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ABSTRACT

This research paper presents a novel algorithm for training deep neural networks
with many nonlinear layers (e.g., 30). The method is based on backpropagation of
an approximated gradient, averaged over the range of a weight update. Unlike the
gradient, the average gradient of a loss function is proven within this research to
provide more accurate information on the change in loss caused by the associated
parameter update of a model. Therefore, it may be utilized to improve learning. In
our implementation, the efficiently approximated average gradient is paired with
RMSProp and compared to the typical gradient-based approach. For the tested deep
model with numerous stacked fully-connected layers featuring nonlinear activations
on MNIST and Fashion MNIST, the presented algorithm: (a) generalizes better,
at least in a reasonable epoch count, (b) in the case of optimal implementation,
learning would require less computation time than the gradient-based RMSProp,
with the memory requirement of the Adam optimizer, (c) performs well on a
broader range of learning rates, therefore it may bring time and energy savings
from reduced hyperparameter searches, (d) improves sample efficiency about
three times according to median training losses. On the other hand, for a deep
sequential convolutional model trained on the IMDB dataset, sample efficiency is
improved by about 55%. However, in the case of the tested shallow model, the
method performs approximately the same as the gradient-based RMSProp in terms
of both training and test loss. The source code is provided at [...].

1 INTRODUCTION

1.1 AVERAGE GRADIENT

In this research, we focus on solving deep learning problems by calculating the precise influence
of potential updates on the loss for each model parameter separately. Our goal is to obtain more
precise information about the influence of each parameter on loss than what the gradient provides.
Each potential update of a model parameter influences the locally-optimal direction of other model
parameters during the same weight update, highlighting the complexity of the problem. The average
gradient (defined in Appendix [A)), unlike the gradient, stores the accurate contribution of each model
parameter to the loss delta related to a given weight update (Fig. [T} Eq.[T4). Therefore, the average
gradient can be utilized to efficiently minimize the loss. In this research, we propose a very fast
algorithm to approximate the average gradient. We prove its approximation accuracy, validate the
proof using our handcrafted metric to compare batch-loss minimization efficiency between methods,
and test our method on various domains and models. Our algorithm in its current form primarily
targets very deep models with many nonlinear layers.

Due to the tendency to increase model depth along with its width (Tan & Le}, 2019) and the popularity
of certain nonlinear activation functions, our approach may offer insights for future improvements in
practical deep learning. Our primary target is to significantly improve sample efficiency, even at the
cost of a moderate increase in computation time, which is essential for practical applications in fields
like deep reinforcement learning or reinforcement learning from human feedback (Kirk et al., 2023).
These methods have been used in popular chatbots, such as OpenAI’s ChatGPT (OpenAlL |2023)) and
Anthropic’s Claude (Kirk et al., [ 2023).
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(a) Example 1. The average gradient suggests a differ-  (b) Example 2. If the average gradient decreases in the
ent direction for updating a particular parameter. same direction as the gradient, it additionally provides
more information about the loss landscape.

Figure 1: Comparison of Gradient and Average Gradient. The latter accurately reflects the influence
of a parameter update on loss (as described by Equation 3] under the assumptions that f represents
the visualized loss function, with  and =’ denoting the parameter values before and after an update,
respectively). The plots refer to a simple case with only one parameter of the model. However,
they can also be understood to present the loss contribution of a parameter during a weight update
involving multiple model parameters. Appendix lH presents visualizations involving two parameters.

1.2 GRADIENT OPTIMIZATION AND AVERAGING

Gradient optimization dominates deep learning with optimizers like Stochastic Gradient Descent (Liu
et al.,|2020), RMSProp (Tieleman et al.l|2012), Adam (Kingma & Ba,|2014)) or Nadam (Dozat, 2016).
The leading algorithms for training do not change frequently over the years. However, our algorithm
or its variants may be used along with first-order optimizers.

Gradient averaging is commonly used in machine learning, but in a distinct scenario than in our
approach. Momentum is the running average of gradients over subsequent batches (Liu et al.| [2020;
Kingma & Bal 2014} |Dozat, 2016). It prevents falling into local minimums and may accelerate
learning. Similarly, averaging model parameters may improve convergence and learning speed
(Ruppert, 1988} [Polyak & Juditsky, 1992 Merity et al., [2017; Wei et al., [2023; [Sun et al., [2010),
though it requires a significant amount of memory. The technique can be described as averaging
a function of gradients, as the averaged model parameters over subsequent updates depend on the
gradient values.

Accumulating gradients over a batch is inherent in machine learning. In practice, it is equivalent
to averaging gradients computed for multiple inputs. However, this approach alone does not take
into account the information about a parameter update (Fig. [I)), which remains unknown during its
computation. Consequently, it does not guarantee the accuracy of computing the influence of the
unknown parameter update on the loss. Nevertheless, batching remains fully compatible with our
method and is employed in our implementation.

Our approach is more closely related to some second-order optimization methods (Tan & Liml 2019)
rather than momentum-based or parameter-averaging techniques. This is due to the utilization of
information about the curvature of a loss function during each parameter update (Fig. [I)). Recently,
one of the most popular algorithms for second-order optimization of neural networks is L-BFGS
(Berahas et al., |2016). However, the current methods in this field are impractical for training large
models due to their computational inefficiency or substantial memory requirements.

The integrated gradient, closely related to the average gradient, is used in some neural-network
explainability techniques (Sundararajan et al.,[2017; Khorram et al.,|2021} |Sattarzadeh et al., [2021).
However, the approximation algorithms for the integral of the gradient used in the literature are very
inefficient to compute for every parameter update of a model due to the calculation of the Riemann
sum (Hughes-Hallett et al., | 2021)).
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2 METHODS

2.1 ALGORITHM

All of the best and most popular optimizers for training large neural networks rely on the gradient.
Consequently, they explicitly ignore how loss function in terms of model parameters behaves in the
range between before and after a potential weight update (Fig.[T). The definition of the gradient
implies, that it reflects the accurate influence on loss only for learning rates approaching to zero,
which does not hold in practice. Consequently, gradient-based optimizers do not calculate the accurate
influence on loss of a potential weight update, which may significantly slow down the learning of very
deep models with many nonlinear operators, as our experiments show. The average gradient solves
the described problem. Our algorithm efficiently approximates the average gradient, providing more
reliable information on the update direction that minimizes the loss. The average gradient (contrary
to the gradient) is directly proportional to the loss delta (Fig. [T} Equation[I4]in Appendix B}, hence it
accurately describes the influence on loss of a parameter delta.

In our algorithm, given a sequential model, the average gradient is approximated and propagated
according to the equation proven in Appendix

oxy, 8:13k+1 Oz,
AVG Vg L =2 AVG — - AV LAY ~AVGV, {
ng O Gkg 00, wkg oxy, wn,? 0T,_1 wng Tn M
where / is a loss function, 6}, are parameters of a layer no. ¢ and (xx, k41, .., ,) are inputs and

outputs of subsequent layers of a neural network. The notation V, f refers to the gradient of some
function f for an argument x, and g—f denotes the Jacobian. The average operator AVG of gradients
or Jacobians is defined in Appendix|Aland aligns with intuition. The averages are aggregated with
respect to the parameters of a model (6y) or the outputs of subsequent layers (x, g1, .. -, Ty). The
average gradients are propagated in the same manner as the gradients in the standard backpropagation
algorithm. The computation based on Equation [I]is fast and memory efficient because the procedure
is similar to the standard backpropagation of gradients, which is done according to:
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The version of our algorithm that consists of two iterations (Algorithm [1)) first performs the standard
backpropagation (Equation [2) through layer outputs @, and model parameters § along with parameter
update of an optimizer (in the experiments it is RMSProp) to new weight values 6’. Then it is assumed
that the absolute value of the parameter delta |§ — 6’| of the RMSProp optimizer is good enough to
retain it. The second backpropagation is performed for eventual negations of update directions only,
where, conversely, the average gradient is propagated (Algorithm [2). Importantly, the range on which
the gradient is averaged equals [0, 6'] (between parameters before and after the estimated potential
update; Algorithm[3). The average derivatives of each nonlinear activation are calculated as follows:

L rwdt fe) - f@) 5

T —x

AVG f'(t)
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where f means an activation function (in the experiments it is either ELU or Tanh activation), = means
an input scalar assuming forward propagation using the 6 weights, and x’ means the corresponding
input number assuming forward pass for the 6’. The equation is the one-dimensional analogy of the
average gradient and the Jacobian, both of which are defined in Appendix

In the case of applying an activation function f : R — R, or f : R® — R”, to a layer output
x = (x1,x9, ..., ,) (assuming parameters 6), which changes to @’ = (x}, ), ...,2},) during the
forward pass with updated parameters 6:

0
avg 9 diag(( AVG [f'(t1), AVG f'(t2),..., AVG f'(tn))) 4)
te(xz,z’] ot t1 €[z ,2]] ta €@, xh] tn€xn,x)]
where each term AVG .y f(-) is defined in Equation

Let us define a typical layer, denoted as k, which is parameterized by 0. This layer could be a
convolutional layer, a fully-connected layer, or another operator that is linear over all or most of
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its domain. Let us assume that the layer no. k outputs yy, which is then passed to an activation fj.
Consequently each part of Equation [T]can be approximated as:

AVGo, 832“ AVGa, 5 = AVG,, S AVGicry, yi) 5E
AVGo, =5 8““ = AVGy, 3? = AVGy, 3 6”" AVGieryu %

&)

where the approximation, instead of equality, is the consequence of chaining averages of Jacobians,
which can be proven analogously to Equation[I] (see Appendix [B). The average operator AVG of
Jacobians is defined in Appendix AVGielyii Y g—{ is defined in Equation Generally, the
vast majority of applied neural network operators are either nonlinear activations or linear functions
in by far most of their domains (e.g., max pooling, convolution, fully connected, or ReLU). In the
case of the nonlinear activations, equations no. [3|and ] are used to compute the average Jacobians.
For linear transformations, such as yy (xx) and yx (6y ), the average gradients and Jacobians are easy
and fast to compute. However, for implementation simplicity and a slight speedup of computations,
broader estimates of the average Jacobians from Equation [5]are applied:
Avg;ﬂk w1 -Avgmk Ofk ~ Oyk . Avgte[yk,y;] %
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which use the non-averaged Jacobian g%’;. Therefore, intuitively, the broad estimation
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of AVG,, 8;;:1 is approximately between %wT’C:“l and AVG,, 8;;:1, and analogously for
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Algorithm 1 Simplified algorithm version for 2 iterations. Back and forward propagation would
be called two times in optimal implementation, where memory requirement would be the same as
for Adam optimizer. Over the whole paper, we refer to the optimal implementation as the one that
minimizes recomputations, avoids costly statistics during training, and is machine-code optimized
to the same extent as optimizers from mainstream libraries. The lines marked as redundant within
comments in curly brackets are unnecessary for the optimal operation of the below pseudocode.

Input: model: Neural Network Model
dataset: Training Dataset
lossF'n: Loss Function
optimizer: Optimizer
for all batch € dataset do
modelOutput < model(batch.x) {It is assumed that model’s layers’ results are kept inside
model }
modelLoss < LossF'n(modelOutput, batch.y)
modelCopy < model {Copy model }
modelCopyOutput < modelCopy(batch.x) {This inference is redundant if modelCopy gets
also intermediate layers’ results copied}
modelCopyLoss <+ LossFn(model CopyOutput, batch.y) {This computation is also redun-
dant, since it is the same as model Loss}
Backpropagate(modelCopyLoss) {Compute the gradients using the standard backpropaga-
tion procedure. Assume that the gradients are stored inside modelCopy}
optimizer.Step(modelCopy) {Perform weight update on modelCopy (using the gradients
stored inside modelCopy)}
modelCopy(batch.x) {Execute inference to store new layer-wise results in modelCopy}
AveragedBackpropagation(model, modelCopy, modelLoss) {The procedure is de-
scribed as Algorithm The parameters of the model are modified within}
end for

An algorithm version with n backpropagation iterations computes (n — 1) times the approximated
gradient average, each time based on the previous. The intuition behind this is that a better estimate
of the averaged derivatives of nonlinear activations is computed after every iteration (Equatlon B
backpropagated according to equations no. 4 E] and[I). Consequently, each time a more precise
estimate of the optimal parameter update (A#)* is obtained (where optimality means that the average
gradient is accurately estimated and the parameter update is compliant with it). Therefore, once again
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Algorithm 2 Averaged Backpropagation Algorithm calculates the approximation of the average
gradient.

procedure AVERAGEDBACKPROPAGATION(
model: Neural Network Model
model A fterUpdate: model After Candidate Update of
Parameters
modelLoss: model’s 1Loss)
Backpropagate(model Loss,
model.Layers.Last().Output) {Compute the gradient of model Loss in terms of the last
layer’s output. Let us assume that the gradient is assigned to the grad property of the output
variable (model.Layers.Last().Output)}
for index < (Count(model Layers) — 1) to 0 do
6 = model Layers[index].0 {To simplify notation }
if IsNonlinear(model.Layers[index]) then {Calculation of either the gradient or its aver-
age, which corresponds to the terms in Equation
BackpropagateThroughNonlinearLayer(model Layers[index].Output,
model.Layers[indez]. Input, model A fterUpdate. Layers[index].Output,
model A fterUpdate.Layers[indez].Input) {Procedure described as Algorithm[3] Let
us assume that activations are separate layers (like in equations no. and @)}
else
Backpropagate(model Layers|index].Output, model. Layers[index].Input) {The typ-
ical backpropagation procedure. It propagates the gradient through a layer. Let us assume
that the gradient is assigned to the grad property of the input variable}
0.averagedGrad < 0.grad {In this case, for a linear layer, the gradient is treated as its
average (compare equations no. [|and[5)}
end if
0" = model A fterUpdate.Layers[index].0 {Notation simplification}
0« 0+ |0 — 0| - sgn(f.averagedGrad) {Update by the absolute value of optimizer’s
update from Algorithm |1} |6’ — 6|, but in the direction of the approximated gradient average
sgn(f.averagedGrad)}
end for
end procedure

the average gradient can be refined to more precisely match the parameter update (A#)*, and so on
(in a loop).

The n-iteration version of the method is labeled as Algorithm []in Appendix [G](for two iterations it
is a little slower than Algorithm[T]due to additional model-state copies, moreover it is more complex).
The optimal implementation of the n-iteration algorithm variant would be slightly more than n times
slower than the gradient-based RMSprop training, where n is the number of iterations. There are
exactly n backward passes, optimally n inferences, and some additional copy operations C' of a model
(optimally |C| < n + 1, but Algorithmin Appendix@is suboptimal in this respect). However, the
copies are generally significantly faster than forward or backward passes, because it is just needed
to copy blocks of data, that are not bigger than the memory used during forward or backward pass.
Furthermore, creating the copies by saving results of weight updates directly into different memory
addresses only slightly increases the execution time.

An interesting way of comparing the gradient-based RMSProp optimization with our algorithm is
to examine the average loss deltas for all weight updates of both algorithms. The purpose of the
evaluation approach is to validate the proof in Appendix [B.3] However, such a comparison focuses
on loss measurements for a single batch each time, making it an imperfect predictor of performance
on the whole dataset. The first iteration of our method is the gradient-based RMSProp procedure,
hence the change in loss for RMSProp A gy sprop is known for both the same model parameters
and data as in the case of the loss delta of our method. Therefore, the sum of loss differences after
the updates of both approaches can be easily and measurably compared relatively to the sum of loss
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Algorithm 3 Backpropagation Through Nonlinear Layer. It is assumed that each input number
influences a corresponding single output scalar. This is because, in the experiments, the only
operators assumed to be nonlinear during backpropagation of the gradient average are certain
activation functions: R — R).

procedure BACKPROPAGATETHROUGHNONLINEARLAYER(LayerOutput: Tensor
LayerInput: Tensor
LayerOutput A fterUpdate: Tensor
LayerInput A fterUpdate: Tensor)
f < Layer function
for all (output Num, input Num, output NumU pdated, input NumU pdated) € Zip(
LayerOutput, Layer Input, Layer Output A fterUpdate, Layer Input A fterUpdate) do
{The commonly used Zip function illustrates iterating through multiple tensors at once}
if |input NumUpdated — input Num| > € then {Check if the difference in the inputs is
higher than a tiny constant e. The condition prevents division by zero. In the experiments
€~ 1.19e—7}
AVG s finputNum inputNumbUpdated) J' () = 2 e (B4 [} and
A
input Num.averagedGrad < AVG, f'(z) - output Num.averaged Grad
{Propagate the average gradient backward using the chain rule. Equations [3|and {4| define
| the term AVG ey, /] % in Equation@ which is part of Equation }
else
input Num.averagedGrad « f/(inputNum) - output Num.averagedGrad {In this
case input Num =~ input NumUpdated, thus AVG,¢; ;1 f'(z) = f'(input Num) for
activation functions. The backpropagation towards input complies with the chain rule
(equations no. [6|and|[T)}
end if
end for
end procedure

deltas of RMSProp:

AVGpep Aug — AVGieB ARMSProp

| AVGreB ArMsPropl

_ 2B (&(914(;75) ) B , _ N
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RD ac,rRMSProp 1S the relative difference in avg. loss deltas of RM S Prop and the method based
on the average gradient (AG). The AVG operator denotes the arithmetic average. B is the set of all
batches. A p is the loss delta assuming a batch b after our algorithm’s update of model parameters
0y to new values 9140,1;- Notation for RMSProp is analogous. /; is the loss, assuming data of a
batch b. sgn is the sign function. RD would not be as useful when using momentum because the
metric compares the aggregated loss of a single batch per parameter update, whereas momentum
contributes to a decrease in loss over many batches per a single parameter update. Without the
momentum, RD significantly increases the statistical confidence in comparing training algorithms
because, for the same model weights, the losses are compared for each weight update. Keeping the
same parameter values for each loss delta reduces the variance of RD, resulting in a decrease in
errors when comparing methods.

RDaG,RMSProp =

2.2 MODELS AND TRAINING

Our algorithm was tested on three different models with nonlinear ELU (Clevert et al., 2015) and
Tanh activations. Model A has a small number of layers (Table E]) and the second one, Model B, is
much deeper, with 30 nonlinear layers (Table [2} not counting max pooling as nonlinear). The third
model is a convolutional neural network with 46 nonlinear layers (see Appendix for the training
details of this model). It was assumed that Model A is trained for 15 epochs, while Model B — 500 in
the case of the gradient-based RMSProp training, and 300 for our method. Grid search was used to
find the optimal learning rates for the standard RMSProp training over the course of all 500 epochs,
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while our method was optimized only for 200 epochs (out of 300 during testing). The objective of the
hyperparameter search was to minimize the loss that is the smallest over a training. The results of
the search for optimal learning rates are shown in Table[3] The epoch counts are tailored to ensure
that the training achieves minimal or near-minimal test loss values before the final epoch of the
gradient-based RMSProp training. The only loss function used in this research is cross-entropy loss,
and the batch size is set to 128 in all experiments.

Table 1: Model A . .
Table 2: Model B is designed to test the perfor-

Output  Parameter Mance of our algorithm on deep neural networks
Layers Shape Count O af:h}eve a re.asonable time of many trainings. for
- statistical significance of the results. The practical-
Convolution 2D (3 x 3) ) . ) o
ity of the architecture is not prioritized.

+ELU (8,26,26) 80
Convolution 2D (3 X 3) Output  parameter
+ELU (8,24,24) 584 Layers Shape Count
Convolution 2D (5 X 5) Convolution 2D (3 X 3)
+ELU +ELU (8,26,26) 80

stride = 2 padding = 2 (16,12,12) 3216
Convolution 2D (3 X 3)
+ELU (16,10,10) 2320

Max Pooling 2D (2 x 2) (8,13,13)
Convolution 2D (3 x 3)

- + ELU 16,11,11 1168
Convolution 2D (3 x 3) Max Pooling 2D (2 x 2) ((16 5 5))
+ELU (16,8,8) 2320 Flatten 100
Convolution 2D (5 x 5) Linear + Tanh 10 4010
+ ELU 26X
stride = 2 padding =2 (16,4,4) 6416 Linear + Tanh 10 26x110
_ Flatten 256 Linear + Softmax 10 330
Linear + Softmax 10 2570 3993
17506

Models A and B were trained on two popular image datasets: MNIST (LeCun & Cortes, 2010)
and Fashion MNIST (Xiao et al., 2017). Both datasets have the same input size (28 x 28 x 1), but
their image characteristics are significantly different. Moreover, since the method does not have any
hyperparameters apart from the learning rate, it is less likely to overfit to a specific experimental
setup (model, dataset, and learning rate) and show good results on it while experiencing deficient
performance on other setups. We further validated the performance of our algorithm on a deep
sequential convolutional model using an NLP benchmark, specifically the IMDB dataset. All details
are presented in Appendix [H]

3 RESULTS

For the shallow model A, all of the training algorithms are approximately equal (Fig.[2a] Fig. 2b).
The relative difference in summed loss deltas (Equation [/)) revealed that the algorithm based on
the average gradient is only marginally better than the standard RMSprop according to RD =
1.20e—3 4 2.7e—4 (0.12% faster minimization of loss with 0.027% of SEM error) on MNIST and
RD = 5.86e—3 & 2.79¢—3 on Fashion MNIST in the case of two iterations. For five iterations,
RD = 6.47e—4 £+ 9.8e—5 on MNIST and RD = 2.37e—3 £ 4.5e—4 on Fashion MNIST.

The results of Model B are much more interesting. The version of the algorithm with two iterations
is about three times faster at minimizing the median of training losses on both datasets (Fig.
Fig.[2d). Moreover, the mean losses tend to be considerably lower than those for standard RMSProp
training, even when repeating the experiments using different weight initialization (see Appendix [l).
Despite the minority of epochs with high oscillations, the method utilizing the average gradient is
approximately two to three times faster in minimizing the mean loss, although this is not clearly
visible in the plots. Furthermore, for both versions of our algorithm on both datasets, during from
49.3% to 70% of epochs, the average training loss was lower with statistical significance (SEM) than
for the gradient-based RMSProp. Conversely, our algorithm was worse in that respect during from
0.667% to 2.33% of epochs with statistical significance. The average of minimal training losses on
MNIST for the five iterations is 0.0393 £ 0.0058, which is significantly lower than 0.0883 4+ 0.0117
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Table 3: Learning rates. All hyperparameter searches of Model A consist of five trainings for each
learning rate (LR), while in the case of Model B, it is one training, unless stated otherwise. For Model
B, the losses do not directly predict the performance of the methods, because different epoch counts
are used between the methods. The standard error of the mean is used as the confidence range for the
losses, while for the LRs, the maximum distance to the next best LRs on both sides represents the
errors. The LRs used in the experiments are listed in the "Learning Rate” column.

Learning  The Most Important Hyperparameter Search Results
Dataset Model Method Rate [Learning Rate: Avg. of Min. Training Loss]
6e—4:8.04de—3; 7e—4:6.48e—3; 8e—4 : 5.69e—3
RMSProp 8e—4 9e—4:5.94e—3; 10e—4 : 7.70e—3; 11le—4 : 7.39e—3
2 Iterations 8e—4 8e—4:0.00555; 9e—4 : 0.00692; 1e—3 : 0.00832
5 Iterations 8e—4 8e—4:0.00514; 9e—4 : 0.00580; 1le—3 : 0.00678
be—4:0.194; 2e—4:0.0979; 2.5e—4 : 0.
3e—4:0.0683; 3.5e—4:0.191; 4e—4:0.0759
The best learning rate of the search after the experiments
(10 trainings per LR in {1.5e—4,2e—4,...,5.5e—4}):
(3.5e—4 + 1.5e—4) : (0.0856 £ 0.0139), (matches the
performance in our experiments in Section 3]
The loss for a high learning rate (10 trainings):

Model

MNIST

Mode] RMSProp 2.5e—4 1.5e—3 : (2.09 £ 0.05)
2 Iterations 7.5e—4 The learning rate is guessed
5 Iterations 7.5e—4 The learning rate is guessed

Ie—3:0.201; 1.25e—3:0.186; 1.5e—3 : 0.183

Model RMSProp 1.5e—3 1.75e—3 : 0.189; 2e—3 : 0.183; 2.25e—3 : 0.193
2 Iterations 1.9e—3 1.8e—3:0.186; 1.9e—3 : 0.179; 2e—3: 0.180
Fashion 5 Iterations 1.5e—3  1.5e—3:0.178; 1.6e—3:0.179; 1.7e—3 : 0.200

MNIST 2e—4:0.356; 2.5e—4:0.331; 3e—4 : 0.285
3.5e—4:0.349; 4e—4 : 0.487; 4.5e—4 : 0.459
The best learning rate of the search after the experiments
(10 trainings per LR in {2e—4,2.5e—4, ..., 6e—4}):
(4de—4 £ 1.5e—4) : (0.318 + 0.016), (matches the
performance in our experiments in Section 3]
The loss for a high learning rate (10 trainings):

Mode] RMSProp _ 3e—4 9e—4 : (0.641 + 0.168)
94¢! 2 Tterations  9e—4 Ge—4:0.330; 9e—4 : 0.242; 1.2e—3 : 0.355
5 Iterations 9e—4 9e—4:0.243; 1.5e—3 : 0.276

for the standard RMSProp. Meanwhile, the two iterations are also perform better than the gradient-
based RMSProp, but without statistical significance, achieving 0.0747£0.0188. Even better averages
of minimal training losses were obtained on Fashion MNIST, with the five-iteration and two-iteration
versions achieving 0.254 £ 0.017 and 0.257 & 0.014 respectively, compared to 0.314 £ 0.008 by the
gradient-based training.

Plots of the test losses of Model B look very similar to the training losses (Appendix [C), showing
significant improvements in generalization, which correspond to the lower training losses. On MNIST,
the average of best accuracies over training for five iterations is equal to (97.87 + 0.09)%, which
is significantly higher than (96.80 4 0.78)% and (96.75 £ 0.55)% for the two-iteration version and
gradient-based algorithm, respectively. On Fashion MNIST, the analogous results are (88.09+0.35) %,
(87.54 4+ 0.55)% and (86.57 & 0.29)%, respectively. Appendix presents the accuracy plots.

For Model B, the RD metric (Equation [/) provides a very high confidence of superiority of the
average gradient for the high learning rates used for the trainings based on our algorithm (Table [3).
On MNIST for two and five iterations, it equals 10.41 £ 1.94 and 1.43 + 0.29, respectively. On
Fashion MNIST, it is 0.58 £ 0.14 and 0.24 £ 0.04 for both variants, respectively.
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Figure 2: Training losses. Only mean curves contain confidence ranges (SEM).

Importantly, for Model B, the average-gradient algorithm dominated also for the learning rates that
are optimal for the standard RMSProp training. Multiple metrics favored our algorithm with statistical
significance , i.e., RD € [0.0611 & 0.0004, 1.07 & 0.31], despite training counts equal to only two
or three (for each of the four experiments).

In the case of Model B, our implementation of the two-iteration variant of the algorithm based on
the average gradient (Alg. [I) is nearly three times slower per epoch than the training based on the
gradient, while the five iterations (Alg. ] in Appendix [G) are almost eight times slower per epoch.
The estimated runtime of optimal implementation is slightly more than two times longer for the two
iterations per epoch when compared to the gradient-based RMSProp, and around six to seven times
longer for the five iterations.

For the deep convolutional model on the IMDB dataset, sample efficiency of the two iteration variant
of our algorithm achieved about 55% gain in sample efficiency compared to the gradient baseline.
The analogous result using four iterations falls between 25% and 30%. See Appendix [H.2]for details.

4 CONCLUSIONS

Surprisingly, modifying the gradient on nonlinear activations in very deep models can significantly
increase sample efficiency for some deep models, which is a direct conclusion of our experiments.
For the MNIST and Fashion MNIST benchmarks, the algorithm based on the average gradient offers
significant benefits compared to the standard RMSProp training for the deep model with many stacked
fully-connected layers and nonlinear activations: (a) About a threefold increase in sample efficiency
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in terms of median loss, and about two to three times faster mean loss reduction. This is reached
by only two iterations, which optimally require a little more than double the time of computation
per epoch in comparison with the gradient-based RMSProp training. Meanwhile, our suboptimal
implementation of the two-iteration version of the algorithm needs nearly three times more runtime
per epoch than the training based on the gradient. Therefore, the presented method is not only more
sample-efficient, but it is also faster and saves energy. (b) Outstanding performance on higher
learning rates, which may offer significant benefits in terms of both electricity and time spent on
hyperparameter searches. (c) Considerably better generalization, at least in a reasonable epoch
count. The increase in sample efficiency and good performance across a wider range of learning
rates is confirmed by experiments using different weight initialization (see Appendix [I).

On the other hand, for a deep sequential convolutional model trained on the IMDB dataset, sample
efficiency is improved by about 55% when using only two iterations of our algorithm (Appendix [H.2).
This is the only significant benefit of our algorithm in this experiment, as the variant using more
iterations achieved efficiency between that of the vanilla RMSProp and the two-iteration variant.

The RD (Equation[7)) confirms the outstanding results of the other measures. The score of RD =
10.41+£1.94, achieved by the two iterations on MNIST, corresponds to the average speed of batch-loss
minimization that is (1141 + 194)% of the speed of the gradient-based RMSProp while using the
same absolute values of weight updates. In the other cases of deep models, the average speed of
batch-loss minimization ranges from (2.10 £ 0.18)% to (243 & 29)%. Therefore, even a relatively
slight speedup in batch-loss minimization (such as 2.1% on the IMDB dataset) can contribute to
a significantly higher gain in sample efficiency. Moreover, it is crucial to note that the highest of
the mentioned gains occur at learning rates that are three times higher than the optimal rates for
gradient-based training. Generally, high learning rate values may enable rapid learning because model
parameters are adjusted faster. Nevertheless, the average gradient is also superior in terms of the
average speed of batch-loss minimization when using the optimal learning rates for gradient-based
training across all tested models, with statistical significance. This validates the proof in Appendix [B]
as both the metric and the proof focus on the efficiency of batch-loss minimization. On the other hand,
refer to Appendix [F] for the limitations of our algorithm in estimating the locally optimal update.

Surprisingly, the algorithm version with five iterations is worse than the two iterations according to
‘R'D with higher statistical confidence than for other measures. Across all experiments, the variant is
computationally inefficient in terms of the resources required to reduce the loss to a certain level.

In the case of the shallow model with nonlinear ELU activations, the method is only marginally better
than the standard gradient-based RMSProp training. This behavior is expected due to the scaling
properties of the algorithm (Appendix [E).

5 DISCUSSION

The successful evaluation using different weight initialization techniques on the NLP and computer
vision benchmarks, using both deep convolutional architecture and the model based on fully-connected
layers with nonlinear activations, provides insight into significant improvements in sample efficiency,
at least for some models. Furthermore, the computational cost associated with these improvements is
modest. These results are especially important in the field of online learning, where sample efficiency
is crucial.

For very deep models without residual connections, gradient-based training tends to be inefficient
(Balduzzi et al., [2017), which we demonstrate how to mitigate. In general, the very deep structure
of human brains enables the learning of universal and complex patterns. Therefore, accurately
mimicking human brain model could potentially lead to satisfactory results. Our algorithm aims to
improve learning in scenarios involving neural structures that are very deep, a feature of provably
efficient biological brains that distinguishes them from current AI models. Therefore, the method
may contribute to the training of large models in the future, where sample efficiency is needed to
learn new tasks on the fly, akin to how people or some animals do.

However, at present, the potential modifications to the algorithm are even more intriguing. Not only
is it possible to efficiently calculate the average gradient for linear layers using Eq. [5|instead of Eq.[6]
but Eq.[T]can also be utilized to compute the average gradients over a much larger range than that of
a parameter update to capture the global trend of the loss landscape (see Appendix |J|for future work).

10
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6 REPRODUCIBILITY STATEMENT

We put emphasis on providing detailed descriptions of all experiments. The algorithms (Alg. 4 in
Appendix [G]and Alg. [T]in Section 2] with subprocedures labeled as Alg.[2]and Alg. [3) are described
in detail in Section The models (Tables and f]in Appendix [H), the learning rates (Tables
[3land [5]in Appendix [H)), and all other important experiment settings are described in Section 2.2]
and Appendix The code, along with environment settings, is available under [...]. Appendix [B|
contains one of our most important theoretical results: the proof of Equation [I]and its superiority
over the gradient in minimizing the batch loss by accurately indicating how each model parameter
individually contributes to the change in the batch loss (Equation [I4). The proven potential for
batch-loss minimization is verified not only by the RD metric with high statistical significance but
also by comparisons of training losses and other metrics (Section [3).
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A DEFINITION OF AVERAGE GRADIENT/JACOBIAN

Let us define the average gradient of a function f(x) : R" — R for some row vector x € [a, b] (the
formula is analogous to the one-dimensional case in Equation [3):

AV VoS = /Vfdw— —a)y /vmbafdt ®)
xcla,b

where o denotes the elementwise operation of either multiplication or inversion ((-)°~1). However,

the cases of vector elements where division by zero occurs are handled differently, using the partial

derivative g .

Vi:b;—a; =0 = AVG of 86;{ ©)

z; Elaqi,b;i] 837@

12



Under review as a conference paper at ICLR 2025

If f(z) : R™ — R™, then using to Equation|8}

o b
Avgwe[a,b] Vfcfl (b - a’) To f vwfl dz
_Avg a-f Avgwe[a,b] Vazfo _ (b — a)°*1 o fa Vefo dx
aclab] 0T e .
AvgmG[a,b] v:l:fm (b _ a)o—l ° fcl: v:z:fm dx (]O)
(b—a)! fo Vatt-(b—a)f1 dt
(b - a)o—l ° fO a+t~(b—a)f2 dt
M 0_1 ...
(b B a) f()l va+tv(b7a)fm dt
Again, the cases of vector elements where division by zero occurs are handled as follows:
. of _of
Vi:b;j—a; =0
' - T.él[l{i,g b;) 0T ~ Oa; an

B PROOF OF EQUATION [I]AND ITS LOSS-MINIMIZATION POTENTIAL

B.1 DEFINITION AND PROPERTIES OF AVERAGE GRADIENT OF LOSS

Using Equation |2 l the average gradient AVGy, Vg, ¢ can be defined without the approximation given
in Equation T}

a.’Bk- amk’+1 8mn

AVGVl= — AVG

Ok, Tr, g1 x,) 39k 8(Bk awn71 Tn ) ( )

where multiple variables are under the average operator (6, €k, x+1,- - - , £y ). There are numerous
ways to define how (@, Tgy1, ..., %, ) depend on the weights and biases 6y, as they all change
together during a parameter update. To compute the average (Equation [2)), it can be assumed
that the parameters of the layer no. k and the outputs of the layers change linearly with respect to
each other, as if they move from 6, to 6}, and from (xg,...,x,) to (x},...,x,) after an update
of the parameters of all layers. Under this assumption, the calculation is formulated as follows:
while computing the average, the integral contains a function fg () = 0y + t - (6}, — 0)) for the
variable under integration ¢ € [0, 1] (6 and 8}, denote model parameters before and after an update,
respectively). Moreover, the integral involves each layer’s output: fr;(t) = x; + ¢ - (z} — x;).
Finally, the average gradient (Equation [I2)) is equal to:

8f:ck(t) 6fa:,k‘+1(t) a.fwn()
Avgvgke_Avgvf“e_ftvg(af“(t)- O T ()

_ [ Ofak(t) Ofzria(t) Ofwm(t)
*/0 Ofor(t)  Ofwr(t) '---'afm_l(t)~vfm,n<t)£<t) dt

Vi l(1))

(13)
which is more direct and easier to work with.

Importantly, unlike the gradient, the average gradient (AVGy, Vy, ¢) is directly proportional to the
loss-change impact of each model parameter separately lg j, — g 1, (of the shape of 8, and ), unlike
the scalar £):

n ‘9| ‘ek‘
.ol

AVG Vol = AVG V0, (30D Lo.13) = AVG Vi (3_ Lo ) = AVG (dins( ™)) =

7=0 =0 =0
0!
fa“%mdﬂ Jo 7l g A0 (14)
- /AN ’ - AL
<"é€tkvlg 6,k,1> Avg 6,k n> ek L ek 1 ) ) G;C’n — Gk,n

o1 — 0 lo n = Lo kn o

= (Ll _OhL 20 ’k’ BRY = (0 = 0)° 0 (Lo — Lok) o< Bor i — Lo g

o;f,l - ekJ 0;@71 - akvn
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where o denotes the elementwise operation of either multiplication or inversion ((-)°~'). diag( 5y o =)

denotes diagonal elements of the Jacobian matrix. g 1 ; € lg i represents the scalar loss contrlbutlon
of a single model parameter (6 ;), that can be defined as an integral of the gradient: (g ; =
0 2
" Vylg dv 4+ Cy, for any constant scalars C; and Cy. (Note that in this case, lg 1 ; # fg + Cy,
for any constant Cy, because the loss ¢ also depends on other parameters than 6}, ;.) Important

properties:  (a) lp = C' + >, _, Z‘i“(l) g s for a constant C' that is invariant across updates
of the model parameters 6.  (b) The elements of 1 are related to the difference in loss during

parameter update: lgr — by = (3> 1_, Z Eg ki) — i Zlf’“o lo ). (c) The following
equation is satisfied: Vol = Vg(z ,0 Z Zg k,i)- The simple one-dimensional visualization of
the proportionality from Equation (AVng ngﬁ o< lgr 1, — lg 1) is shown in Fig.[I| Note that
the property of proportionality does not hold for the gradient updates (which are utilized by Adam
(Kingma & Ba, [2014), RMSProp (Tieleman et al.l 2012), and SGD (Ketkar, 2017} Liu et al.|;|2020)).
In the gradient case, during the update step of 6 weights, 6’ is not used in the calculation of itself.
Therefore, ly: — ly cannot be computed yet, and the accurate influence on loss remains unknown,
unlike for the average gradient (Equation . The cases of scalar parameters 0, ; € 0 and ¢} ; € 0}
where division by zero occurs are handled differently:

ol ol
Vi:l, —0r; =0 = AV
? k,i k, O IE[QkLg,G' 8’l9k i 89k,i

15)
Assuming the functions fy j and f, ; from Equation [I3|are any functions (but differentiable with
respect to each other), Equation[I4]remains valid. Therefore, the crucial property of direct proportion-
ality to the loss values does not depend on our previous assumptions about 6, and a;. The purpose of
these assumptions is to provide a simple example, reduce reasoning abstraction, and simplify further

proofs in Sections [B.2]and

B.2 PROOF OF OF EQUATION [[] WITHOUT SPECIFYING PRECISION OF APPROXIMATION

For some function f and some constants Cy, Cs, ..., Cy:
Similarly, let us denote approximately constant functions as C (z) = C1,Cy(z) 2 Cy,...,Cl(z) =

C,, for some = € [a,b], a # b. The constant that precisely approximates each function C’(z), is
its average: C1(z) = AVG C1(z) = C1,C4(x) =2 AVG Cy(x) = Cy,...,Cl (x) 2 AVGC) (z) =
C,,. Therefore, similarly to Equation [I6}

b
/ Ci(a) .- Chl@) - f(x) dx = AVG Ci(@) ... AVG i / e

z€[a,b] z€[a,b]

Lbog<x>.....c;<x>.f<z>dxg/abcbxfi)dx._.../a b%dx/ f(a) de

which is also approximately equal to both sides of Equation[T6] In Equation[I7} both approximations

are equivalent, because AVG C/(z f C!(z)/(b— a) dx. For functions R™ — R™, equations no.

and. are analogous. Note that in the general case, the different approximations of the terms
Cl(z) = Cl(a) and C}(x) = C;(b) are worse than the average: C/(z) = AVG C!(x) = C; (which
is used further in Section [B.3).

Rapid changes in the gradient over the range of an update indicate that the update step is too large,
leading to instability and reduced training effectiveness due to excessively large steps in the loss
landscape. We assume effective learning, where gradients do not change signiﬁcantl between
updates, ensuring the learning rate is appropriately sized. In this case, the gradient Vg, ¢ does not
change s1gn1ﬁcantlyE] over the range of a weight update [0, 6']. However, these assumptions are

a7

!The magnitude of the gradient change need not be specified, as it suffices that it contributes to the approxi-
mations with unspecified bounds in Equations[I8]and[T9] The accuracy of these approximations is proven in
Section

2See footnote
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merely intended to build intuition and are not necessary for this proof. We do not yet assume any
specific level of precision in how Equation[T7]approximates Equation

_ lafmk(t).afac,kJrl(t). . 8fmn(t) .
OV L D) 0fen®) T e O

~ lafm,k(t) afmk+1() ! afm,n(t) ! 18
:/0 afemdt'é 0fe ) dt""'/o 0oy 1(>dt'/o Vaen@t®dt (9
—AVQ— AVG “”‘“- L AVG S AVG Vgl

80k Ty L Tn—1 a LTn—1 Tn

Applying the notation of Equation[I2]to Equation[T8] we get:

o [ OFai(t) [t Oferia(t) L 9 fpn(t) 1
AVG Vg, = / dt/o dt...../o )dt/o Vs (1) dt

o Ofex(t) 3f:c k(1) / Ofzn-1(t /
k Oy (0)) / i &Bkﬂ Xk) /w”*l 0%y (Xn—1) n
= diy, dXe .- - 761)(7171/ V. L dxn
/9k a’ﬂk’ LTp—1 axn_l Tn x
‘0 0 ox,,
- Avgﬁ Avg EEEEL L Avg ZEn L AVG Y,
39k T awk Tp—1 awn 1 Tn
(19)
where 0, xp, Tk41,...,&, are all linear functions of ¢ (previously denoted as
foks fek, foke+1s- -5 fon). Therefore, the functions xy(0k), rt1(xk),. .., Tn(Tn—1) are
known. The edge cases of those scalars within 0y, x, k11, ..., x, that do not depend on ¢ are

handled analogously to Equation[I3] as in these cases the average gradient equals the gradient.

Despite the provided arguments on why the approximation is applied, the precision of the estimation
is not specified, although it is crucial. Therefore, the accuracy of the approximation is described
in Section Otherwise, if the precision of the estimation is not important, then Equation [I9]
ultimately proves Equation[I] O

The analogous reasoning can be applied to prove Equation 5]

In the algorithm, it is also assumed that the average gradient of the loss with respect to the output
of the last layer, denoted as (AVG,, Vg, 0), is replaced by the gradient (V,,_ ¢). Moreover, in
our implementation, the gradients replace the average gradients of layers that are approximately
linear (using Equation [6]instead of Equation [5), resulting in a broader approximation in Equation [I]
However, the presented reasoning still applies, including the proof of approximation accuracy in
Section[B.3] See Appendix [F]for comments on the limitations of our implementation of Equation

B.3 PROOF OF SUFFICIENT PRECISION OF APPROXIMATION

Referring to the content of the paragraphs just before and after Equation the approximation
in Equation [17|is more precise in the case of C(z) = AVGC!(z) = C; than in the case of
approximating C}(z) = C/(a). The average Jacobian of each term in Equation 1| can be denoted
as AVG C!(x), while the Jacobian of each term in Equation an be denoted as C(a). For the
average Jacobian AVG C/(x), a better estimation in Equation[17|is obtained, as stated in the text
near the equation. Consequently, applying Equation [T7] to approximate Equation [I3]results in a
higher precision in estimating Equation [T when averaging each Jacobian term separately, compared to
utilizing the Jacobians without averaging. Therefore, a better approximation of the accurate average
gradient is obtained compared to using the gradient. [J The average gradient is proportional to the
change in loss after the corresponding parameter update (Equation[I4). Therefore, approximating
the average gradient more precisely than current gradient-based methods can lead to more efficient
minimization of batch loss, for example, by using Eq. [I] Therefore, learning can be enhanced
compared to the potential of gradient-based methods.
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Figure 3: Test losses of Model B. Only mean curves contain confidence ranges (SEM).
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Figure 4: Test accuracy of Model B. Only mean curves contain confidence ranges (SEM).

E SCALING IN TERMS OF MODEL DEPTH

The algorithm based on the average gradient aims to reduce errors of the predicted influence on
loss of a parameter update. In the case of the gradient-based approach, the errors arise from the
impaired prediction of how inputs to subsequent layers influence their outputs (Fig. [I). Let us
model the errors as multiplicative, because each time a fraction of output may be influenced by
the error (Balduzzi et all 2017). Therefore, when compared to the gradient-based algorithm as a
baseline, the multiplicative errors are reduced after backpropagation through each nonlinear layer
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(by computing the average Jacobian of the layer). Consequently, the incorporation of the average
gradient exponentially reduces the error in terms of a count of nonlinear layers (that are involved in
the backpropagation process). This explains the huge performance-improvement gap between the
models for the method based on the average gradient, which emerges from the difference in models’
depths. However, the gap is also increased due to the linearity of the ELU activation function in most
of its domain, where the gradient equals its average. In this case, our algorithm produces results
similar to those of gradient-based optimization.

If the errors (of the predicted influence on loss of a parameter update) are enormous, then the learning
is impossible. Therefore, the learning performance tends to decrease after the error reaches a certain
value for a given model, learning rate, and other parameters. From that point onward, our algorithm
more efficiently reduces the batch loss compared to the gradient-based approach by minimizing the
error in the loss-influence prediction. Importantly, the improvements tend to increase with both the
number of nonlinear layers in a model and the learning rate.

F THREE-DIMENSIONAL COMPARISON OF THE GRADIENT AND THE
AVERAGE GRADIENT

In our experiments, during a parameter update, in terms of the average reduction of loss for a batch,
our algorithm lies between the gradient (red arrows in Figure [5) and the lowest average gradient
(black arrows in Figure [3). Our algorithm does not always find a locally optimal solution (the best in
the range of a single parameter update) because:

a The average gradient is approximated (by using Equation|T]instead of Equation[3] Equation|6]
as a substitute of Equation [5] and the non-averaged gradient of the loss with respect to the
last layer output).

b The optimal parameter update may be inaccurately estimated before the average gradient for
this parameter update is calculated. Moreover, even after many iterations of Algorithm 4]
(Appendix [G), the update step may not converge to a locally optimal solution (black vectors
in Figure[5).

¢ After the first iteration of our algorithm, only the negations of the directions of changes in

each parameter are possible. Thus, the search for locally optimal updates is bounded by 2/€
combinations, where |©] is the count of trainable parameters.

Nevertheless, the RD metric (defined in Equation (7)) indicates our algorithm minimizes the batch
loss more efficiently on average compared to the gradient-based approach.
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Figure 5: Three-dimensional comparison of the gradient and the lowest average gradient in a few
example scenarios. The latter accurately reflects the influence on the loss of a parameter update.
Furthermore, it accurately shows how each model parameter individually contributes to the change
in the batch loss (Equation [T4), which is utilized by our algorithm. Each plot illustrates the loss in
terms of two example model parameters, assuming a specific magnitude for each parameter update
(represented by the radius of each white circle). The arrows point to the loss values after an update
based on the gradient and the average gradient. The average gradient is calculated for the update that
minimizes it. Therefore, it points to the minimum loss on each white circle, although this minimum
is not always achieved by the approximated average gradient computed by our algorithm.
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G ALGORITHM VERSION WITH PARAMETERIZED NUMBER OF ITERATIONS

Algorithm 4 Algorithm Version with Parameterized Number of Iterations (two or more). The number
of iterations is equal to the number of backpropagation calls and inferences in optimal implementation.
The memory requirement of the ideal implementation would be higher than that of Adam by only an
additional scalar size per parameter of the model.

Input: model: Neural Network Model to Train
dataset: Training Dataset
lossF'n: Loss Function
optimizer: Optimizer
iterCount: Number of Backpropagation Iterations
for all batch € dataset do
modelInitial < model
modelCopy < model
initial Output < modelCopy(batch.x) {It is assumed that modelCopy’s layers’ results are
kept inside modelCopy}
initial Loss < LossFn(initial Output, batch.y)
Backpropagate(initial Loss) {Compute the gradients using the standard backpropagation
procedure. Assume that the gradients are stored inside modelCopy}
optimizer.Step(modelCopy) {Parameter update}
modelOutput A fterUpdate <+ modelCopy(batch.x)
model Loss A fterUpdate < LossFn(modelOutput A fterUpdate, batch.y)
for iter = 1,...,iterCount — 1 do {Loop (iterCount — 1) times, because one backward
propagation is done }
if iter # 1 then
modelCopy < model
modelCopy(batch.x) {For each layer, compute its output, and store it inside modelCopy}
model < modelInitial
end if
initial Output <+ model(batch.x) {This computation is redundant if layer outputs are
copied from model Initial }
initial Loss <— LossFn(initialOutput, batch.y) {Analogously, this computation is also
redundant}
AveragedBackpropagation(model, model Copy, initial Loss) {The procedure is de-
scribed as Algorithm [2| The parameters of the model are modified within}
end for
end for

H CONVOLUTIONAL NEURAL NETWORK ON IMDB

H.1 METHODS

We refer to Model C (Tab. ) as our very deep convolutional model, which we tested on the IMDB
dataset. This model, primarily composed of convolutional layers, is designed to evaluate the perfor-
mance of our learning algorithm on a deep convolutional neural network without skip connections.
Skip connections simplify the learning task by enabling the network to leverage features that can be
extracted by shallower networks (Veit et al.,|2016). Our primary goal is to assess the algorithm’s
capabilities, rather than achieving state-of-the-art results.

IMDB preprocessing includes: (a) Equal split for test and training sets. (b) Duplicate removal.
(c) Punctuation removal. (d) Tokenization. (e) Padding to the length of 122 (mean training-exam-
ple length), and keeping the final part of each review. (f) Lemmantization. (g) Vectorization using
GloVe embeddings (Pennington et al.l 2014). Finally, the input has the shape (1,122, 50), where
each input word is converted into its corresponding GloVe embedding with a length of 50. Model C
(Tab. [4)) utilizes multiple convolutional layers of shape (1 x 1), which are used to change the data
shape and, for each pixel”, to extract features from the outputs of different filters. The neighboring
dimensions of each GloVe embedding do not have any special relationship compared to the distinct
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Table 4: Model C.

Output  Parameter
Layers Shape Count
Convolution 2D (1 x 50), Tanh 50,122,1) 2550
Convolution 2D (1 x 1), Tanh 40,122,1) 2040

(
) (
Convolution 2D (1 x 1), Tanh (35,122,1) 1435
Convolution 2D (1 x 1), Tanh (30,122,1) 1080
Convolution 2D (1 x 1), Tanh (27,122,1) 837
Convolution 2D (1 x 1), Tanh (24,122,1) 672
Convolution 2D (1 x 1), Tanh (21,122,1) 525
Convolution 2D (1 x 1), Tanh (18,122,1) 396
Convolution 2D (1 x 1), Tanh (16,122,1) 304
Convolution 2D (1 x 1), Tanh (14,122,1) 238
Convolution 2D (1 x 1), Tanh (12,122,1) 180
Convolution 2D (1 x 1), Tanh (10,122,1) 130
Convolution 2D (1 x 1), Tanh (8,122,1) 88
Convolution 2D (1 X 1), Tanh (6,122,1) 54
Convolution 2D (1 x 1), Tanh (5,122,1) 35
Convolution 2D (3 x 1) with stride = 2, Tanh (5, 60, 1) 80
25 x Convolution 2D (3 x 1), Tanh (5, 10, 1) 25x80
Flatten 50
Linear, Tanh 25 1275
Linear, Tanh 13 338
Linear, Tanh 7 98
Linear, Tanh 4 32
Linear, Softmax 2 10
14397

ones. Therefore, we used convolutions with a filter-size dimension equal to either one or all features
in the GloVe embeddings.

H.2 RESULTS

Both versions of our algorithm were more sample-efficient than the gradient-based RMSProp, as
indicated by the training loss (Fig.[6). In the case of gradient-based training, the trade-off between the
mean and median of the training loss is visible in both Figs. [6a]and [6b] The tendency for instability in
training with a higher learning rate leads to the occurrence of outliers, also in terms of whole worse
trainings, which lower the mean. However, the median is resistant to these outliers. This can also
be observed in Figures[7b]and [8b] To evaluate both the mean and median, considering the trade-off
between them, we compared the methods by averaging the median and mean losses. This approach
provides a consistent comparison result across both learning rates of the gradient-based RMSProp
(Fig.[6). Using this evaluation method, the performance of gradient-based RMSProp at epoch 200
is approximately equal to the results of the two iterations of our method at epochs 125 and 130, in
Figs.[6a] and [6D] respectively. This translates to a sample efficiency between 53% and 60% higher
in favor of the two iterations of our algorithm compared to the vanilla RMSProp. Surprisingly, the
performance of the four iterations falls between the other methods, with the sample efficiency gain
ranging from 25% to 30%. The RD = 0.0394 £ 0.0053 metric also favors the two-iteration variant,
outperforming the RD = 0.0210 = 0.0018 achieved by the four iterations.

The test-accuracy (Fig. [8) and test-loss curves (Fig. [/) should be interpreted in the context that
the objective of the hyperparameter search is dependent solely on the training loss. In addition,
considering the trade-off between the mean and median losses, which occurs between the lower and
higher learning rates of the vanilla RMSProp, slightly better mean generalization in the gradient
training for the low learning rate (Fig.[7a) does not imply generally better test performance. However,
the comparison using the same learning rate (Fig. indicates that the two-iteration variant achieves
the most stable test-loss performance.
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Table 5: Learning rates for the IMDB dataset. The “Learning Rate” column presents the final chosen
learning rates for the experiments. A repeated loss of 0.6931 is equivalent to the lack of training. The
table includes the results of the final experiments; however, the results are clipped to 150 epochs for
the variants of our algorithm. The best results and the learning rates chosen for the experiments are
marked in bold.

Most Important Hyperparameter Search Results
Method Learning Rate [Learning Rate: Avg. of Min. Training Loss]
9.545e—5 : 0.6719; 1.193e—4 : 0.5605
1.491e—4 : 0.4121; 1.864e—4 : 0.5106
2.330e—4 : 0.3567; 2.912e—4 : 0.4026
3.641e—4 (stable trainings, 3.641e—4:0.3370; 4.551e—4 : 0.3407

small number of outliers, 5.689e¢—4 : 0.5243; 6.906e—4 : 0.2801
low average losses) 8.384e—4 :0.4414; 1.018e—4 : 0.4565
and 1.236e—3 : 0.6931; 1.500e—3 : 0.6931
6.906e—4 (slightly higher Repeated trainings:

RMSProp average training losses, 3.641e—4: (0.4307 + 0.0143); (30 trainings)
(200 epochs)  but lower median losses) 6.906e—4 : (0.4435 + 0.0154); (50 trainings)
3.641e—4:0.4948;4.733e—4: 0.3373
6.153e—4 : 0.4385; 7.999e—4 : 0.4316
6.906e—4 (low training 1.040e—3 : 0.4096; 1.352e—3 : 0.6931
losses, easy to compare Repeated trainings:
2 Iterations with RMSProp dueto ~ 4.733e—4 : (0.4574 4 0.0127); (15 trainings)
(150 epochs)  matching learning rate)  6.906e—4 : (0.4225 + 0.0125); (30 trainings)
6.906e—4 (easy to
compare with RMSProp 4.734e—4 : 0.3766; 6.153e—4 : 0.4410

5 Iterations  and 2 Iterations due to Repeated trainings:
(150 epochs)  matching learning rates) 6.906e—4 : (0.4567 4+ 0.0129); (15 trainings)
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Y
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(a) Gradient-based RMSProp with the lower learning (b) Gradient-based RMSProp with the lower learning
rate of 3.641e—4. rate of 6.906e—4.

Figure 6: Training loss of Model C. Only mean curves contain confidence ranges (SEM).
Due to suboptimal backpropagation of the average gradient through activations in our implementa-
tion, it has a bigger computational overhead for models applying activations to large feature maps.

Therefore, our implementation is computationally slower relatively to the gradient-based training for
Model C than in the case of Model B.
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Figure 7: Test loss of Model C. Only mean curves contain confidence ranges (SEM).
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Figure 8: Test accuracy of Model C. Only mean curves contain confidence ranges (SEM).

I EXPERIMENTS WITH ALTERNATIVE WEIGHT INITIALIZATION FOR MODEL B

We repeated the experiments for Model B on the MNIST and Fashion MNIST datasets due to
suboptimal parameter initialization, which resulted in vanishing gradients at the start of the training.
During the repeated experiments, we initialized the weights using the Glorot uniform method (Glorot
& Bengio, 2010), which is specifically designed to initialize layers with nonlinear activations such as
Tanh or Sigmoid. A gradient-magnitude gain of % for Tanh activations was used, as recommended
by the PyTorch library. Biases were initialized to zero. The gradient magnitudes were examined to
ensure they fell within a satisfactory range after initialization. Training length was reduced to 125
epochs for the gradient-based RMSProp and 50 epochs for two iterations of our method to test a 2.5x

learning speedup.

As expected, similar magnitudes of learning rates performed well in the trainings using different
weight initializations (compare Tables [3|and [6). The losses using our method are significantly lower
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Table 6: Results for different learning rates.

The Most Important Results
Dataset  Method [Learning Rate: Avg. of Min. Training Loss]
8 trainings per each Iearning rate:
le—4:0.0945 £ 0.0062; 1.5e—4 :0.0821 £ 0.0121;
1.75e—4 : 0.0750 4+ 0.0102; 2e—4 : 0.0519 £ 0.0057;
2.25e—4:0.0862 £ 0.0171; 2.5e—4 :0.0417 + 0.0035;
2.75e—4 :0.0515 £ 0.0094; 3e—4:0.0749 + 0.0187;
RMSProp 3.5e—4 : 0.0536 £ 0.0095; 4e—4 : 0.0604 £+ 0.0188;
(125 epochs) 50 trainings: 2.5e—4 : 0.0478 + 0.0032;
3 trainings per each Iearning rate:
1.54e—4:0.128 £ 0.0068; 4.61e—4 : 0.0351 £ 0.0029;
8 trainings per each learning rate:
6e—4 : 0.0320 £ 0.0013; 8e—4 : 0.0256 £ 0.0019;
9e—4:0.0245 £ 0.0005; 1le—3:0.0255 £ 0.0021;
2 Iterations 1.1e—3:0.0253 £ 0.0016; 1.2e—3 : 0.0246 +£ 0.0005;

(50 epochs) 1.4e—3 : 0.0255 % 0.0002;
8 trainings per each Iearning rate:

2.5e—4:0.329 £ 0.022; 3e—4:0.352 £ 0.024;
3.5e—4 :0.315 £ 0.025; 4e—4:0.347 £+ 0.024;
4.5e—4 :0.374 £ 0.029; 5e—4:0.396 £ 0.025;
5.5e—4 :0.310 £ 0.024; 6e—4 : 0.371 £ 0.025;

MNIST

RMSProp 6.5e—4 : 0.368 £ 0.034; 7e—4 :0.407 £ 0.021;
Fashion (125 epochs) 50 trainings: 3.5e—4 : 0.344 4+ 0.010;
MNIST 3 trainings per each learning rate:

1.33e—4:0.467 £ 0.002; 1.75e—4 : 0.463 £ 0.001;
8 trainings per each learning rate:
6e—4 : 0.269 £ 0.003; 8e—4 :0.255 £ 0.002;
9e—4 :0.255 £ 0.002; le—3:0.254 £ 0.003;
1.1e—3:0.253 £ 0.003; 1.2e—3 :0.245 £+ 0.001;
1.4e—3:0.252 £ 0.003; 1.5e—3:0.261 £ 0.004;
2 Iterations 1.6e—3 :0.253 = 00037 1.8e—3:0.273 + 0.008;
(50 epochs) 2e—3 : 0.262 4 0.000;

after 2.5 times fewer epochs. Therefore, the two iterations of our method increase sample efficiency
by more than 2.5 times. Good performance of the method across different parameter-initialization
distributions is essential for its practical application as it contributes to robustness. Importantly, our
algorithm maintains its performance gain compared to the gradient-based RMSProp in scenarios
involving vanishing gradients, as demonstrated in the main experiments.

J  FUTURE WORK

Interesting directions for further experiments include: (a) Computing the average gradients over a
much larger range than that of a parameter update to capture the global trend of the loss landscape.
(b) More accurate approximation of the average Jacobians using Equation [5instead of Equation [6]
This would enable computing the average Jacobians of linear operators. Therefore, the algorithm
based on the average gradient may enhance trainings of deep models without nonlinear activations.
Moreover, the usage of Equation [5] may further improve the performance in the case of many
nonlinear activations because of the increased precision in approximating the average gradient.
(c) Incorporation of the momentum into our algorithm. Preferably Nesterov momentum (Dozat,
2016)) should be used. If not, the average gradient would also be calculated for the momentum part
of the update step. This could often reverse the direction of the momentum for a model parameter,
thereby impairing the effectiveness of the entire momentum procedure. (d) Development of similar
algorithms, but with update steps, that, for a given model parameter, vary in size over the iterations
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of the average-gradient computation. By adjusting the step size of each model parameter to the
absolute value of the average gradient, the learning process may be enhanced. (e) Tests of the
method on large and very deep architectures, that are used in practice and contain many nonlinear
layers. (f) More research on how the method scales up (Appendix [E), also in relation to the number
of neurons in layers of neural networks. (g) Experiments with learning without forgetting (L1 &
Hoiem, 2017) and online learning. Sample efficiency may be very beneficial there.
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