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ABSTRACT

In clinical practice, physicians refrain from making decisions when patient in-
formation is insufficient. This behavior, known as abstention, is a critical safety
mechanism preventing potentially harmful misdiagnoses. Recent investigations
have reported the application of large language models (LLMs) in medical sce-
narios. However, existing LLMs struggle with the abstentions, frequently provid-
ing overconfident responses despite incomplete information. This limitation stems
from conventional abstention methods relying solely on model self-assessments,
which lack systematic strategies to identify knowledge boundaries with external
medical evidences. To address this, we propose KnowGuard, a novel investigate-
before-abstain paradigm that integrates systematic knowledge graph exploration
for clinical decision-making. Our approach consists of two key stages operating
on a shared contextualized evidence pool: 1) an evidence discovery stage that sys-
tematically explores the medical knowledge space through graph expansion and
direct retrieval, and 2) an evidence evaluation stage that ranks evidence using mul-
tiple factors to adapt exploration based on patient context and conversation history.
This two-stage approach enables systematic knowledge graph exploration, allow-
ing models to trace structured reasoning paths and recognize insufficient medi-
cal evidence. We evaluate our abstention approach using open-ended multi-round
clinical benchmarks that mimic realistic diagnostic scenarios, assessing abstention
quality through accuracy-efficiency trade-offs beyond existing closed-form evalu-
ations. Experimental evidence clearly demonstrates that KnowGuard outperforms
state-of-the-art abstention approaches, improving diagnostic accuracy by 3.93%
through effective diagnostic interactions averaging 5.74 conversation turns.

1 INTRODUCTION

Large language models (LLMs) are designed to generate prompt responses based on given instruc-
tions (Brown et al., 2020). However, in clinical decision-making, this tendency becomes problem-
atic, as patient’s initial information is often incomplete or ambiguous, requiring iterative, multi-
round conversations to be progressively disclosed. In such scenarios, the ability to abstain, i.e.,
recognizing knowledge boundaries and refraining from answering under uncertainty, is crucial for
ensuring the safe and effective deployment of clinical AI systems. Yet, current LLMs struggle with
abstention, frequently providing overconfident or premature responses. This behavior prolongs di-
agnostic interactions, delays decision-making, and increases the cognitive burden on physicians,
ultimately undermining trust in AI-assisted workflows (Sun et al., 2025; Kumaran et al., 2025).

Existing abstention methods face two fundamental challenges that limit their suitability for clinical
applications. First, LLMs inherently exhibit overconfidence and choice-supportive bias. Tradi-
tional confidence-based methods (Tian et al., 2023; Li et al., 2024; Geng et al., 2023) rely on LLM
self-assessments to generate confidence scores for abstentions. However, LLMs often inflate their
confidence in initial answers, even when faced with contradictory evidence (Tian et al., 2025). This
issue could be further exacerbated by the model’s reasoning fine-tuning, a post-training method that
has been widely applied in recent medical agents (Kirichenko et al., 2025). This overconfidence be-
comes particularly problematic in multi-round clinical conversations, where models maintain false
certainty despite limited patient information. Second, current methods lack robust external knowl-
edge validation methods. Even evidence collection methods, such as the one reported in (Srinivasan
et al., 2024), count on internal model knowledge without referencing external medical knowledge.
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Figure 1: Comparison of abstention approaches in multi-round clinical reasoning. Traditional meth-
ods (left) rely on confidence assessment using internal LLM knowledge. Our investigate-before-
abstain paradigm (right) proactively detects knowledge boundaries through systematic medical
knowledge graph exploration, identifying evidence gaps to guide targeted investigation before ab-
stention decisions.

These limitations prove especially concerning in clinical settings, where life-critical decisions re-
quire both higher reliability and systematic reasoning grounded in external, verifiable evidence.

Present work: This paper incorporates external medical knowledge to address the abstention prob-
lem, aiming to ground the LLM’s abstention decisions with factual medical evidence beyond its
own understanding. The key implementation challenge of the proposed approach is to efficiently
and precisely identify the knowledge boundary, i.e., determining whether available evidence is suf-
ficient to support a reliable conclusion. In light of this, a highly structured data representation of the
external knowledge source is required to facilitate easier and more accurate boundary identifications.
Knowledge graph provides well-organized medical relationships, and is, therefore, a good match to
support the systematic reasoning needed for our abstention approach (Gao et al., 2025; Pan et al.,
2024).

We highlight that the abstention problem requires a systematic exploration of the medical knowl-
edge graph beyond simple fact retrieval. Under a practical multi-round setup, the system must main-
tain investigation consistency across interactions and dynamically adapt to new patient information
provided. To this end, we propose a novel investigate-before-abstain paradigm that grounds absten-
tion decisions in systematic exploration of medical knowledge graphs. This approach progressively
investigates knowledge boundaries across rounds, integrating external knowledge with clinical ab-
stention. When new patient details emerge, the system continues exploration rather than restarting,
using knowledge conflicts as signals of uncertainty (see Figure 1 for details). Our approach consists
of two major stages operating on a shared contextualized evidence pool. The evidence discovery
stage queries and updates knowledge triplets through graph expansion and direct retrieval based
on new patient information. The evidence evaluation stage ranks evidence using multiple factors
including graph coherence, embedding similarity, LLM selection, temporal decay, and patient pop-
ulation reasoning to identify reliable evidence and facilitate contextualized abstention assessment.
Throughout multi-round interactions, this evidence pool functions as a priority queue, continuously
updating evidence relevance based on evolving patient context.

In summary, this paper puts forth KnowGuard, a multi-round clinical question answering (QA)
abstention approach that leverages knowledge graphs with contextualized evidence reasoning. Our
major contributions are summarized as follows: (1) Investigate-before-abstain paradigm: We re-
place the unreliable LLM self-assessment scheme with our systematic medical knowledge graph ex-
ploration, grounding abstention decisions in factual evidence. (2) Multi-round knowledge graph
reasoning: We design a two-stage approach with evidence discovery through graph expansion and
direct retrieval, followed by evidence evaluation using coherence-aware scoring and demographic-
guided reasoning that enables dynamic knowledge expansion adapted to evolving patient informa-
tion. (3) Dataset and benchmark: We establish a new open-ended multi-round clinical benchmark
comprising 3,061 cases across three medical datasets. Additionally, we construct a comprehensive
medical knowledge graph derived from over 300 WHO guidelines. This knowledge graph encom-
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passes 22k nodes and over 100k edges, integrating multimodal information across text, image, and
relation. Unlike existing clinical QA datasets that use multiple-choice formats, our open-ended set-
ting better reflects real clinical conversations and enables proper evaluation of abstention behavior.
(4) Comprehensive system evaluation: We compare against 5 representative abstention baselines
with and without enhancement techniques. Extensive comparisons with state-of-the-art abstention
approach show that our method improves diagnostic accuracy by 3.93% with an average of 5.74
effective conversation turns.

We have open-sourced KnowGuard, whose link will be made public upon acceptance.

2 RELATED WORK

Medical Question Answering Systems. LLM-powered agents have advanced medical question
answering (QA) (Jin et al., 2021; Singhal et al., 2023; Su et al., 2024), which encompasses both
multiple-choice and open-ended questions from diverse medical sources. To better reflect real-world
clinical practice where physicians often need to gather additional information through iterative ques-
tioning, recent research has shifted toward interactive QA frameworks that allow for multi-turn con-
versations and information seeking (Wang et al., 2025; Johri et al., 2025; Li et al., 2024). MediQ (Li
et al., 2024) introduced such an interactive QA framework that leverages multi-agent collaboration
to encourage agents to abstain from answering when uncertain and actively seek additional informa-
tion through follow-up questions. However, existing interactive benchmarks predominantly focus
on multiple-choice formats, which inadequately reflect real-world clinical scenarios where practi-
tioners typically encounter open-ended questions without predefined answer choices (Nachane et al.,
2024). To address this limitation, we develop a multi-round open-ended interactive clinical reason-
ing benchmark to evaluate free-text responses.

Abstention Methods. Effective abstention requires recognizing knowledge boundaries and refrain-
ing from answering when evidence is insufficient (Lin et al., 2025; Ni et al., 2025; Kale & Nadadur,
2025). Current approaches include self-assessment methods that rely on internal confidence through
uncertainty estimation (Tian et al., 2023), calibration scoring (Geng et al., 2023; Srivastava et al.,
2023), and multi-scale rating (Li et al., 2024); consistency-based methods that aggregate multiple
model outputs for disagreement detection (Wang et al., 2022); and knowledge-based approaches
that incorporate information sources. Long context methods (Tu et al., 2024) retrieve comprehen-
sive medical documents but provide coarse-grained context that fails to pinpoint specific knowledge
gaps, leading to information overload rather than targeted evidence discovery. While these methods
have shown promise in various domains, they share a fundamental limitation in their reliance on
reactive confidence assessment rather than proactive knowledge investigation. When facing uncer-
tainty, these methods ask “how confident am I?” instead of “what specific evidence am I missing?”.
KnowGuard introduces the first investigate-before-abstain paradigm for multi-round clinical rea-
soning, which systematically explores knowledge boundaries through targeted evidence discovery
guided by medical knowledge graphs.

3 METHOD

3.1 PROBLEM FORMULATION AND APPROACH OVERVIEW

Multi-round Abstention Problem Formalization. We formalize multi-round clinical abstention
within an interactive consultation approach that simulates realistic diagnostic scenarios. The Patient
Agent maintains complete patient informationK = {k0, k1, . . . , kn} (n pieces in total) and responds
truthfully to inquiries by revealing relevant information subsets. The Doctor Agent receives the
initial patient presentation k0 and must decide at each round t whether to abstain from diagnosis.
When abstaining, the agent asks targeted questions qt to gather additional information; otherwise, it
provides a diagnostic answer. At each round t, given accumulated patient knowledge Kt = Kt−1 ∪
{at} where at represents the patient’s response to question qt, the Doctor Agent must make a binary
abstention decision:

At : Kt → {0, 1}, (1)

where At = 0 indicates continued information gathering (abstention) and At = 1 indicates suffi-
cient confidence for diagnosis. The core challenge lies in determining the optimal stopping point

3
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Figure 2: KnowGuard approach for knowledge-driven abstention in clinical reasoning. Our
investigate-before-abstain paradigm systematically explores medical knowledge graphs to identify
evidence gaps before abstention decisions. The Evidence Discovery Stage retrieves multi-modal
evidence through dynamic graph expansion and direct retrieval. The Evidence Evaluation Stage
adapts exploration priorities through relevance assessment, graph coherence prioritization, demo-
graphic weighting, and temporal decay. Final abstention decisions integrate all factors to determine
when sufficient evidence exists for diagnosis versus continued investigation.

where Kt contains sufficient evidence for reliable diagnosis while minimizing unnecessary interac-
tion rounds. Our proposed method focuses on this challenge.

KnowGuard Approach. Our investigate-before-abstain paradigm replaces unreliable LLM self-
assessment with structured medical knowledge exploration. As shown in Figure 2, KnowGuard
maintains a contextualized evidence pool Bt represented as a priority queue of knowledge triplets
relevant to the case. The evidence pool evolves cumulatively across conversation rounds, building
upon previous discoveries while incorporating new patient information at. The approach operates
through two complementary stages: Evidence Discovery Stage systematically expands Bt based on
patient information, while Evidence Evaluation Stage adapts exploration priorities based on multiple
factors, including patient demographics.

Multi-modal Knowledge Graph. We construct a comprehensive medical knowledge graph G =
(V, E) from authoritative medical guidelines, containing |V| medical entities and |E| clinical rela-
tionships. Each triplet (h, r, t) ∈ E is augmented with source text descriptions and document page
images, enabling both structured reasoning and contextual validation during evidence discovery.
To ensure the knowledge graph remains up-to-date, we have implemented a monthly web scraper
module that automatically retrieves newly published WHO guidelines. For more details about the
knowledge graph integration, we refer readers to Appendix F.

3.2 EVIDENCE DISCOVERY STAGE

Contextualized Evidence Pool Definition. The Evidence Discovery Stage operationalizes knowl-
edge boundary exploration through systematic graph investigation. To enable efficient exploration
of vast medical knowledge spaces, we maintain a contextualized evidence pool as a priority queue
Bt = {(hi, ri, ti, pi)}|Bt|

i=1 of candidate medical triplets (length is K), where each triplet (hi, ri, ti)
represents a potential reasoning step with priority pi. This bounded representation enables efficient
ranking and selection while focusing exploration on the most promising knowledge paths.

Systematic Evidence Expansion. The stage performs structured exploration through two comple-
mentary retrieval strategies. Graph Expansion-based retrieval identifies triplets connected to entities
in current high-priority candidates:

Texp = {(h, r, t) ∈ G : h ∈ EBt or t ∈ EBt}, (2)

4
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where EBt
represents entities present in current evidence triplet. Direct retrieval first generates

queries according to the current patient response at, and then performs a comprehensive search
across the knowledge graph:

Tquery = GraphRetrieval(G,LLMquery(at)). (3)

The retrieved evidence candidates Tcandidates = Texp∪Tquery are fed into the evidence evaluation stage
for priority scoring.

3.3 EVIDENCE EVALUATION STAGE

The Evidence Evaluation Stage operates on candidate contextual evidence to compute comprehen-
sive priority scores through five complementary factors: Embedding similarity, LLM relevance,
graph coherence, round decay, and patient population reasoning.

Relevance Assessment with Dual Validation. Each candidate triplet undergoes dual relevance
assessment combining embedding similarity (hard relevance) and LLM relevance (soft relevance).
Hard relevance measures the semantic similarity between triplet embeddings and the current patient
response:

ssim(h, r, t) = cosine(Embed(h, r, t),Embed(at)), (4)
while soft relevance employs LLM to assess clinical relevance given the current patient context:

srel(h, r, t) = LLMrel(at, (h, r, t)). (5)
This dual validation ensures both semantic and clinical alignment of evidence investigation.

Graph Coherence Prioritization. To maintain reasoning consistency, we prioritize triplets that
connect to frequently visited entities, indicating established reasoning pathways:

scoh(h, r, t) = countB(h) + countB(t), (6)
where countB(·) tracks cumulative frequency of the entity across all evidence pools throughout the
conversation. Higher coherence scores indicate stronger integration with existing paths, enabling
systematic knowledge boundary detection rather than random exploration.

Demographic-guided Priority Weighting. The stage infers patient demographics and clinical pop-
ulations from conversation history to prioritize relevant knowledge graph regions. Population infer-
ence analyzes accumulated patient information against predefined categories:

Pt = LLMdemo(Kt, Cpop), (7)
where Cpop represents predefined population categories derived from knowledge graph topics, such
as adolescents. Triplets belonging to identified patient populations receive enhanced weighting:

spop(h, r, t) =

{
α if (h, r, t) ∈ Subgraph(Pt)

1 otherwise,
(8)

where α > 1 emphasizes population-specific knowledge and Subgraph(Pt) denotes triplets relevant
to inferred populations.

Temporal Decay with Round-based Updates. To balance historical context with current informa-
tion, the stage applies temporal decay to previously explored knowledge while emphasizing recent
evidence. Priority updates follow exponential decay:

pt+1(h, r, t) = pt(h, r, t)× (1− wdecay) + pnew(h, r, t)× wdecay, (9)
where pnew reflects priority computed from current round information and wdecay ∈ [0, 1] controls
temporal transition rate.

Evidence-grounded Abstention Decision. The final priority combines multiple contextual factors
through weighted aggregation:

pfinal(h, r, t) = (wsim · ssim + wrel · srel + wcoh · scoh)× spop. (10)
The contextualized evidence pool maintains top-K triplets: Bt+1 = Top-K(Tcandidates, pfinal), where
Tcandidates = Texp∪Tquery. Each triplet is augmented with multi-modal evidence including source text
and document images. The final abstention decision integrates structured knowledge evidence with
patient context:

At = LLMdoctor(Kt,Bt, {xtext, ximg}), (11)
where the model receives current patient information, top-ranked evidence triplets, and their associ-
ated multi-modal content to make informed abstention decisions.

5
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3.4 OPEN-ENDED CLINICAL REASONING BENCHMARK

To properly evaluate abstention behavior in realistic clinical scenarios, we establish a multi-round
open-ended benchmark that extends beyond existing closed-form evaluations. Traditional multiple-
choice formats constrain response options and fail to capture the complexity of real clinical conver-
sations where physicians must formulate comprehensive diagnostic assessments. Following recent
advances in automated evaluation (Su et al., 2024), we employ LLM-as-judge methodology to con-
vert closed-ended questions to an open-ended format, enabling more accurate assessment of both
diagnostic reasoning quality and abstention appropriateness.

The Judge Agent performs answer matching between free-text predictions and ground truth re-
sponses. For originally multiple-choice questions, the judge receives all answer options along with
the model’s free-text response, without knowing the question content or correct option, and identifies
the most semantically similar option:

Amatched = Judge(Apred, {option1, option2, . . . , optionn}). (12)

For originally open-ended questions, the judge performs binary classification to determine whether
the prediction aligns with the ground truth answer:

Match = Judge(Apred,Atrue) ∈ {Yes,No}, (13)

where Apred represents the model’s free-text response and Atrue denotes the ground truth answer.

4 EXPERIMENTS AND RESULTS

We conducted extensive experiments to evaluate the effectiveness of KnowGuard on multi-round
clinical abstention, comparing against existing abstention methods on our open-ended interactive
clinical reasoning benchmark.

4.1 EXPERIMENTAL SETTINGS

Dataset Construction. We convert MEDQA (CC-BY-4.0) (Jin et al., 2021), CRAFT-MD (CC-BY-
4.0) (Johri et al., 2024), and AFRIMEDQA (CC-BY-NC-SA-4.0) (Nimo et al., 2025) into interactive
multi-round formats. Following established protocols (Li et al., 2024), we parse patient records into
structured components: age, gender, chief complaint, and additional evidence as atomic facts (Min
et al., 2023). Initially, only age, gender, and chief complaint are presented to the Doctor Agent,
which must strategically gather missing information through targeted questioning. The resulting
interactive datasets are termed ioMEDQA, ioCRAFT-MD, and ioAFRIMEDQA.

Multi-modal Knowledge Graph Construction. Our knowledge graph incorporates over 300 WHO
guidelines, resulting in 22k medical entities and more than 100k clinical relationships. Each triplet
is augmented with source text and document images for comprehensive knowledge boundary detec-
tion. Subgraphs are labeled with demographic and disease-specific features extracted from guideline
titles and abstracts, enabling patient population reasoning. The system monitors publication dates
for automatic updates, ensuring current medical knowledge supports boundary detection decisions.

Baseline Methods. We benchmark KnowGuard against representative abstention approaches: Ba-
sic (direct question or answer, without explicit abstention step), Binary Decision (Srivastava et al.,
2023) (explicit binary abstention), Numerical Score (Tian et al., 2023) (confidence scoring 1-5 with
thresholding), Scale Rating (Li et al., 2024) (fine-grained confidence levels with descriptions), and
Long Context (Tu et al., 2024) (external document retrieval with full-text processing). We compare
the baselines with and without rationale generation (Wei et al., 2022) (generate rationale alongside
abstention decision) and self-consistency (Wang et al., 2022) as enhancements.

Metrics and Agent. We evaluate using Accuracy (ACC) and average conversation rounds (avg.
Turn) as primary metrics for diagnostic effectiveness and interaction efficiency. All experiments
employ GPT-4 (Achiam et al., 2023) as the core agent model, given its widespread adoption and
demonstrated capabilities in medical reasoning tasks (Eriksen et al., 2024).

6
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Method ioAFRIMEDQA ioMEDQA ioCRAFT-MD

ACC avg. Turn ACC avg. Turn ACC avg. Turn

Basic Methods Comparison
Basic (implicit) 51.10± 2.40 8.32± 0.43 57.83± 2.05 8.98± 0.32 54.69± 1.27 8.31± 0.26
Binary Decision (Srivastava et al., 2023) 61.97± 2.83 8.98± 0.54 65.95± 1.87 7.69± 0.33 64.67± 1.13 7.85± 0.30
Numerical Score (Tian et al., 2023) 54.25± 2.69 1.72± 0.27 61.74± 1.76 2.51± 0.17 59.35± 1.20 2.42± 0.26
Scale Rating (Li et al., 2024) 63.06± 2.34 5.11± 0.48 64.23± 1.53 5.15± 0.23 65.40± 1.19 4.83± 0.21
Long Context (Tu et al., 2024) 57.45± 2.08 2.01± 0.18 59.95± 1.20 3.23± 0.22 57.88± 1.58 3.23± 0.14
KnowGuard 68.70± 1.77 5.26± 0.61 70.98± 1.98 5.41± 0.15 66.47± 1.47 4.89± 0.17

Enhanced Methods with Rationale Generation (Wei et al., 2022) and Self-Consistency (Wang et al., 2022)
Binary Decision (Srivastava et al., 2023) 64.55± 2.99 13.82± 0.56 72.92± 1.47 13.00± 0.42 70.01± 1.35 12.21± 0.33
Numerical Score (Tian et al., 2023) 58.33± 2.79 2.63± 0.45 64.23± 1.72 4.61± 0.30 61.51± 1.17 4.98± 0.35
Scale Rating (Li et al., 2024) 61.36± 1.00 5.31± 0.05 65.52± 1.36 6.26± 1.13 66.34± 1.89 5.56± 0.17
Long Context (Wang et al., 2024) 56.80± 0.33 1.16± 0.48 59.37± 0.84 3.30± 1.15 58.61± 0.85 3.29± 0.97
KnowGuard 73.20± 1.92 5.30± 0.58 74.12± 0.57 5.40± 0.27 71.96± 0.98 6.51± 0.09

Table 1: Performance comparison on open-ended multi-round interactive clinical reasoning. Accu-
racy and average turns are reported for baseline methods and their enhanced versions.

Table 2: Ablation studies of KnowGuard’s key designs, including evidence modality of text or
multi-modal knowledge graph (KG) triplet, evidence evaluation stage (Evidence Eval.), and patient
population reasoning (PPR) factor.

Component Configuration ioAFRIMEDQA ioMEDQA ioCRAFT-MD
Text evidence KG evidence Evidence Eval. PPR ACC avg. Turn ACC avg. Turn ACC avg. Turn

! ! ! ! 73.20 5.30 74.12 5.40 71.96 6.51

! ! ! % 72.60 7.03 74.29 6.53 71.92 6.53
! ! % % 66.22 2.69 70.66 3.24 68.92 3.31
! % % % 66.02 3.33 64.79 3.25 62.73 3.30
% % % % 63.06 5.11 64.23 5.15 65.40 4.83

4.2 RESULTS

Table 1 demonstrates KnowGuard’s superior performance across all benchmarks. Our investigate-
before-abstain paradigm achieves the highest accuracy while maintaining competitive interaction ef-
ficiency, systematically identifying knowledge gaps rather than relying on self-assessments. Know-
Guard consistently outperforms all baseline methods, achieving 1.07-5.64% accuracy improvements
over the strongest confidence-based approaches (Binary Decision and Scale Rating) in basic settings,
and 1.20-8.65% improvements in enhanced settings. Compared to knowledge-enhanced Long Con-
text, KnowGuard delivers substantial gains of 10.29% accuracy in basic settings and 14.83% in
enhanced settings on average. Notably, while Long Context also incorporates external knowledge,
it retrieves comprehensive documents without systematic boundary detection, leading to informa-
tion overload and premature abstention decisions. The integration of rationale generation and self-
consistency benefits all methods, with KnowGuard showing 3-4% accuracy improvements while
maintaining stable interaction lengths, demonstrating the robustness of knowledge boundary detec-
tion over self-assessment-based abstention approaches.

5 ANALYSIS

5.1 ABLATION STUDIES ON KEY COMPONENTS

To validate the effectiveness of KnowGuard’s designs, we conducted systematic ablation studies as
shown in Table 4. We progressively evaluate each component’s contribution to demonstrate their
individual effectiveness. Multi-modal knowledge graph triplets provide substantial improvements
over text-only evidence retrieval, demonstrating the value of structured medical knowledge for ab-
stention. The evidence evaluation stage enables systematic exploration by ranking candidate evi-
dence, leading to more targeted abstention decisions. Patient Population Reasoning (PPR) enhances
personalized reasoning by considering demographic and disease-specific contexts. Each compo-
nent contributes meaningfully to both accuracy and efficiency, with the complete system achieving
optimal performance across all datasets.

7
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5.2 HYPERPARAMETER STUDIES

Table 3: Sensitivity analysis of evidence evaluation factors. Embedding similarity is abbreviated as
Embed. Sim.

Factor Weight Value ioAFRIMEDQA ioCRAFT-MD ioMEDQA
ACC Round ACC Round ACC Round

Embed. Sim.
0.10 71.41 5.48 71.10 5.44 72.77 5.14
0.20 73.20 5.30 71.96 5.51 74.12 5.40
0.30 71.99 5.46 71.67 5.40 71.24 5.15

LLM Relevance
0.50 71.02 5.58 69.58 5.44 70.59 5.25
0.60 73.20 5.30 71.96 5.51 74.12 5.40
0.70 68.51 5.40 70.22 5.37 71.64 5.23

Graph Coherence
0.25 71.41 5.35 69.50 5.45 70.27 5.17
0.35 73.20 5.30 71.96 5.51 74.12 5.40
0.45 70.44 5.65 72.47 5.43 71.72 5.17

Round Decay
0.40 70.25 5.41 68.78 5.51 70.84 5.33
0.50 73.20 5.30 71.96 5.51 74.12 5.40
0.60 68.32 5.33 71.51 5.29 71.16 5.18

PPR
1.10 70.25 5.55 70.30 5.47 71.64 5.20
1.15 73.20 5.30 71.96 5.51 74.12 5.40
1.20 71.22 5.38 70.24 5.39 71.98 5.23

Our evidence priority scoring mechanism combines multiple factors for systematic exploration. Ta-
ble 3 shows sensitivity analysis for each factor. All factors contribute meaningfully to performance,
with optimal weights being: embedding similarity wsim (0.2), LLM relevance wrel (0.6), graph co-
herence wcoh (0.35), round decay wdecay (0.5), and patient population reasoning wpop (1.15). The
consistent performance across different weight configurations demonstrates the robustness of our
approach, indicating that the method is not overly sensitive to hyperparameter tuning.
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Figure 3: (Left) Systematic evidence exploration enables accuracy improvements with longer con-
versations, unlike confidence-based self-assessment methods. (Middle) KnowGuard’s confidence
evolves more rapidly through targeted evidence acquisition compared to generic self-assessment.
(Right) Investigate-before-abstain paradigm particularly benefits rare disease diagnosis where ex-
ternal knowledge exploration is crucial.

Accuracy vs. Conversation Length. Figure 3(Left) demonstrates the relationships between accu-
racy and conversation length for our method and traditional self-assessment approaches (Scale Rat-
ing, Numerical Score). KnowGuard shows consistent accuracy improvements with longer conver-
sations, indicating effective knowledge boundary investigation through systematic external knowl-
edge exploration. In contrast, self-assessment methods show steep trajectories where additional
rounds provide diminishing returns, reflecting their reliance on internal knowledge. This validates
our core hypothesis that proactive knowledge exploration outperforms reactive confidence assess-
ment in multi-round clinical reasoning.

Confidence Evolution during Conversation. Figure 3(Middle) shows confidence evolution pat-
terns of our method and Scale Rating throughout conversations. The lengths of different conversa-
tions are normalized for intuitive presentation and comparison. Notably, KnowGuard’s confidence
increases more rapidly than Scale Rating. This indicates that systematic exploration of medical
knowledge boundaries enables more targeted information gathering than generic self-assessment.
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Performance on Rare Cases. Figure 3(Right) compares the accuracy performance on rare diseases.
KnowGuard demonstrates substantial advantages over other abstention methods. This suggests that
introducing external knowledge as contextual evidence effectively enhances reasoning in challeng-
ing cases where traditional self-assessment methods struggle, while the design of patient population
reasoning enables targeted exploration of relevant medical subgraphs for more informed abstention
decisions.

Case Study. Figure 4 illustrates an example of KnowGuard’s investigate-before-abstain paradigm.
When presented with abdominal pain symptoms, the system proactively investigates contextual ev-
idence to explore medical knowledge boundaries, ultimately reaching an accurate diagnosis with
comprehensive treatment recommendations. This demonstrates how systematic knowledge bound-
ary exploration enables confident decision-making in complex clinical scenarios. See Appendix H
and I for more case studies about system robustness with clinical validations.

A 50-year-old woman presents to the emergency department with severe abdominal pain and discomfort for several hours.

Severe 
gastrointestinal 

involvement

Has the patient undergone any laboratory tests, such as a complete 
blood count (CBC) or pregnancy test, related to her current symptoms? Laboratory results show a serum amylase of 456 U/L. 
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severe nausea 
and vomiting
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drugs (ARVs)

Have you experienced any associated symptoms, such as nausea, 
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Figure 4: Case study demonstrating KnowGuard’s investigate-before-abstain paradigm.

6 CONCLUSION

In this work, we establish the novel task of open-ended multi-round clinical reasoning and present
KnowGuard, an investigate-before-abstain paradigm that shifts from internal LLM knowledge to
external evidence investigation. Our comprehensive experiments demonstrate that this paradigm
shift yields substantial improvements across diverse clinical datasets, with KnowGuard achieving
state-of-the-art performance compared to five baseline abstention methods across all benchmarks.

7 ETHICS STATEMENT

This work presents a research framework evaluated on academic benchmarks and is not intended for
direct clinical use. Real-world deployment requires prospective clinical trials with diverse patient
populations, regulatory approval, ongoing bias monitoring (particularly in abstention decisions that
could disproportionately affect vulnerable groups), and mandatory oversight by licensed medical
professionals. KnowGuard is a research prototype and should not be used for actual medical diag-
nosis or treatment decisions. All outputs must be reviewed by qualified healthcare providers, and
any clinical application must comply with local healthcare regulations and ethical guidelines.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
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A STATEMENT ON LLM USAGE

We disclose that LLMs were used solely to aid and polish writing, including covering spell checking,
grammar fixes, style refinement, and minor wording suggestions. LLMs did not contribute to any
scientific or technical content: all conceptualization, method design, implementation, experiments,
result analysis, figures/tables, and conclusions were performed and verified by the authors. All cited
works were independently retrieved, fully read, and manually verified using official sources; LLMs
were not used to generate or fabricate citations or results.

B TAKEAWAYS

The results reveal critical insights for abstention design. First, simply incorporating external knowl-
edge is insufficient for effective abstention, as Long Context’s suboptimal performance demonstrates
despite accessing comprehensive medical documents. Second, even though LLMs have been trained
on extensive medical knowledge, our findings show that introducing external knowledge as contex-
tual evidence at inference time significantly improves abstention decisions and reduces overconfi-
dence in clinical reasoning tasks.

C LIMITATIONS AND FUTURE WORK

While KnowGuard demonstrates strong performance on established benchmarks, several limitations
warrant attention. The current knowledge graph relies primarily on WHO guidelines and may not
capture all clinical knowledge domains. Future work should explore integration with broader med-
ical knowledge sources and real-time knowledge updates. Additionally, the system’s performance
on highly specialized medical domains requires further evaluation.

D ABLATION STUDY ON SCORING COMPONENTS

To validate the necessity of each component in our scoring mechanism, we conducted systematic
ablation studies by removing one factor at a time while keeping others active. Table 4 presents the
results on ioMEDQA and ioAFRIMEDQA datasets.

Removed Factor Components Metrics Impact
Emb. LLM Graph Decay PPR Rounds ACC ∆ ACC

ioMEDQA

(None - Full Model) ✓ ✓ ✓ ✓ ✓ 5.40 74.12 baseline
Embedding Similarity × ✓ ✓ ✓ ✓ 6.06 71.64 -2.48%
LLM Relevance ✓ × ✓ ✓ ✓ 6.26 72.68 -1.44%
Graph Coherence ✓ ✓ × ✓ ✓ 5.89 70.03 -4.09%
Round Decay (=0) ✓ ✓ ✓ × ✓ 5.87 70.62 -3.50%
Round Decay (=1) ✓ ✓ ✓ × ✓ 5.79 70.84 -3.28%
PPR ✓ ✓ ✓ ✓ × 6.53 74.29 +0.17%

ioAFRIMEDQA

(None - Full Model) ✓ ✓ ✓ ✓ ✓ 5.30 73.20 baseline
Embedding Similarity × ✓ ✓ ✓ ✓ 5.27 71.02 -2.18%
LLM Relevance ✓ × ✓ ✓ ✓ 5.18 70.16 -3.04%
Graph Coherence ✓ ✓ × ✓ ✓ 5.73 69.23 -3.97%
Round Decay (=0) ✓ ✓ ✓ × ✓ 5.25 71.22 -1.98%
Round Decay (=1) ✓ ✓ ✓ × ✓ 6.53 72.21 -0.99%
PPR ✓ ✓ ✓ ✓ × 7.03 72.60 -0.60%

Table 4: Ablation study results showing the impact of removing individual scoring components.
Each row represents a configuration with one component disabled while others remain active.

The ablation study demonstrates that each component serves a distinct and necessary role in our
scoring mechanism. Graph Coherence emerges as the most critical factor, with its removal caus-
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ing the largest accuracy drops (3.97-4.09%), confirming the importance of structured relationship
modeling for maintaining knowledge consistency in medical reasoning. Round Decay validates the
need for adaptive temporal reasoning, as both extreme settings significantly degrade performance:
decay=0 (treating all rounds equally) causes 1.98-3.50% drops, while decay=1 (only considering
current round) leads to 0.99-3.28% drops. Embedding Similarity and LLM Relevance prove es-
sential for evidence filtering and semantic matching, with their removal causing 1.44-3.04% accu-
racy reductions. PPR contributes modest but consistent improvements (0.17-0.60%), validating its
role in demographic-specific evidence prioritization. These complementary contributions justify our
weighted combination approach rather than relying on any single scoring mechanism.

E MULTI-ROUND CLINICAL REASONING BENCHMARK

E.1 DATASET CONSTRUCTION AND OPEN-ENDED CONVERSION

We constructed a comprehensive benchmark for multi-round clinical reasoning by converting tra-
ditional closed-form medical datasets to an open-ended format. The benchmark comprises 3,061
cases across three datasets: MEDQA development (1,269 cases), AFRIMEDQA (522 cases), and
CRAFT-MD (1,270 cases), as shown in Table 5. We utilized Factscore (Min et al., 2023) to extract
atomic facts from patient context following (Li et al., 2024).

AfriMedQA contains both open-ended and multiple-choice questions, which require different eval-
uation strategies in our judge agent.

Table 5: Dataset composition for multi-round clinical reasoning evaluation.
Dataset Size
MEDQA development 1,269
AFRIMEDQA 522
CRAFT-MD 1,270

Total 3,061

E.2 PERFORMANCE OF RARE CASES

To evaluate the effectiveness of systematic knowledge boundary detection on challenging diagnostic
scenarios, we identify rare disease cases within the benchmark. Using spaCy/scispaCy (Honnibal
et al., 2024) and regular expressions, we extract approximately 200 medical terminologies, conduct
frequency analysis to select 60 least frequent terms, and utilize LLM validation to identify 25 con-
firmed rare diseases according to medical consensus (Phan et al., 2024). This analysis demonstrates
how knowledge boundary detection addresses insufficient evidence scenarios that traditionally chal-
lenge confidence-based abstention methods. The results are shown in Figure 3(Right).

F KNOWLEDGE GRAPH INTEGRATION

F.1 ENTITY/RELATION EXTRACTION

Extraction Prompt

Task Instructions: I am constructing a knowledge graph in the medical field. From this im-
age, please help me extrapolate knowledge such as (x name, x type, relationship,
display relation, y name, y type, relevant description) in JSON for-
mat.
Input: Each page in clinical guideline.
Explanation:
Please note that the relationship includes but is not limited to [’protein protein’,
’drug protein’, ’contraindication’, ’indication’, ’off-label
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use’, ’drug drug’, ’phenotype protein’, ’phenotype phenotype’,
’disease phenotype negative’, ’disease phenotype positive’,
’disease protein’, ’disease disease’, ’drug effect’,
’bioprocess bioprocess’, ’molfunc molfunc’, ’cellcomp cellcomp’,
’molfunc protein’, ’cellcomp protein’, ’bioprocess protein’,
’exposure protein’, ’exposure disease’, ’exposure exposure’,
’exposure bioprocess’, ’exposure molfunc’, ’exposure cellcomp’,
’pathway pathway’, ’pathway protein’, ’anatomy anatomy’,
’anatomy protein present’, ’anatomy protein absent’]
The display relation includes but is not limited to [’associated with’,
’carrier’, ’contraindication’, ’enzyme’, ’expression absent’,
’expression present’, ’indication’, ’interacts with’, ’linked
to’, ’off-label use’, ’parent-child’, ’phenotype absent’,
’phenotype present’, ’ppi’, ’side effect’, ’synergistic
interaction’, ’target’, ’transporter’]
x type and y type include but are not limited to [’gene/protein’,
’drug’, ’effect/phenotype’, ’disease’, ’biological process’,
’molecular function’, ’cellular component’, ’exposure’,
’pathway’, ’anatomy’]
relevant description should be a sentence or paragraph extracted from this image,
which describes all the relevant information for x name and y name.
Response Format: Please provide the information formatted as a JSON object. The structure
must strictly adhere to the following requirements:
1. The JSON object should consist exclusively of these keys: ”x name”, ”x type”, ”relation-
ship”, ”display relation”, ”y name”, ”y type” and ”relevant description”.
2. The response should be clean and precise: it must not contain ellipses (”...”), backticks (”‘”),
or any code block identifiers such as ”‘‘‘json”. There should be a numerical index for each
piece of knowledge.
Please ensure the JSON object is properly formatted with no additional characters or elements
outside of the specified structure.

F.2 THE GRAPH-SEARCH/EXPANSION ALGORITHM

Algorithm 1 KnowGuard: Investigate-Before-Abstain Framework
Require: Initial patient info k0, Inquiry I , Max rounds R
Ensure: Final answer A or abstention decision

1: K0 ← k0, t← 0
2: B ← ∅ // Initialize contextualized evidence pool
3: while t < R do
4: if t = 0 then
5: Q ← EVIDENCEDISCOVERY(Kt, k0, I)
6: else
7: Q ← EVIDENCEDISCOVERY(Kt, at, I)
8: end if
9: B ← EVIDENCEEVALUATION(Q, B, Kt, t)

10: abstention decision← EVIDENCEGROUNDEDABSTENTION(Kt, B, I)
11: if abstention decision = 1 then // Provide diagnosis
12: return GENERATEANSWER(Kt, B, I)
13: else// Continue investigation
14: qt+1 ← GENERATEINVESTIGATIVEQUESTION(B, Kt)
15: at+1 ← PATIENTRESPONSE(qt+1)
16: Kt+1 ← Kt ∪ at+1

17: t← t+ 1
18: end if
19: end while
20: return EVIDENCEGROUNDEDABSTENTION(Kt, B, I)
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Algorithm 2 Evidence Discovery Stage
Require: Patient info Kt, New patient response at, Inquiry I
Ensure: Evidence priority queue Q

1: queries← GENERATEEVIDENCEQUERIES(at, I)
2: evidence candidates← ∅

// Direct retrieval based on new patient response
3: for each query ∈ queries do
4: results← RETRIEVEFROMKG(query)
5: evidence candidates← evidence candidates ∪ results
6: end for

// Expansion-based retrieval from existing evidence pool
7: if Bt−1 ̸= ∅ then
8: expansion candidates← EXPANDFROMEXISTINGEVIDENCE(Bt−1)
9: evidence candidates← evidence candidates ∪ expansion candidates

10: end if
11: patient context← INFERPATIENTCONTEXT(Kt)
12: Q ← ∅
13: for each evidence ∈ evidence candidates do
14: ssimilarity ← EMBEDDINGSIMILARITY(at, evidence)
15: srelevance ← LLMRELEVANCE(at, I , evidence)
16: spopulation ← DEMOGRAPHICWEIGHT(evidence, patient context)
17: priority ← (wsim × ssimilarity + wrel × srelevance)× spopulation
18: ADDTOQUEUE(Q, evidence, priority)
19: end for
20: return Q

Algorithm 3 Evidence Evaluation Stage
Require: Current queue Q, New patient response at, Investigation qt, Round t
Ensure: Updated evidence pool Q′

1: new context← FORMINVESTIGATIONCONTEXT(qt, at)
2: evidence queries← GENERATEEVIDENCEQUERIES(new context, I)

// Reassess existing evidence against new context
3: for each evidence ∈ Q do
4: ssimilarity ← EMBEDDINGSIMILARITY(evidence queries, evidence)
5: srelevance ← LLMRELEVANCE(new context, I , evidence)
6: scoherence ← GRAPHCOHERENCE(evidence, visited evidence)
7: pnew ← (wsim × ssimilarity + wrel × srelevance + wcoh × scoherence)× spopulation
8: p← p× (1− wdecay) + pnew × wdecay × decayt

9: UPDATEPRIORITY(Q, evidence, p)
10: end for

// Systematic evidence expansion for gap identification
11: gap candidates← SYSTEMATICEVIDENCEEXPANSION(Q, visited evidence)
12: gap candidates← gap candidates∪ DIRECTEVIDENCERETRIEVAL(evidence queries)
13: for each candidate ∈ gap candidates do
14: gap priority ← CALCULATEEVIDENCEPRIORITY(candidate, new context, I)
15: ADDTOQUEUE(Q, candidate, gap priority)
16: end for
17: return TOPK(Q, kmax)
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Algorithm 4 Systematic Evidence Expansion
Require: Evidence queue Q, Explored evidence Ee
Ensure: New evidence candidates C

1: C ← ∅
2: evidence nodes← EXTRACTEVIDENCENODES(Q)

// Multi-Hop Expansion for evidence discovery
3: for each node ∈ evidence nodes do
4: related evidence← GETRELATEDEVIDENCE(node)
5: for each evidence ∈ related evidence do
6: evidence id← CREATEEVIDENCEID(node, evidence)
7: if evidence id /∈ Ee then
8: gap potential← ASSESSEVIDENCEGAP(evidence, Q)
9: if gap potential > θgap then

10: C ← C ∪ {evidence}
11: Ee ← Ee ∪ {evidence id}
12: end if
13: end if
14: end for
15: end for
16: return C

F.3 FUSION OF GRAPH SIGNALS AND LLM SCORES

The algorithm for fusion of graph signals and LLM scores are presented in Algorithm 5.

Algorithm 5 Multi-factor Evidence Priority Calculation
Require: Evidence evidence, Clinical context context, Inquiry I , Round t
Ensure: Evidence priority score p

1: ssimilarity ← cos(embed(context), embed(evidence))
2: srelevance ← LLMRELEVANCEAGENT(context, I, evidence)
3: scoherence ← GRAPHCOHERENCESCORE(evidence, existing evidence)
4: spopulation ← DEMOGRAPHICWEIGHT(evidence, context)

// Multi-factor priority emphasizes evidence gaps
5: pevidence ← wsim × ssimilarity + wrel × srelevance + wcoh × scoherence
6: p← pevidence × spopulation × decayt

// Boost priority for critical evidence gaps
7: if scoherence > θcritical then
8: p← p× αboost

9: end if
10: return p
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F.4 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

F.4.1 EVIDENCE DISCOVERY AND EVIDENCE EVALUATION

We construct a comprehensive medical knowledge graph from current medical guidelines, where
each triplet (h, r, t) is augmented with multi-modal evidence, including source text and document
images. In the evidence discovery stage, we retrieve triplets with a hard relevance threshold of 0.6
for initial filtering.

The contextual evidence pool maintains K = 6 triplets during graph expansion and direct re-
trieval. The graph expansion is with systematic exploration implemented through beam search
(beam size=3, maximum hop depth=2). We utilize OpenAI’s text-embedding-ada-002 (Neelakan-
tan et al., 2022) for embedding similarity calculation and FAISS (Douze et al., 2024) as the search
engine for efficient knowledge graph storage and retrieval.

F.4.2 MODEL CONFIGURATION AND EXPERIMENTAL SETUP

We leveraged GPT-4 as the agent backbone with temperature 0.6, top-p 0.9, and maximum of 768
tokens for response generation. Document page images were transferred to base64 format for multi-
modal input processing. All experiments were conducted three times for stability assessment. For
abstention decision-making, we enabled self-consistency checking performed twice with an absten-
tion threshold of 3.5.

Since all methods (Scale Rating, Basic, Binary Decision, Numerical Score, Long Context, and
KnowGuard) are training-free approaches, we did not partition the datasets into train/validation/test
splits. Instead, all methods were directly evaluated on the complete constructed datasets
(ioAFRIMEDQA, ioMEDQA, ioCRAFT-MD), ensuring identical access to dataset information.
Our ablation studies, hyperparameter tuning, and baseline threshold adjustments were all performed
on the same full datasets, guaranteeing equal evaluation conditions.

F.4.3 IMPLEMENTATION OF LONG CONTEXT

For the Long Context baseline (Tu et al., 2024), we processed summaries for each medical guideline
as query keys. Upon summary selection, the corresponding full medical guideline was provided to
the Doctor Agent for abstention decisions.

G PROMPTS

G.1 DIRECT RETRIEVAL QUERY GENERATION PROMPT

Query Generation Prompt

Task Instructions: Based on the following input information, generate 2 optimized search
queries to retrieve relevant medical knowledge from a knowledge base.
The queries should:

1. Focus on key symptoms, conditions, or medical concerns
2. Use medical terminology when appropriate
3. Be specific enough to find relevant information
4. Cover different aspects of the patient’s condition or question

Input:
Generate queries based on patient information to find relevant diagnostic and treatment infor-
mation.
Response Format:
Query 1: [your first query]
Query 2: [your second query]
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Example:
Input: 45-year-old female with recurrent headaches and nausea
Output:
Query 1: migraine headache symptoms nausea photophobia
Query 2: secondary headache causes women middle-aged

G.2 PATIENT POPULATION REASONING PROMPT

Patient Population Reasoning Prompt

System Prompt: You are a medical expert with extensive experience in clinical diagnosis and
treatment.
Task Instructions: Given the patient profile and all conditions, please extract the demographic
information and disease information from the patient profile that belong to all conditions. Please
ensure the information is accurate. Response with the exact demographic information and dis-
ease information, separated by a new line. If there is no demographic information or disease
information, please return ”None”.
Input Format: Patient Profile: [patient description] All
Demographics: [demographic categories] All Diseases: [disease
categories]

Response Format: [extracted demographics] [extracted diseases]
If no information found, return ”None” for that category.
Example 1:
Patient Profile: 35-year-old male with chest pain, shortness of breath, and family history of
heart disease. He suffers from high blood pressure
All Demographics: Pregnant woman, people with HIV, Adults, Elderly
All Diseases: heart disease, diabetes, hypertension, cancer
Answer: Adults heart disease, hypertension

Example 2:
Patient Profile: 28-year-old female with fatigue, weight gain, and cold intolerance. She is a
smoker.
All Demographics: Pregnant woman, people with HIV, Adults, Elderly
All Diseases: heart disease, diabetes, hypertension, cancer
Answer: Adults None

G.3 LLM RELEVANCE PROMPT

LLM Relevance Prompt

System Prompt: You are a medical expert with extensive experience in clinical diagnosis and
treatment.
Knowledge Relevance Evaluation: You are evaluating the relevance of medical knowledge to
patient cases. Rate each relation’s relevance independently on a scale from 0 to 1.
Scoring Guidelines:

1. 0.0-0.2: Completely irrelevant or contradictory
2. 0.3-0.4: Low relevance, tangentially related
3. 0.5-0.6: Medium relevance, somewhat helpful
4. 0.7-0.8: High relevance, directly applicable
5. 0.9-1.0: Extremely relevant, critical for diagnosis/treatment

Input Format: Patient Information: [patient details] Current
Inquiry: [medical question] Relations to evaluate: [0]
[relation1] [1] [relation2] ...
Response Format: [score1, score2, score3, ...]
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Example:
Input: 35-year-old male with chest pain, shortness of breath Relations: [0] Myocardial infarc-
tion causes chest pain [1] Diabetes management with metformin
Output: [0.9, 0.1]

G.4 ABSTENTION PROMPT

Prompt for Knowledge-Driven Abstention

System Prompt: You are a medical doctor trying to reason through a real-life clinical case.
Based on your understanding of basic and clinical science, medical knowledge, and mechanisms
underlying health, disease, patient care, and modes of therapy, respond according to the task
specified by the user. Base your response on the current and standard practices referenced in
medical guidelines.
Contextual Evidences
Confidence Rating Task: How confident are you in answering the problem factually using the
conversation log and medical knowledge? Choose between the following ratings:

1. ”Very Confident” - The correct answer is supported by all evidence, and there is
enough evidence to eliminate the other possible answers, so the option can be con-
firmed conclusively.

2. ”Somewhat Confident” - I have reasonably enough information to tell that the correct
answer is more likely than other possible answers.

3. ”Neither Confident or Unconfident” - There is evident supporting the correct answer,
but further evidence is needed to be sure about the answer.

4. ”Somewhat Unconfident” - There is evidence supporting more than one possible an-
swer; therefore, more questions are needed to further distinguish the answers.

5. ”Very Unconfident” - There is not enough evidence supporting any answers; the like-
lihood of giving the correct answer at this point is near random guessing.

Response Format:
REASON: a one-sentence explanation of why you are or are not
confident and what other information is needed.
DECISION: chosen rating from the above list.

G.5 DECISION MAKING PROMPT

Decision Making Prompt

System Prompt: You are a medical doctor trying to reason through a real-life clinical case.
Based on your understanding of basic and clinical science, medical knowledge, and mechanisms
underlying health, disease, patient care, and modes of therapy, respond according to the task
specified by the user. Base your response on the current and standard practices referenced in
medical guidelines.
Task Instructions: Assume that you already have enough information from the above question-
answer pairs to answer the patient inquiry, use the above information to produce a factual con-
clusion. Respond with a comprehensive and well-reasoned answer.
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G.6 JUDGE AGENT PROMPT

Judge Agent Prompt

System Prompt: You are a medical evaluation expert, tasked with evaluating the match between
answers and reference standards.
Task 1 - Answer-to-Options Comparison: Analyze the free answer and determine which mul-
tiple choice option is closest to the answer.
Input Format: Free Answer: [generated response] Options: A: [option
A] B: [option B] C: [option C] D: [option D] E: [option E] (if
applicable)
Response Format: Output only the option letter (A, B, C, D, or E) that has the highest match.
Task 2 - Yes/No Answer Evaluation: Analyze the free answer against the ground truth and
determine if they are similar.
Input Format: Free Answer: [generated response] Ground Truth
Answer: [reference answer]
Response Format: Output only ’A’ if the answer is similar to the ground truth answer, ’B’ if
the answer is completely different. Do not include quotation marks.
Example 1 - Multiple Choice: Free Answer: The patient likely has pneumonia based on the
symptoms of fever, cough, and chest pain.
Options: A: Asthma B: Pneumonia C: Heart failure D: COPD
Output: B
Example 2 - Yes/No Evaluation: Free Answer: The patient should receive antibiotics and
supportive care for pneumonia treatment.
Ground Truth: Antibiotic therapy is recommended for bacterial pneumonia along with support-
ive measures.
Output: A

H CASE STUDY ON SYSTEM ROBUSTNESS

This section presents three detailed case studies that systematically evaluate KnowGuard’s robust-
ness under progressively challenging conditions:

• Incomplete KG: Testing the system’s ability to integrate external evidence with parametric
knowledge when diagnostic criteria are partially absent from the knowledge graph.

• Noisy KG: Evaluating the filtering mechanism’s effectiveness in signal preservation when
the knowledge graph contains irrelevant or misleading evidence.

• Misleading Evidence: Demonstrating the system’s resilience when faced with misleading
evidence by actively gathering additional information through multi-round questioning and
hypothesis refinement to reach the correct diagnosis.

For each case, we provide comprehensive documentation including the patient presentation, all re-
trieved evidence with scoring details, knowledge queue evolution across interaction rounds, self-
consistency evaluation results, and the final clinical reasoning.

H.1 CASE STUDY 1: INCOMPLETE KG

Patient Presentation: A 28-year-old female reports that, for more days than not over the past 3
years, she has felt “down” and, at times, “mildly depressed.” Over this period, she also endorses
feeling fatigued, difficulty concentrating, and often sleeping more than in the past.

Question: What is the minimum amount of time this patient must exhibit these symptoms in order
to meet the diagnostic criteria for dysthymia?

Retrieved Evidence - Round 0 (Initial) All retrieved evidence with their scores before filtering
is presented in Table 6.
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Table 6: All Retrieved Evidence with Scores Before Filtering - Case 1

ID Evidence Content Embedding
Similarity

LLM
Score

Coherence
Score

Status

1 Depressive symptoms (or sub-threshold
depression) apply to older adults who
have two or more simulta...

0.4780 0.1000 0.1000 Filtered

2 Early findings report, most common on-
going symptoms (regardless of hospital-
ization status) are fatig...

0.4644 0.0000 0.1000 Filtered

3 Depressive symptoms: The presence
of distress or some degree of impaired
functioning in the absence...

0.4639 0.2000 0.1000 Filtered

4 Fatigue and concentration problems
were noted to last beyond 12 weeks in
patients with post COVID-19...

0.4625 0.0000 0.1000 Filtered

5 Mild to moderate depression is char-
acterized by depressive symptoms and
some functional impairment;...

0.5272 0.3000 0.1000 Filtered

6 Persons with chronic HCV infection are
more likely to develop cognitive dys-
function, fatigue, and de...

0.4965 0.2000 0.1000 Filtered

7 Depressive symptoms (or sub-threshold
depression) apply to older adults who
have two or more simulta...

0.4826 0.1000 0.1000 Filtered

8 Cognitive deficits may overlap or
present in clusters with other neurologi-
cal and non-neurological d...

0.4708 0.4000 0.1000 Retained

9 Mild to moderate depression is char-
acterized by depressive symptoms and
some functional impairment;...

0.4837 0.4000 0.1000 Retained

10 Severe depression is characterized by
depressive symptoms, functional im-
pairment, agitation or psych...

0.4646 0.3000 0.1000 Retained

11 If the subjective distress of the patient is
in terms of intensity and persistence out
of proportion...

0.4563 0.5000 0.1000 Retained

12 Depressive symptoms can be confused
with those of other medical illnesses
(i.e. weight loss and fati...

0.4542 0.3000 0.1000 Filtered

13 Depression is essentially an episodic re-
curring disorder, each episode lasting
usually from a few mo...

0.5184 0.2000 0.1000 Filtered

14 If the subjective distress of the patient is
in terms of intensity and persistence out
of proportion...

0.4647 0.5000 0.1000 Retained

15 Mild to moderate depression is char-
acterized by depressive symptoms and
some functional impairment;...

0.4646 0.4000 0.1000 Retained

Continued on next page

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 6 – continued from previous page
ID Evidence Content Embedding

Similarity
LLM
Score

Coherence
Score

Status

16 In about 20% of cases, however, depres-
sion follows a chronic course with no
remission, especially wh...

0.4506 0.3000 0.1000 Retained

Self-Consistency Evaluation The doctor agent performed abstention assessment through self-
consistency evaluation with 2 iterations.

Iteration 1:

EXPLANATION: Dysthymia, or persistent depressive disorder, is characterized by depressive
symptoms that persist for at least 2 years in adults, as outlined by standard diagnostic criteria (e.g.,
DSM-5). The patient has reported symptoms lasting 3 years, fulfilling the duration criterion, and
the symptoms described align with those of dysthymia. The specific duration criteria are not explic-
itly present in the retrieved evidence, though the patient history provides sufficient information to
address the question.

DECISION: Very Confident

Parsed Score: 5

Iteration 2:

EXPLANATION: The diagnostic criteria for dysthymia (persistent depressive disorder) require
symptoms to persist for at least 2 years in adults. The patient has reported symptoms persisting
for more than 3 years, which meets the duration criterion. While the retrieved evidence does not in-
clude specific diagnostic timeframes, the patient history clearly indicates the duration of symptoms,
and no conflicting information is present. The specialty involved is psychiatry or mental health, and
sufficient information exists in the patient presentation to answer the question.

DECISION: Very Confident

Parsed Score: 5

Average Confidence Score: 5.0

Final Answer Based on the high confidence score (5.0), the doctor agent proceeded directly to
provide the final answer without requesting additional information.

To meet the diagnostic criteria for dysthymia, also known as persistent depressive disorder
(PDD), a patient must exhibit depressive symptoms for at least 2 years in adults. During this
period, the symptoms should be present for more days than not and should not remit for longer than
2 months at a time.

Relevant Diagnostic Criteria:

1. Duration: In adults, the minimum required duration is 2 years. For children and adoles-
cents, this duration is reduced to 1 year.

2. Symptoms: Persistent depressive symptoms that are less severe than major depressive dis-
order but significant enough to cause functional impairment. Symptoms may include:

• Persistent low mood or feeling “down.”
• Fatigue or low energy.
• Difficulty concentrating.
• Changes in sleep patterns (e.g., hypersomnia or insomnia).

Application to the Patient Case:

The patient, a 28-year-old female, reports experiencing low mood, fatigue, difficulty concentrat-
ing, and increased sleep for more days than not over the past 3 years. Based on the information
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provided, she meets the minimum duration criterion for dysthymia and exhibits characteristic symp-
toms that align with the diagnosis. However, to confirm the diagnosis, further evaluation should
exclude other causes (e.g., thyroid dysfunction, anemia, or other medical conditions) and assess the
degree of functional impairment caused by these symptoms.

Next Steps:

1. Comprehensive Evaluation: Perform a full medical and psychiatric history, physical ex-
amination, and relevant laboratory tests to rule out organic causes, such as hypothyroidism,
anemia, or chronic illness.

2. Diagnostic Confirmation: Use standardized screening tools such as the Patient Health
Questionnaire (PHQ-9) or the DSM-5 criteria for Persistent Depressive Disorder.

3. Management:
• Psychotherapy: Cognitive-behavioral therapy (CBT) or interpersonal therapy (IPT)

are effective first-line treatments.
• Pharmacotherapy: Consider antidepressant therapy (e.g., SSRIs or SNRIs) if symp-

toms are significantly impairing function or if psychotherapy alone is insufficient.
• Lifestyle Modifications: Encourage regular physical activity, stress management

techniques, and sleep hygiene.

In summary, this patient has exhibited symptoms for longer than the minimum 2-year duration re-
quired to meet the diagnostic criteria for dysthymia. A thorough evaluation is necessary to confirm
the diagnosis and rule out other conditions, followed by an individualized treatment plan.

Ground Truth Answer: Two years.

H.2 CASE STUDY 2: NOISY KG

Patient Presentation: A 56-year-old African American male presents with altered mental status,
abdominal pain, and a fever of 100.4F.

Question: What is the best treatment for this patient’s condition?

Retrieved Evidence - Round 0 (Initial) All retrieved evidence with their scores before filtering
is presented in Table 7.

Table 7: All Retrieved Evidence with Scores Before Filtering - Round 0,
Case 2

ID Evidence Content Embedding
Similarity

LLM
Score

Coherence
Score

Status

1 If referral to a facility with diagnos-
tic testing is not feasible, presumptive
treatment of severe b...

0.4990 0.9000 0.1000 Retained

2 For gastrointestinal anthrax, 2 ml of as-
citic fluid is collected in a sterile screw-
capped container...

0.4880 0.2000 0.1000 Filtered

3 When empyema is present, fever per-
sists despite antibiotic therapy, and the
pleural fluid is cloudy ...

0.4847 0.1000 0.1000 Filtered

4 We recommend for patients with sus-
pected or confirmed severe COVID-19,
the use of empiric antimicrob...

0.4807 0.4000 0.1000 Retained

Continued on next page

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 7 – continued from previous page
ID Evidence Content Embedding

Similarity
LLM
Score

Coherence
Score

Status

5 These guidelines include the manage-
ment of symptomatic infections related
to: lower abdominal pain s...

0.5519 0.3000 0.1000 Filtered

6 The diagnosis of major infection in-
cludes acute pelvic inflammatory dis-
ease, characterized by fever ...

0.5190 0.2000 0.1000 Filtered

7 Guidelines for the management of
symptomatic sexually transmitted infec-
tions begin with a person pre...

0.5164 0.3000 0.1000 Filtered

8 There were few missed cases with a
syndromic approach to lower abdominal
pain, which was heavily val...

0.5138 0.2000 0.1000 Filtered

9 These guidelines include the manage-
ment of symptomatic infections related
to: lower abdominal pain s...

0.4531 0.7000 0.1000 Retained

10 Immediate treatment of an acute pelvic
inflammatory disease may avert adverse
consequences such as c...

0.4519 0.2000 0.1000 Filtered

11 These guidelines include the manage-
ment of symptomatic infections related
to: lower abdominal pain s...

0.5513 0.7000 0.1000 Retained

12 Guidelines for the management of
symptomatic sexually transmitted infec-
tions begin with a person pre...

0.5191 0.1000 0.1000 Filtered

13 There were few missed cases with a
syndromic approach to lower abdominal
pain, which was heavily val...

0.4961 0.1000 0.1000 Filtered

14 Individuals presenting with lower ab-
dominal pain syndrome could suggest
the presence of acute pelvic...

0.4933 0.1000 0.1000 Filtered

Knowledge Queue After Round 0 After filtering (LLM score ≥ 0.4), four knowledge triplets
were retained. Table 8 shows the final ranked knowledge after round 0.

Table 8: Knowledge Queue After Round 0 - Case 2

Rank Knowledge Content Priority PPR
Weighted

Round

1 If referral to a facility with diagnostic test-
ing is not feasible, presumptive treatment of
severe bacterial infections should be consid-
ered if the person is seriously ill.

0.6096 No 0

2 These guidelines include the management of
symptomatic infections related to: lower ab-
dominal pain syndrome.

0.5997 Yes 0

Continued on next page
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Table 8 – continued from previous page
Rank Knowledge Content Priority PPR

Weighted
Round

3 These guidelines include the management of
symptomatic infections related to: lower ab-
dominal pain syndrome.

0.5313 Yes 0

4 We recommend for patients with suspected
or confirmed severe COVID-19, the use
of empiric antimicrobials to treat all likely
pathogens, based on clinical judgment, pa-
tient host factors and local epidemiology,
and this should be done as soon as possible
(within 1 hour of initial assessment if pos-
sible), ideally with blood cultures obtained
first. Antimicrobial therapy should be as-
sessed daily for de-escalation.

0.3482 No 0

Self-Consistency Evaluation The doctor agent performed abstention assessment through self-
consistency evaluation with 2 iterations.

Iteration 1:

REASON: The patient’s presentation of altered mental status, fever, and abdominal pain raises sig-
nificant concern for spontaneous bacterial peritonitis (SBP), particularly in a 56-year-old male who
is likely to have underlying liver disease (e.g., cirrhosis, given the mention of ascitic fluid culture).
However, the conversation log does not explicitly confirm the presence of ascites or other key fea-
tures like a history of liver disease, alcohol use, or laboratory findings (e.g., elevated white blood
cell count, low ascitic fluid protein, etc.), which would solidify the diagnosis and guide treatment.
While empirical antibiotic therapy (e.g., third-generation cephalosporins like cefotaxime) is standard
for suspected SBP, the lack of detailed clinical and laboratory information limits the confidence in
confirming the diagnosis.

DECISION: Somewhat Confident

Parsed Score: 4

Iteration 2:

REASON: Based on the clinical presentation of altered mental status, abdominal pain, and fever in
a 56-year-old male, there is a high suspicion for spontaneous bacterial peritonitis (SBP), especially
if this patient has underlying cirrhosis and ascites. However, the conversation log does not confirm
key features such as the presence of ascites, liver disease, or other risk factors (e.g., alcohol use,
hepatitis, or portal hypertension) necessary to confidently diagnose SBP. While empiric antibiotic
therapy (e.g., third-generation cephalosporins like cefotaxime) is typically initiated in suspected SBP
while awaiting ascitic fluid culture results, the lack of specific details limits definitive confidence in
the decision.

DECISION: Neither Confident or Unconfident

Parsed Score: 3

Average Confidence Score: 3.5

Follow-up Question Generated Based on the initial low confidence score (3.5), the doctor agent
generated a follow-up question to gather critical missing information.

Doctor’s Question: What is your physical examination results, focusing on abdominal findings,
and paracentesis results including the serum ascites albumin gradient?
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Patient’s Response: Shifting dullness is noted on physical exam. Paracentesis demonstrates a
serum ascites albumin gradient of 1.3 g/dL.

Knowledge Queue After Round 1 (After Patient Response) After receiving the patient’s re-
sponse, the knowledge graph was updated. Three knowledge triplets were replaced with new, more
relevant evidence. Table 9 shows the updated knowledge queue.

Table 9: Knowledge Queue After Round 1 - Case 2

Rank Knowledge Content Priority PPR
Weighted

Round

1 Clinical complications of cirrhosis become
manifest, including jaundice, ascites, spon-
taneous bacterial peritonitis, oesophageal
varices and bleeding, hepatic encephalopa-
thy, sepsis and renal failure.

0.5651 No 1

2 If referral to a facility with diagnostic test-
ing is not feasible, presumptive treatment of
severe bacterial infections should be consid-
ered if the person is seriously ill.

0.5014 No 0

3 These guidelines include the management of
symptomatic infections related to: lower ab-
dominal pain syndrome.

0.4921 Yes 0

4 NA therapy can be safely administered even
to those with decompensated cirrhosis.

0.4903 No 1

5 For women with lower abdominal pain with
any of the following conditions, good prac-
tice includes referral to surgical or gynae-
cological assessment: abdominal guarding
and/or rebound tenderness.

0.4000 No 1

6 We recommend for patients with suspected
or confirmed severe COVID-19, the use
of empiric antimicrobials to treat all likely
pathogens, based on clinical judgment, pa-
tient host factors and local epidemiology,
and this should be done as soon as possible
(within 1 hour of initial assessment if pos-
sible), ideally with blood cultures obtained
first. Antimicrobial therapy should be as-
sessed daily for de-escalation.

0.3200 No 0

Final Abstention Assessment (With Additional Information) After receiving the patient’s re-
sponse, the doctor agent performed a second abstention assessment with 2 self-consistency itera-
tions.

Iteration 1:

EXPLANATION: The patient is a 56-year-old male with cirrhosis, ascites (confirmed by shifting
dullness and paracentesis with a serum ascites albumin gradient of 1.3 g/dL), fever, abdominal pain,
and altered mental status. These findings strongly suggest spontaneous bacterial peritonitis (SBP), a
common and serious infection in patients with cirrhosis and ascites. According to the retrieved evi-
dence on presumptive treatment of severe bacterial infections, immediate empiric antibiotic therapy
is recommended while awaiting ascitic fluid culture results to prevent clinical deterioration. Current
guidelines recommend starting third-generation cephalosporins, such as intravenous cefotaxime, as
the first-line treatment for suspected SBP.
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DECISION: Very Confident

Parsed Score: 5

Iteration 2:

EXPLANATION: The patient is a 56-year-old African American male with cirrhosis presenting
with altered mental status, abdominal pain, fever, and ascites. The serum-ascites albumin gradient
(SAAG) of 1.3 g/dL indicates portal hypertension as the cause of ascites, and spontaneous bacterial
peritonitis (SBP) is a likely diagnosis given his clinical presentation. SBP is a severe bacterial
infection of the ascitic fluid, common in patients with cirrhosis. The retrieved evidence emphasizes
that presumptive treatment should be considered for seriously ill patients when diagnostic testing is
not immediately available. Empiric antibiotic therapy should be initiated promptly while awaiting
ascitic fluid culture results, as delayed treatment can lead to poor outcomes.

DECISION: Very Confident

Parsed Score: 5

Average Confidence Score: 5.0

Final Answer Based on the high confidence score (5.0) after receiving additional patient informa-
tion, the doctor agent proceeded to provide the final answer.

The patient is a 56-year-old African American male with cirrhosis, ascites, altered mental status,
abdominal pain, and fever. The serum ascites albumin gradient (SAAG) of 1.3 g/dL indicates portal
hypertension as the likely cause of ascites. The clinical presentation strongly suggests spontaneous
bacterial peritonitis (SBP), a common and serious complication of cirrhosis and ascites. SBP is
characterized by bacterial infection of ascitic fluid without an obvious intra-abdominal source.

According to guidelines on empiric treatment of severe bacterial infections in seriously ill patients,
antibiotic therapy should be initiated promptly before ascitic fluid culture results are available, as
delayed treatment increases morbidity and mortality. The recommended empiric treatment consists
of third-generation cephalosporins, with cefotaxime (2 g IV every 8 hours) being the preferred an-
tibiotic due to its effectiveness against common SBP pathogens (e.g., Escherichia coli, Klebsiella
pneumoniae, and Streptococcus species). Alternatively, ceftriaxone (1-2 g IV daily) may be used.

Patients with SBP and a high risk of renal dysfunction (e.g., serum creatinine ¿1 mg/dL, blood urea
nitrogen ¿30 mg/dL, or total bilirubin ¿4 mg/dL) benefit from intravenous albumin to reduce the risk
of hepatorenal syndrome. The recommended dosing is 1.5 g/kg of albumin on Day 1 and 1 g/kg of
albumin on Day 3.

Additional management includes monitoring for complications such as hepatic encephalopathy, re-
nal dysfunction, and sepsis. Ascitic fluid culture and analysis should be performed to confirm SBP,
with an ascitic fluid polymorphonuclear leukocyte (PMN) count ≥250 cells/µL confirming the di-
agnosis. Non-selective beta-blockers should be discontinued if the patient is taking them, as they
may worsen outcomes in SBP patients with hypotension or renal dysfunction. If SBP is confirmed,
prophylactic antibiotics (e.g., norfloxacin or ciprofloxacin) may be considered to prevent recurrence
in high-risk patients.

In summary, while awaiting ascitic fluid culture results, the best immediate treatment for this patient
is empiric administration of cefotaxime or another third-generation cephalosporin, along with albu-
min infusion to prevent renal dysfunction. Regular monitoring and supportive care are essential to
prevent complications associated with decompensated cirrhosis and SBP.

Ground Truth Answer: Cefotaxime.

H.3 CASE STUDY 3: MISLEADING EVIDENCE

Patient Presentation: A 4-year-old boy is brought to the emergency department for evaluation after
falling.

Question: What is the underlying mechanism of this patient’s falls?
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Retrieved Evidence - Round 0 (Initial) The system initially retrieved 6 pieces of medical knowl-
edge evidence. Table 10 shows all retrieved evidence with their scores before and after ranking.

Table 10: All Retrieved Evidence with Scores - Round 0, Case 3

ID Evidence Content Embedding
Similarity

LLM
Score

Coherence
Score

Status

1 Medical conditions that increase the risk
of falls include: musculoskeletal dis-
ease.

0.5896 0.6000 0.1000 Retained

2 Medical conditions that increase the risk
of falls include: low systolic blood pres-
sure.

0.4843 0.5000 0.1000 Retained

3 Medical conditions that increase the risk
of falls include: visual impairment.

0.5084 0.7000 0.1000 Retained

4 History of head injury is considered in
cases of child presenting with lethargy,
unconsciousness or convulsions.

0.5127 0.8000 0.1000 Retained

5 Examination of signs of head trauma or
other injuries is considered in cases of
child presenting with lethargy, uncon-
sciousness or convulsions.

0.5695 0.5000 0.1000 Retained

6 On examination, look for altered level
of consciousness, neck stiffness, re-
peated convulsions, bulging fontanelle
in infants, non-blanching petechial rash
or purpura, lethargy, irritability, and ev-
idence of head trauma suggesting possi-
ble recent skull fracture.

0.5430 0.7000 0.1000 Retained

Knowledge Queue After Round 0 Table 11 shows the ranked knowledge queue after Round 0.

Table 11: Knowledge Queue After Round 0 - Case 3

Rank Knowledge Content Priority PPR
Weighted

Round

1 Medical conditions that increase the risk of
falls include: musculoskeletal disease.

0.6916 No 0

2 Medical conditions that increase the risk of
falls include: low systolic blood pressure.

0.5934 No 0

3 Medical conditions that increase the risk of
falls include: visual impairment.

0.5915 No 0

4 History of head injury is considered in cases
of child presenting with lethargy, uncon-
sciousness or convulsions.

0.5594 No 0

5 Examination of signs of head trauma or other
injuries is considered in cases of child pre-
senting with lethargy, unconsciousness or
convulsions.

0.5243 No 0

Continued on next page
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Table 11 – continued from previous page
Rank Knowledge Content Priority PPR

Weighted
Round

6 On examination, look for altered level of
consciousness, neck stiffness, repeated con-
vulsions, bulging fontanelle in infants, non-
blanching petechial rash or purpura, lethargy,
irritability, and evidence of head trauma sug-
gesting possible recent skull fracture.

0.5050 No 0

Self-Consistency Evaluation - Round 0 The doctor agent performed abstention assessment with
2 self-consistency iterations.

Iteration 1:

EXPLANATION: The conversation log provides very limited information about the patient’s history,
circumstances of the fall, symptoms, or any contributing factors. There is no information about
the patient’s neurological status, musculoskeletal abnormalities, visual impairment, cardiovascular
symptoms, or any other relevant medical conditions that might explain the fall. Without further
details, it is impossible to determine the underlying mechanism of the patient’s falls.

DECISION: Very Unconfident

Parsed Score: 1

Iteration 2:

EXPLANATION: The patient is a 4-year-old boy who has fallen. The conversation log does not
provide sufficient information regarding the nature of the fall, the patient’s medical history, de-
velopmental milestones, or any symptoms such as altered consciousness, convulsions, or physical
examination findings. Retrieved evidence suggests various potential causes for falls in children, in-
cluding musculoskeletal disease, visual impairment, low systolic blood pressure, and head trauma,
but none of these can be confirmed or ruled out based on the current information.

DECISION: Very Unconfident

Parsed Score: 1

Average Confidence Score: 1.0

Follow-up Question Generated - Round 1 Based on the very low confidence score (1.0), the
doctor agent generated a follow-up question.

Doctor’s Question: Did the child lose consciousness before, during, or after the fall?

Patient’s Response: The patient cannot answer this question, please do not ask this question again.

Knowledge Queue After Round 1 After the first interaction, the knowledge graph was updated.
Table 12 shows the updated knowledge queue.

Table 12: Knowledge Queue After Round 1 - Case 3

Rank Knowledge Content Priority PPR
Weighted

Round

1 Medical conditions that increase the risk of
falls include: musculoskeletal disease.

0.6211 No 0

Continued on next page
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Table 12 – continued from previous page
Rank Knowledge Content Priority PPR

Weighted
Round

2 Medical conditions that increase the risk of
falls include: visual impairment.

0.5501 No 0

3 Medical conditions that increase the risk of
falls include: low systolic blood pressure.

0.5345 No 0

4 Progressive neurological impairment, micro-
cephaly, delay in achieving developmental
milestones, hypertonia or mental confusion.

0.5258 No 1

5 Neurodevelopment (development score at 18
months) in VLBW infants.

0.5250 No 1

6 History of head injury is considered in cases
of child presenting with lethargy, uncon-
sciousness or convulsions.

0.5142 No 0

Self-Consistency Evaluation - Round 1 Iteration 1:

EXPLANATION: The patient is a 4-year-old boy with a history of delayed developmental mile-
stones (walking at 18 months), which suggests possible neurodevelopmental delay, a known risk
factor for falls. However, without additional history or physical examination findings such as visual
impairment, musculoskeletal abnormalities, or neurological symptoms, the exact underlying mecha-
nism remains unclear. Further information like imaging studies, physical examination findings (e.g.,
gait abnormalities, muscle tone), or family history would be needed for a more definitive answer.

DECISION: Neither Confident or Unconfident

Parsed Score: 3

Iteration 2:

EXPLANATION: The patient is a 4-year-old boy with delayed motor development (walking at 18
months). Delayed developmental milestones are associated with neurological impairment and can
increase the risk of falls. However, the exact underlying mechanism (e.g., cerebral palsy, muscu-
lar dystrophy, metabolic disorder, or other neurodevelopmental conditions) cannot be determined
without further clinical information, physical examination findings, or diagnostic testing.

DECISION: Neither Confident or Unconfident

Parsed Score: 3

Average Confidence Score: 3.0

Follow-up Question Generated - Round 2 Doctor’s Question: Does the child have any history
of neurological conditions, such as seizures or developmental delays?

Patient’s Response: His parents report that he did not walk until he was 18 months old.

Self-Consistency Evaluation - Round 2 Iteration 1:

EXPLANATION: Based on the patient’s history of developmental delay (walking at 18 months) and
recurrent falls, the most likely underlying mechanism for this patient’s fall is neurological dysfunc-
tion or developmental delay. However, without additional clinical details, such as physical examina-
tion, imaging studies, or laboratory tests, the exact mechanism cannot be conclusively determined.

DECISION: Neither Confident or Unconfident

Parsed Score: 3
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Iteration 2:

EXPLANATION: The patient’s history of delayed motor milestones (walking at 18 months) and
recurrent falls suggests a neurodevelopmental disorder or neuromuscular condition. However, with-
out additional information such as physical examination findings (e.g., muscle tone, reflexes, gait
analysis), imaging, or laboratory results, the specific underlying mechanism cannot be determined
with certainty.

DECISION: Neither Confident or Unconfident

Parsed Score: 3

Average Confidence Score: 3.0

Follow-up Question Generated - Round 3 Doctor’s Question: Has the child experienced any
previous falls or frequent stumbling episodes?

Patient’s Response: He has fallen multiple times in the last year.

Self-Consistency Evaluation - Round 3

Knowledge Queue After Round 3 Table 13 shows the updated knowledge queue after Round 3.

Table 13: Knowledge Queue After Round 3 - Case 3

Rank Knowledge Content Priority PPR
Weighted

Round

1 Medical conditions that increase the risk of
falls include: musculoskeletal disease.

0.6141 No 0

2 Medical conditions that increase the risk of
falls include: visual impairment.

0.5722 No 0

3 Progressive neurological impairment, micro-
cephaly, delay in achieving developmental
milestones, hypertonia or mental confusion.

0.5355 No 1

4 Medical conditions that increase the risk of
falls include: low systolic blood pressure.

0.5126 No 0

5 Neurodevelopment (development score at 18
months) in VLBW infants.

0.4724 No 1

6 Developmental and neurological assessment
should be performed with the full engage-
ment of caregivers to identify developmental
delays and other nervous system abnormali-
ties such as epilepsy and disorders of move-
ment, posture and swallowing.

0.4664 No 2

Iteration 1:

EXPLANATION: The patient demonstrates developmental delay (walking at 18 months) and a his-
tory of frequent falls, which could indicate underlying neurological dysfunction or musculoskeletal
issues. Additional assessments, such as neurological examination, musculoskeletal evaluation, and
possibly imaging studies, are necessary to confirm the cause.

DECISION: Neither Confident or Unconfident

Parsed Score: 3

Iteration 2:
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EXPLANATION: The patient’s delayed motor development and recurrent falls suggest possible
neurological or neuromuscular pathology. However, definitive diagnosis requires further clinical
evaluation including physical examination, developmental assessment, and potentially imaging or
genetic testing.

DECISION: Neither Confident or Unconfident

Parsed Score: 3

Average Confidence Score: 3.0

Follow-up Question Generated - Round 4 Doctor’s Question: Has the child undergone any
recent neurological or developmental assessments, and if so, what were the findings?

Patient’s Response: The patient cannot answer this question, please do not ask this question again.

Follow-up Question Generated - Round 5 Doctor’s Question: Has the child experienced any
difficulty with coordination, balance, or muscle weakness?

Patient’s Response: He has fallen multiple times in the last year. When standing up, the patient
uses his hands against his knees and thighs to slowly push himself up into a standing position.

Knowledge Queue After Round 5 (Final) Table 14 shows the final knowledge queue after all
interactions.

Table 14: Final Knowledge Queue After All Interactions - Case 3

Rank Knowledge Content Priority Subgraph Round
1 Medical conditions that increase the risk of

falls include: musculoskeletal disease.
0.6140 No 0

2 Medical conditions that increase the risk of
falls include: visual impairment.

0.5661 No 0

3 Perform symptom directed physical exami-
nation during routine follow-up visit.

0.5350 No 5

4 Progressive neurological impairment, micro-
cephaly, delay in achieving developmental
milestones, hypertonia or mental confusion.

0.5306 No 1

5 Additional neurological manifestations re-
ported include weakness.

0.5109 No 5

6 Medical conditions that increase the risk of
falls include: low systolic blood pressure.

0.4994 No 0

Self-Consistency Evaluation - Final (Round 5) After receiving information about Gower’s sign,
the confidence level increased significantly.

Iteration 1:

EXPLANATION: Based on the information provided, the 4-year-old boy demonstrates signs of
proximal muscle weakness, as evidenced by the use of his hands to push himself up from a seated
position (Gowers’ sign). This, coupled with delayed developmental milestones (e.g., walking at
18 months) and frequent falls, strongly suggests an underlying neuromuscular disorder, such as
Duchenne Muscular Dystrophy (DMD).

DECISION: Very Confident

Parsed Score: 5

Iteration 2:
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EXPLANATION: The patient exhibits classic signs of proximal muscle weakness including Gower’s
sign (using hands to push up from sitting), delayed motor milestones (walking at 18 months), and
recurrent falls. These findings are highly suggestive of Duchenne muscular dystrophy, a progressive
neuromuscular disorder caused by dystrophin deficiency.

DECISION: Very Confident

Parsed Score: 5

Average Confidence Score: 5.0

Final Answer Based on the high confidence score (5.0) after multiple rounds of information gath-
ering, the doctor agent provided the final answer.

The most likely underlying mechanism of this 4-year-old boy’s falls is proximal muscle weakness,
potentially due to a neuromuscular disorder such as Duchenne muscular dystrophy (DMD). Key
findings include: (1) Developmental delay: The child did not walk until 18 months, which is later
than the typical developmental milestone. (2) Frequent falls: Recurrent falls over the past year sug-
gest impaired coordination, muscle weakness, or balance issues. (3) Gower’s sign: The child uses his
hands against his knees and thighs to push himself up into a standing position, which is characteristic
of proximal muscle weakness and commonly seen in Duchenne muscular dystrophy. Musculoskele-
tal disease is a recognized risk factor for falls, and neurological dysfunction with progressive im-
pairment, delay in achieving developmental milestones, and muscle weakness are hallmark features
of neuromuscular disorders like DMD. While visual impairment is also a recognized cause of falls
in children, the patient has no visual complaints and the presence of Gower’s sign is highly specific
for proximal muscle weakness consistent with DMD. While other conditions such as cerebral palsy,
spinal muscular atrophy, or metabolic myopathies could contribute to similar symptoms, the com-
bination of delayed walking, recurrent falls, and Gower’s sign strongly favors Duchenne muscular
dystrophy. Prompt evaluation and diagnosis are essential for initiating appropriate management.

Ground Truth Answer: Duchenne Muscular Dystrophy.

H.4 ROBUSTNESS CASE ANALYSIS

Case study 1: incomplete KG This case demonstrates KnowGuard’s ability to handle incomplete
knowledge graphs by leveraging the agent’s parametric knowledge. From the initial 16 retrieved
triplets, the system filtered out 8 low-relevance items (LLM score ≤ 0.4) while retaining 8 contex-
tually appropriate pieces of evidence covering depression severity classification, symptom duration,
and diagnostic considerations. Critically, none of the retrieved evidence explicitly contained the “2-
year duration criterion” for dysthymia—the essential answer to the question. Despite this knowledge
gap in the external graph, the priority-ranked knowledge queue (Table 6) shows appropriate focus
on diagnostic thresholds and symptom persistence (e.g., “If the subjective distress of the patient is
in terms of intensity ...” has LLM relevance of 0.5). These contextually relevant but incomplete
triplets provided sufficient framework for the doctor agent to activate its internal medical knowledge
and correctly identify the 2-year requirement through parametric reasoning. The self-consistency
evaluation yielded a perfect confidence score of 5.0 across both iterations, reflecting high certainty
in the synthesized answer. This case establishes a key capability: when the knowledge graph lacks
the precise answer but provides relevant diagnostic context, KnowGuard successfully bridges the
gap by integrating external contextual cues with the agent’s parametric medical expertise, producing
accurate responses without requiring additional exploration rounds.

Case study 2: noisy KG This case demonstrates KnowGuard’s filtering effectiveness when the
knowledge graph contains substantial noise. In Round 0, the initial retrieval produced 14 triplets
with significant contamination: 10 pieces (71.4%) focused on unrelated conditions such as pelvic
inflammatory disease, sexually transmitted infections, and COVID-19 management—topics seman-
tically similar to “abdominal pain” and “fever” but clinically irrelevant to the patient’s actual presen-
tation of spontaneous bacterial peritonitis (SBP) in cirrhosis. The multi-stage filtering mechanism
successfully identified and removed these misleading candidates: LLM-based relevance scoring
assigned low scores (0.1-0.3) to noise while recognizing genuinely useful evidence such as “pre-
sumptive treatment of severe bacterial infections” (LLM score 0.9). Crucially, after the follow-up
question elicited critical information about cirrhosis and ascites, Round 1 retrieval automatically re-
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placed three low-priority noisy triplets with highly specific evidence (e.g., “clinical complications of
cirrhosis...spontaneous bacterial peritonitis” ranked 1st with priority 0.5651), demonstrating adap-
tive signal preservation. The confidence progression—from 4.0 (somewhat confident) to 5.0 (very
confident)—occurred not through overconfidence despite noise, but through systematic evidence
refinement that maintained diagnostic accuracy. This validates that KnowGuard does not indis-
criminately trust retrieved knowledge; rather, it employs coherence-aware filtering to prevent noisy
evidence from derailing clinical reasoning, ensuring that only contextually relevant information in-
fluences the final decision.

Case study 3: misleading evidence This case illustrates KnowGuard’s ability to overcome initially
misleading evidence through systematic information gathering. Round 1 retrieved 6 triplets heavily
biased toward geriatric fall risk factors (musculoskeletal disease, low blood pressure, visual impair-
ment—conditions rare in 4-year-olds), achieving only 0.5915-0.6916 priority scores despite high
embedding similarity (0.48-0.59). These age-inappropriate priors misled the initial reasoning, cor-
rectly yielding very low confidence (1.0). Crucially, the system did not prematurely commit to these
misleading signals. Instead, through 5 rounds of targeted questioning (“loss of consciousness?”,
“neurological history?”, “coordination difficulties?”), the knowledge graph underwent progressive
recontextualization: Evidence 3 (“Progressive neurological impairment...delay in achieving devel-
opmental milestones”) jumped from priority 0.5258 (Round 2) to 0.5355 (Round 3) with LLM score
increasing from 0.8 to 0.9, while geriatric-focused Evidence 1 saw its LLM score rise from 0.3 to
0.7 only after reframing “musculoskeletal disease” as pediatric neuromuscular disorder. The break-
through occurred when Round 5’s patient response (“uses hands against knees to stand”) triggered
retrieval of “Additional neurological manifestations...weakness” (priority 0.5109), enabling recog-
nition of Gower’s sign specific to Duchenne muscular dystrophy—a diagnosis invisible in Round
1’s evidence pool. The confidence trajectory (1.0→3.0→3.0→5.0) demonstrates that KnowGuard
treats misleading evidence not as fatal flaws but as signals for knowledge gap detection, using ab-
stention as a trigger for iterative evidence replacement rather than accepting initial retrieval at face
value. This validates the framework’s core hypothesis: multi-round interaction transforms mislead-
ing priors into diagnostic precision through dynamic evidence reranking.

I CLINICAL VALIDATION STUDY

To evaluate the clinical appropriateness and safety of our system’s diagnostic decisions under im-
perfect knowledge graph conditions, we conducted a structured validation study with practicing
physicians. This validation focuses on two critical dimensions: (1) the appropriateness of absten-
tion timing and diagnostic confidence levels, and (2) the effectiveness of evidence utilization despite
knowledge graph limitations.

I.1 STUDY DESIGN AND PROTOCOL

I.1.1 PARTICIPANTS

We recruited four licensed physicians (Physicians 1-4) from two tertiary hospitals to independently
review the three diagnostic cases presented in Section H. All participating physicians have clin-
ical experience ranging from 5 to 15 years, with specialties in internal medicine and emergency
medicine. Due to the ongoing review process, specific institutional affiliations are withheld.

I.1.2 VALIDATION PROTOCOL

Each physician was presented with the complete diagnostic dialogue for all three cases, including:

• Patient presentation and symptom progression

• Retrieved evidence from the knowledge graph at each interaction round

• System’s confidence scores and decision rationale

• Final diagnosis with supporting reasoning

For each case, physicians completed a structured questionnaire assessing:
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1. Evidence Quality: Whether the retrieved evidence, despite knowledge graph limitations,
contributed meaningfully to diagnostic reasoning

2. Decision Timing: Appropriateness of the system’s decision to provide a diagnosis versus
requesting additional information versus abstaining

3. System Strengths: Mechanisms by which the system overcame knowledge graph imper-
fections (evidence filtering, clinical reasoning, iterative refinement)

4. Overall Performance: Free-text assessment of the system’s clinical reasoning and safety

The questionnaire used a combination of multiple-choice questions (allowing single or multiple
selections) and open-ended responses. Questions were designed to elicit specific evaluations of the
system’s handling of three distinct knowledge graph challenges: incompleteness (Case 1), noise
(Case 2), and misleading evidence (Case 3).

I.2 RESULTS AND CLINICAL ASSESSMENT

I.2.1 QUANTITATIVE ANALYSIS

Table 15 summarizes the physicians’ responses across the three cases. We report the percentage of
physicians selecting each option for key evaluation dimensions.

Table 15: Physician responses to clinical validation questionnaire (N=4)
Question Case Response Distribution

Q1: Evidence Quality Assessment
Evidence helpful despite
limitations

Case 1 A (helpful): 75%, B (neutral): 25%

Case 2 A (helpful): 100%
Case 3 A (helpful): 100%

Q2: Decision Timing & Confidence
Appropriateness of confi-
dence/decision

Case 1 A (appropriate): 75%, C (abstain): 25%

Case 2 A (timely): 75%, B (early): 25%
Case 3 A (appropriate): 100%

Q3: System Strengths (Multiple Selection)
Mechanisms for overcom-
ing KG limits

Case 1 A (filtering): 100%, B (reasoning): 75%, C
(knowledge): 50%

Case 2 A (diagnosis): 25%, B (confidence): 75%, C
(filtering): 100%

Case 3 A (logical): 75%, B (discriminative): 75%, C
(persistent): 75%, D (redundant): 25%

Q4/Q5: Comparative Assessment
vs. Baseline system Case 2 A (safer): 25%, B (both acceptable): 75%

Case 3 A (better than misdiagnosis): 50%, B (better
than abstain): 25%, C (similar to abstain): 25%

Case 1 (Incomplete Knowledge Graph): All physicians (4/4, 100%) acknowledged that the evi-
dence was helpful despite the knowledge graph lacking the explicit “2-year” diagnostic criterion for
persistent depressive disorder. Three physicians (75%) found the system’s high confidence (5.0/5.0)
appropriate, attributing this to the question being based on standard clinical knowledge. However,
one physician (25%) suggested the system should have been more cautious or requested additional
information when explicit supporting evidence was absent. All physicians identified evidence filter-
ing (100%) and clinical reasoning (75%) as key mechanisms enabling correct diagnosis.

Case 2 (Noisy Knowledge Graph): The system’s noise filtering capability received unanimous
recognition (4/4, 100%), with all physicians noting that effective exclusion of 71% irrelevant evi-
dence (e.g., pelvic inflammatory disease, anthrax, COVID-19) was critical. All physicians (100%)
rated the decision to ask about cirrhosis history as timely or appropriate, though one physician
suggested earlier incorporation of this question. The dynamic evidence updating mechanism was
highlighted by 100% of physicians as valuable for improving diagnostic accuracy.
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Case 3 (Misleading Evidence): All physicians (4/4, 100%) agreed the system successfully over-
came misleading evidence through multi-round interaction. The five-round dialogue was considered
appropriate or acceptable by all physicians, with 75% noting that each question contributed mean-
ingful diagnostic value. The system’s focus on obtaining Gower’s sign was recognized by 100%
as the critical decision point. However, regarding question quality, 25% of physicians noted some
redundancy. Comparative assessment showed that 50% preferred the system’s iterative approach
over a baseline that might misdiagnose, while 25% each felt it was comparable to direct specialist
referral.

I.2.2 QUALITATIVE INSIGHTS

Physicians provided substantial free-text feedback highlighting both strengths and areas for im-
provement:

Strengths Identified:

• Evidence Filtering: “The LLM-based filtering effectively removed noise while retaining
clinically relevant evidence” (Physician 4, Case 2)

• Dynamic Reasoning: “The system demonstrated strong clinical reasoning by dynamically
updating evidence after obtaining the cirrhosis history” (Physician 4, Case 2)

• Diagnostic Persistence: “Multi-round interaction effectively addressed diagnostic ambi-
guity and progressively focused on disease-specific features” (Physician 3, Case 3)

• Safety Consciousness: “The system’s cautious approach in Case 3, maintaining moderate
confidence until obtaining Gower’s sign, reflects appropriate clinical conservatism” (Physi-
cian 4, Case 3)

Concerns Raised:

• Evidence Transparency: “While the diagnosis was correct, the reliance on pre-trained
knowledge when KG evidence is incomplete may raise questions about reasoning trace-
ability and evidence sources” (Physician 4, Case 1)

• Differential Diagnosis Completeness: “Although DMD was correctly diagnosed, the sys-
tem should acknowledge that recurrent falls in children could involve co-existing condi-
tions (e.g., vision problems, cardiovascular issues, head trauma). The diagnosis appeared
too absolute without ruling out differential diagnoses” (Physician 4, Case 3)

• Initial Question Strategy: “In Case 2, incorporating additional contextual factors in the
initial round (Round 0) could have accelerated the diagnostic process” (Physician 3, Case
2)

I.2.3 INTER-RATER AGREEMENT

Despite the small sample size, we observed notable consistency in physician assessments:

• Evidence utility: 100% agreement (4/4) that knowledge graph evidence remained valuable
in Cases 2 and 3 despite imperfections

• Filtering effectiveness: 100% agreement (4/4) that noise filtering in Case 2 was successful
• Diagnostic accuracy: 100% agreement (4/4) across all three cases that final diagnoses

were clinically correct
• Safety: No physician raised critical safety concerns about any diagnostic decision

The primary divergence occurred in assessing the appropriateness of confidence levels in Case 1,
where 25% preferred more conservative handling when explicit evidence was lacking.

I.2.4 SUMMARY

This clinical validation study demonstrates that our system’s design enables robust diagnostic per-
formance even under imperfect knowledge graph conditions. Physicians consistently recognized
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three key capabilities: (1) effective evidence filtering to remove noise, (2) strategic use of iterative
interaction to gather critical information, and (3) appropriate integration of clinical reasoning when
knowledge graphs are incomplete. While the small sample size (N=4) limits generalizability, the
unanimous agreement on diagnostic correctness and safety, combined with specific praise for the
system’s handling of knowledge graph limitations, provides preliminary validation of our approach.
The identified areas for improvement—particularly regarding evidence transparency and differential
diagnosis articulation—will inform future system refinements.

38


	Introduction
	Related Work
	Method
	Problem Formulation and approach Overview
	Evidence Discovery Stage
	Evidence Evaluation Stage
	Open-Ended Clinical Reasoning Benchmark

	Experiments and Results
	Experimental Settings
	Results

	Analysis
	Ablation Studies on Key Components
	Hyperparameter Studies

	Conclusion
	Ethics Statement
	Statement on LLM Usage
	Takeaways
	Limitations and Future Work
	Ablation Study on Scoring Components
	Multi-round Clinical Reasoning Benchmark
	Dataset Construction and Open-ended Conversion
	Performance of Rare Cases

	knowledge graph integration
	entity/relation extraction
	the graph-search/expansion algorithm
	Fusion of graph signals and LLM scores
	implementation details and hyperparameters
	Evidence Discovery and Evidence Evaluation
	Model Configuration and Experimental Setup
	Implementation of Long Context


	Prompts
	Direct Retrieval Query Generation Prompt
	Patient Population Reasoning Prompt
	LLM Relevance Prompt
	Abstention Prompt
	Decision Making Prompt
	Judge Agent Prompt

	Case Study on System Robustness
	Case Study 1: Incomplete KG
	Case Study 2: Noisy KG
	Case Study 3: Misleading Evidence
	Robustness Case Analysis

	Clinical Validation Study
	Study Design and Protocol
	Participants
	Validation Protocol

	Results and Clinical Assessment
	Quantitative Analysis
	Qualitative Insights
	Inter-Rater Agreement
	Summary



