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ABSTRACT

Semi-structured content in HTML tables, lists, and infoboxes accounts for a sub-
stantial share of factual data on the web, yet the formatting complicates usage,
and reliably extracting structured information from them remains challenging.
Existing methods either lack generalization or are resource-intensive due to per-
page LLM inference. In this paper, we introduce SCRIBES (SCRIpt-Based
Semi-Structured Content Extraction at Web-Scale), a novel reinforcement learn-
ing framework that leverages layout similarity across webpages within the same
site as a reward signal. Instead of processing each page individually, SCRIBES
generates reusable extraction scripts that can be applied to groups of structurally
similar webpages. Our approach further improves by iteratively training on syn-
thetic annotations from in-the-wild CommonCrawl data. Experiments show that
our approach outperforms strong baselines by over 13% in script quality and
boosts downstream question answering accuracy by more than 4% for GPT-4o,
enabling scalable and resource-efficient web information extraction.

1 INTRODUCTION

A substantial volume of web data is stored in semi-structured formats such as HTML (Hyper-
Text Markup Language) tables, lists, and infoboxes (Dong et al., [2014} [Sun et al., 2025 Such
content offers a rich source of factual information, yet its formatting complicates effective usage
in downstream applications like question answering (Tan et al.| [2025; [Sun et al., [2025)). Knowl-
edge extraction aims to transform such data from raw HTML into structured representations (e.g.,
triples) (Wilks, [1997)), but despite decades of research, this remains a major challenge at large scale.
Existing approaches fall into two main categories. Traditional information extraction (IE) meth-
ods, such as wrapper induction (Kushmerick et al.l [1997), graph mining (Crescenzi et al.l 2001}
Liu et al. 2003), layout-based methods (Zhai & Liu} [2005; [Lockard et al.| 2018]), and Deep Neural
Networks (Dalvi et al.,|201 1; [Lockard et al., 2020), tend to be brittle and struggle to generalize over
unseen data or schema. More recently, Large Language Model (LLM)-based methods have emerged
that parse individual pages or construct Knowledge Graphs (KGs) using large models (Gutiérrez
et al.,[2024; |Zhang & Sohl 2024; Ning et al., [2023} |Chen & Bertozzi, 2023} [Zhang et al., 2023} Bai
et al.| 2025). Although these methods can produce high-quality outputs, they are resource-intensive
to apply at scale because they require invoking an LLM for every page.

Can we extract knowledge from semi-structured content at the web scale both effectively and
efficiently? In this paper, we introduce SCRIBES: SCRIpt-Based Semi-Structured Content
Extraction at Web-Scale, a novel approach for large-scale knowledge extraction. Given a webpage,
SCRIBES leverages an LLM to generate an extraction script that applies to other pages within the
same domain, which typically share highly similar layouts (Figure [2). Executing the script incurs
only negligible resource cost compared with running an LLM-based extraction on every individual
page.

Although the idea appears straightforward, current LLMs struggle to produce high-quality, gener-
alizable extraction scripts. Fine-tuning them for this ability is cumbersome, as creating annotations

'See Appendixfor a discussion of different types of webpages with semi-structured content.
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Figure 1: SCRIBES organizes similar webpages into groups under each website. During training,
the model receives one representative webpage per group as input (pt. 1) and is tasked with generat-
ing a single extraction script applicable to all similar webpages within the group (pt. 2). Extraction
results are then compared against human annotations for labeled data and synthetic annotations for
unlabeled CommonCrawl webpages. The resulting scores are used to update the model weights (pt.
3). At inference time, SCRIBES enables the model to generalize to new, unseen websites by gener-
ating scripts that can be applied across similar webpages (pt. 4).

for such scripts is difficult even for expert labelers. The success of SCRIBES lies in a Reinforce-
ment Learning (RL) framework that leverages structural similarities across related webpages: given
a group of similar webpages, the model is rewarded when a script generated for one webpage also
works on others. This encourages learning scripts that generalize beyond individual examples.

SCRIBES draws training data from two sources. First, it learns from a small set of annotated
examples (192 pages from 34 groups) (Figure [T} parts 1-3). For each group, SCRIBES takes one
webpage as input and prompts the model to generate a script intended to generalize across the group.
The script is then executed on the remaining pages, and its outputs are compared with annotations to
compute the reward. Second, SCRIBES leverages in-the-wild websites from CommonCrawl to fur-
ther enhance its capabilities. We develop an iterative approach that starts from a checkpoint trained
on annotated data and then refines the model to continue learning from their failed predictions on
the in-the-wild websites. To provide supervision at scale, we employ LLM-based direct extractions
as synthetic annotations, reducing reliance on annotations or hand-crafted parsers.

Extensive experiments show that our RL-trained model outperforms strong agentic baselines by
more than 13% in generating robust, reusable parsing scripts. Moreover, we demonstrate that im-
proved extraction translates into downstream benefits: in QA tasks requiring structured reasoning
over HTML, incorporating triples produced by SCRIBES boosts accuracy across a wide range of
LLMs, including SOTA models such as GPT-40 by over 4%.

2 RELATED WORKS

2.1 SEMI-STRUCTURED DATA PROCESSING

Flattening: In complex QA or retrieval settings that mix texts, tables, and knowledge bases, a
common practice is to “linearize” everything into plain text (Oguz et al., [2022; [Zhang et al.| 2024;
Ma et al.,|2022; (Christmann et al.l 2022)). This is also a popular practice when dealing with HTML



Under review as a conference paper at ICLR 2026

pages. Trafilatura is a widely used HTML cleaning and text extraction toolkit designed for large-
scale web processing (Barbaresi, 2021), among many other HTML conversion packages (Firecrawl,
2025}, |Paraschiv, [2024). While effective for general text extraction, these utilities typically discard
or flatten structural elements such as tables, lists, and infoboxes. Similar to findings in complex QA
that highlight the importance of structural cues (Liu et al., 2024bj |Zhang et al., [2024), recent work
on RAG with raw HTML shows that converting to plain text discards headings, table structures, and
other layout information critical for downstream tasks (Tan et al., [2025).

Traditional IE Methods: A classical approach to extracting structured data from semi-structured
web content is wrapper induction, which learns extraction procedures (“wrappers”) from a small
set of labeled examples instead of hand-crafted rules (Kushmerick et al.| [1997). Extensions in-
clude boosted wrapper induction, which combines simple patterns for greater robustness (Freitag &
Kushmerick, [2000), and large-scale methods that handle noisy data and template drift (Dalvi et al.,
2011). While effective on regular site structures with clean annotations, these methods are brittle to
structural changes and generalize poorly across diverse domains. In contrast, our approach learns
executable scripts, i.e. full extraction programs that operate directly on raw HTML, allowing the
system to generalize beyond fixed rules and adapt automatically without manual template design.

LLM-based methods: Several recent advances utilize LLMs to extract semi-structured contents.
For instance, [Wang et al.| (2025) train a LLM to convert HTMLs into Markdown and JSON us-
ing SFT and RL methods. Similarly, [Poznanski et al.| (2025) use a VLM to convert PDFs into
clean, readable format retaining tabular structures. Many related works also exist on LLM-assisted
knowledge-base construction (Gutiérrez et al.| 2024; Zhang & Sohl [2024; |[Ning et al.| |2023}; |(Chen
& Bertozzi, [2023} |Zhang et al., 2023 Bai et al., [2025). However, calling an LLM per page remains
resource-intensive at web-scale; moreover, they typically treat each page independently, missing the
cross-page layout regularities that SCRIBES exploits.

2.2 RL WITHOUT ANNOTATIONS

A growing body of work explores reinforcement learning in settings without explicit annotations.
Zuo et al.|(2025) show that models can refine themselves at test time by turning consensus among
rollouts into rewards, while|Zhao et al.|(2025)) and |Prabhudesai et al.| (2025)) demonstrate that internal
signals such as self-certainty or confidence are sufficient to drive continued improvement. |Shao
et al.| (2025)) find that even spurious or random rewards can produce surprising gains, suggesting that
models can bootstrap from imperfect signals. Like prior work, we reduce dependence on annotations
by iteratively refining the model from its own failures, but instead of relying solely on internal
signals, we utilize LLM-based direct extractions as synthetic annotation for reward calculation.

3 SCRIBES FRAMEWORK

3.1 PROBLEM DEFINITION

Figure 2: Three webpages containing semi-structured content under the same website.

Knowledge extraction: Let G = {p1,- - ,p,} be a group of semi-structured webpages that are
structurally similar. The knowledge extraction task parses each page p;, 4 € [1, n], to alist of triples
(subjects, predicates, and objects). We denote by y; the ground truth triples for page p;.
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Extraction script generation: We propose to solve the knowledge extraction problem by gener-
ating an extraction script that applies to every page in G. Formally, our goal is to train a model
LM that, given any webpage p € G, predicts an extraction script §j, = LM (p), such that applying
1 to every page in GG generates triples close to ground truth triples {y; |p; € G}. For instance,
in [Figure 2] a model-generated script should robustly handle variations across webpages, such as
differences in table sizes and values.

3.2 HTML DEDUPLICATION (DEDUP)

The raw HTMLs of webpages are typically very long and can easily surpass the maximum context
window of even the long-context LLMs. We propose a simple yet effective method for deduplicating
HTMLs: repeated HTML blocks are collapsed into a compact representation of the form “n more
...elements,” which substantially reduces context length. Ablation experiments confirm that this
deduplication step significantly improves model performance. We therefore apply it throughout our
SCRIBES-trained models. An example of the dedup process is shown in Figure [6] and further
details and analysis are provided in Appendix [C]

3.3 RL SETUP

Annotating such extraction scripts for training is challenging even for expert human annotators. To
address this, rather than relying on demonstrations, we propose adopting Reinforcement Learning
with Verifiable Rewards (RLVR) for this task.

We define r(p — q) = S(gjp(q), y;) € [0, 1] as the score obtained when the script g, is executed
on a (possibly different) page g, where S is a scoring function that measures similarity between
predicted and annotated tuples. To compute this score, we follow prior works (Liu et al., [2024a;
Sun et al, 2025 and adopt a bipartite matching algorithm that aligns predicted triples with gold
triples by maximizing their pairwise fuzzy matching score. Based on this matching, we com-

pute fuzzy precision PM#2Y, recall RM##Y and Fy score FI"**Y. Since fuzzy string similarity
may fail to fully capture semantic equivalence, we additionally employ an LLM-as-a-judge (set
to Llama—3.3-70B-Instruct) to evaluate the aligned triples (Prompt[I7). We choose Llama
to ensure consistency with prior work (Sun et al.| [2025) and, by fixing the checkpoint, to enable
reproducible experiments. This yields LLM-based precision P'M, recall R¥M, and F score FIM.

During training, we set S = F}"*?, the triple-level fuzzy F} score. Refer to Appendix E|for addi-
tional details on metrics and an optimized implementation of F}"** during training.

3.3.1 REWARD SIGNAL FROM LABELED DATA

We define the following notations:

1. the self-score is r(p) = r(p— p), while
2. each cross-score is Teross (P, ) = r(p—q) for ¢ # p.

SCRIBES optimizes a model using Group Relative Policy Optimization (GRPO) (Shao et al.| [2024)
based on the following reward function for each training sample p:

TSCRIBES(p) = |G’(1p)\ Z ’I"(p—>Q) = Wlp)‘rself(p> + |C‘¥g’&)|)—|1 Z Teross (s Q) (1)
a€G(p) 9€G(p):p#q

Within this framework, each self-score contributes only Wlp)\ to the final reward, while cross-scores

constitute the majority of the reward signal. This design strongly encourages the model to generalize
by accounting for potential variations across other, unseen webpages within the same group. We
study the effect of different reward formulations through ablation studies in Section 4.4}

3.3.2 REWARD SIGNAL FROM UNLABELED DATA IN THE WILD

When training on annotated data, SCRIBES can directly leverage the gold human annotation y;, for
each page p as the reward signal. However, because the only high-quality annotated dataset available
from|Sun et al.|(2025) is relatively small, it is inherently difficult to achieve broad coverage of diverse
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Figure 3: Processing pipeline for unlabeled data from CommonCrawl in Section m

website layouts using annotated data alone. To address this limitation, we propose a novel approach
that leverages unlabeled in-the-wild webpages from CommonCrawl (abbreviated as CC) (Common
Crawl, 2025)).

Our data collection pipeline is illustrated in Figure [3| (pt. 1) Starting from a sample of CC, (pt.
2) we first apply the blacklist filters from |Penedo et al.| (2024)) to remove adult or explicit content.
(pt. 3) We then apply language filters to select English content websites and (pt. 4) group webpages
by domain, (pt. 5) retaining only groups containing at least n webpages. (pt. 6) Next, we use an
LLM-based classifier (Prompt[I5)) to identify webpages containing semi-structured content, and we
retain only those website groups where at least m% of the pages are classified as semi-structured.
(pt. 7) Finally, we sample one webpage as the training example and associate it withup to & < n
in-group webpages for reward calculation. In our experiments, we apply the following thresholds:
n =30, m =90, and k = 13.

At this stage, we obtain a collection of in-the-wild webpage groups containing semi-structured con-
tent. However, without human annotations, it is unclear what reward signal should be used for train-
ing. (pt. 8) To address this, we propose using LLM-based direct extraction (Prompt[I6) as a proxy
for gold annotations. Our experiments show this to be the strongest baseline. Nevertheless, because
such direct extraction is far from perfect (achieving only about 40% F7 for the best baseline), we
aim to prevent noisy rewards from degrading model performance. (pt. 9) To this end, we start from a
checkpoint trained on annotated data and identify a subset of webpages where the model’s predicted
scripts fail to produce any results. By concentrating training on these failure cases, we increase the
likelihood that the additional synthetic data improves the model’s performance. Ablation studies on
the necessity of this subset are presented in Section

4 EXPERIMENTS

4.1 DATASET

Annotated dataset: Existing datasets for semi-structured knowledge extraction from raw webpages
are limited. SemiBench (Sun et al.| 2025)) presents a dataset of webpages drawn from 139 popular
websites in CommonCrawl, annotated with triples. Their collection includes 83 websites with a
single webpage, 46 groups of 3 similar webpages, and 10 groups of 13 similar webpages each.
This grouping scheme provides a valuable opportunity to evaluate generalization in the SCRIBES
setting. We select the 56 groups containing more than 1 webpage each for experiments in this work.
We divided the annotated dataset into training and test sets using a 60%-40% split across groups;
that is, we assign entire groups to either the training or test set, and we do not split within any group.
For a group of size n in the training/test set, we create n training/test examples, each using one
webpage as input and all group elements used for reward calculation. All evaluation metrics are
reported on the test set, which contains only websites from groups that the model did not see during
training. Refer to additional details in Appendix [D.1]

In-the-wild webpages: To construct groups directly from CommonCrawl, we employ a simple
heuristic: two webpages are grouped together if they share the same URL prefix up to the final
substring. For example, example.com/midl/subl and example.com/midl/sub2 be-
long to the same group, while example.com/mid2 does not. The LLM used in our pipeline is
GPT-0SS—-120B. We randomly sampled 50 webpages and estimated classifier accuracy at 90.0%
precision and 72.0% recall. In total, 19,566 groups satisfied the n > 30 condition, among which
2,003 also satisfied the m > 90 condition. After direct extraction with the LLM, 1,898 examples
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Model and Method All Example Holdout
RUM  pIM  pLM ‘ RUM  pLM  pLM ‘ RUM  pLM  pLM

Baselines (Direct LLM Extraction)

L-70B (Sun et al.}[2025) * 24.3 15.7 19.1 - - - - - -
Fine-tuned L-70B (Sun et al.}|2025) * 214 27.1 239 - - - - - -
GPT-40 (Sun et al.[|2025) © 35.1 23.8 28.3 - - - - - -
Q-14B flatten 30.5 365 299 - - - - - -
Q-32B flatten 287 374 299 - - - - - -
GO-20B 2-shot flatten 332 471 349 - - - - - -
GO-120B 2-shot flatten 423 463 404 - - - - - -
Baselines (Script-gen)
Q-14B agentic-3-iter 2-shot 8.6 11.1 8.0 13.2 18.0 126 6.3 7.8 5.7
L-70B agentic-3-iter 10.1 15.5 10.5 16.7 238 16.8 6.9 11.2 7.4
Q-72B agentic-3-iter 2-shot 164 194 150 | 241 28,6 218 13.3 15.8 12.4
Q-32B agentic-3-iter 2-shot 186 272 194 | 245 348 259 158 239 164
GO-20B agentic-3-iter 247 232 209 | 293 264 277 | 225 21.8 18.9
GPT-40 agentic-3-iter 2-shot 260 330 244 | 33.0 365 312 | 225 313 211
GO-120B agentic-3-iter 2-shot 339 410 343 | 358 423 366 | 33.0 405 333
SCRIBES (Script-gen)
Q-14B 23.0 24.3 19.9 31.2 29.8 26.7 19.0 21.7 16.7
Q-14B (+ CC) 252 230 218 | 349 31.0 30.0 | 20.5 19.1 17.7
Q-32B 299 315 281 320 339 303 | 288 303 268
Q-32B (+ CCO) 374 360 332 | 395 355 346 | 362 362 324

Table 1: LLM-judged metrics are reported separately for All, Examples (the webpage model used to
generate the script), and Holdout (similar webpages where the same script was applied). Columns
show macro-averaged P*M, R*M  and FIM. For each model and block, we report only the
strongest baseline here. The full baseline results, including LLM-based agentic baselines Hip-
poRAG (Gutiérrez et al., [2024)) and AutoSchemaKG (Bai et al.| [2025)), which exhibit lower scores,
are provided in Table[I1]in Appendix[G.4] (*) Numbers reported by |[Sun et al] (2025) are on the full
set.

were retained (the remainder corresponding to prediction failures or empty outputs). This entire
process used less than 1% of the CC-MAIN-2025-30 crawl. We hypothesize that this pipeline can
be scaled to larger portions of CommonCrawl for broader coverage; in this paper, we focus on
establishing its feasibility.

4.2 TRAINING SETUP AND BASELINES

Training We train Qwen2.5-Instruct family models and perform minimal hyperparameter
tuning to ensure stability during model training. Refer to Appendix [D]for additional details.

Baselines We experiment with both SOTA close-source and open-source models, including:
gpt—-40,Llama-3.3-70B-instruct (abbreviated as L-70B), Qwen2.5-Instruct (abbre-
viated as Q-xB) family, and gpt —oss (abbreviated as GO-xB) family. We implement the following
baselines for comparison (Prompt[I9). By default, all baselines use Dedup as the SCRIBES-trained
models. We explore multiple configurations to construct strong baseline models.

1. agentic-n-iter: After the model outputs a script given an example, if the script fails to
produce output or produces empty output, we feed the execution feedback to the model and
ask it to retry. Otherwise we use the output script as prediction. We repeat this ReAct-
style (Yao et al.|[2022)) procedure up to n times;

2. n-shot: We feed in n HTMLs and their corresponding gold extraction results as in-context
learning examples;

3. flatten: We directly flatten the HTMI_E| and use it as model’s input. Note that there is no
generalizability requirement or dedup involved in this setup.

4. Recent, SOTA LLM-based KG construction pipelines, including HippoRAG (Gutiérrez
et al] [2024) and AutoSchemaKG (Bai et al] [2025). See Section[G.1] for details.

2BeautifulSoup (html_content, "html.parser") .get_text ()
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4.3 RESULTS

RQ1: Does SCRIBES framework bring improvements to models in terms of their capability to
extract semi-structured data?

For each example p in our test set, models generate a script §, = LM (p) and we apply it to all
examples in G(p). We derive a score

S(p)=;

q9€G(p)

where we set .S to be recall, precision, or Fj score, as defined in Section @ We refer to this
aggregate score as “All.” To further investigate the performance gap between the example provided
to the model (“Example”) and the other webpages to which the model-generated script is applied
(“Holdout™), we decompose the score in Eq. [2]into two separate components:

1
Sholdout (p) = T/ N 4 Z

S(@qa y;)
G@p) =1 q€G(p), g#p

Sexample(p) = S(gpv y;)

In Table [1] we report the macro average of R*M, PMM | FM by averaging individual S(p) scores.
SCRIBES-trained models drastically outperform strong agentic baselines. The best Q-14B and Q-
32B models outperform the few-shot agentic base model performance by 13.8% in F*™, and our
best Q-32B model performs on-par with the few-shot agentic GO-120B model.

RQ2: Does using SCRIBES enable resource-efficient, web-scale extraction?

To demonstrate the SCRIBES-framework’s

applicability to web-scale semi-structured con-
tent extraction, we evaluate on a leftover sub-
set of CommonCrawl data that was not used
in model training. To keep the experiment
tractable, we capped each group at 30 webpages
and required at least 13 webpages per group,
meaning this evaluation covers only a tiny frac-
tion of the available data. On this small subset
with 113,129 webpages, our model extracted

10%
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2,788,760 triples. Remarkably, only 4,661 re-
quired direct model predictions, while the vast
majority were generated automatically through
model-produced scripts.

Figure 4: Estimated GPU FLOPs usage compar-
ing SCRIBES-trained model with per-page LLM
inference for Q-32B. The results show that, even
when training compute is included, SCRIBES-

On average, processing a webpage with dedu- ) o
trained models scale more efficiently at web scale.

plicated HTML requires 8,879 tokens, whereas
using flattened HTML requires 2,399 tokens.
Let p = % ~ 3.7 denote this relative per-

page token ratio. Our approach quickly becomes more efficient as long as the target website contains
at least 4 structurally similar pages. In fact, the token speedup of our scribe-based method relative

to flattening grows linearly with &k (the number of structurally similar pages), following:

k
speedup = —
p

We further compare the total GPU cost of SCRIBES, including training, with per-page LLM infer-
ence in Figure[d] Let g denote the number of groups processed. While per-page inference (dashed
purple line) increases linearly with both the number of groups g and the group size k, the SCRIBES-
trained model yields substantial FLOP savings, with the magnitude of savings growing proportion-
ally to group size. For instance, with 100 pages per group, SCRIBES can already provide a compu-
tational saving of 1.12 x 102! FLOPS when processing 10° groups. Additional details on the FLOP
estimates are provided in Appendix [D.3]

Thus, compared to approaches that require per-page LLM inference 2025), SCRIBES
can significantly cut down the GPU resource usage for web-scale extraction.
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Model and Method All Example Holdout
RLM PLM FlLM ‘ RLI\/I PLM FlLM ‘ RLM PLM FILM

Q-14B (Reward w/ Eq. 156 196 157 | 291 362 279 8.8 11.0 9.5
Q-14B (SCRIBES) 23.0 243 199 | 312 298 267 | 190 21.7 16.7

Table 2: Ablation study of reward design (Eq. , showing that SCRIBES ’s reward significantly
enhances performance on holdout webpages.

Method All Example Holdout

RUM  pLM  pLM ‘ RUM  pLM  pLM ‘ RUM  pLM  pLM
Q-14B (Annotated only) 23.0 243 199 | 312 298 267 | 190 217 167
Q-14B (+ Al CC) 220 302 22,0 | 289 351 281 184 27.6 188
Q-14B (+ Failure-Case CC) 252 230 21.8 | 349 310 30.0 | 205 19.1 17.7
Q-32B (Annotated only) 299 315 281 | 320 339 303 | 288 303 268
Q-32B (+ All CC) 31.1 341 297 | 352 370 361 | 329 290 28.1

Q-32B (+ Failure-Case CC) 374 360 332 | 395 355 346 | 362 362 324

Table 3: Ablation study on CC data subsets, showing that models trained with the failure-case subset
generally perform better.

Model and Method All Example Holdout
RWM  pLM  pLM ‘ RWM  pLM  pLM ‘ RWM  pLM  pLM

Q-14B agentic 3-iter 2-shot 9.5 13.7 8.8 232 242 200 12.4 7.4 7.2
Q-14B (SCRIBES) 207 222 194 | 318 361 304 | 145 12.0 12.2

Table 4: Ablation study on cross-domain transferability, showing that the SCRIBES-trained model
demonstrate strong cross-domain transfer skills and outperform the baseline by more than 10%.

4.4 ABLATIONS

RQ3: Does the SCRIBES reward design improve the model’s capability in generating scripts that
generalize to holdout elements?

To answer this question, we train a Q-14B model with the following reward for each training exam-
ple p:
To (P) == 7/'self(p) (3)

Compared to Equation [I] this reward encourages the model only to generate scripts suited to the
current training example, without considering other in-group elements. We still use the same input
prompt as in our SCRIBES-trained models (Prompt [[9), which instructs the model to produce
scripts that generalize across similar webpages. The training setup remains unchanged.

As shown in Table 2] although this model outperforms Q-14B (SCRIBES) on the examples en-
countered during inference (+1.2%), it generalizes much more poorly to similar webpages where
the script is applied (—7.2%), resulting in worse overall performance in the “All” column (—4.2%).
This shows that the SCRIBES reward design can more effectively instill in models the capability to
produce generalizable scripts.

RQ4: Does using CommonCrawl data bring further improvements to our models?

We apply the technique described in Section[3.3.2]to the final checkpoints of the SCRIBES-trained
Q-14B and Q-32B models on the annotated dataset. As shown in Table |I|, additional training on

synthetic data derived from CommonCrawl further improves performance, yielding gains of roughly
2% for Q-14B and 5% for Q-32B overall.

To better understand the impact of noisy rewards, we conducted the following ablation studies: (1)
training directly on CC data, and (2) training on a mixture of CC and annotated data at a 1:1 ratio.
Neither approach led to performance improvements, as shown in Table [I0] (Appendix [G.2). We
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structure and page type. stances where headers span multiple columns.

Figure 5: Error analysis: (a) model performance by structure complexity; (b) comparison across
nested lists and multi-column formats.

Additional reference Q-15B Q-3B Q-7B Q-14B Q-32B GPT-4o
Flattened HTML 50.2 53.8 62.9 74.2 70.8 82.5
+ Best Direct LLM Extraction triples 52.8 61.2 66.6 73.5 73.1 82.7
+ Best Q-32B triples 52.9 54.3 64.1 77.3 73.2 86.6
+ Ground truth triples 60.5 64.9 70.5 78.2 74.8 874

Table 5: QA accuracy (%) with triple augmentations (evaluated by L1lama—-3.3-instruct-70B,
Prompt@. SCRIBES ’s predicted triples boost QA performance across many models.

therefore hypothesize that it is essential to first train the model with gold rewards to establish strong
prior knowledge of this task. Subsequent training with noisy rewards can then expose the model to
more diverse inputs, not only preserving but further improving performance, analogous to findings

in[Shao et al] (2025).

RQS: What’s the effect of selecting the failure case subset to continue CommonCrawl trainings?

As discussed in Section [3.3.2] we select the subset of CC data where our model produced scripts
with no valid triples extracted. We examine whether restricting training to this subset is necessary
by training both a 14B and a 32B model on the full CC dataset (“All CC”) and only the subset
where no triples were extracted (“Failure-Case CC”). Results are reported in Table[3] We highlight
two findings: (1) Training on either All CC or Failure-Case CC improves performance compared to
using annotated data alone, and (2) Failure-Case CC yields stronger gains for Q-32B compared to
All CC (+3.5%) , while performance for Q-14B remains comparable across the two settings.

RQ6: Do SCRIBES-trained models transfer across domains? For example, does a model trained
on finance or legal tables generalize to product or encyclopedia pages?

To investigate this question, we conduct an ablation study using a train—test split in which the test set
contains all product and encyclopedia pages, while the training set excludes webpages from these
domains entirely. Details on this setup are provided in Appendix [G.3] As shown in Table ] the
SCRIBES-trained model still substantially outperforms the strongest agentic baseline of the same
model by more than 10%. To develop a model capable of web-scale extraction, we would still rec-
ommend training on a dataset that encompasses diverse domains and page layouts, as demonstrated
by our CommonCrawl processing in Section[3.3.2}

4.5 ERROR ANALYSIS

We perform an error analysis to understand the failures of the best-performing Q-32B model. We
break down performance by the amount of structure in a webpage (approximated by the ratio of
raw HTML length to flattened text length) and by webpage type. As shown on the left of Figure [5a]
where webpages are grouped into five equal-sized bins (by number of webpages) and the respective
medians are reported, performance declines as webpages contain more structure. On the right,
the model performs best on webpages with Horizontal Tables (HT), followed by Attribute—Value
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Pairs (A-VP), and performs worst on Free-Form (F-F) pages. These results suggest that webpages
with more numerous or complex structures are particularly challenging for our model. ~We also
compare the performance of our model’s outputs on contents involving multi-column and nested
lists. As shown in Table[5b] we observe that such content is more challenging for our model. Further
prediction examples are showcased in Appendix

5 DOWNSTREAM APPLICATIONS

5.1 QUESTION ANSWERING OVER SEMI-STRUCTURED WEB DATA

We demonstrate that our script-extracted triples can enhance QA performance, even for the most
capable LLMs. Although there exist many general-purpose QA datasets
jpurkar et al [2016) and datasets focused on semi-structured databases (Chen et al.l 2020;
et al., 2021}, |Chen et al.,[2021)), very few address the setting where the input consists of raw HTML.
SemiBench (Sun et al.| 2025) fills this gap, containing QA pairs with aligned triple annotations. This
makes it a strong testbed for evaluating whether triple extraction improves QA over semi-structured
web data. We select the subset of QA data (a total of 416 QA pairs) associated with our test set
and evaluate a broad range of models as QA backbones, using the following reference conditions
in Prompt[T8} (1) Flattened HTML only; (2) Flattened HTML with best-performing direct LLM-
extracted triples (GO-120B 2-shot flatten); (3) Flattened HTML with our model-extracted triples;
and (4) Flattened HTML with gold triples. We report the result on the QA pairs associated with our
validation examples in Table[5] Our SCRIBES-trained models yield consistent gains across diverse
QA backbones, including an improvement of more than 4% for GPT-4o.

We further observe that although the SCRIBES-trained models slightly underperform the strongest
per-page LLM-inference baseline in Table[I] they nonetheless deliver comparable downstream QA
gains. As shown in Table ] using SCRIBES-generated triples improves QA performance for Q-
14B and GPT-4o, yields roughly similar performance for Q-1.5B and Q-32B, and performs worse
for Q-3B and Q-7B. These results indicate that higher IE accuracy does not necessarily translate into
better downstream QA performance. Instead, using SCRIBES-produced triples can deliver much
better efficiency and a similar level of downstream QA improvement.

5.2 FURTHER DISCUSSIONS

The efficiency benefits of SCRIBES open up additional opportunities, and we highlight two direc-
tions for future explorations:

Multi-page, Complex QAs: SCRIBES-extracted triples enable queries that require aggregation
or ranking across multiple webpages. For example, a standard RAG solution would struggle with
questions like “What is the latest report filed?” when answering against the website in Figure[2] In
contrast, SCRIBES-generated triples can efficiently support such queries, eliminating the need for
resource-intensive, page-by-page KG construction with LLMs.

Pretraining: Most open-source pretraining corpora systematically filter out semi-structured con-
tent. For instance, C4 (Raffel et al, 2023)) applies a “punctuation filter” that removes sentences
not ending with valid punctuation. Recent popular corpora such as Dolma (Soldaini et al., [2024)
and FineWeb (Penedo et al.l [2024) inherit this bias, resulting in a near-complete absence of semi-
structured data. We believe SCRIBES can address this gap by enabling efficient and resource-
effective extraction and incorporation of such content into pretraining datasets.

6 CONCLUSION

This work introduces a novel RL framework, SCRIBES, for training models to generate general-
izable extraction scripts across structurally similar webpages for semi-structured content extraction.
We also propose a new method for generating synthetic training data, which further improves model
performance, by leveraging in-the-wild webpages from CommonCrawl. Experiments on our dataset
demonstrate that SCRIBES-trained models yield substantial gains in question answering over semi-
structured data. We hope that SCRIBES will facilitate further research on semi-structured content,
such as complex QA and pretraining, and serve as a valuable tool for the community.

10
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A USE OF LLMS IN THIS RESEARCH

We utilize LLMs in two main ways in this research:

1. Assistance with Code Writing: During the implementation of RL training and evaluation
scripts, LLMs were occasionally used as assistants. All code was subsequently double-
checked and verified by the authors.

2. Paper Language and Related Works: During the writing process, we occasionally uti-
lized LLMs to improve the clarity and fluency of the English. We also occasionally use
LLM-assisted search systems to find additional related works. All final text was reviewed
by the authors.

B WEBSITES WITH SEMI-STRUCTURED CONTENT

We can broadly classify webpages with semi-structured content into three categories:

1. Horizontal Tables: These webpages primarily present information in a tabular format.

2. Attribute-Value Pairs: Information is organized as attribute-value pairs, typically dis-
played across multiple rows in an “infobox”-like format.

3. Free Form: Semi-structured content is distributed throughout the page, often combining
both horizontal tables and attribute-value pairs.

For additional information and more details on these breakdowns, refer to |Sun et al.| (2025).

C HTML DEDUP ALGORITHM DETAILS

<!DOCTYPE html>

<html>

<head> <IDOCTYPE html>

....StitlesSample Pages/title> L eieeeiiioo..
<styTesbody { “font=family

‘L':'}E{s't'y‘té;' : Removed <html>
> H

Lo, Sser nsole-1og (ihellos); </>Ciilp NN <head>
</head> <title>Sample Page</title>
<body style="background-color: white;" onclick="track()">
<div class="header" id="main-header"> </head>
<h1>Products</h1> <body>
</div> <div_class="header" id="main-header">
<div class="product-grid" data-category="electronics"> <h1>Products</h1>
<div class="product-card" data-id="1" style="border: 1px solid #ccc;"> </div>
<h3 class="product-title">Product 1</h3> <div class="product-grid" data-category="electronics">
<span class="price">$19.99</span> <div cl roduct-card" data-id="1">
</div> <h3 class="product-title">Product 1</h3>
<div class="product-card" data-id="2" style="border: 1px solid #ccc;"> <span class="price">$19.99</span>
<h3 class="product-title">Product 2</h3> </div>
<span class="price">$24.99</span> <div class="product-card" data-id="2">
</div> <h3 class="product-title">Product 2</h3>
<div class="product-card" data-id="3" style="border: 1px solid #ccc;"> <span class="price">$24,99</span>
<h3 class="product-title">Product 3</h3> </div>
Tlass=" ">$29.99

>Product 3</h3>
9</spa

6" 1px "Solid"#

P tle">Product 4</h3>
price">$34.99</span>

</div>

' </body>
<h3 class="product-title">Product 5</h3> : </htnl>
<span class="price">$39.99</span>

</div>

<div class="product-card" data-id="5" style="border: 1px solid #ccc;" :

v

</body>

Figure 6: An example illustrating Algorithm [1|is shown here. The original HTML appears on the
left, while the compressed HTML is shown on the right. The dashed-highlighted section near the
top, containing script and style elements, has been removed. The repeated HTML content near the
bottom has been deduplicated, retaining up to z = 3 elements.

Raw HTMLs are often long and repetitive. We propose a simple and effective dedup algorithm
to significantly cut down the token length of HTML pages while still maintaining its structure.
Algorithm [T shows the implementation of this algorithm. We set z = 3 in our experiments.

Table [6] shows the token saving effect of our dedup algorithm. Removing whitespaces in a HTML
only brings minimal token savings (< 2%), while our dedup algorithm brings significant token
savings, cutting down token usage from >114k to <17k. We also profiled performance gains of
baselines models using dedup. As shown in Table [/} employing deduplicated HTML yields clear
improvements compared to using raw HTML. Most notably, deduplication significantly increases
the Non-Empty Rate of baseline performance by enabling more data points to fit within the model’s
context window.
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Algorithm 1 Structure-Preserving HTML Deduplication (keep-z)

Require: Raw HTML string H, integer z > 1 (default 2=3)
Ensure: Compressed, structure-preserving HTML

1: Parse H into DOM R (fallback parser if needed; return H on failure)

2: RemoveTags < {script,style,noscript,
iframe,embed,object,applet,
meta,link,base}

3: KeepAttrs « {id,class,role,name,
type,href,src,alt,title,
rel,target, for,action,method,

value,placeholder, required,data-*,aria—~}

Remove all nodes with tag in RemoveTags

for all element nodes e in R do
for all attributes a of e do

AN A

9: delete attribute a from e
10: end if
11: end for
12: end for
13: for all nodes n in traversal of R do

Remove all HTML comments except those starting with . .

2

if a ¢ KeepAttrs and a not prefixed by data— or aria- then

14: if n.tag € {ul,o0l,div,section,tbody,thead, select} then

15: children « [¢ € n.children : cis an element |

16: Group children by sig(c) < (c.tag, sort(c.class or []))

17: for all group G do

18: if |G| > z then

19: Keep the first z in G (order preserved); remove the rest
20: After the z-th kept node, insert comment:

21: « |G| —z more <tag class=’...’> elements ”
22: end if

23: end for

24: end if

25: end for

26: Optionally normalize whitespace and excessive blank lines
27: return serialized DOM

Processing Stage Avg Tokens Percentage
Original tokens 114,318.6 100.0%
After whitespace removal 112,279.0 98.2%
After dedup 16,985.1 14.9%
Reductions

Whitespace token savings 2,039.6 1.8%
Total dedup token savings 97,333.5 85.1%

Table 6: Token reduction analysis across the webpages collected by |Sun et al.| (2025). Tokens were

profiled with GPT-40 tokenizer, accessed viahttps://github.com/openai/tiktoken.

D TRAINING HYPERPARAMETERS AND OTHER DETAILS

D.1 DATA PRE-PROCESSING

During training, we set the maximum prompt length to 28672 tokens and the maximum response
length to 4096 tokens. This results in a total model context window of 32768 tokens, which is the

maximum length before needing to apply YaRN (Peng et al.,2023)) for the Qwen-2.5 series model

3We observed empirically that model training with YaRN becomes much more unstable and difficult to

converge.
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Model & Format pM  RM o pRRIM O Non-Empty Rate
L-70B w/ Raw HTML 3.4 3.7 35 37.9
L-70B w/ Dedup HTML 142 95 11.3 46.4
GPT-40 w/ Raw HTML 13.7 154 14.5 63.8
GPT-40 w/ Dedup HTML 19.1 230 209 94.9

Table 7: Performance comparison of baseline models using raw or dedup-ed HTML. Here, we feed
each page in one-by-one in this dataset and only evaluate the model’s performance on one given
page. Non-Empty Rate is set to 1 if the model’s generated code produced at least 1 triple on this
page, and O if otherwise.

SemiBench includes a subset of 268 webpages drawn from 56 groups, each con-
taining more than one webpage. We partition the groups into training and test sets at an approxi-
mately 6:4 ratio, resulting in 34 groups (192 webpages) for training and 22 groups (76 webpages)
for testing. After applying the maximum-context constraint described above, 141 training webpages
and 65 test webpages remain.

D.2 TRAINING DETAILS

During GRPO training, we do not apply entropy loss. We set the KL loss coefficient to 0.001 and
the KL loss to be the k3 loss using the approximation described in (2020), i.e.,

Tnew (a) Tnew (a)

Tola (@) Tola (@)

ks(a) =

We use the default model rollout parameters (for Qwen-2.5-instruct, these are top_k= —1, top_p= 1,
and temperature = 1) and validation/inference parameters (for Qwen-2.5-instruct, these are top_k=
—1, top_p= 1, and temperature = 0). We do not use LoRA and instead perform full-parameter
finetuning with FSDP [2023). We trained the models on the annotated set for a total
of 50 epochs, and on CommonCrawl data for 1 epoch. For each update, we collect § rollouts to
perform GRPO update. For the 32B model, we apply a 0.5 gradient clipping, which we found to
lead to more stable trainings. We set the learning rate to be a constant le — 6.

D.3 DETAILED ON COMPUTE COMPARISON

To train the Q-14B SCRIBES model, we ran approximately 12 hours of training at an average
throughput of 3,958 TFLOPs across all GPUs, yielding an estimated total training compute of 1.71 x
10%° FLOPs. For the Q-32B SCRIBES model, we similarly trained for about 12 hours at an average
of 8,232 TFLOPs, resulting in an estimated total compute of 3.56 x 10%° FLOPs.

To estimate the per-page inference cost reported in Figure ] we assume that each forward pass
requires roughly 2 times the parameter count per token.

E DATASET COMPARISON

We compare several statistics of HTML webpages in Table[8] Below, we define each statistic:

DOM Max Depth: The maximum depth of the Document Object Model (DOM) tree in an HTML
document. This measures how deeply the elements are nested; a higher DOM Max Depth indicates
more extensive nesting.

Deduplication Ratio: The lengths of the HTML content before and after applying the deduplica-
tion algorithm described in Appendix [C] (in characters). This quantifies redundancy in the HTML
structure; a lower Deduplication Ratio indicates greater redundancy.

Structure Ratio: The ratio of the HTML length to the flattened text length (in characters). This
approximates how much structural markup the HTML contains relative to its textual content; a
higher Structure Ratio reflects more structural complexity.
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Tag Count: The number of all tags in an HTML documenﬂ This measures the structural complexity
of the HTML,; a higher Tag Count indicates a more complex document.

Feature Metric Train Test CC (After Step 6 in Fig. l
Mean 20.2 18.4 20.2
Median 19.0 17.0 17.0
DOM Max Depth Std 4.94 6.98 21.7
Min 10.0 10.0 5.00
Max 37.0 37.0 455
Mean 0.215 0.174 0.353
Median 0.213 0.166 0.344
Deduplication Ratio  Std 0.111 0.0986 0.178
Min 0.0302 0.0324 0.000480
Max 0.484 0.422 1.02
Mean 46.1 43.5 20.8
Median 28.7 27.4 13.8
Structure Ratio Std 40.0 45.5 48.7
Min 2.24 6.00 1.19
Max 174 199 1960
Mean 1650 1820 655
Median 1260 1080 496
Tag Count Std 2140 2550 559
Min 224 154 18.0
Max 27800 12300 5070

Table 8: Summary statistics (Mean, Median, Std, Min, Max) for HTML-derived features across
datasets.

This comparison shows that the labeled training and test sets share similar summary statistics,
whereas the CommonCrawl portion differs noticeably. In particular, the CommonCrawl data is
less redundant (lower Deduplication Ratio), contains less structural markup (lower Structure Ratio),
and is structurally simpler (lower Tag Count). Across all metrics, it also exhibits greater variability,
as indicated by the higher standard deviations. These observations suggest that incorporating this
portion of the CommonCrawl data into training can meaningfully broaden the distribution of inputs,
exposing the models to examples that differ substantially from those in the labeled dataset.

F METRICS AND THEIR IMPLEMENTATION

F.1 DETAILS ON THE FUZZY MATCH ALGORITHM

Formally, let G = {g1,92,-..,9m} denote the set of gold triples and P = {p;y,p2,...,pn} the
predicted triples. Instead of requiring exact equality, we define a similarity function f*%(g;, pj) €
[0, 1] that quantifies the degree of match between a gold triple g; and a predicted triple p; as the ra-
tio of character-level matchingﬂ To ensure one-to-one alignment, we compute a maximum-weight
bipartite matching between G and P, where the weight of each edge is f™**(g;, p;). This assign-
ment is efficiently solved using the Jonker—Volgenant algorithnﬂ Precision, recall, and F are then
generalized as:

Z(Q,P)EM ffuzzy(g’p) RfUZZy _ Z(g,p)eM ffuzzy(g7p)
Pl ’ |G| ’

fuzz fuzz;
fuzzy 9 . ptuzzy | ptuzzy

fuzzy __
P - Fl ~ Ppfuzzy 4 Rfuzzy -

*1en (soup.find.all (True))

SImplemented via https://github.com/seatgeek/fuzzywuzzy's ratio function, which calcu-
late a ratio of character-level matching using Levenshtein distance|.

SImplemented viahttps://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.linear_sum_assignment.htmll
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Method RLIVI PLI\/[ F{LI\’[ Rfuzzy Pfuzzy Flfuzzy
Q-14B flatten 3046 3646 29.87 45.96 52.37 43.50
Q-32B flatten 2873 3744 2993 41.62 54.25 42.26

GO-20B 2-shot flatten 33.18 47.10 3493 4653 65.21 49.77
GO-120B 2-shot flatten ~ 42.27 4626  40.40 56.01 61.42 53.37

Q-14B 3-iter 2-shot 859 11.13 8.01 17.17 25.57 16.53
Q-72B 3-iter 2-shot 16.40 19.41 1497 28.73 37.96 28.60
Q-32B 3-iter 2-shot 1856  27.20 19.41  27.49 44.67 30.39
GO-20B 3-iter 2470 2322 20.87 5230 41.83 39.58

GPT-40 3-iter 2-shot 2595 33.04 2442 4558 60.57 44.46
GO-120B 3-iter 2-shot ~ 33.86 40.96 3430 49.79 65.72 52.02

Table 9: Comparison of LLM-judged metrics and fuzzy-matching metrics for baselines reported in

Tablefor the “All” column. Gray-highlighted columns denote FEM and F"“Y. This comparison
shows that the two metrics show similar performance trend across models and configurations.

where M C G x P denotes the optimal matching. Given M, the LLM-based metric evaluates
correctness by invoking a LLM on the final matched pairs of gold and predicted triples. For each
pair (g, p) € M, the model outputs a binary judgment f*M (g, p) € {0, 1}, where 1 denotes a true
match and 0 denotes a failed match according to Prompt[T7] We then define LLM-based precision,
recall, and F} as:

= Eignen SM97) RIM _ X gment fN(9,D)
|P| ’ |G| )

LM_2'PLM'RLM

LM
P = PLM | RIM °

Empirically, we observe a correlation between F"*? and FM. The latter tends to yield slightly
lower absolute scores but exhibits the same performance trend across models and configurations. A
comparison showing the two metrics and the associated precision and recall metrics for the baselines
are shown in Table|9} We calculated the correlation coefficient between F"* and FIM to be 0.957
with a p-value of 1.4 x 10~°, showing a strong positive correlation.

F.2 REWARD DURING RL IMPLEMENTATION

We use F"“” during training as a proxy for F'M, thereby avoiding LLM calls. Because computing
fuzzy F exactly requires solving a maximum-weight bipartite matching, runtime can become too
long for large sets of triples. We thus approximate the matching with a greedy heuristic. Specifically,
all candidate pairs of gold and predicted triples are scored by f“%_ sorted in descending order, and
added sequentially to the matching as long as they do not conflict with previously chosen pairs. This
yields a fast, albeit sub-optimal, alignment. To ensure scalability, we impose a 60-seconds cutoff for
evaluation. If timeout occurs, we further project the total similarity score by extrapolating from the
average score of observed matches to the remaining unmatched capacity.

F.3 HUMAN VERIFICATION OF RL REWARD

We followed the same evaluation metrics as defined in (2023), which reported a 95%
agreement rate between the LLM-based F1 metric '™ and human judgments, indicating strong
alignment.

G ADDITIONAL EXPERIMENTS

G.1 ADDITIONAL LLM-BASED AGENTIC BASELINES

In addition to the simple 2-shot baseline, we profile two promising LLM-based agentic knowledge-

base—construction baselines: HippoRAG (Gutiérrez et al] [2024) and AutoSchemaKG (Bai et al]

2023)), representative of recent LLM-driven KG construction pipelines.

HippoRAG is a retrieval-augmented generation framework that builds a knowledge graph as an
embedding index, mimicking the role of the hippocampus in human memory. We use the first stage
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Method All Example Holdout
RUM  pLM  pLM ‘ RMM  pLM  pLM ‘ RUM  pLM  pLM
Q-14B (Annotated mixed with CC) 6.5 8.0 6.5 8.1 9.6 7.9 5.7 6.4 5.7

Q-14B (CC only) 1.7 15.8 9.2 8.9 184  10.8 72 14.7 8.4
Q-14B (Annotated followed by CC) 25.2 23.0 21.8 | 349 310 30.0 | 205 191 177

Table 10: Ablation study on the impact of noisy reward. We compare three training configurations:
(1) CC data only, (2) annotated data mixed with CC data at a 1:1 ratio, and (3) training first on
annotated data followed by CC data. Results show that noisy reward alone or mixed training does
not improve performance, whereas a staged setup, first training on annotated data before continuing
with CC, yields substantial gains.

of their KG construction pipeline, which consists of two prompts, one for named entity recognition
(NER) and one for triple extraction. We also replace their 1-shot example with the same 2-shot
examples used in our baseline.

AutoSchemaKG is a framework for web-scale KG construction over a pretraining-scale corpus.
It calls three LLM modules on each webpage: (1) an entity—entity relationship extractor, (2) an
entity—event relationship extractor, and (3) an event—event relationship extractor. These prompts are
all zero-shot and are challenging to adapt, so we retain them as originally specified.

As shown in Table[TT] the simple 2-shot baseline outperforms both LLM-based baselines across all
models evaluated on our task, including by more than 20% for the strongest model, GPT-OSS-120B.
Moreover, they inherit the same cost inefficiencies, as each webpage requires multiple LLM calls.

G.2 ADDITIONAL ABLATION EXPERIMENT ON IMPACT OF NOISY REWARD

To further investigate the role of noisy reward, we conduct additional ablation experiments under
three training configurations: (1) training on CC data only, (2) training on a mixture of CC and
annotated data at a 1:1 ratio, and (3) training first on annotated data and then continuing on CC data.
Results are reported in Table [I0]

G.3 ADDITIONAL ABLATION EXPERIMENT ON DOMAIN TRANSFERABILITY

In this ablation study, we reorganized the dataset by assigning each website to one of the following
content categories:

* Finance & Economics

* Legal & Regulatory

* Developer & Software

* Science & Research

* Science & Database

* Sports

* Gaming & Entertainment
* Media & Entertainment
» Real Estate

 Social Platforms

* Weather & Environment
* Jobs & Careers

e Travel & Hospitality

* Products & Brands

* Encyclopedias & Reference
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Method R™M p gl M pLM
Baselines (Flattened)
Q-14B w/ AutoSchemaKG (Bai et al.|, 2025)) 2.1 8.26 3.35 8.17
Q-14B w/ HippoRAG (IGutierrez et al. |2024|) 2-shot 8.49 32.24 13.43 16.12
Q-14B flatten 30.46 36.46 33.19  29.87
Q-32B w/ AutoSchemaKG (Bai et al.| 2025 2.64 11.14 4.27 9.33
Q-32B w/ HippoRAG (Guticrrez et al.[[2024) 2-shot 10.12 39.7 16.13  20.03
Q-32B flatten 28.73 37.44 3251 29.93
GO-20B w/ AutoSchemaKG (Bai et al.|[2025 5.57 11.96 7.6 9.26
GO-20B w/ HippoRAG (IGutierrez et al. |2024|) 2-shot 8.26 23.06 12.16 14.02
GO-20B flatten 36.94 37.88 3740  33.61
GO-20B 2-shot flatten 33.18 47.10  38.93 34.93
GO-120B w/ AutoSchemaKG (Bai et al} [2023)) 6.52 16.97 9.42 12.28
GO-120B w/ HippoRAG (Gutierrez et al[[2024) 2-shot 28.57 12.12 17.02 17.22
GO-120B flatten 36.43 34.59 3549  31.74
GO-120B 2-shot flatten 42.27 46.26  44.18 4040
Baselines (Script-gen)
Q-14B agentic-3-iter 8.11 8.26 8.18 7.14
Q-14B agentic-3-iter 2-shot 8.59 11.13 9.70 8.01
Q-32B agentic-3-iter 10.41 9.08 9.70 8.74
Q-32B agentic-3-iter 2-shot 18.56 27.20 22.07 19.41
Q-72B agentic-3-iter 9.67 9.65 9.66 7.19
Q-72B agentic-3-iter 2-shot 16.40 19.41 17.78 14.97
GO-20B agentic-3-iter 24.70 2322 2394  20.87
GO-20B agentic-3-iter 2-shot 13.06 27.30 17.66 14.40
GO-120B agentic-3-iter 27.63 2476  26.12  23.30
GO-120B agentic-3-iter 2-shot 33.86 40.96 37.07 34.30
GPT-40 agentic-3-iter 19.05 14.72 16.61 13.81
GPT-40 agentic-3-iter 2-shot 25.95 33.04 29.07 24.42
L-70B agentic-3-iter 10.05 15.49 12.19 10.47
L-70B agentic-3-iter 2-shot 8.23 8.08 8.15 7.10
SCRIBES
Q-14B 22.96 2426  23.59 19.91
Q-14B (+CC) 25.24 2298  24.05 21.77
Q-32B 29.88 31.53 30.68 28.05
Q-32B (+CC) 37.41 36.03 36.71 33.24

Table 11: List of all baselines and SCRIBES-trained models. LLM-judged metrics on all data.
PIM RLM harmonic FlH LM “and average per-example FEM.

We placed Products & Brands and Encyclopedias & Reference in the test set, with all remaining
categories assigned to the training set. This split yielded 196 training examples and 72 test examples.
After applying the maximum-context constraint described in Section[D.T] 147 training examples and
59 test examples remained.

G.4 COMPLETE BASELINE NUMBERS

For F}, we provide two variants: (i) the macro-average of per-example F) scores, and (ii) a

harmonic-mean variant defined as L
2PR
FH =2 @)
P+ R

where P and R denote the mean precision and recall, respectively. The complete list of baseline
performance is shown in Table[TT]and [T2]

H DETAILS ON QA DATASET USED IN SEC.

The QA pairs in Sec. [5.I]are collected by (2023) through an LLM-generated followed by
human-auditing process. We summarize their process below:
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Method Example Holdout

RLM  pLM FIH,LM FEM  RIM  pLM FIH,LM FEM

Baselines
Q-14B agentic-3-iter 1196 11.81 11.88 10.57  6.47 6.90 6.68 5.77
Q-14B agentic-3-iter 2-shot 13.21  17.97 15.23 12.63  6.29 7.79 6.96 5.73
Q-32B agentic-3-iter 18.84 17.17 17.97 16.46  6.36 5.33 5.80 5.07
Q-32B agentic-3-iter 2-shot 24.53  34.83 28.79 2590 1579 2391 19.02 16.40
Q-72B agentic-3-iter 13.03 13.15 13.09 10.12  8.20 8.12 8.16 5.94
Q-72B agentic-3-iter 2-shot 24.11 28.59 26.16 21.78 13.26 15.83 14.43 12.38
GO-20B agentic-3-iter 29.25 26.38 27.74 2491 2251 21.78 22.14 18.94
GO-20B agentic-3-iter 2-shot 1348 27.68 18.13 1441 13.07 27.11 17.64 14.66
GO-120B agentic-3-iter 3132  26.76 28.86 2570 25.86 23.86 24.82 22.16
GO-120B agentic-3-iter 2-shot  35.83  42.27 38.78 36.60 3298 40.47 36.34 33.26
GPT-40 agentic-3-iter 25.19 18.35 21.23 18.47 16.00 12.89 14.28 11.47
GPT-40 agentic-3-iter 2-shot 3298 36.48 34.64 31.19 22.52 31.32 26.20 21.11
L-70B agentic-3-iter 16.65 23.76 19.58 16.78 6.86 11.16 8.49 7.36
L-70B agentic-3-iter 2-shot 7.77 6.77 7.23 6.18 8.42 8.68 8.54 7.51
SCRIBES

Q-14B 31.22  29.81 30.50 26.71  19.01 21.65 20.24 16.66
Q-14B (+CC) 34.88 30.96 32.80 29.96 20.45 19.06 19.73 17.69
Q-32B 31.99 33.88 32.90 30.32  28.79 30.28 29.51 26.83
Q-32B (+CC) 39.54 35.48 37.40 34.60 36.24 36.15 36.20 32.41

Table 12: List of all baselines and SCRIBES-trained models by Example and Holdout. LLM-
judged metrics on all data. PXM, REM | harmonic F{7"** | and average per-example FIM,

First, a 70B Llama model generated initial question—answer pairs using webpage content and ground
truth data. Then, these pairs were refined by:

1. Removing overly complex questions that required heavy reasoning, focusing instead on
comprehension of semi-structured webpages.

2. Eliminating compound questions that combined multiple queries into one to avoid in-
flated difficulty.

3. Filtering out trivial questions that all tested models answered correctly, ensuring better
differentiation among model performances.

Finally, human auditors reviewed and removed any pairs that were ungrounded in the source con-
tent or contained incorrect answers.

For more details and statistics, refer to (2025)).

I EXAMPLE MODEL PREDICTIONS

Here, we show an example of our best model’s prediction on the eval set to better illustrate the task
and associated difficulties.

For|this websitel our model generated the code shown in Table[[3] The prediction versus gold entries
are shown in Table|14] This code achieves the following scores: R™ = 53.3, PP*M = 50.0, FIM =
51.6.

The model code misses some information such as the “Business Address” and “Mailing Address”
fields, penalizing the recalls. It also produces some false positives, including triples where the
relation is “sequence” but no corresponding object is returned, reducing precision. Additionally,
the model incorrectly treats the filing document number as the subject throughout, rather than using
more appropriate subjects such as “Class/Contract C000008114.”
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from bs4 import BeautifulSoup
from typing import List

def main(html: str) -> List[List[str]]:
soup = BeautifulSoup (html, "html.parser’)
triples = []

# Extract title
title = soup.title.text if soup.title else ""
triples.append(["EDGAR Filing", "title", title])

# Extract form information
form_name = soup.find("div", id="formName")
if form_name:
triples.append([title, "form", form_name.text.strip()])

sec_num = soup.find("div", id="secNum")
if sec_num:

triples.append([title, "accessionNumber", sec_num.text.strip()])

# Extract filing details

info_heads = soup.find_all("div", class_="infoHead")
info_values = soup.find_all ("div", class_="info")
for head, value in zip(info_heads, info_values):

triples.append([title, head.text.strip(), value.text.strip()])

# Extract document table information
table = soup.find("table", class_="tableFile")

if table:
rows = table.find_all("tr")
for row in rows[1l:]: # Skip header row

cols = row.find_all(["td", "th"])

if len(cols) >= 5:
seq = cols[0].text.strip()
description = cols[l].text.strip()
document = cols[2].text.strip/()
doc_type = cols[3].text.strip()
size = cols[4].text.strip()
triples.append([title, "sequence", seq])
triples.append([title, "description", description])
triples.append([title, "document", document])
triples.append([title, "type", doc_typel)
triples.append([title, "size", size])

# Extract series and classes information

series_table = soup.find("table", class_="tableSeries")
if series_table:

rows = series_table.find all("tr")

for row in rows[2:]: # Skip header rows

cols = row.find_all(["td", "th"])

if len(cols) >= 4:
status = cols[0].text.strip()
name = cols[2].text.strip/()
ticker = cols[3].text.strip/()
triples.append([title, "status", status])
triples.append([title, "name", name])
triples.append([title, "tickerSymbol", ticker])

return triples

Table 13: An example SCRIBES-generated code discussed in AppendixEl
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Subject Relation Object

Gold

EDGAR Filing Documents for 0000894189-10-002875 Filing Date 2010-08-10

EDGAR Filing Documents for 0000894189-10-002875 Accepted 2010-08-10 10:58:25

EDGAR Filing Documents for 0000894189-10-002875 Documents 2

EDGAR Filing Documents for 0000894 189-10-002875 Period of Report 2010-06-30

EDGAR Filing Documents for 0000894189-10-002875 Effectiveness Date 2010-08-10

empiric_63010nq.htm Seq 1

empiric_63010nq.htm Description QUARTERLY NOTICE OF PORTFOLIO HOLDINGS

empiric_63010nq.htm Type N-Q

empiric_63010nq.htm Size 530257

certs.htm Seq 2

certs.htm Description OFFICER CERTIFICATIONS

certs.htm Type EX-99.CERT

certs.htm Size 24222

0000894189-10-002875.txt Description Complete submission text file

0000894189-10-002875.txt Size 556496

Series S000002964 Name Core Equity Fund

Class/Contract CO00008114 Name C

Class/Contract C000008114 Ticker Symbol EMCCX

Class/Contract C000008115 Name A

Class/Contract CO00008115 Ticker Symbol EMCAX

EDGAR Filing Documents for 0000894189-10-002875 EMPIRIC  FUNDS, 0001000069 (see all company filings)

INC (Filer) CIK

EDGAR Filing Documents for 0000894189-10-002875 IRS No. 742759654

EDGAR Filing Documents for 0000894189-10-002875 State of Incorp. TX

EDGAR Filing Documents for 0000894 189-10-002875 Fiscal Year End 931

EDGAR Filing Documents for 0000894189-10-002875 Type N-Q

EDGAR Filing Documents for 0000894189-10-002875 Act 40

EDGAR Filing Documents for 0000894189-10-002875 File No. 811-09088

EDGAR Filing Documents for 0000894189-10-002875 Film No. 101003905

EDGAR Filing Documents for 0000894189-10-002875 Business Address 6300 BRIDGEPOINT PARKWAY BUILDING II, SUITE
105 AUSTIN TX 78730 5123289321X1

EDGAR Filing Documents for 0000894189-10-002875 Mailing Address 6300 BRIDGEPOINT PARKWAY BUILDING II, SUITE
105 AUSTIN TX 78730

Predicted

EDGAR Filing title EDGAR Filing Documents for 0000894189-10-002875

EDGAR Filing Documents for 0000894 189-10-002875 form Form N-Q - Quarterly Schedule of portfolio holdings of
management investment companies:

EDGAR Filing Documents for 0000894189-10-002875 accessionNumber SEC Accession No. 0000894189-10-002875

EDGAR Filing Documents for 0000894189-10-002875 Filing Date 2010-08-10

EDGAR Filing Documents for 0000894189-10-002875 Accepted 2010-08-10 10:58:25

EDGAR Filing Documents for 0000894189-10-002875 Documents 2

EDGAR Filing Documents for 0000894 189-10-002875 Period of Report 2010-06-30

EDGAR Filing Documents for 0000894189-10-002875 Effectiveness Date 2010-08-10

EDGAR Filing Documents for 0000894189-10-002875 sequence 1

EDGAR Filing Documents for 0000894189-10-002875 description QUARTERLY NOTICE OF PORTFOLIO HOLDINGS

EDGAR Filing Documents for 0000894189-10-002875 document empiric_63010nq.htm

EDGAR Filing Documents for 0000894189-10-002875 type N-Q

EDGAR Filing Documents for 0000894189-10-002875 size 530257

EDGAR Filing Documents for 0000894189-10-002875 sequence 2

EDGAR Filing Documents for 0000894189-10-002875 description OFFICER CERTIFICATIONS

EDGAR Filing Documents for 0000894 189-10-002875 document certs.htm

EDGAR Filing Documents for 0000894189-10-002875 type EX-99.CERT

EDGAR Filing Documents for 0000894189-10-002875 size 24222

EDGAR Filing Documents for 0000894189-10-002875 sequence

EDGAR Filing Documents for 0000894189-10-002875 description Complete submission text file

EDGAR Filing Documents for 0000894189-10-002875 document 0000894189-10-002875.txt

EDGAR Filing Documents for 0000894 189-10-002875 type

EDGAR Filing Documents for 0000894189-10-002875 size 556496

EDGAR Filing Documents for 0000894189-10-002875 status CIK 0001000069

EDGAR Filing Documents for 0000894189-10-002875 name

EDGAR Filing Documents for 0000894189-10-002875 tickerSymbol

EDGAR Filing Documents for 0000894 189-10-002875 status Class/Contract C000008114

EDGAR Filing Documents for 0000894 189-10-002875 name C

EDGAR Filing Documents for 0000894189-10-002875 tickerSymbol EMCCX

EDGAR Filing Documents for 0000894189-10-002875 status Class/Contract CO00008115

EDGAR Filing Documents for 0000894 189-10-002875 name A

EDGAR Filing Documents for 0000894189-10-002875 tickerSymbol EMCAX

Table 14: Comparison of predicted and gold triples for Code

J  PROMPTS USED

All prompts used in our experiments are shown here in Jinja2 format, including the classifier prompt
(Prompt[T3), LLM direct extraction prompt (Prompt[I6)), LLM-as-a-judge prompt (Prompt[I7), QA
prompt (Prompt [I8), the main script generation prompt (Prompt used in both baseline and in
SCRIBES training data, and the QA evaluation prompt (Promptlﬁ.l)
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# instruction

Your task is to classify an input HTML to see whether it contains semi-structured content.
You are shown below with one example with semi-structured content and one without.

Output a JSON with the following two fields: "reason" and "decision".

Reason should specify your chain of thought and decision should be one of:

- Semi-structured content: Respond with "Yes" if the HTML contains semi-structured content,
such as tables and infoboxes.

- No semi-structured content: Respond with "No" if the HTML does not contain any semi-structured content.
- Explicit content: Respond with "Exclude" if the HTML contains explicit content

(e.g., adult material, graphic violence).

# input

Exaples containing the following HTML:

{{ HTML_example_1 }}

# output

{
"reason": "This HTML contains a table which falls into the definition of semi-structured content",
"decision": "Yes"

}

# input

{{ HTML_example_2 }}

# output
{
"reason": "Even though this HTML contains structured discussions and Q&As, it does not have tables or
infoboxes",
"decision": "No"
}
# input

An HTML with the following info:

{{ HTML_example_3 }}

# output

{
"reason": "This HTML show cases a infobox, which should be treated as a semi-structured content.",
"decision": "Yes"

}

# input

{{ html }}

Table 15: Classifier prompt used to determine whether a webpage contains semi-structured content
or not.
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# instruction

You are given a doc in HTML and its title. Please return all (subject, predicate, object) triples

that can be extracted from the doc, in the order they appear in the doc. For large chunk of descriptions
or sections of free-form text, you should keep them as object. Do not attempt to break big chunks

of texts down into smaller portions.

Subject, predicate, and object should generally be gained from the text spans in the doc or the title.
Please only include complete triples; if for any section the predicate or object is missing from the doc,
you may skip it.

Output a list of lists, where each inner list is a triple. I will use python’s eval to parse your output.

# input

{% if example_global_html_triples %}

Here are {{ example_global_html_triples|length }} examples of flattened HTML pages and their expected triples:
{% for single_example in example_global _html_triples %}

Example {{ loop.index0 }} Flattened HTML: {{ single_example["html_flatten"] }}

Example {{ loop.index0 }} Expected Triples: {{ single_example["triples_annotation"] }}

{% endfor %}
{% endif %}

{% if example_triples %}
Here are 10 triples we are expecting in the output randomly chosen: {{ example_triples }}
{% endif %}

### title
{{ html_title }}

#44# HIML
{{ html }}

Table 16: LLM direct extraction prompt used to directly generate triples from a webpage.

# instruction

You are given two (subject, predicate, object) triples.
Your response should be "Yes" if the triples are semantically the same or "No"
if they are semantically different.

# input
{{ tx }}
f ty }}

Table 17: LLM-as-a-judge prompt for judging whether two triples are semantically equivalent.

# instruction

You are given a question and a reference that may or may not help answer the question.
Please answer the question. Be concise.

# input

### Question

{{ question }}
### Reference
{{ reference }}

Table 18: Question Answering prompt with reference.
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# instruction

Your task is to generate semantic triples from a given HTML.

A triple contains a subject, a predicate, and an object.

You should write python code to extract triples from the HTML.

The final executable function should be called ‘def main(html) -> List[tuple(str, str, str)]:‘,
where it will output a list of triples.

You should output the python code only. Feel free to add comments to explain your code.

Do not include any text other than the code in your response.

IMPORTANT: we will re-use the same script for other webpages with similar HTML contents.
So you should make your script re-usable across different websites
(do not hardcode for values for this particular HTML) .

# input

{% if example_global_html_triples %}

Here are {{ example_global_html_triples|length }} examples of other HTML sites and
what the script-generated output we are looking for:

{% for single_example in example_global_html_triples %}

Example {{ loop.index0 }} HTML: {{ single_example["html_content"] 1}

Example {{ loop.index0 }} Expected Outputs: {{ single_example["triples_annotation"] }}
{% endfor %}

{% endif %}

HTML: {{ html }}

{% if example_triples %}

Here are 10 triples we are expecting in the output randomly chosen: {{ example_triples }}
{% endif %}

{%$ if all_triples %}

Here are all the triples we are expecting in the output: {{ all_triples }}

{% endif %}

{% if prev_script %}
You previously generated a script:

{{ prev_script }}

This script generated the following result:
{{ feedback }}

If you think the results are good enough, stop and output the same script.

If not, incorporate the feedback in generating a new script.
{% endif %}

Table 19: Main script generation prompt for baselines and SCRIBES-trained models.

# instruction

You need to check whether the prediction of a question-answering system to a question is correct.
You should make the judgment based on the ground truth answer provided to you.

Your response should be "correct" if the prediction is correct or "incorrect"™ if the prediction is wrong.
# input

Question: {{ question }}

Ground truth: {{ gold }}

Prediction: {{ answer }}
Correctness:

Table 20: QA evaluation prompt.
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