on the IMDB dataset) can contribute to
a significantly higher gain in sample efficiency. Moreover, it is crucial to note that the highest of
the mentioned gains occur at learning rates that are three times higher than the optimal rates for
gradient-based training. Generally, high learning rate values may enable rapid learning because model
parameters are adjusted faster. Nevertheless, the average gradient is also superior in terms of the
average speed of batch-loss minimization when using the optimal learning rates for gradient-based
training across all tested models, with statistical significance. This validates the proof in Appendix B,
as both the metric and the proof focus on the efficiency of batch-loss minimization. On the other hand,
refer to Appendix F for the limitations of our algorithm in estimating the locally optimal update.

Surprisingly, the algorithm version with five iterations is worse than the two iterations according to
RD with higher statistical confidence than for other measures. Across all experiments, the variant is
computationally inefficient in terms of the resources required to reduce the loss to a certain level.

In the case of the shallow model with nonlinear ELU activations, the method is only marginally better
than the standard gradient-based RMSProp training. This behavior is expected due to the scaling
properties of the algorithm (Appendix E).

5 DISCUSSION

The successful evaluation using different weight initialization techniques on the NLP and computer
vision benchmarks, using both deep convolutional architecture and the model based on fully-connected
layers with nonlinear activations, provides insight into significant improvements in sample efficiency,
at least for some models. Furthermore, the computational cost associated with these improvements is
modest. These results are especially important in the field of online learning, where sample efficiency
is crucial.

For very deep models without residual connections, gradient-based training tends to be inefficient
(Balduzzi et al., 2017), which we demonstrate how to mitigate. In general, the very deep structure
of human brains enables the learning of universal and complex patterns. Therefore, accurately
mimicking human brain model could potentially lead to satisfactory results. Our algorithm aims to
improve learning in scenarios involving neural structures that are very deep, a feature of provably
efficient biological brains that distinguishes them from current AI models. Therefore, the method
may contribute to the training of large models in the future, where sample efficiency is needed to
learn new tasks on the fly, akin to how people or some animals do.

However, at present, the potential modifications to the algorithm are even more intriguing. Not only
is it possible to efficiently calculate the average gradient for linear layers using Eq. 5 instead of Eq. 6,
but Eq. 1 can also be utilized to compute the average gradients over a much larger range than that of
a parameter update to capture the global trend of the loss landscape (see Appendix J for future work).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 REPRODUCIBILITY STATEMENT

We put emphasis on providing detailed descriptions of all experiments. The algorithms (Alg. 4 in
Appendix G and Alg. 1 in Section 2, with subprocedures labeled as Alg. 2 and Alg. 3) are described
in detail in Section 2.1. The models (Tables 1, 2 and 4 in Appendix H), the learning rates (Tables
3 and 5 in Appendix H), and all other important experiment settings are described in Section 2.2
and Appendix H.1. The code, along with environment settings, is available under [...]. Appendix B
contains one of our most important theoretical results: the proof of Equation 1 and its superiority
over the gradient in minimizing the batch loss by accurately indicating how each model parameter
individually contributes to the change in the batch loss (Equation 14). The proven potential for
batch-loss minimization is verified not only by theRD metric with high statistical significance but
also by comparisons of training losses and other metrics (Section 3).

REFERENCES

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams.
The shattered gradients problem: If resnets are the answer, then what is the question? In
International conference on machine learning, pp. 342–350. PMLR, 2017.

Albert S Berahas, Jorge Nocedal, and Martin Takác. A multi-batch l-bfgs method for machine
learning. Advances in Neural Information Processing Systems, 29, 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Deborah Hughes-Hallett, Andrew M Gleason, Patti Frazer Lock, and Daniel E Flath. Applied calculus.
John Wiley & Sons, 2021.

Nikhil Ketkar. Stochastic gradient descent. Deep learning with Python: A hands-on introduction, pp.
113–132, 2017.

Saeed Khorram, Tyler Lawson, and Li Fuxin. igos++ integrated gradient optimized saliency by
bilateral perturbations. In Proceedings of the Conference on Health, Inference, and Learning, pp.
174–182, 2021.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
diversity. arXiv preprint arXiv:2310.06452, 2023.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with
momentum. Advances in Neural Information Processing Systems, 33:18261–18271, 2020.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm
language models. arXiv preprint arXiv:1708.02182, 2017.

R OpenAI. Gpt-4 technical report. ArXiv, 2303, 2023.

11

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM
journal on control and optimization, 30(4):838–855, 1992.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical
report, Cornell University Operations Research and Industrial Engineering, 1988.

Sam Sattarzadeh, Mahesh Sudhakar, Konstantinos N Plataniotis, Jongseong Jang, Yeonjeong Jeong,
and Hyunwoo Kim. Integrated grad-cam: Sensitivity-aware visual explanation of deep convolu-
tional networks via integrated gradient-based scoring. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1775–1779. IEEE, 2021.

Xu Sun, Hisashi Kashima, Takuya Matsuzaki, and Naonori Ueda. Averaged stochastic gradient
descent with feedback: An accurate, robust, and fast training method. In 2010 IEEE international
conference on data mining, pp. 1067–1072. IEEE, 2010.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Hong Hui Tan and King Hann Lim. Review of second-order optimization techniques in artificial
neural networks backpropagation. In IOP conference series: materials science and engineering,
volume 495, pp. 012003. IOP Publishing, 2019.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. Advances in neural information processing systems, 29, 2016.

Ziyang Wei, Wanrong Zhu, and Wei Biao Wu. Weighted averaged stochastic gradient descent:
Asymptotic normality and optimality. arXiv preprint arXiv:2307.06915, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

A DEFINITION OF AVERAGE GRADIENT/JACOBIAN

Let us define the average gradient of a function f(x) : Rn → R for some row vector x ∈ [a, b] (the
formula is analogous to the one-dimensional case in Equation 3):

AVG
x∈[a,b]

∇xf = (b− a)◦−1 ◦
∫ b

a

∇xf dx = (b− a)◦−1 ◦
∫ 1

0

∇a+t·(b−a)f dt (8)

where ◦ denotes the elementwise operation of either multiplication or inversion ((·)◦−1). However,
the cases of vector elements where division by zero occurs are handled differently, using the partial
derivative ∂f

∂xi
:

∀i : bi − ai = 0 =⇒ AVG
xi∈[ai,bi]

∂f

∂xi
=

∂f

∂ai
(9)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

If f(x) : Rn → Rm, then using to Equation 8:

AVG
x∈[a,b]

∂f

∂x
=

AVGx∈[a,b]∇xf1
AVGx∈[a,b]∇xf2

. . .
AVGx∈[a,b]∇xfm

 =

(b− a)◦−1 ◦

∫ b

a
∇xf1 dx

(b− a)◦−1 ◦
∫ b

a
∇xf2 dx

. . .

(b− a)◦−1 ◦
∫ b

a
∇xfm dx

=

(b− a)◦−1

(b− a)◦−1

. . .
(b− a)◦−1

 ◦

∫ 1

0
∇a+t·(b−a)f1 dt∫ 1

0
∇a+t·(b−a)f2 dt

. . .∫ 1

0
∇a+t·(b−a)fm dt

(10)

Again, the cases of vector elements where division by zero occurs are handled as follows:

∀i : bi − ai = 0 =⇒ AVG
xi∈[ai,bi]

∂f

∂xi
=

∂f

∂ai
(11)

B PROOF OF EQUATION 1 AND ITS LOSS-MINIMIZATION POTENTIAL

B.1 DEFINITION AND PROPERTIES OF AVERAGE GRADIENT OF LOSS

Using Equation 2, the average gradient AVGθk ∇θkℓ can be defined without the approximation given
in Equation 1:

AVG
θk
∇θkℓ = AVG

(θk,xk,xk+1,...,xn)
(
∂xk

∂θk
· ∂xk+1

∂xk
· . . . · ∂xn

∂xn−1
· ∇xnℓ) (12)

where multiple variables are under the average operator (θk,xk,xk+1, . . . ,xn). There are numerous
ways to define how (xk,xk+1, . . . ,xn) depend on the weights and biases θk, as they all change
together during a parameter update. To compute the average (Equation 12), it can be assumed
that the parameters of the layer no. k and the outputs of the layers change linearly with respect to
each other, as if they move from θk to θ′k and from (xk, . . . ,xn) to (x′

k, . . . ,x
′
n) after an update

of the parameters of all layers. Under this assumption, the calculation is formulated as follows:
while computing the average, the integral contains a function fθ,k(t) = θk + t · (θ′k − θk) for the
variable under integration t ∈ [0, 1] (θk and θ′k denote model parameters before and after an update,
respectively). Moreover, the integral involves each layer’s output: fx,i(t) = xi + t · (x′

i − xi).
Finally, the average gradient (Equation 12) is equal to:

AVG
θk
∇θkℓ = AVG

fθ,k
∇fθ,kℓ = AVG

t
(
∂fx,k(t)

∂fθ,k(t)
· ∂fx,k+1(t)

∂fx,k(t)
· . . . · ∂fx,n(t)

∂fx,n−1(t)
· ∇fx,n(t)ℓ(t))

=

∫ 1

0

∂fx,k(t)

∂fθ,k(t)
· ∂fx,k+1(t)

∂fx,k(t)
· . . . · ∂fx,n(t)

∂fx,n−1(t)
· ∇fx,n(t)ℓ(t) dt

(13)

which is more direct and easier to work with.

Importantly, unlike the gradient, the average gradient (AVGθk ∇θkℓ) is directly proportional to the
loss-change impact of each model parameter separately lθ′,k − lθ,k (of the shape of θk and θ′k, unlike
the scalar ℓ):

AVG
θk
∇θkℓ = AVG

θk
∇θk(

n∑
j=0

|θj |∑
i=0

ℓθ,j,i) = AVG
θk
∇θk(

|θk|∑
i=0

ℓθ,k,i) = AVG
θk

(diag(
∂lθ,k
∂θk

)) =

= ⟨AVG
θk,1

ℓ′θ,k,1, . . . ,AVG
θk,n

ℓ′θ,k,n⟩ = ⟨
∫ θ′

k,1

θk,1
ℓ′ϑ,k,1 dϑ

θ′k,1 − θk,1
, . . . ,

∫ θ′
k,n

θk,n
ℓ′ϑ,k,n dϑ

θ′k,n − θk,n
⟩

= ⟨ℓθ
′,k,1 − ℓθ,k,1
θ′k,1 − θk,1

, . . . ,
ℓθ′,k,n − ℓθ,k,n
θ′k,n − θk,n

⟩ = (θ′k − θk)
◦−1 ◦ (lθ′,k − lθ,k) ∝ lθ′,k − lθ,k

(14)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

where ◦ denotes the elementwise operation of either multiplication or inversion ((·)◦−1). diag(∂lθ,k∂θk
)

denotes diagonal elements of the Jacobian matrix. ℓθ,k,i ∈ lθ,k represents the scalar loss contribution
of a single model parameter (θk,i), that can be defined as an integral of the gradient: ℓθ,k,i =∫ θk,i

C1
∇ϑℓθ dϑ + C2, for any constant scalars C1 and C2. (Note that in this case, ℓθ,k,i ̸= ℓθ + Cℓ,

for any constant Cℓ, because the loss ℓ also depends on other parameters than θk,i.) Important
properties: (a) ℓθ = C +

∑n
k=0

∑|θk|
i=0 ℓθ,k,i for a constant C that is invariant across updates

of the model parameters θ. (b) The elements of l are related to the difference in loss during
parameter update: ℓθ′ − ℓθ = (

∑n
k=0

∑|θ′
k|

i=0 ℓθ′,k,i) − (
∑n

k=0

∑|θk|
i=0 ℓθ,k,i). (c) The following

equation is satisfied: ∇θℓ = ∇θ(
∑n

k=0

∑|θk|
i=0 ℓθ,k,i). The simple one-dimensional visualization of

the proportionality from Equation 14 (AVGθk ∇θkℓ ∝ lθ′,k − lθ,k) is shown in Fig. 1. Note that
the property of proportionality does not hold for the gradient updates (which are utilized by Adam
(Kingma & Ba, 2014), RMSProp (Tieleman et al., 2012), and SGD (Ketkar, 2017; Liu et al., 2020)).
In the gradient case, during the update step of θ weights, θ′ is not used in the calculation of itself.
Therefore, lθ′ − lθ cannot be computed yet, and the accurate influence on loss remains unknown,
unlike for the average gradient (Equation 14). The cases of scalar parameters θk,i ∈ θk and θ′k,i ∈ θ′k
where division by zero occurs are handled differently:

∀i : θ′k,i − θk,i = 0 =⇒ AVG
ϑk,i∈[θk,i,θ′

k,i]

∂ℓ

∂ϑk,i
=

∂ℓ

∂θk,i
(15)

Assuming the functions fθ,k and fx,i from Equation 13 are any functions (but differentiable with
respect to each other), Equation 14 remains valid. Therefore, the crucial property of direct proportion-
ality to the loss values does not depend on our previous assumptions about θk and xi. The purpose of
these assumptions is to provide a simple example, reduce reasoning abstraction, and simplify further
proofs in Sections B.2 and B.3.

B.2 PROOF OF OF EQUATION 1 WITHOUT SPECIFYING PRECISION OF APPROXIMATION

For some function f and some constants C1, C2, . . . , Cn:∫
C1 · C2 · . . . · Cn · f(x) dx = C1 · C2 · . . . · Cn ·

∫
f(x) dx (16)

Similarly, let us denote approximately constant functions as C ′
1(x)

∼= C1, C
′
2(x)

∼= C2, . . . , C
′
n(x)

∼=
Cn for some x ∈ [a, b], a ̸= b. The constant that precisely approximates each function C ′(x), is
its average: C ′

1(x)
∼= AVG C ′

1(x) = C1, C
′
2(x)

∼= AVG C ′
2(x) = C2, . . . , C

′
n(x)

∼= AVG C ′
n(x) =

Cn. Therefore, similarly to Equation 16:∫ b

a

C ′
1(x) · . . . · C ′

n(x) · f(x) dx ∼= AVG
x∈[a,b]

C ′
1(x) · . . . · AVG

x∈[a,b]
C ′

n(x) ·
∫ b

a

f(x) dx∫ b

a

C ′
1(x) · . . . · C ′

n(x) · f(x) dx ∼=
∫ b

a

C ′
1(x)

b− a
dx · . . . ·

∫ b

a

C ′
n(x)

b− a
dx ·

∫ b

a

f(x) dx

(17)

which is also approximately equal to both sides of Equation 16. In Equation 17, both approximations
are equivalent, because AVG C ′

i(x) =
∫ b

a
C ′

i(x)/(b− a) dx. For functions Rn → Rm, equations no.
16 and 17 are analogous. Note that, in the general case, the different approximations of the terms
C ′

i(x)
∼= C ′

i(a) and C ′
i(x)
∼= Ci(b) are worse than the average: C ′

i(x)
∼= AVG C ′

i(x) = Ci (which
is used further in Section B.3).

Rapid changes in the gradient over the range of an update indicate that the update step is too large,
leading to instability and reduced training effectiveness due to excessively large steps in the loss
landscape. We assume effective learning, where gradients do not change significantly1 between
updates, ensuring the learning rate is appropriately sized. In this case, the gradient ∇θkℓ does not
change significantly2 over the range of a weight update [θ, θ′]. However, these assumptions are

1The magnitude of the gradient change need not be specified, as it suffices that it contributes to the approxi-
mations with unspecified bounds in Equations 18 and 19. The accuracy of these approximations is proven in
Section B.3.

2See footnote 1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

merely intended to build intuition and are not necessary for this proof. We do not yet assume any
specific level of precision in how Equation 17 approximates Equation 13:

AVG
θk
∇θkℓ =

∫ 1

0

∂fx,k(t)

∂fθ,k(t)
· ∂fx,k+1(t)

∂fx,k(t)
· . . . · ∂fx,n(t)

∂fx,n−1(t)
· ∇fx,n(t)ℓ(t) dt

∼=
∫ 1

0

∂fx,k(t)

∂fθ,k(t)
dt ·

∫ 1

0

∂fx,k+1(t)

∂fx,k(t)
dt · . . . ·

∫ 1

0

∂fx,n(t)

∂fx,n−1(t)
dt ·

∫ 1

0

∇fx,n(t)ℓ(t) dt

= AVG
θk

∂xk

∂θk
· AVG

xk

∂xk+1

∂xk
· . . . · AVG

xn−1

∂xn

∂xn−1
· AVG

xn

∇xnℓ

(18)

Applying the notation of Equation 12 to Equation 18, we get:

AVG
θk
∇θkℓ

∼=
∫ 1

0

∂fx,k(t)

∂fθ,k(t)
dt

∫ 1

0

∂fx,k+1(t)

∂fx,k(t)
dt · . . . ·

∫ 1

0

∂fx,n(t)

∂fx,n−1(t)
dt

∫ 1

0

∇fx,n(t)ℓ(t) dt

=

∫ θ′
k

θk

∂xk(ϑk)

∂ϑk
dϑk

∫ x′
k

x′
k

∂xk+1(χχχk)

∂χχχk
dχχχk · . . . ·

∫ x′
n−1

xn−1

∂xn(χχχn−1)

∂χχχn−1
dχχχn−1

∫ x′
n

xn

∇χχχnℓ dχχχn

= AVG
θk

∂xk

∂θk
· AVG

xk

∂xk+1

∂xk
· . . . · AVG

xn−1

∂xn

∂xn−1
· AVG

xn

∇xn
ℓ

(19)

where θk,xk,xk+1, . . . ,xn are all linear functions of t (previously denoted as
fθ,k, fx,k, fx,k+1, . . . , fx,n). Therefore, the functions xk(θk),xk+1(xk), . . . ,xn(xn−1) are
known. The edge cases of those scalars within θk,xk,xk+1, . . . ,xn that do not depend on t are
handled analogously to Equation 15, as in these cases the average gradient equals the gradient.

Despite the provided arguments on why the approximation is applied, the precision of the estimation
is not specified, although it is crucial. Therefore, the accuracy of the approximation is described
in Section B.3. Otherwise, if the precision of the estimation is not important, then Equation 19
ultimately proves Equation 1. □

The analogous reasoning can be applied to prove Equation 5.

In the algorithm, it is also assumed that the average gradient of the loss with respect to the output
of the last layer, denoted as (AVGxn ∇xnℓ), is replaced by the gradient (∇xnℓ). Moreover, in
our implementation, the gradients replace the average gradients of layers that are approximately
linear (using Equation 6 instead of Equation 5), resulting in a broader approximation in Equation 1.
However, the presented reasoning still applies, including the proof of approximation accuracy in
Section B.3. See Appendix F for comments on the limitations of our implementation of Equation 1.

B.3 PROOF OF SUFFICIENT PRECISION OF APPROXIMATION

Referring to the content of the paragraphs just before and after Equation 17, the approximation
in Equation 17 is more precise in the case of C ′

i(x)
∼= AVG C ′

i(x) = Ci than in the case of
approximating C ′

i(x)
∼= C ′

i(a). The average Jacobian of each term in Equation 1 can be denoted
as AVG C ′

i(x), while the Jacobian of each term in Equation 2 can be denoted as C ′
i(a). For the

average Jacobian AVG C ′
i(x), a better estimation in Equation 17 is obtained, as stated in the text

near the equation. Consequently, applying Equation 17 to approximate Equation 13 results in a
higher precision in estimating Equation 1 when averaging each Jacobian term separately, compared to
utilizing the Jacobians without averaging. Therefore, a better approximation of the accurate average
gradient is obtained compared to using the gradient. □ The average gradient is proportional to the
change in loss after the corresponding parameter update (Equation 14). Therefore, approximating
the average gradient more precisely than current gradient-based methods can lead to more efficient
minimization of batch loss, for example, by using Eq. 1. Therefore, learning can be enhanced
compared to the potential of gradient-based methods.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C TEST LOSS CURVES OF MODEL B

(a) MNIST (b) Fashion MNIST

Figure 3: Test losses of Model B. Only mean curves contain confidence ranges (SEM).

D TEST ACCURACY CURVES OF MODEL B

(a) MNIST (b) Fashion MNIST

Figure 4: Test accuracy of Model B. Only mean curves contain confidence ranges (SEM).

E SCALING IN TERMS OF MODEL DEPTH

The algorithm based on the average gradient aims to reduce errors of the predicted influence on
loss of a parameter update. In the case of the gradient-based approach, the errors arise from the
impaired prediction of how inputs to subsequent layers influence their outputs (Fig. 1). Let us
model the errors as multiplicative, because each time a fraction of output may be influenced by
the error (Balduzzi et al., 2017). Therefore, when compared to the gradient-based algorithm as a
baseline, the multiplicative errors are reduced after backpropagation through each nonlinear layer

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(by computing the average Jacobian of the layer). Consequently, the incorporation of the average
gradient exponentially reduces the error in terms of a count of nonlinear layers (that are involved in
the backpropagation process). This explains the huge performance-improvement gap between the
models for the method based on the average gradient, which emerges from the difference in models’
depths. However, the gap is also increased due to the linearity of the ELU activation function in most
of its domain, where the gradient equals its average. In this case, our algorithm produces results
similar to those of gradient-based optimization.

If the errors (of the predicted influence on loss of a parameter update) are enormous, then the learning
is impossible. Therefore, the learning performance tends to decrease after the error reaches a certain
value for a given model, learning rate, and other parameters. From that point onward, our algorithm
more efficiently reduces the batch loss compared to the gradient-based approach by minimizing the
error in the loss-influence prediction. Importantly, the improvements tend to increase with both the
number of nonlinear layers in a model and the learning rate.

F THREE-DIMENSIONAL COMPARISON OF THE GRADIENT AND THE
AVERAGE GRADIENT

In our experiments, during a parameter update, in terms of the average reduction of loss for a batch,
our algorithm lies between the gradient (red arrows in Figure 5) and the lowest average gradient
(black arrows in Figure 5). Our algorithm does not always find a locally optimal solution (the best in
the range of a single parameter update) because:

a The average gradient is approximated (by using Equation 1 instead of Equation 3, Equation 6
as a substitute of Equation 5, and the non-averaged gradient of the loss with respect to the
last layer output).

b The optimal parameter update may be inaccurately estimated before the average gradient for
this parameter update is calculated. Moreover, even after many iterations of Algorithm 4
(Appendix G), the update step may not converge to a locally optimal solution (black vectors
in Figure 5).

c After the first iteration of our algorithm, only the negations of the directions of changes in
each parameter are possible. Thus, the search for locally optimal updates is bounded by 2|Θ|

combinations, where |Θ| is the count of trainable parameters.

Nevertheless, the RD metric (defined in Equation 7) indicates our algorithm minimizes the batch
loss more efficiently on average compared to the gradient-based approach.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 5: Three-dimensional comparison of the gradient and the lowest average gradient in a few
example scenarios. The latter accurately reflects the influence on the loss of a parameter update.
Furthermore, it accurately shows how each model parameter individually contributes to the change
in the batch loss (Equation 14), which is utilized by our algorithm. Each plot illustrates the loss in
terms of two example model parameters, assuming a specific magnitude for each parameter update
(represented by the radius of each white circle). The arrows point to the loss values after an update
based on the gradient and the average gradient. The average gradient is calculated for the update that
minimizes it. Therefore, it points to the minimum loss on each white circle, although this minimum
is not always achieved by the approximated average gradient computed by our algorithm.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

G ALGORITHM VERSION WITH PARAMETERIZED NUMBER OF ITERATIONS

Algorithm 4 Algorithm Version with Parameterized Number of Iterations (two or more). The number
of iterations is equal to the number of backpropagation calls and inferences in optimal implementation.
The memory requirement of the ideal implementation would be higher than that of Adam by only an
additional scalar size per parameter of the model.

Input: model: Neural Network Model to Train
dataset: Training Dataset
lossFn: Loss Function
optimizer: Optimizer
iterCount: Number of Backpropagation Iterations

for all batch ∈ dataset do
modelInitial← model
modelCopy ← model
initialOutput← modelCopy(batch.x) {It is assumed that modelCopy’s layers’ results are
kept inside modelCopy}
initialLoss← LossFn(initialOutput, batch.y)
Backpropagate(initialLoss) {Compute the gradients using the standard backpropagation
procedure. Assume that the gradients are stored inside modelCopy}
optimizer.Step(modelCopy) {Parameter update}
modelOutputAfterUpdate← modelCopy(batch.x)
modelLossAfterUpdate← LossFn(modelOutputAfterUpdate, batch.y)
for iter = 1, ..., iterCount − 1 do {Loop (iterCount − 1) times, because one backward
propagation is done}

if iter ̸= 1 then
modelCopy ← model
modelCopy(batch.x) {For each layer, compute its output, and store it inside modelCopy}
model← modelInitial

end if
initialOutput ← model(batch.x) {This computation is redundant if layer outputs are
copied from modelInitial}
initialLoss ← LossFn(initialOutput, batch.y) {Analogously, this computation is also
redundant}
AveragedBackpropagation(model,modelCopy, initialLoss) {The procedure is de-
scribed as Algorithm 2. The parameters of the model are modified within}

end for
end for

H CONVOLUTIONAL NEURAL NETWORK ON IMDB

H.1 METHODS

We refer to Model C (Tab. 4) as our very deep convolutional model, which we tested on the IMDB
dataset. This model, primarily composed of convolutional layers, is designed to evaluate the perfor-
mance of our learning algorithm on a deep convolutional neural network without skip connections.
Skip connections simplify the learning task by enabling the network to leverage features that can be
extracted by shallower networks (Veit et al., 2016). Our primary goal is to assess the algorithm’s
capabilities, rather than achieving state-of-the-art results.

IMDB preprocessing includes: (a) Equal split for test and training sets. (b) Duplicate removal.
(c) Punctuation removal. (d) Tokenization. (e) Padding to the length of 122 (mean training-exam-
ple length), and keeping the final part of each review. (f) Lemmantization. (g) Vectorization using
GloVe embeddings (Pennington et al., 2014). Finally, the input has the shape (1, 122, 50), where
each input word is converted into its corresponding GloVe embedding with a length of 50. Model C
(Tab. 4) utilizes multiple convolutional layers of shape (1× 1), which are used to change the data
shape and, for each ”pixel”, to extract features from the outputs of different filters. The neighboring
dimensions of each GloVe embedding do not have any special relationship compared to the distinct

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: Model C.

Layers
Output
Shape

Parameter
Count

Convolution 2D (1× 50), Tanh (50, 122, 1) 2550
Convolution 2D (1× 1), Tanh (40, 122, 1) 2040
Convolution 2D (1× 1), Tanh (35, 122, 1) 1435
Convolution 2D (1× 1), Tanh (30, 122, 1) 1080
Convolution 2D (1× 1), Tanh (27, 122, 1) 837
Convolution 2D (1× 1), Tanh (24, 122, 1) 672
Convolution 2D (1× 1), Tanh (21, 122, 1) 525
Convolution 2D (1× 1), Tanh (18, 122, 1) 396
Convolution 2D (1× 1), Tanh (16, 122, 1) 304
Convolution 2D (1× 1), Tanh (14, 122, 1) 238
Convolution 2D (1× 1), Tanh (12, 122, 1) 180
Convolution 2D (1× 1), Tanh (10, 122, 1) 130
Convolution 2D (1× 1), Tanh (8, 122, 1) 88
Convolution 2D (1× 1), Tanh (6, 122, 1) 54
Convolution 2D (1× 1), Tanh (5, 122, 1) 35

Convolution 2D (3× 1) with stride = 2, Tanh (5, 60, 1) 80
25×Convolution 2D (3× 1), Tanh (5, 10, 1) 25×80

Flatten 50
Linear, Tanh 25 1275
Linear, Tanh 13 338
Linear, Tanh 7 98
Linear, Tanh 4 32

Linear, Softmax 2 10

14397

ones. Therefore, we used convolutions with a filter-size dimension equal to either one or all features
in the GloVe embeddings.

H.2 RESULTS

Both versions of our algorithm were more sample-efficient than the gradient-based RMSProp, as
indicated by the training loss (Fig. 6). In the case of gradient-based training, the trade-off between the
mean and median of the training loss is visible in both Figs. 6a and 6b. The tendency for instability in
training with a higher learning rate leads to the occurrence of outliers, also in terms of whole worse
trainings, which lower the mean. However, the median is resistant to these outliers. This can also
be observed in Figures 7b and 8b. To evaluate both the mean and median, considering the trade-off
between them, we compared the methods by averaging the median and mean losses. This approach
provides a consistent comparison result across both learning rates of the gradient-based RMSProp
(Fig. 6). Using this evaluation method, the performance of gradient-based RMSProp at epoch 200
is approximately equal to the results of the two iterations of our method at epochs 125 and 130, in
Figs. 6a and 6b, respectively. This translates to a sample efficiency between 53% and 60% higher
in favor of the two iterations of our algorithm compared to the vanilla RMSProp. Surprisingly, the
performance of the four iterations falls between the other methods, with the sample efficiency gain
ranging from 25% to 30%. TheRD = 0.0394± 0.0053 metric also favors the two-iteration variant,
outperforming theRD = 0.0210± 0.0018 achieved by the four iterations.

The test-accuracy (Fig. 8) and test-loss curves (Fig. 7) should be interpreted in the context that
the objective of the hyperparameter search is dependent solely on the training loss. In addition,
considering the trade-off between the mean and median losses, which occurs between the lower and
higher learning rates of the vanilla RMSProp, slightly better mean generalization in the gradient
training for the low learning rate (Fig. 7a) does not imply generally better test performance. However,
the comparison using the same learning rate (Fig. 7b) indicates that the two-iteration variant achieves
the most stable test-loss performance.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 5: Learning rates for the IMDB dataset. The ”Learning Rate” column presents the final chosen
learning rates for the experiments. A repeated loss of 0.6931 is equivalent to the lack of training. The
table includes the results of the final experiments; however, the results are clipped to 150 epochs for
the variants of our algorithm. The best results and the learning rates chosen for the experiments are
marked in bold.

Method Learning Rate
Most Important Hyperparameter Search Results

[Learning Rate: Avg. of Min. Training Loss]

RMSProp
(200 epochs)

3.641e−4 (stable trainings,
small number of outliers,

low average losses)
and

6.906e−4 (slightly higher
average training losses,

but lower median losses)

9.545e−5 : 0.6719; 1.193e−4 : 0.5605
1.491e−4 : 0.4121; 1.864e−4 : 0.5106
2.330e−4 : 0.3567; 2.912e−4 : 0.4026

3.641e−4 : 0.3370; 4.551e−4 : 0.3407
5.689e−4 : 0.5243; 6.906e−4 : 0.2801
8.384e−4 : 0.4414; 1.018e−4 : 0.4565
1.236e−3 : 0.6931; 1.500e−3 : 0.6931

Repeated trainings:
3.641e−4 : (0.4307± 0.0143); (30 trainings)
6.906e−4 : (0.4435± 0.0154); (50 trainings)

2 Iterations
(150 epochs)

6.906e−4 (low training
losses, easy to compare
with RMSProp due to
matching learning rate)

3.641e−4 : 0.4948; 4.733e−4 : 0.3373
6.153e−4 : 0.4385; 7.999e−4 : 0.4316
1.040e−3 : 0.4096; 1.352e−3 : 0.6931

Repeated trainings:
4.733e−4 : (0.4574± 0.0127); (15 trainings)
6.906e−4 : (0.4225± 0.0125); (30 trainings)

5 Iterations
(150 epochs)

6.906e−4 (easy to
compare with RMSProp
and 2 Iterations due to
matching learning rates)

4.734e−4 : 0.3766; 6.153e−4 : 0.4410
Repeated trainings:

6.906e−4 : (0.4567± 0.0129); (15 trainings)

(a) Gradient-based RMSProp with the lower learning
rate of 3.641e−4.

(b) Gradient-based RMSProp with the lower learning
rate of 6.906e−4.

Figure 6: Training loss of Model C. Only mean curves contain confidence ranges (SEM).

Due to suboptimal backpropagation of the average gradient through activations in our implementa-
tion, it has a bigger computational overhead for models applying activations to large feature maps.
Therefore, our implementation is computationally slower relatively to the gradient-based training for
Model C than in the case of Model B.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Gradient-based RMSProp with the lower learning
rate of 3.641e−4.

(b) Gradient-based RMSProp with the lower learning
rate of 6.906e−4.

Figure 7: Test loss of Model C. Only mean curves contain confidence ranges (SEM).

(a) Gradient-based RMSProp with the lower learning
rate of 3.641e−4.

(b) Gradient-based RMSProp with the lower learning
rate of 6.906e−4.

Figure 8: Test accuracy of Model C. Only mean curves contain confidence ranges (SEM).

I EXPERIMENTS WITH ALTERNATIVE WEIGHT INITIALIZATION FOR MODEL B

We repeated the experiments for Model B on the MNIST and Fashion MNIST datasets due to
suboptimal parameter initialization, which resulted in vanishing gradients at the start of the training.
During the repeated experiments, we initialized the weights using the Glorot uniform method (Glorot
& Bengio, 2010), which is specifically designed to initialize layers with nonlinear activations such as
Tanh or Sigmoid. A gradient-magnitude gain of 5

3 for Tanh activations was used, as recommended
by the PyTorch library. Biases were initialized to zero. The gradient magnitudes were examined to
ensure they fell within a satisfactory range after initialization. Training length was reduced to 125
epochs for the gradient-based RMSProp and 50 epochs for two iterations of our method to test a 2.5x
learning speedup.

As expected, similar magnitudes of learning rates performed well in the trainings using different
weight initializations (compare Tables 3 and 6). The losses using our method are significantly lower

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 6: Results for different learning rates.

Dataset Method
The Most Important Results

[Learning Rate: Avg. of Min. Training Loss]

MNIST

RMSProp
(125 epochs)

8 trainings per each learning rate:
1e−4 : 0.0945± 0.0062; 1.5e−4 : 0.0821± 0.0121;
1.75e−4 : 0.0750± 0.0102; 2e−4 : 0.0519± 0.0057;

2.25e−4 : 0.0862± 0.0171; 2.5e−4 : 0.0417± 0.0035;
2.75e−4 : 0.0515± 0.0094; 3e−4 : 0.0749± 0.0187;
3.5e−4 : 0.0536± 0.0095; 4e−4 : 0.0604± 0.0188;

50 trainings: 2.5e−4 : 0.0478± 0.0032;

2 Iterations
(50 epochs)

3 trainings per each learning rate:
1.54e−4 : 0.128± 0.0068; 4.61e−4 : 0.0351± 0.0029;

8 trainings per each learning rate:
6e−4 : 0.0320± 0.0013; 8e−4 : 0.0256± 0.0019;

9e−4 : 0.0245± 0.0005; 1e−3 : 0.0255± 0.0021;
1.1e−3 : 0.0253± 0.0016; 1.2e−3 : 0.0246± 0.0005;

1.4e−3 : 0.0255± 0.0002;

Fashion
MNIST

RMSProp
(125 epochs)

8 trainings per each learning rate:
2.5e−4 : 0.329± 0.022; 3e−4 : 0.352± 0.024;

3.5e−4 : 0.315± 0.025; 4e−4 : 0.347± 0.024;
4.5e−4 : 0.374± 0.029; 5e−4 : 0.396± 0.025;

5.5e−4 : 0.310± 0.024; 6e−4 : 0.371± 0.025;
6.5e−4 : 0.368± 0.034; 7e−4 : 0.407± 0.021;

50 trainings: 3.5e−4 : 0.344± 0.010;

2 Iterations
(50 epochs)

3 trainings per each learning rate:
1.33e−4 : 0.467± 0.002; 1.75e−4 : 0.463± 0.001;

8 trainings per each learning rate:
6e−4 : 0.269± 0.003; 8e−4 : 0.255± 0.002;
9e−4 : 0.255± 0.002; 1e−3 : 0.254± 0.003;

1.1e−3 : 0.253± 0.003; 1.2e−3 : 0.245± 0.001;
1.4e−3 : 0.252± 0.003; 1.5e−3 : 0.261± 0.004;
1.6e−3 : 0.253± 0.003; 1.8e−3 : 0.273± 0.008;

2e−3 : 0.262± 0.000;

after 2.5 times fewer epochs. Therefore, the two iterations of our method increase sample efficiency
by more than 2.5 times. Good performance of the method across different parameter-initialization
distributions is essential for its practical application as it contributes to robustness. Importantly, our
algorithm maintains its performance gain compared to the gradient-based RMSProp in scenarios
involving vanishing gradients, as demonstrated in the main experiments.

J FUTURE WORK

Interesting directions for further experiments include: (a) Computing the average gradients over a
much larger range than that of a parameter update to capture the global trend of the loss landscape.
(b) More accurate approximation of the average Jacobians using Equation 5 instead of Equation 6.
This would enable computing the average Jacobians of linear operators. Therefore, the algorithm
based on the average gradient may enhance trainings of deep models without nonlinear activations.
Moreover, the usage of Equation 5 may further improve the performance in the case of many
nonlinear activations because of the increased precision in approximating the average gradient.
(c) Incorporation of the momentum into our algorithm. Preferably Nesterov momentum (Dozat,
2016) should be used. If not, the average gradient would also be calculated for the momentum part
of the update step. This could often reverse the direction of the momentum for a model parameter,
thereby impairing the effectiveness of the entire momentum procedure. (d) Development of similar
algorithms, but with update steps, that, for a given model parameter, vary in size over the iterations

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

of the average-gradient computation. By adjusting the step size of each model parameter to the
absolute value of the average gradient, the learning process may be enhanced. (e) Tests of the
method on large and very deep architectures, that are used in practice and contain many nonlinear
layers. (f) More research on how the method scales up (Appendix E), also in relation to the number
of neurons in layers of neural networks. (g) Experiments with learning without forgetting (Li &
Hoiem, 2017) and online learning. Sample efficiency may be very beneficial there.

24

	Introduction
	Average Gradient
	Gradient Optimization and Averaging

	Methods
	Algorithm
	Models and Training

	Results
	Conclusions
	Discussion
	Reproducibility Statement
	Definition of Average Gradient/Jacobian
	Proof of Equation 1 and Its Loss-Minimization Potential
	Definition and Properties of Average Gradient of Loss
	Proof of of Equation 1 without Specifying Precision of Approximation
	Proof of Sufficient Precision of Approximation

	Test Loss Curves of Model B
	Test Accuracy Curves of Model B
	Scaling in Terms of Model Depth
	Three-Dimensional Comparison of the Gradient and the Average Gradient
	Algorithm Version with Parameterized Number of Iterations
	Convolutional Neural Network on IMDB
	Methods
	Results

	Experiments with Alternative Weight Initialization for Model B
	Future Work

