

000 SCRIBES: WEB-SCALE SCRIPT-BASED SEMI- 001 STRUCTURED DATA EXTRACTION WITH REINFORCE- 002 MENT LEARNING

003
004 **Anonymous authors**
005
006 Paper under double-blind review

009 010 ABSTRACT

011
012
013 Semi-structured content in HTML tables, lists, and infoboxes accounts for a sub-
014 substantial share of factual data on the web, yet the formatting complicates usage,
015 and reliably extracting structured information from them remains challenging.
016 Existing methods either lack generalization or are resource-intensive due to per-
017 page LLM inference. In this paper, we introduce SCRIBES (SCRIpt-Based
018 Semi-Structured Content Extraction at Web-Scale), a novel reinforcement learn-
019 ing framework that leverages layout similarity across webpages within the same
020 site as a reward signal. Instead of processing each page individually, SCRIBES
021 generates reusable extraction scripts that can be applied to groups of structurally
022 similar webpages. Our approach further improves by iteratively training on syn-
023 thetic annotations from in-the-wild CommonCrawl data. Experiments show that
024 our approach outperforms strong baselines by over 13% in script quality and
025 boosts downstream question answering accuracy by more than 4% for GPT-4o,
026 enabling scalable and resource-efficient web information extraction.

027 1 INTRODUCTION

028
029 A substantial volume of web data is stored in semi-structured formats such as HTML (Hyper-
030 Text Markup Language) tables, lists, and infoboxes (Dong et al., 2014; Sun et al., 2025)¹. Such
031 content offers a rich source of factual information, yet its formatting complicates effective usage
032 in downstream applications like question answering (Tan et al., 2025; Sun et al., 2025). Knowl-
033 edge extraction aims to transform such data from raw HTML into structured representations (e.g.,
034 triples) (Wilks, 1997), but despite decades of research, this remains a major challenge at large scale.
035 Existing approaches fall into two main categories. *Traditional information extraction (IE) meth-
036 ods*, such as wrapper induction (Kushmerick et al., 1997), graph mining (Crescenzi et al., 2001;
037 Liu et al., 2003), layout-based methods (Zhai & Liu, 2005; Lockard et al., 2018), and Deep Neural
038 Networks (Dalvi et al., 2011; Lockard et al., 2020), tend to be brittle and struggle to generalize over
039 unseen data or schema. More recently, Large Language Model (LLM)-based methods have emerged
040 that parse individual pages or construct Knowledge Graphs (KGs) using large models (Gutiérrez
041 et al., 2024; Zhang & Soh, 2024; Ning et al., 2023; Chen & Bertozi, 2023; Zhang et al., 2023; Bai
042 et al., 2025). Although these methods can produce high-quality outputs, they are resource-intensive
043 to apply at scale because they require invoking an LLM for every page.

044
045 *Can we extract knowledge from semi-structured content at the web scale both effectively and*
046 *efficiently?* In this paper, we introduce **SCRIBES: SCRIpt-Based Semi-Structured Content**
047 **Extraction at Web-Scale**, a novel approach for large-scale knowledge extraction. Given a webpage,
048 SCRIBES leverages an LLM to generate an extraction script that applies to other pages within the
049 same domain, which typically share highly similar layouts (Figure 2). Executing the script incurs
050 only negligible resource cost compared with running an LLM-based extraction on every individual
051 page.

052 Although the idea appears straightforward, current LLMs struggle to produce high-quality, genera-
053 lizable extraction scripts. Fine-tuning them for this ability is cumbersome, as creating annotations

¹See Appendix B for a discussion of different types of webpages with semi-structured content.

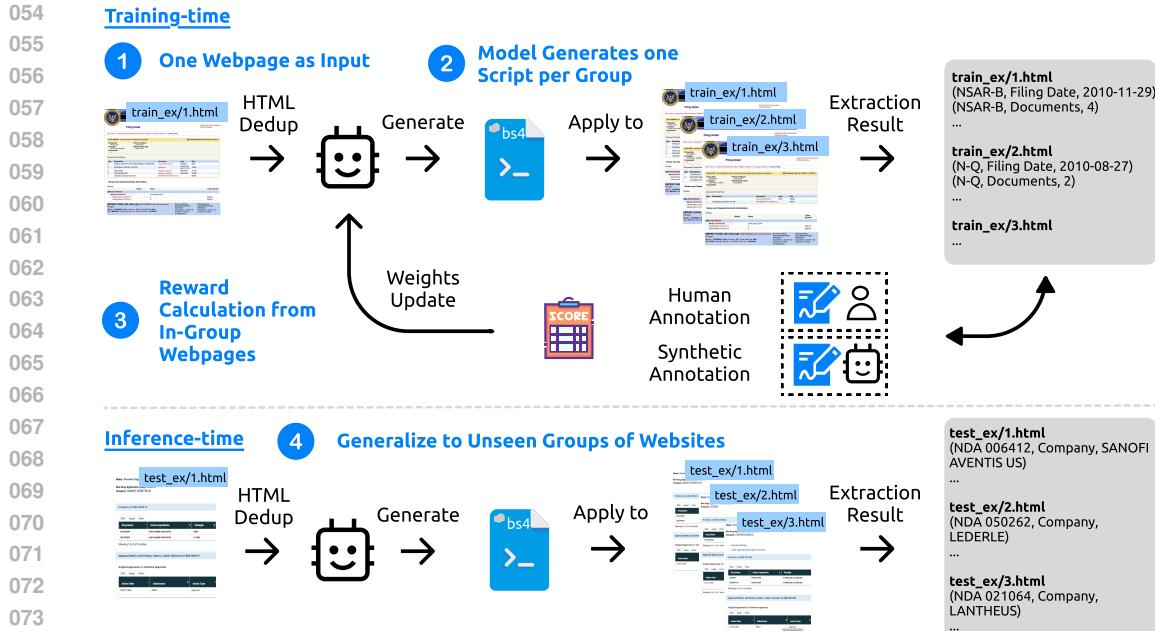


Figure 1: SCRIBES organizes similar webpages into groups under each website. During training, the model receives one representative webpage per group as input (pt. 1) and is tasked with generating a single extraction script applicable to all similar webpages within the group (pt. 2). Extraction results are then compared against human annotations for labeled data and synthetic annotations for unlabeled CommonCrawl webpages. The resulting scores are used to update the model weights (pt. 3). At inference time, SCRIBES enables the model to generalize to *new, unseen websites* by generating scripts that can be applied across similar webpages (pt. 4).

for such scripts is difficult even for expert labelers. The success of SCRIBES lies in a Reinforcement Learning (RL) framework that leverages structural similarities across related webpages: given a group of similar webpages, the model is rewarded when a script generated for one webpage also works on others. This encourages learning scripts that generalize beyond individual examples.

SCRIBES draws training data from two sources. First, it learns from *a small set of annotated examples* (192 pages from 34 groups) (Figure 1, parts 1–3). For each group, SCRIBES takes one webpage as input and prompts the model to generate a script intended to generalize across the group. The script is then executed on the remaining pages, and its outputs are compared with annotations to compute the reward. Second, SCRIBES leverages *in-the-wild websites from CommonCrawl* to further enhance its capabilities. We develop an iterative approach that starts from a checkpoint trained on annotated data and then refines the model to continue learning from their failed predictions on the in-the-wild websites. To provide supervision at scale, we employ LLM-based direct extractions as synthetic annotations, reducing reliance on annotations or hand-crafted parsers.

Extensive experiments show that our RL-trained model outperforms strong agentic baselines by more than 13% in generating robust, reusable parsing scripts. Moreover, we demonstrate that *improved extraction translates into downstream benefits*: in QA tasks requiring structured reasoning over HTML, incorporating triples produced by SCRIBES boosts accuracy across a wide range of LLMs, including SOTA models such as GPT-4o by over 4%.

2 RELATED WORKS

2.1 SEMI-STRUCTURED DATA PROCESSING

Flattening: In complex QA or retrieval settings that mix texts, tables, and knowledge bases, a common practice is to “linearize” everything into plain text (Oguz et al., 2022; Zhang et al., 2024; Ma et al., 2022; Christmann et al., 2022). This is also a popular practice when dealing with HTML

108 pages. Trafilatura is a widely used HTML cleaning and text extraction toolkit designed for large-
 109 scale web processing (Barbaresi, 2021), among many other HTML conversion packages (Firecrawl,
 110 2025; Paraschiv, 2024). While effective for general text extraction, these utilities typically discard
 111 or flatten structural elements such as tables, lists, and infoboxes. Similar to findings in complex QA
 112 that highlight the importance of structural cues (Liu et al., 2024b; Zhang et al., 2024), recent work
 113 on RAG with raw HTML shows that converting to plain text discards headings, table structures, and
 114 other layout information critical for downstream tasks (Tan et al., 2025).

115 **Traditional IE Methods:** A classical approach to extracting structured data from semi-structured
 116 web content is wrapper induction, which learns extraction procedures (“wrappers”) from a small
 117 set of labeled examples instead of hand-crafted rules (Kushmerick et al., 1997). Extensions in-
 118 clude boosted wrapper induction, which combines simple patterns for greater robustness (Freitag &
 119 Kushmerick, 2000), and large-scale methods that handle noisy data and template drift (Dalvi et al.,
 120 2011). While effective on regular site structures with clean annotations, these methods are brittle to
 121 structural changes and generalize poorly across diverse domains. In contrast, our approach learns
 122 **executable scripts**, i.e. full extraction programs that operate directly on raw HTML, allowing the
 123 system to generalize beyond fixed rules and adapt automatically without manual template design.

124 **LLM-based methods:** Several recent advances utilize LLMs to extract semi-structured contents.
 125 For instance, Wang et al. (2025) train a LLM to convert HTMLs into Markdown and JSON us-
 126 ing SFT and RL methods. Similarly, Poznanski et al. (2025) use a VLM to convert PDFs into
 127 clean, readable format retaining tabular structures. Many related works also exist on LLM-assisted
 128 knowledge-base construction (Gutiérrez et al., 2024; Zhang & Soh, 2024; Ning et al., 2023; Chen
 129 & Bertozzi, 2023; Zhang et al., 2023; Bai et al., 2025). However, calling an LLM per page remains
 130 resource-intensive at web-scale; moreover, they typically treat each page independently, missing the
 131 cross-page layout regularities that SCRIBES exploits.

132 2.2 RL WITHOUT ANNOTATIONS

133 A growing body of work explores reinforcement learning in settings without explicit annotations.
 134 Zuo et al. (2025) show that models can refine themselves at test time by turning consensus among
 135 rollouts into rewards, while Zhao et al. (2025) and Prabhudesai et al. (2025) demonstrate that internal
 136 signals such as self-certainty or confidence are sufficient to drive continued improvement. Shao
 137 et al. (2025) find that even spurious or random rewards can produce surprising gains, suggesting that
 138 models can bootstrap from imperfect signals. Like prior work, we reduce dependence on annotations
 139 by iteratively refining the model from its own failures, but instead of relying solely on internal
 140 signals, we utilize LLM-based direct extractions as synthetic annotation for reward calculation.

143 3 SCRIBES FRAMEWORK

144 3.1 PROBLEM DEFINITION

157 Figure 2: Three webpages containing semi-structured content under the same website.
 158

160 **Knowledge extraction:** Let $G = \{p_1, \dots, p_n\}$ be a group of semi-structured webpages that are
 161 structurally similar. The *knowledge extraction* task parses each page $p_i, i \in [1, n]$, to a list of triples
 (subjects, predicates, and objects). We denote by $y_{p_i}^*$ the ground truth triples for page p_i .

162 **Extraction script generation:** We propose to solve the knowledge extraction problem by generating an extraction script that applies to every page in G . Formally, our goal is to train a model
 163 LM that, given any webpage $p \in G$, predicts an extraction script $\hat{y}_p = LM(p)$, such that applying
 164 \hat{y} to every page in G generates triples close to ground truth triples $\{y_{p_i}^* | p_i \in G\}$. For instance,
 165 in Figure 2, a model-generated script should robustly handle variations across webpages, such as
 166 differences in table sizes and values.
 167

168 3.2 HTML DEDUPLICATION (DEDUP)

169 The raw HTMLs of webpages are typically very long and can easily surpass the maximum context
 170 window of even the long-context LLMs. We propose a simple yet effective method for deduplicating
 171 HTMLs: repeated HTML blocks are collapsed into a compact representation of the form “ n more
 172 ... elements,” which substantially reduces context length. Ablation experiments confirm that this
 173 deduplication step significantly improves model performance. We therefore apply it throughout our
 174 SCRIBES-trained models. An example of the dedup process is shown in Figure 6, and further
 175 details and analysis are provided in Appendix C.
 176

177 3.3 RL SETUP

178 Annotating such extraction scripts for training is challenging even for expert human annotators. To
 179 address this, rather than relying on demonstrations, we propose adopting *Reinforcement Learning*
 180 with *Verifiable Rewards* (RLVR) for this task.

181 We define $r(p \rightarrow q) = S(\hat{y}_p(q), y_q^*) \in [0, 1]$ as the score obtained when the script \hat{y}_p is executed
 182 on a (possibly different) page q , where S is a scoring function that measures similarity between
 183 predicted and annotated tuples. To compute this score, we follow prior works (Liu et al., 2024a;
 184 Sun et al., 2025) and adopt a bipartite matching algorithm that aligns predicted triples with gold
 185 triples by maximizing their pairwise fuzzy matching score. Based on this matching, we compute
 186 fuzzy precision P^{fuzzy} , recall R^{fuzzy} , and F_1 score F_1^{fuzzy} . Since fuzzy string similarity
 187 may fail to fully capture semantic equivalence, we additionally employ an LLM-as-a-judge (set
 188 to Llama-3.3-70B-Instruct) to evaluate the aligned triples (Prompt 17). We choose Llama
 189 to ensure consistency with prior work (Sun et al., 2025) and, by fixing the checkpoint, to enable
 190 reproducible experiments. This yields LLM-based precision P^{LM} , recall R^{LM} , and F_1 score F_1^{LM} .
 191 During training, we set $S = F_1^{\text{fuzzy}}$, the triple-level fuzzy F_1 score. Refer to Appendix F for addi-
 192 tional details on metrics and an optimized implementation of F_1^{fuzzy} during training.
 193

194 3.3.1 REWARD SIGNAL FROM LABELED DATA

195 We define the following notations:
 196

- 197 1. the *self-score* is $r_{\text{self}}(p) = r(p \rightarrow p)$, while
- 198 2. each *cross-score* is $r_{\text{cross}}(p, q) = r(p \rightarrow q)$ for $q \neq p$.

199 SCRIBES optimizes a model using Group Relative Policy Optimization (GRPO) (Shao et al., 2024)
 200 based on the following reward function for each training sample p :

$$201 r_{\text{SCRIBES}}(p) = \frac{1}{|G(p)|} \sum_{q \in G(p)} r(p \rightarrow q) = \frac{1}{|G(p)|} r_{\text{self}}(p) + \frac{|G(p)|-1}{|G(p)|} \sum_{q \in G(p), p \neq q} r_{\text{cross}}(p, q) \quad (1)$$

202 Within this framework, each self-score contributes only $\frac{1}{|G(p)|}$ to the final reward, while cross-scores
 203 constitute the majority of the reward signal. This design strongly encourages the model to generalize
 204 by accounting for potential variations across other, unseen webpages within the same group. We
 205 study the effect of different reward formulations through ablation studies in Section 4.4.
 206

207 3.3.2 REWARD SIGNAL FROM UNLABELED DATA IN THE WILD

208 When training on annotated data, SCRIBES can directly leverage the gold human annotation y_p^* for
 209 each page p as the reward signal. However, because the only high-quality annotated dataset available
 210 from Sun et al. (2025) is relatively small, it is inherently difficult to achieve broad coverage of diverse
 211

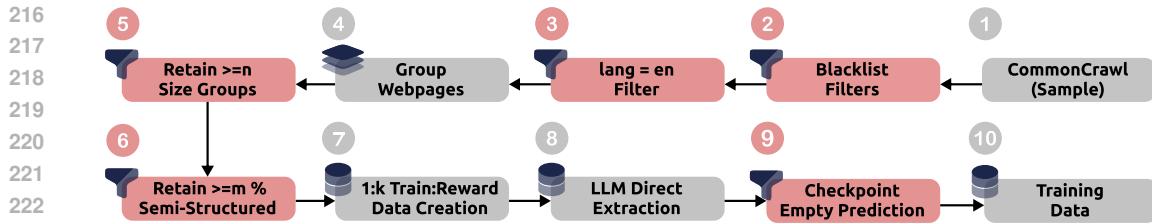


Figure 3: Processing pipeline for unlabeled data from CommonCrawl in Section 3.3.2.

website layouts using annotated data alone. To address this limitation, we propose a novel approach that leverages unlabeled in-the-wild webpages from CommonCrawl (abbreviated as CC) (Common Crawl, 2025).

Our data collection pipeline is illustrated in Figure 3. **(pt. 1)** Starting from a sample of CC, **(pt. 2)** we first apply the blacklist filters from Penedo et al. (2024) to remove adult or explicit content. **(pt. 3)** We then apply language filters to select English content websites and **(pt. 4)** group webpages by domain, **(pt. 5)** retaining only groups containing at least n webpages. **(pt. 6)** Next, we use an LLM-based classifier (Prompt 15) to identify webpages containing semi-structured content, and we retain only those website groups where at least $m\%$ of the pages are classified as semi-structured. **(pt. 7)** Finally, we sample one webpage as the training example and associate it with up to $k \leq n$ in-group webpages for reward calculation. In our experiments, we apply the following thresholds: $n = 30$, $m = 90$, and $k = 13$.

At this stage, we obtain a collection of in-the-wild webpage groups containing semi-structured content. However, without human annotations, it is unclear what reward signal should be used for training. **(pt. 8)** To address this, we propose using LLM-based direct extraction (Prompt 16) as a proxy for gold annotations. Our experiments show this to be the strongest baseline. Nevertheless, because such direct extraction is far from perfect (achieving only about 40% F_1 for the best baseline), we aim to prevent noisy rewards from degrading model performance. **(pt. 9)** To this end, we start from a checkpoint trained on annotated data and identify a subset of webpages where the model’s predicted scripts fail to produce any results. By concentrating training on these failure cases, we increase the likelihood that the additional synthetic data improves the model’s performance. Ablation studies on the necessity of this subset are presented in Section 4.4.

4 EXPERIMENTS

4.1 DATASET

Annotated dataset: Existing datasets for semi-structured knowledge extraction from raw webpages are limited. *SemiBench* (Sun et al., 2025) presents a dataset of webpages drawn from 139 popular websites in CommonCrawl, annotated with triples. Their collection includes 83 websites with a single webpage, 46 groups of 3 similar webpages, and 10 groups of 13 similar webpages each. This grouping scheme provides a valuable opportunity to evaluate generalization in the SCRIBES setting. We select the 56 groups containing more than 1 webpage each for experiments in this work. We divided the annotated dataset into training and test sets using a 60%-40% split **across groups**; that is, we assign entire groups to either the training or test set, and we do not split within any group. For a group of size n in the training/test set, we create n training/test examples, each using one webpage as input and all group elements used for reward calculation. All evaluation metrics are reported on the test set, which contains only websites from groups that the model did not see during training. Refer to additional details in Appendix D.1.

In-the-wild webpages: To construct groups directly from CommonCrawl, we employ a simple heuristic: two webpages are grouped together if they share the same URL prefix up to the final substring. For example, `example.com/mid1/sub1` and `example.com/mid1/sub2` belong to the same group, while `example.com/mid2` does not. The LLM used in our pipeline is GPT-OSS-120B. We randomly sampled 50 webpages and estimated classifier accuracy at 90.0% precision and 72.0% recall. In total, 19,566 groups satisfied the $n \geq 30$ condition, among which 2,003 also satisfied the $m \geq 90$ condition. After direct extraction with the LLM, 1,898 examples

270 271 272	Model and Method	All			Example			Holdout		
		R^{LM}	P^{LM}	F_1^{LM}	R^{LM}	P^{LM}	F_1^{LM}	R^{LM}	P^{LM}	F_1^{LM}
273 Baselines (Direct LLM Extraction)										
274 L-70B (Sun et al., 2025) *	24.3	15.7	19.1	-	-	-	-	-	-	-
275 Fine-tuned L-70B (Sun et al., 2025) *	21.4	27.1	23.9	-	-	-	-	-	-	-
276 GPT-4o (Sun et al., 2025) *	35.1	23.8	28.3	-	-	-	-	-	-	-
277 Q-14B flatten	30.5	36.5	29.9	-	-	-	-	-	-	-
278 Q-32B flatten	28.7	37.4	29.9	-	-	-	-	-	-	-
279 GO-20B 2-shot flatten	33.2	47.1	34.9	-	-	-	-	-	-	-
280 GO-120B 2-shot flatten	42.3	46.3	40.4	-	-	-	-	-	-	-
281 Baselines (Script-gen)										
282 Q-14B agentic-3-iter 2-shot	8.6	11.1	8.0	13.2	18.0	12.6	6.3	7.8	5.7	
283 L-70B agentic-3-iter	10.1	15.5	10.5	16.7	23.8	16.8	6.9	11.2	7.4	
284 Q-72B agentic-3-iter 2-shot	16.4	19.4	15.0	24.1	28.6	21.8	13.3	15.8	12.4	
285 Q-32B agentic-3-iter 2-shot	18.6	27.2	19.4	24.5	34.8	25.9	15.8	23.9	16.4	
286 GO-20B agentic-3-iter	24.7	23.2	20.9	29.3	26.4	27.7	22.5	21.8	18.9	
287 GPT-4o agentic-3-iter 2-shot	26.0	33.0	24.4	33.0	36.5	31.2	22.5	31.3	21.1	
288 GO-120B agentic-3-iter 2-shot	33.9	41.0	34.3	35.8	42.3	36.6	33.0	40.5	33.3	
289 SCRIBES (Script-gen)										
290 Q-14B	23.0	24.3	19.9	31.2	29.8	26.7	19.0	21.7	16.7	
291 Q-14B (+ CC)	25.2	23.0	21.8	34.9	31.0	30.0	20.5	19.1	17.7	
292 Q-32B	29.9	31.5	28.1	32.0	33.9	30.3	28.8	30.3	26.8	
293 Q-32B (+ CC)	37.4	36.0	33.2	39.5	35.5	34.6	36.2	36.2	32.4	

291 Table 1: LLM-judged metrics are reported separately for *All*, *Examples* (the webpage model used to
292 generate the script), and *Holdout* (similar webpages where the same script was applied). Columns
293 show macro-averaged P^{LM} , R^{LM} , and F_1^{LM} . For each model and block, we report only the
294 strongest baseline here. The full baseline results, including LLM-based agentic baselines HippoRAG
295 (Gutiérrez et al., 2024) and AutoSchemaKG (Bai et al., 2025), which exhibit lower scores,
296 are provided in Table 11 in Appendix G.4. (*) Numbers reported by Sun et al. (2025) are on the full
297 set.

298 were retained (the remainder corresponding to prediction failures or empty outputs). This entire
299 process used less than 1% of the CC-MAIN-2025-30 crawl. We hypothesize that this pipeline can
300 be scaled to larger portions of CommonCrawl for broader coverage; in this paper, we focus on
301 establishing its feasibility.

303 4.2 TRAINING SETUP AND BASELINES

305 **Training** We train *Qwen2.5-Instruct* family models and perform minimal hyperparameter
306 tuning to ensure stability during model training. Refer to Appendix D for additional details.

307 **Baselines** We experiment with both SOTA close-source and open-source models, including:
308 *gpt-4o*, *Llama-3.3-70B-instruct* (abbreviated as L-70B), *Qwen2.5-Instruct* (abbreviated as Q-xB)
309 family, and *gpt-oss* (abbreviated as GO-xB) family. We implement the following
310 baselines for comparison (Prompt 19). By default, all baselines use Dedup as the SCRIBES-trained
311 models. We explore multiple configurations to construct strong baseline models.

- 313 1. *agentic-n-iter*: After the model outputs a script given an example, if the script fails to
314 produce output or produces empty output, we feed the execution feedback to the model and
315 ask it to retry. Otherwise we use the output script as prediction. We repeat this ReAct-
316 style (Yao et al., 2022) procedure up to n times;
- 317 2. *n-shot*: We feed in n HTMLs and their corresponding gold extraction results as in-context
318 learning examples;
- 319 3. *flatten*: We directly flatten the HTML² and use it as model’s input. Note that there is no
320 generalizability requirement or dedup involved in this setup.
- 321 4. **Recent, SOTA LLM-based KG construction pipelines, including HippoRAG (Gutiérrez
322 et al., 2024) and AutoSchemaKG (Bai et al., 2025). See Section G.1 for details.**

323 ²`BeautifulSoup(html_content, "html.parser").get_text()`

324 4.3 RESULTS
325326 **RQ1:** Does SCRIBES framework bring improvements to models in terms of their capability to
327 extract semi-structured data?328 For each example p in our test set, models generate a script $\hat{y}_p = LM(p)$ and we apply it to all
329 examples in $G(p)$. We derive a score
330

331
$$S(p) = \frac{1}{|G(p)|} \sum_{q \in G(p)} S(\hat{y}_p, y_q^*) \quad (2)$$

332

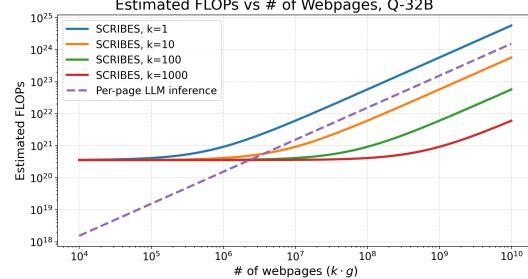
333 where we set S to be recall, precision, or F_1 score, as defined in Section 3.3. We refer to this
334 aggregate score as ‘‘All.’’ To further investigate the performance gap between the example provided
335 to the model (‘‘Example’’) and the other webpages to which the model-generated script is applied
336 (‘‘Holdout’’), we decompose the score in Eq. 2 into two separate components:
337

338
$$S_{\text{example}}(p) = S(\hat{y}_p, y_p^*) \quad S_{\text{holdout}}(p) = \frac{1}{|G(p)| - 1} \sum_{q \in G(p), q \neq p} S(\hat{y}_q, y_q^*)$$

339

340 In Table 1, we report the macro average of R^{LM} , P^{LM} , F_1^{LM} by averaging individual $S(p)$ scores.
341 SCRIBES-trained models drastically outperform strong agentic baselines. The best Q-14B and Q-
342 32B models outperform the few-shot agentic base model performance by 13.8% in F_1^{LM} , and our
343 best Q-32B model performs on-par with the few-shot agentic GO-120B model.
344345 **RQ2:** Does using SCRIBES enable resource-efficient, web-scale extraction?
346347 To demonstrate the SCRIBES-framework’s
348 applicability to web-scale semi-structured content
349 extraction, we evaluate on a leftover subset of
350 CommonCrawl data that was not used in
351 model training. To keep the experiment
352 tractable, we capped each group at 30 webpages
353 and required at least 13 webpages per group,
354 meaning this evaluation covers only a tiny fraction
355 of the available data. On this small subset with
356 113,129 webpages, our model extracted
357 2,788,760 triples. Remarkably, only 4,661 re-
358 quired direct model predictions, while the vast
359 majority were generated automatically through
360 model-produced scripts.361 On average, processing a webpage with dedu-
362 plicated HTML requires 8,879 tokens, whereas
363 using flattened HTML requires 2,399 tokens.
364 Let $\rho = \frac{8879}{2399} \approx 3.7$ denote this relative per-
365 page token ratio. Our approach quickly becomes more efficient as long as the target website contains
366 at least 4 structurally similar pages. In fact, the token speedup of our scribe-based method relative
367 to flattening grows linearly with k (the number of structurally similar pages), following:
368

369
$$\text{speedup} = \frac{k}{\rho}$$

370 We further compare the total GPU cost of SCRIBES, including training, with per-page LLM in-
371 ference in Figure 4. Let g denote the number of groups processed. While per-page inference (dashed
372 purple line) increases linearly with both the number of groups g and the group size k , the SCRIBES-
373 trained model yields substantial FLOP savings, with the magnitude of savings growing proportion-
374 ally to group size. For instance, with 100 pages per group, SCRIBES can already provide a compu-
375 tational saving of 1.12×10^{21} FLOPS when processing 10^5 groups. Additional details on the FLOP
376 estimates are provided in Appendix D.3377 Thus, compared to approaches that require per-page LLM inference (Bai et al., 2025), SCRIBES
378 can significantly cut down the GPU resource usage for web-scale extraction.379 Figure 4: Estimated GPU FLOPs usage comparing SCRIBES-trained model with per-page LLM in-
380 ference for Q-32B. The results show that, even
381 when training compute is included, SCRIBES-
382 trained models scale more efficiently at web scale.

Model and Method	All			Example			Holdout		
	R^{LM}	P^{LM}	F_1^{LM}	R^{LM}	P^{LM}	F_1^{LM}	R^{LM}	P^{LM}	F_1^{LM}
Q-14B (Reward w/ Eq. 3)	15.6	19.6	15.7	29.1	36.2	27.9	8.8	11.0	9.5
Q-14B (SCRIBES)	23.0	24.3	19.9	31.2	29.8	26.7	19.0	21.7	16.7

Table 2: Ablation study of reward design (Eq. 3), showing that SCRIBES’s reward significantly enhances performance on holdout webpages.

Method	All			Example			Holdout		
	R^{LM}	P^{LM}	F_1^{LM}	R^{LM}	P^{LM}	F_1^{LM}	R^{LM}	P^{LM}	F_1^{LM}
Q-14B (Annotated only)	23.0	24.3	19.9	31.2	29.8	26.7	19.0	21.7	16.7
Q-14B (+ All CC)	22.0	30.2	22.0	28.9	35.1	28.1	18.4	27.6	18.8
Q-14B (+ Failure-Case CC)	25.2	23.0	21.8	34.9	31.0	30.0	20.5	19.1	17.7
Q-32B (Annotated only)	29.9	31.5	28.1	32.0	33.9	30.3	28.8	30.3	26.8
Q-32B (+ All CC)	31.1	34.1	29.7	35.2	37.0	36.1	32.9	29.0	28.1
Q-32B (+ Failure-Case CC)	37.4	36.0	33.2	39.5	35.5	34.6	36.2	36.2	32.4

Table 3: Ablation study on CC data subsets, showing that models trained with the failure-case subset generally perform better.

Model and Method	All			Example			Holdout		
	R^{LM}	P^{LM}	F_1^{LM}	R^{LM}	P^{LM}	F_1^{LM}	R^{LM}	P^{LM}	F_1^{LM}
Q-14B agentic 3-iter 2-shot	9.5	13.7	8.8	23.2	24.2	20.0	12.4	7.4	7.2
Q-14B (SCRIBES)	20.7	22.2	19.4	31.8	36.1	30.4	14.5	12.0	12.2

Table 4: Ablation study on cross-domain transferability, showing that the SCRIBES-trained model demonstrate strong cross-domain transfer skills and outperform the baseline by more than 10%.

4.4 ABLATIONS

RQ3: Does the SCRIBES reward design improve the model’s capability in generating scripts that generalize to holdout elements?

To answer this question, we train a Q-14B model with the following reward for each training example p :

$$r_0(p) = r_{self}(p) \quad (3)$$

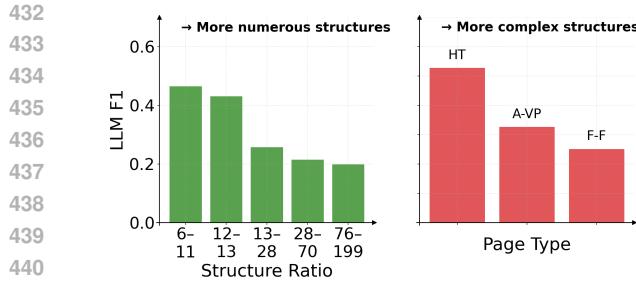
Compared to Equation 1, this reward encourages the model only to generate scripts suited to the current training example, without considering other in-group elements. We still use the same input prompt as in our SCRIBES-trained models (Prompt 19), which instructs the model to produce scripts that generalize across similar webpages. The training setup remains unchanged.

As shown in Table 2, although this model outperforms Q-14B (SCRIBES) on the examples encountered during inference (+1.2%), it generalizes much more poorly to similar webpages where the script is applied (−7.2%), resulting in worse overall performance in the “All” column (−4.2%). This shows that the SCRIBES reward design can more effectively instill in models the capability to produce generalizable scripts.

RQ4: Does using CommonCrawl data bring further improvements to our models?

We apply the technique described in Section 3.3.2 to the final checkpoints of the SCRIBES-trained Q-14B and Q-32B models on the annotated dataset. As shown in Table 1, additional training on synthetic data derived from CommonCrawl further improves performance, yielding gains of roughly 2% for Q-14B and 5% for Q-32B overall.

To better understand the impact of noisy rewards, we conducted the following ablation studies: (1) training directly on CC data, and (2) training on a mixture of CC and annotated data at a 1:1 ratio. Neither approach led to performance improvements, as shown in Table 10 (Appendix G.2). We



(a) Performance of our best Q-32B model by amount of structure and page type.

Breakdown	P^{LM}	R^{LM}	F_1^{LM}
Nested list	23.6	18.7	19.7
Multi-column	23.3	33.9	18.6
All	39.5	35.5	34.6

(b) Comparison of the best Q-32 model's performance across nested-list and multi-column cases on our test set.

A nested list is defined as content containing table or another list embedded within an outer list, while multi-column content refers to instances where headers span multiple columns.

Figure 5: Error analysis: (a) model performance by structure complexity; (b) comparison across nested lists and multi-column formats.

Additional reference	Q-1.5B	Q-3B	Q-7B	Q-14B	Q-32B	GPT-4o
Flattened HTML	50.2	53.8	62.9	74.2	70.8	82.5
+ Best Direct LLM Extraction triples	52.8	61.2	66.6	73.5	73.1	82.7
+ Best Q-32B triples	52.9	54.3	64.1	77.3	73.2	86.6
+ Ground truth triples	60.5	64.9	70.5	78.2	74.8	87.4

Table 5: QA accuracy (%) with triple augmentations (evaluated by Llama-3.3-instruct-70B, Prompt 20). SCRIBES's predicted triples boost QA performance across many models.

therefore hypothesize that it is essential to first train the model with gold rewards to establish strong prior knowledge of this task. Subsequent training with noisy rewards can then expose the model to more diverse inputs, not only preserving but further improving performance, analogous to findings in Shao et al. (2025).

RQ5: What's the effect of selecting the failure case subset to continue CommonCrawl trainings?

As discussed in Section 3.3.2, we select the subset of CC data where our model produced scripts with no valid triples extracted. We examine whether restricting training to this subset is necessary by training both a 14B and a 32B model on the full CC dataset ("All CC") and only the subset where no triples were extracted ("Failure-Case CC"). Results are reported in Table 3. We highlight two findings: (1) Training on either All CC or Failure-Case CC improves performance compared to using annotated data alone, and (2) Failure-Case CC yields stronger gains for Q-32B compared to All CC (+3.5%) , while performance for Q-14B remains comparable across the two settings.

RQ6: Do SCRIBES-trained models transfer across domains? For example, does a model trained on finance or legal tables generalize to product or encyclopedia pages?

To investigate this question, we conduct an ablation study using a train–test split in which the test set contains all product and encyclopedia pages, while the training set excludes webpages from these domains entirely. Details on this setup are provided in Appendix G.3. As shown in Table 4, the SCRIBES-trained model still substantially outperforms the strongest agentic baseline of the same model by more than 10%. To develop a model capable of web-scale extraction, we would still recommend training on a dataset that encompasses diverse domains and page layouts, as demonstrated by our CommonCrawl processing in Section 3.3.2.

4.5 ERROR ANALYSIS

We perform an error analysis to understand the failures of the best-performing Q-32B model. We break down performance by the amount of structure in a webpage (approximated by the ratio of raw HTML length to flattened text length) and by webpage type. As shown on the left of Figure 5a where webpages are grouped into five equal-sized bins (by number of webpages) and the respective medians are reported, performance declines as webpages contain more structure. On the right, the model performs best on webpages with Horizontal Tables (HT), followed by Attribute–Value

486 Pairs (A-VP), and performs worst on Free-Form (F-F) pages. These results suggest that webpages
 487 with more numerous or complex structures are particularly challenging for our model. **We also**
 488 **compare the performance of our model’s outputs on contents involving multi-column and nested**
 489 **lists. As shown in Table 5b, we observe that such content is more challenging for our model. Further**
 490 **prediction examples are showcased in Appendix I.**

492 5 DOWNSTREAM APPLICATIONS

494 5.1 QUESTION ANSWERING OVER SEMI-STRUCTURED WEB DATA

496 We demonstrate that our script-extracted triples can enhance QA performance, even for the most
 497 capable LLMs. Although there exist many general-purpose QA datasets (Yang et al., 2018; Ra-
 498 jpurkar et al., 2016) and datasets focused on semi-structured databases (Chen et al., 2020; Zhu
 499 et al., 2021; Chen et al., 2021), very few address the setting where the input consists of raw HTML.
 500 SemiBench (Sun et al., 2025) fills this gap, containing QA pairs with aligned triple annotations. This
 501 makes it a strong testbed for evaluating whether triple extraction improves QA over semi-structured
 502 web data. We select the subset of QA data (a total of 416 QA pairs) associated with our test set
 503 and evaluate a broad range of models as QA backbones, using the following reference conditions
 504 in Prompt 18: (1) Flattened HTML only; (2) Flattened HTML with best-performing direct LLM-
 505 extracted triples (GO-120B 2-shot flatten); (3) Flattened HTML with our model-extracted triples;
 506 and (4) Flattened HTML with gold triples. We report the result on the QA pairs associated with our
 507 validation examples in Table 5. Our SCRIBES-trained models yield consistent gains across diverse
 508 QA backbones, including an improvement of more than 4% for GPT-4o.

509 We further observe that although the SCRIBES-trained models slightly underperform the strongest
 510 per-page LLM-inference baseline in Table 1, they nonetheless deliver comparable downstream QA
 511 gains. As shown in Table 5, using SCRIBES-generated triples improves QA performance for Q-
 512 14B and GPT-4o, yields roughly similar performance for Q-1.5B and Q-32B, and performs worse
 513 for Q-3B and Q-7B. These results indicate that higher IE accuracy does not necessarily translate into
 514 better downstream QA performance. Instead, using SCRIBES-produced triples can deliver much
 515 better efficiency and a similar level of downstream QA improvement.

516 5.2 FURTHER DISCUSSIONS

518 The efficiency benefits of SCRIBES open up additional opportunities, and we highlight two direc-
 519 tions for future explorations:

520 **Multi-page, Complex QAs:** SCRIBES-extracted triples enable queries that require aggregation
 521 or ranking across multiple webpages. For example, a standard RAG solution would struggle with
 522 questions like “What is the latest report filed?” when answering against the website in Figure 2. In
 523 contrast, SCRIBES-generated triples can efficiently support such queries, eliminating the need for
 524 resource-intensive, page-by-page KG construction with LLMs.

525 **Pretraining:** Most open-source pretraining corpora systematically filter out semi-structured con-
 526 tent. For instance, C4 (Raffel et al., 2023) applies a “punctuation filter” that removes sentences
 527 not ending with valid punctuation. Recent popular corpora such as Dolma (Soldaini et al., 2024)
 528 and FineWeb (Penedo et al., 2024) inherit this bias, resulting in a near-complete absence of semi-
 529 structured data. We believe SCRIBES can address this gap by enabling efficient and resource-
 530 effective extraction and incorporation of such content into pretraining datasets.

532 6 CONCLUSION

534 This work introduces a novel RL framework, SCRIBES, for training models to generate general-
 535 izable extraction scripts across structurally similar webpages for semi-structured content extraction.
 536 We also propose a new method for generating synthetic training data, which further improves model
 537 performance, by leveraging in-the-wild webpages from CommonCrawl. Experiments on our dataset
 538 demonstrate that SCRIBES-trained models yield substantial gains in question answering over semi-
 539 structured data. We hope that SCRIBES will facilitate further research on semi-structured content,
 such as complex QA and pretraining, and serve as a valuable tool for the community.

540 REFERENCES
541

542 Jiaxin Bai, Wei Fan, Qi Hu, Qing Zong, Chunyang Li, Hong Ting Tsang, Hongyu Luo, Yauwai
543 Yim, Haoyu Huang, Xiao Zhou, Feng Qin, Tianshi Zheng, Xi Peng, Xin Yao, Huiwen Yang,
544 Leijie Wu, Yi Ji, Gong Zhang, Renhai Chen, and Yangqiu Song. Autoschemakg: Autonomous
545 knowledge graph construction through dynamic schema induction from web-scale corpora, 2025.
546 URL <https://arxiv.org/abs/2505.23628>.

547 Adrien Barbaresi. Traflatura: A Web Scraping Library and Command-Line Tool for Text Discov-
548 ery and Extraction. In *Proceedings of the Joint Conference of the 59th Annual Meeting of the*
549 *Association for Computational Linguistics and the 11th International Joint Conference on Natu-*
550 *ral Language Processing: System Demonstrations*, pp. 122–131. Association for Computational
551 Linguistics, 2021. URL <https://aclanthology.org/2021.acl-demo.15>.

552 Bohan Chen and Andrea L. Bertozzi. Autokg: Efficient automated knowledge graph generation for
553 language models. In *2023 IEEE International Conference on Big Data (BigData)*, pp. 3117–3126,
554 2023. doi: 10.1109/BigData59044.2023.10386454.

555 Wenhui Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Yang Wang.
556 HybridQA: A dataset of multi-hop question answering over tabular and textual data. In Trevor
557 Cohn, Yulan He, and Yang Liu (eds.), *Findings of the Association for Computational Linguis-*
558 *tics: EMNLP 2020*, pp. 1026–1036, Online, November 2020. Association for Computational Lin-
559 *guistics*. doi: 10.18653/v1/2020.findings-emnlp.91. URL <https://aclanthology.org/2020.findings-emnlp.91>.

560 Wenhui Chen, Ming-Wei Chang, Eva Schlinger, William Wang, and William W. Cohen. Open ques-
561 *tion answering over tables and text*, 2021. URL <https://arxiv.org/abs/2010.10439>.

562 Philipp Christmann, Rishiraj Saha Roy, and Gerhard Weikum. Conversational question answering
563 on heterogeneous sources. In *Proceedings of the 45th International ACM SIGIR Conference*
564 *on Research and Development in Information Retrieval*, SIGIR ’22, pp. 144–154, New York,
565 NY, USA, 2022. Association for Computing Machinery. ISBN 9781450387323. doi: 10.1145/
566 3477495.3531815. URL <https://doi.org/10.1145/3477495.3531815>.

567 Common Crawl. Common crawl. <https://commoncrawl.org/>, 2025. Accessed: 2025-08.

568 Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: Towards automatic data
569 extraction from large web sites. In *Proceedings of the 27th International Conference on Very*
570 *Large Data Bases*, VLDB ’01, pp. 109–118, San Francisco, CA, USA, 2001. Morgan Kaufmann
571 Publishers Inc. ISBN 1558608044.

572 Nilesh Dalvi, Ravi Kumar, and Mohamed Soliman. Automatic wrappers for large scale web extrac-
573 *tion*, 2011.

574 Xin Dong, Evgeniy Gabrilovich, Jeremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas
575 Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: a web-scale approach to proba-
576 *bilistic knowledge fusion*. In *Proceedings of the 20th ACM SIGKDD International Conference*
577 *on Knowledge Discovery and Data Mining*, KDD ’14, pp. 601–610, New York, NY, USA, 2014.
578 Association for Computing Machinery. ISBN 9781450329569. doi: 10.1145/2623330.2623623.
579 URL <https://doi.org/10.1145/2623330.2623623>.

580 Firecrawl. firecrawl: The web data api for ai – turn entire websites into llm-ready markdown or struc-
581 *tured data*. <https://github.com/firecrawl/firecrawl>, September 2025. GitHub
582 repository, licensed under AGPL-3.0, 54.3k stars, 4.6k forks (as of Sept 2 2025).

583 Dayne Freitag and Nicholas Kushmerick. Boosted wrapper induction. In *Proceedings of the AAAI*
584 *Conference on Artificial Intelligence*, pp. 577–583, 2000.

585 Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neuro-
586 *biologically inspired long-term memory for large language models*. In *The Thirty-eighth Annual*
587 *Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=hkujvAPVsg>.

594 Nicholas Kushmerick, Daniel S Weld, and Robert B Doorenbos. Wrapper induction for information
 595 extraction. In *Proceedings of the Fifteenth International Joint Conference on Artificial Intelli-*
 596 *gence (IJCAI)*, pp. 729–737, 1997.

597

598 Bing Liu, Robert Grossman, and Yanhong Zhai. Mining data records in web pages. In *Proceedings*
 599 *of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*,
 600 KDD '03, pp. 601–606, New York, NY, USA, 2003. Association for Computing Machinery. ISBN
 601 1581137370. doi: 10.1145/956750.956826. URL <https://doi.org/10.1145/956750.956826>.

602

603 Shicheng Liu, Sina Semnani, Harold Triedman, Jiliang Xu, Isaac Dan Zhao, and Monica Lam.
 604 SPINACH: SPARQL-based information navigation for challenging real-world questions. In Yaser
 605 Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Compu-*
 606 *tational Linguistics: EMNLP 2024*, pp. 15977–16001, Miami, Florida, USA, November 2024a.
 607 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.938. URL
 608 <https://aclanthology.org/2024.findings-emnlp.938/>.

609

610 Shicheng Liu, Jiliang Xu, Wesley Tjangnaka, Sina Semnani, Chen Yu, and Monica Lam. SUQL:
 611 Conversational search over structured and unstructured data with large language models. In
 612 Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Findings of the Association for Compu-*
 613 *tational Linguistics: NAACL 2024*, pp. 4535–4555, Mexico City, Mexico, June 2024b.
 614 Association for Computational Linguistics. URL <https://aclanthology.org/2024.findings-naacl.283>.

615

616 Colin Lockard, Xin Luna Dong, Arash Einolghozati, and Prashant Shiralkar. Ceres: distantly
 617 supervised relation extraction from the semi-structured web. *Proc. VLDB Endow.*, 11(10):
 618 1084–1096, June 2018. ISSN 2150-8097. doi: 10.14778/3231751.3231758. URL <https://doi.org/10.14778/3231751.3231758>.

619

620 Colin Lockard, Prashant Shiralkar, Xin Luna Dong, and Hannaneh Hajishirzi. ZeroShotCeres: Zero-
 621 shot relation extraction from semi-structured webpages. In Dan Jurafsky, Joyce Chai, Natalie
 622 Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association*
 623 *for Computational Linguistics*, pp. 8105–8117, Online, July 2020. Association for Computational
 624 Linguistics. doi: 10.18653/v1/2020.acl-main.721. URL [https://aclanthology.org/2020.acl-main.721/](https://aclanthology.org/2020.acl-main.721).

625

626 Kaixin Ma, Hao Cheng, Xiaodong Liu, Eric Nyberg, and Jianfeng Gao. Open domain ques-
 627 tion answering with a unified knowledge interface. In Smaranda Muresan, Preslav Nakov,
 628 and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the Association for*
 629 *Computational Linguistics (Volume 1: Long Papers)*, pp. 1605–1620, Dublin, Ireland, May
 630 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.113. URL
 631 <https://aclanthology.org/2022.acl-long.113/>.

632

633 Yansong Ning, Hao Liu, Hao Wang, Zhenyu Zeng, and Hui Xiong. Uukg: Unified urban knowledge
 634 graph dataset for urban spatiotemporal prediction. *Advances in Neural Information Processing*
 Systems, 36:62442–62456, 2023.

635

636 Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael
 637 Schlichtkrull, Sonal Gupta, Yashar Mehdad, and Scott Yih. UniK-QA: Unified representations of
 638 structured and unstructured knowledge for open-domain question answering. In Marine Carpuat,
 639 Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), *Findings of the Association*
 640 *for Computational Linguistics: NAACL 2022*, pp. 1535–1546, Seattle, United States, July 2022.
 641 Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.115. URL
 642 <https://aclanthology.org/2022.findings-naacl.115/>.

643

644 Andrei Paraschiv. newspaper4k: Article scraping & curation, a continuation of newspaper3k.
<https://github.com/AndyTheFactory/newspaper4k>, March 2024. GitHub repos-
 645 itory, a fork of Newspaper3k by codelucas; latest release v0.9.3 (March 18 2024), MIT license.

646

647 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
 finest text data at scale, 2024. URL <https://arxiv.org/abs/2406.17557>.

648 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
 649 extension of large language models, 2023.

650

651 Jake Poznanski, Jon Borchardt, Jason Dunkelberger, Regan Huff, Daniel Lin, Aman Rangapur,
 652 Christopher Wilhelm, Kyle Lo, and Luca Soldaini. olmOCR: Unlocking Trillions of Tokens
 653 in PDFs with Vision Language Models, 2025. URL <https://arxiv.org/abs/2502.18443>.

654

655 Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
 656 Maximizing confidence alone improves reasoning. *arXiv preprint arXiv:2505.22660*, 2025.

657

658 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 659 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 660 transformer, 2023. URL <https://arxiv.org/abs/1910.10683>.

661 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
 662 for machine comprehension of text, 2016. URL <https://arxiv.org/abs/1606.05250>.

663

664 Josh Schulman. Approximating kl divergence. Blog post, 2020.

665 Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
 666 Du, Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training
 667 signals in rlvr. *arXiv preprint arXiv:2506.10947*, 2025.

668

669 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 670 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 671 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

672

673 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Author,
 674 Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha,
 675 Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
 676 Muennighoff, Aakanksha Naik, Crystal Nam, Matthew Peters, Abhilasha Ravichander, Kyle
 677 Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Evan Walsh,
 678 Luke Zettlemoyer, Noah Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
 679 and Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining re-
 680 search. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd*
 681 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 682 pp. 15725–15788, Bangkok, Thailand, August 2024. Association for Computational Linguis-
 683 tics. doi: 10.18653/v1/2024.acl-long.840. URL [https://aclanthology.org/2024.acl-long.840/](https://aclanthology.org/2024.acl-long.840.).

684

685 Kai Sun, Yin Huang, Srishti Mehra, Mohammad Kachuee, Xilun Chen, Renjie Tao, Zhaojiang Lin,
 686 Andrea Jessee, Nirav Shah, Alex Betty, Yue Liu, Anuj Kumar, Wen tau Yih, and Xin Luna Dong.
 687 Knowledge extraction on semi-structured content: Does it remain relevant for question answering
 688 in the era of llms?, 2025. URL <https://arxiv.org/abs/2509.25107>.

689

690 Jiejun Tan, Zhicheng Dou, Wen Wang, Mang Wang, Weipeng Chen, and Ji-Rong Wen. Htmrlag:
 691 Html is better than plain text for modeling retrieved knowledge in rag systems. In *Proceedings*
 692 *of the ACM on Web Conference 2025*, WWW '25, pp. 1733–1746, New York, NY, USA, 2025.
 693 Association for Computing Machinery. ISBN 9798400712746. doi: 10.1145/3696410.3714546.
 694 URL <https://doi.org/10.1145/3696410.3714546>.

695

696 Feng Wang, Zesheng Shi, Bo Wang, Nan Wang, and Han Xiao. Readerlm-v2: Small language model
 697 for html to markdown and json, 2025. URL <https://arxiv.org/abs/2503.01151>.

698

699 Yorick Wilks. Information extraction as a core language technology. In *International Summer*
 700 *School on Information Extraction: A Multidisciplinary Approach to an Emerging Information*
 701 *Technology*, SCIE '97, pp. 1–9, Berlin, Heidelberg, 1997. Springer-Verlag. ISBN 354063438X.

702

703 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 704 and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 705 answering, 2018. URL <https://arxiv.org/abs/1809.09600>.

702 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 703 React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*,
 704 2022.

705 Yanhong Zhai and Bing Liu. Web data extraction based on partial tree alignment. In *Proceedings*
 706 *of the 14th International Conference on World Wide Web*, WWW '05, pp. 76–85, New York, NY,
 707 USA, 2005. Association for Computing Machinery. ISBN 1595930469. doi: 10.1145/1060745.
 708 1060761. URL <https://doi.org/10.1145/1060745.1060761>.

710 Bowen Zhang and Harold Soh. Extract, define, canonicalize: An LLM-based framework for knowl-
 711 edge graph construction. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Pro-
 712 ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 713 9820–9836, Miami, Florida, USA, November 2024. Association for Computational Linguis-
 714 tics. doi: 10.18653/v1/2024.emnlp-main.548. URL <https://aclanthology.org/2024.emnlp-main.548>.

716 Heidi Zhang, Sina Semnani, Farhad Ghassemi, Jialiang Xu, Shicheng Liu, and Monica Lam.
 717 SPAGHETTI: Open-domain question answering from heterogeneous data sources with retrieval
 718 and semantic parsing. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of*
 719 *the Association for Computational Linguistics: ACL 2024*, pp. 1663–1678, Bangkok, Thailand,
 720 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.96.
 721 URL <https://aclanthology.org/2024.findings-acl.96>.

722 Kai Zhang, Bernal Jimenez Gutierrez, and Yu Su. Aligning instruction tasks unlocks large lan-
 723 guage models as zero-shot relation extractors. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
 724 Okazaki (eds.), *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 794–
 725 812, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
 726 v1/2023.findings-acl.50. URL <https://aclanthology.org/2023.findings-acl.50>.

728 Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
 729 without external rewards. *arXiv preprint arXiv:2505.19590*, 2025.

731 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
 732 Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania,
 733 Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experi-
 734 ences on scaling fully sharded data parallel, 2023. URL <https://arxiv.org/abs/2304.11277>.

736 Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng,
 737 and Tat-Seng Chua. TAT-QA: A question answering benchmark on a hybrid of tabular and textual
 738 content in finance. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceed-
 739 ings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th*
 740 *International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp.
 741 3277–3287, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/
 742 2021.acl-long.254. URL <https://aclanthology.org/2021.acl-long.254>.

743 Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
 744 Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. *arXiv preprint*
 745 *arXiv:2504.16084*, 2025.

746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756	APPENDIX	
757		
758		
759	A Use of LLMs in this Research	16
760		
761	B Websites with Semi-Structured Content	16
762		
763	C HTML Dedup Algorithm Details	16
764		
765	D Training Hyperparameters and Other Details	17
766		
767	D.1 Data Pre-processing	17
768		
769	D.2 Training Details	18
770	D.3 Detailed on Compute Comparison	18
771		
772	E Dataset Comparison	18
773		
774	F Metrics and their implementation	19
775		
776	F.1 Details on the Fuzzy Match Algorithm	19
777		
778	F.2 Reward during RL implementation	20
779	F.3 Human verification of RL reward	20
780		
781	G Additional Experiments	20
782		
783	G.1 Additional LLM-based Agentic Baselines	20
784	G.2 Additional Ablation Experiment on Impact of Noisy Reward	21
785	G.3 Additional Ablation Experiment on Domain Transferability	21
786		
787	G.4 Complete Baseline Numbers	22
788		
789	H Details on QA dataset used in Sec. 5.1	22
790		
791	I Example Model Predictions	23
792		
793	J Prompts Used	25
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 A USE OF LLMs IN THIS RESEARCH
811812 We utilize LLMs in two main ways in this research:
813

814 1. **Assistance with Code Writing:** During the implementation of RL training and evaluation
815 scripts, LLMs were occasionally used as assistants. All code was subsequently double-
816 checked and verified by the authors.

817 2. **Paper Language and Related Works:** During the writing process, we occasionally uti-
818 lized LLMs to improve the clarity and fluency of the English. We also occasionally use
819 LLM-assisted search systems to find additional related works. All final text was reviewed
820 by the authors.

822 B WEBSITES WITH SEMI-STRUCTURED CONTENT
823824 We can broadly classify webpages with semi-structured content into three categories:
825

826 1. **Horizontal Tables:** These webpages primarily present information in a tabular format.

827 2. **Attribute-Value Pairs:** Information is organized as attribute-value pairs, typically dis-
828 played across multiple rows in an “infobox”-like format.

829 3. **Free Form:** Semi-structured content is distributed throughout the page, often combining
830 both horizontal tables and attribute-value pairs.

832 For additional information and more details on these breakdowns, refer to Sun et al. (2025).
833834 C HTML DEDUP ALGORITHM DETAILS
835

```

836
837 <!DOCTYPE html>
838 <html>
839   <head>
840     <title>Sample Page</title>
841     <script>console.log('Hello!');</script>
842   </head>
843   <body style="background-color: white;" onclick="track()>
844     <div class="header" id="main-header">
845       <h1>Products</h1>
846     </div>
847     <div class="product-grid" data-category="electronics">
848       <div class="product-card" data-id="1" style="border: 1px solid #ccc;">
849         <h3 class="product-title">Product 1</h3>
850         <span class="price">$19.99</span>
851       </div>
852       <div class="product-card" data-id="2" style="border: 1px solid #ccc;">
853         <h3 class="product-title">Product 2</h3>
854         <span class="price">$24.99</span>
855       </div>
856       <div class="product-card" data-id="3" style="border: 1px solid #ccc;">
857         <h3 class="product-title">Product 3</h3>
858         <span class="price">$29.99</span>
859       </div>
860       <div class="product-card" data-id="4" style="border: 1px solid #ccc;">
861         <h3 class="product-title">Product 4</h3>
862         <span class="price">$34.99</span>
863       </div>
864       <div class="product-card" data-id="5" style="border: 1px solid #ccc;">
865         <h3 class="product-title">Product 5</h3>
866         <span class="price">$39.99</span>
867       </div>
868     </div>
869   </body>

```

850 Figure 6: An example illustrating Algorithm 1 is shown here. The original HTML appears on the
851 left, while the compressed HTML is shown on the right. The dashed-highlighted section near the
852 top, containing script and style elements, has been removed. The repeated HTML content near the
853 bottom has been deduplicated, retaining up to $z = 3$ elements.854 Raw HTMLs are often long and repetitive. We propose a simple and effective dedup algorithm
855 to significantly cut down the token length of HTML pages while still maintaining its structure.
856 Algorithm 1 shows the implementation of this algorithm. We set $z = 3$ in our experiments.
857858 Table 6 shows the token saving effect of our dedup algorithm. Removing whitespaces in a HTML
859 only brings minimal token savings ($< 2\%$), while our dedup algorithm brings significant token
860 savings, cutting down token usage from $> 114k$ to $< 17k$. We also profiled performance gains of
861 baselines models using dedup. As shown in Table 7, employing deduplicated HTML yields clear
862 improvements compared to using raw HTML. Most notably, deduplication significantly increases
863 the Non-Empty Rate of baseline performance by enabling more data points to fit within the model’s
context window.

864 **Algorithm 1** Structure-Preserving HTML Deduplication (keep- z)
 865
 866 **Require:** Raw HTML string H , integer $z \geq 1$ (default $z=3$)
 867 **Ensure:** Compressed, structure-preserving HTML
 868 1: Parse H into DOM R (fallback parser if needed; return H on failure)
 869 2: RemoveTags $\leftarrow \{\text{script, style, noscript,}\right.$
 870 $\quad \text{iframe, embed, object, applet,}\right.$
 871 $\quad \text{meta, link, base}\}$
 872 3: KeepAttrs $\leftarrow \{\text{id, class, role, name,}\right.$
 873 $\quad \text{type, href, src, alt, title,}\right.$
 874 $\quad \text{rel, target, for, action, method,}\right.$
 875 $\quad \text{value, placeholder, required, data-*, aria-*}\}$
 876 4: Remove all nodes with tag in RemoveTags
 877 5: Remove all HTML comments except those starting with “...”
 878 6: **for all** element nodes e in R **do**
 879 7: **for all** attributes a of e **do**
 880 8: **if** $a \notin \text{KeepAttrs}$ and a not prefixed by data- or aria- **then**
 881 9: delete attribute a from e
 882 10: **end if**
 883 11: **end for**
 884 12: **end for**
 885 13: **for all** nodes n in traversal of R **do**
 886 14: **if** $n.\text{tag} \in \{\text{ul, ol, div, section, tbody, thead, select}\}$ **then**
 887 15: children $\leftarrow [c \in n.\text{children} : c \text{ is an element}]$
 888 16: Group children by $\text{sig}(c) \leftarrow (c.\text{tag}, \text{sort}(c.\text{class} \text{ or } []))$
 889 17: **for all** group G **do**
 890 18: **if** $|G| > z$ **then**
 891 19: Keep the first z in G (order preserved); remove the rest
 892 20: After the z -th kept node, insert comment:
 893 21: “... $|G| - z$ more <tag class='...> elements ...”
 894 22: **end if**
 895 23: **end for**
 896 24: **end if**
 897 25: **end for**
 898 26: Optionally normalize whitespace and excessive blank lines
 899 27: **return** serialized DOM

Processing Stage	Avg Tokens	Percentage
Original tokens	114,318.6	100.0%
After whitespace removal	112,279.0	98.2%
After dedup	16,985.1	14.9%
Reductions		
Whitespace token savings	2,039.6	1.8%
Total dedup token savings	97,333.5	85.1%

905 Table 6: Token reduction analysis across the webpages collected by Sun et al. (2025). Tokens were
 906 profiled with GPT-4o tokenizer, accessed via <https://github.com/openai/tiktoken>.
 907

908
 909 **D TRAINING HYPERPARAMETERS AND OTHER DETAILS**
 910

911 **D.1 DATA PRE-PROCESSING**
 912

913 During training, we set the maximum prompt length to 28672 tokens and the maximum response
 914 length to 4096 tokens. This results in a total model context window of 32768 tokens, which is the
 915 maximum length before needing to apply YaRN (Peng et al., 2023) for the Qwen-2.5 series models³.
 916

917 ³We observed empirically that model training with YaRN becomes much more unstable and difficult to
 converge.

Model & Format	P^{LM}	R^{LM}	$F_1^{\text{H, LM}}$	Non-Empty Rate
L-70B w/ Raw HTML	3.4	3.7	3.5	37.9
L-70B w/ Dedup HTML	14.2	9.5	11.3	46.4
GPT-4o w/ Raw HTML	13.7	15.4	14.5	63.8
GPT-4o w/ Dedup HTML	19.1	23.0	20.9	94.9

Table 7: Performance comparison of baseline models using raw or dedup-ed HTML. Here, we feed each page in one-by-one in this dataset and only evaluate the model’s performance on one given page. Non-Empty Rate is set to 1 if the model’s generated code produced at least 1 triple on this page, and 0 if otherwise.

SemiBench (Sun et al., 2025) includes a subset of 268 webpages drawn from 56 groups, each containing more than one webpage. We partition the groups into training and test sets at an approximately 6:4 ratio, resulting in 34 groups (192 webpages) for training and 22 groups (76 webpages) for testing. After applying the maximum-context constraint described above, 141 training webpages and 65 test webpages remain.

D.2 TRAINING DETAILS

During GRPO training, we do not apply entropy loss. We set the KL loss coefficient to 0.001 and the KL loss to be the k_3 loss using the approximation described in Schulman (2020), i.e.,

$$k_3(a) = \frac{\pi_{\text{new}}(a)}{\pi_{\text{old}}(a)} - \log \frac{\pi_{\text{new}}(a)}{\pi_{\text{old}}(a)} - 1$$

We use the default model rollout parameters (for Qwen-2.5-instruct, these are `top_k`= -1 , `top_p`= 1 , and `temperature`= 1) and validation/inference parameters (for Qwen-2.5-instruct, these are `top_k`= -1 , `top_p`= 1 , and `temperature`= 0). We do not use LoRA and instead perform full-parameter finetuning with FSDP (Zhao et al., 2023). We trained the models on the annotated set for a total of 50 epochs, and on CommonCrawl data for 1 epoch. For each update, we collect 8 rollouts to perform GRPO update. For the 32B model, we apply a 0.5 gradient clipping, which we found to lead to more stable trainings. We set the learning rate to be a constant $1e-6$.

D.3 DETAILED ON COMPUTE COMPARISON

To train the Q-14B SCRIBES model, we ran approximately 12 hours of training at an average throughput of $3,958$ TFLOPs across all GPUs, yielding an estimated total training compute of 1.71×10^{20} FLOPs. For the Q-32B SCRIBES model, we similarly trained for about 12 hours at an average of $8,232$ TFLOPs, resulting in an estimated total compute of 3.56×10^{20} FLOPs.

To estimate the per-page inference cost reported in Figure 4, we assume that each forward pass requires roughly 2 times the parameter count per token.

E DATASET COMPARISON

We compare several statistics of HTML webpages in Table 8. Below, we define each statistic:

DOM Max Depth: The maximum depth of the Document Object Model (DOM) tree in an HTML document. This measures how deeply the elements are nested; a higher DOM Max Depth indicates more extensive nesting.

Deduplication Ratio: The lengths of the HTML content before and after applying the deduplication algorithm described in Appendix C (in characters). This quantifies redundancy in the HTML structure; a lower Deduplication Ratio indicates greater redundancy.

Structure Ratio: The ratio of the HTML length to the flattened text length (in characters). This approximates how much structural markup the HTML contains relative to its textual content; a higher Structure Ratio reflects more structural complexity.

972 **Tag Count:** The number of all tags in an HTML document⁴. This measures the structural complexity
 973 of the HTML; a higher Tag Count indicates a more complex document.
 974

975 Feature	976 Metric	977 Train	978 Test	979 CC (After Step 6 in Fig. 3)
977 DOM Max Depth	978 Mean	979 20.2	980 18.4	981 20.2
	982 Median	983 19.0	984 17.0	985 17.0
	986 Std	987 4.94	988 6.98	989 21.7
	990 Min	991 10.0	992 10.0	993 5.00
	994 Max	995 37.0	996 37.0	997 455
998 Deduplication Ratio	999 Mean	1000 0.215	1001 0.174	1002 0.353
	1003 Median	1004 0.213	1005 0.166	1006 0.344
	1007 Std	1008 0.111	1009 0.0986	1010 0.178
	1011 Min	1012 0.0302	1013 0.0324	1014 0.000480
	1015 Max	1016 0.484	1017 0.422	1018 1.02
1019 Structure Ratio	1020 Mean	1021 46.1	1022 43.5	1023 20.8
	1024 Median	1025 28.7	1026 27.4	1027 13.8
	1028 Std	1029 40.0	1030 45.5	1031 48.7
	1032 Min	1033 2.24	1034 6.00	1035 1.19
	1036 Max	1037 174	1038 199	1039 1960
1040 Tag Count	1041 Mean	1042 1650	1043 1820	1044 655
	1045 Median	1046 1260	1047 1080	1048 496
	1049 Std	1050 2140	1051 2550	1052 559
	1053 Min	1054 224	1055 154	1056 18.0
	1057 Max	1058 27800	1059 12300	1060 5070

997 Table 8: Summary statistics (Mean, Median, Std, Min, Max) for HTML-derived features across
 998 datasets.
 999

1000 This comparison shows that the labeled training and test sets share similar summary statistics,
 1001 whereas the CommonCrawl portion differs noticeably. In particular, the CommonCrawl data is
 1002 less redundant (lower Deduplication Ratio), contains less structural markup (lower Structure Ratio),
 1003 and is structurally simpler (lower Tag Count). Across all metrics, it also exhibits greater variability,
 1004 as indicated by the higher standard deviations. These observations suggest that incorporating this
 1005 portion of the CommonCrawl data into training can meaningfully broaden the distribution of inputs,
 1006 exposing the models to examples that differ substantially from those in the labeled dataset.
 1007

1008 F METRICS AND THEIR IMPLEMENTATION

1009 F.1 DETAILS ON THE FUZZY MATCH ALGORITHM

1010 Formally, let $G = \{g_1, g_2, \dots, g_m\}$ denote the set of gold triples and $P = \{p_1, p_2, \dots, p_n\}$ the
 1011 predicted triples. Instead of requiring exact equality, we define a similarity function $f^{\text{fuzzy}}(g_i, p_j) \in$
 1012 $[0, 1]$ that quantifies the degree of match between a gold triple g_i and a predicted triple p_j as the
 1013 ratio of character-level matching⁵. To ensure one-to-one alignment, we compute a maximum-weight
 1014 bipartite matching between G and P , where the weight of each edge is $f^{\text{fuzzy}}(g_i, p_j)$. This assign-
 1015 ment is efficiently solved using the Jonker–Volgenant algorithm⁶. Precision, recall, and F_1 are then
 1016 generalized as:
 1017

$$1018 P^{\text{fuzzy}} = \frac{\sum_{(g,p) \in M} f^{\text{fuzzy}}(g, p)}{|P|}, \quad R^{\text{fuzzy}} = \frac{\sum_{(g,p) \in M} f^{\text{fuzzy}}(g, p)}{|G|}, \quad F_1^{\text{fuzzy}} = \frac{2 \cdot P^{\text{fuzzy}} \cdot R^{\text{fuzzy}}}{P^{\text{fuzzy}} + R^{\text{fuzzy}}}.$$

1019 ⁴len(soup.findall(True))

1020 ⁵Implemented via <https://github.com/seatgeek/fuzzywuzzy>’s ratio function, which calcu-
 1021 late a ratio of character-level matching using Levenshtein distance .

1022 ⁶Implemented via https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html.

Method	R^{LM}	P^{LM}	F_1^{LM}	R^{fuzzy}	P^{fuzzy}	F_1^{fuzzy}
Q-14B flatten	30.46	36.46	29.87	45.96	52.37	43.50
Q-32B flatten	28.73	37.44	29.93	41.62	54.25	42.26
GO-20B 2-shot flatten	33.18	47.10	34.93	46.53	65.21	49.77
GO-120B 2-shot flatten	42.27	46.26	40.40	56.01	61.42	53.37
Q-14B 3-iter 2-shot	8.59	11.13	8.01	17.17	25.57	16.53
Q-72B 3-iter 2-shot	16.40	19.41	14.97	28.73	37.96	28.60
Q-32B 3-iter 2-shot	18.56	27.20	19.41	27.49	44.67	30.39
GO-20B 3-iter	24.70	23.22	20.87	52.30	41.83	39.58
GPT-4o 3-iter 2-shot	25.95	33.04	24.42	45.58	60.57	44.46
GO-120B 3-iter 2-shot	33.86	40.96	34.30	49.79	65.72	52.02

Table 9: Comparison of LLM-judged metrics and fuzzy-matching metrics for baselines reported in Table 1 for the “All” column. Gray-highlighted columns denote F_1^{LM} and F_1^{fuzzy} . This comparison shows that the two metrics show similar performance trend across models and configurations.

where $M \subseteq G \times P$ denotes the optimal matching. Given M , the LLM-based metric evaluates correctness by invoking a LLM on the final matched pairs of gold and predicted triples. For each pair $(g, p) \in M$, the model outputs a binary judgment $f^{\text{LM}}(g, p) \in \{0, 1\}$, where 1 denotes a true match and 0 denotes a failed match according to Prompt 17. We then define LLM-based precision, recall, and F_1 as:

$$P^{\text{LM}} = \frac{\sum_{(g,p) \in M} f^{\text{LM}}(g, p)}{|P|}, \quad R^{\text{LM}} = \frac{\sum_{(g,p) \in M} f^{\text{LM}}(g, p)}{|G|}, \quad F_1^{\text{LM}} = \frac{2 \cdot P^{\text{LM}} \cdot R^{\text{LM}}}{P^{\text{LM}} + R^{\text{LM}}}.$$

Empirically, we observe a correlation between F_1^{fuzzy} and F_1^{LM} . The latter tends to yield slightly lower absolute scores but exhibits the same performance trend across models and configurations. A comparison showing the two metrics and the associated precision and recall metrics for the baselines are shown in Table 9. We calculated the correlation coefficient between F_1^{fuzzy} and F_1^{LM} to be 0.957 with a p-value of 1.4×10^{-5} , showing a strong positive correlation.

F.2 REWARD DURING RL IMPLEMENTATION

We use F_1^{fuzzy} during training as a proxy for F_1^{LM} , thereby avoiding LLM calls. Because computing fuzzy F_1 exactly requires solving a maximum-weight bipartite matching, runtime can become too long for large sets of triples. We thus approximate the matching with a greedy heuristic. Specifically, all candidate pairs of gold and predicted triples are scored by f^{fuzzy} , sorted in descending order, and added sequentially to the matching as long as they do not conflict with previously chosen pairs. This yields a fast, albeit sub-optimal, alignment. To ensure scalability, we impose a 60-seconds cutoff for evaluation. If timeout occurs, we further project the total similarity score by extrapolating from the average score of observed matches to the remaining unmatched capacity.

F.3 HUMAN VERIFICATION OF RL REWARD

We followed the same evaluation metrics as defined in Sun et al. (2025), which reported a 95% agreement rate between the LLM-based F1 metric F_1^{LM} and human judgments, indicating strong alignment.

G ADDITIONAL EXPERIMENTS

G.1 ADDITIONAL LLM-BASED AGENTIC BASELINES

In addition to the simple 2-shot baseline, we profile two promising LLM-based agentic knowledge-base-construction baselines: HippoRAG (Gutiérrez et al., 2024) and AutoSchemaKG (Bai et al., 2025), representative of recent LLM-driven KG construction pipelines.

HippoRAG is a retrieval-augmented generation framework that builds a knowledge graph as an embedding index, mimicking the role of the hippocampus in human memory. We use the first stage

Method	All			Example			Holdout		
	R^{LM}	P^{LM}	F_1^{LM}	R^{LM}	P^{LM}	F_1^{LM}	R^{LM}	P^{LM}	F_1^{LM}
Q-14B (Annotated mixed with CC)	6.5	8.0	6.5	8.1	9.6	7.9	5.7	6.4	5.7
Q-14B (CC only)	7.7	15.8	9.2	8.9	18.4	10.8	7.2	14.7	8.4
Q-14B (Annotated followed by CC)	25.2	23.0	21.8	34.9	31.0	30.0	20.5	19.1	17.7

Table 10: Ablation study on the impact of noisy reward. We compare three training configurations: (1) CC data only, (2) annotated data mixed with CC data at a 1:1 ratio, and (3) training first on annotated data followed by CC data. Results show that noisy reward alone or mixed training does not improve performance, whereas a staged setup, first training on annotated data before continuing with CC, yields substantial gains.

of their KG construction pipeline, which consists of two prompts, one for named entity recognition (NER) and one for triple extraction. We also replace their 1-shot example with the same 2-shot examples used in our baseline.

AutoSchemaKG is a framework for web-scale KG construction over a pretraining-scale corpus. It calls three LLM modules on each webpage: (1) an entity–entity relationship extractor, (2) an entity–event relationship extractor, and (3) an event–event relationship extractor. These prompts are all zero-shot and are challenging to adapt, so we retain them as originally specified.

As shown in Table 11, the simple 2-shot baseline outperforms both LLM-based baselines across all models evaluated on our task, including by more than 20% for the strongest model, GPT-OSS-120B. Moreover, they inherit the same cost inefficiencies, as each webpage requires multiple LLM calls.

G.2 ADDITIONAL ABLATION EXPERIMENT ON IMPACT OF NOISY REWARD

To further investigate the role of noisy reward, we conduct additional ablation experiments under three training configurations: (1) training on CC data only, (2) training on a mixture of CC and annotated data at a 1:1 ratio, and (3) training first on annotated data and then continuing on CC data. Results are reported in Table 10.

G.3 ADDITIONAL ABLATION EXPERIMENT ON DOMAIN TRANSFERABILITY

In this ablation study, we reorganized the dataset by assigning each website to one of the following content categories:

- Finance & Economics
- Legal & Regulatory
- Developer & Software
- Science & Research
- Science & Database
- Sports
- Gaming & Entertainment
- Media & Entertainment
- Real Estate
- Social Platforms
- Weather & Environment
- Jobs & Careers
- Travel & Hospitality
- Products & Brands
- Encyclopedias & Reference

Method	R^{LM}	P^{LM}	$F_1^{H,\text{LM}}$	F_1^{LM}
Baselines (Flattened)				
Q-14B w/ AutoSchemaKG (Bai et al., 2025)	2.1	8.26	3.35	8.17
Q-14B w/ HippoRAG (Gutiérrez et al., 2024) 2-shot	8.49	32.24	13.43	16.12
Q-14B flatten	30.46	36.46	33.19	29.87
Q-32B w/ AutoSchemaKG (Bai et al., 2025)	2.64	11.14	4.27	9.33
Q-32B w/ HippoRAG (Gutiérrez et al., 2024) 2-shot	10.12	39.7	16.13	20.03
Q-32B flatten	28.73	37.44	32.51	29.93
GO-20B w/ AutoSchemaKG (Bai et al., 2025)	5.57	11.96	7.6	9.26
GO-20B w/ HippoRAG (Gutiérrez et al., 2024) 2-shot	8.26	23.06	12.16	14.02
GO-20B flatten	36.94	37.88	37.40	33.61
GO-20B 2-shot flatten	33.18	47.10	38.93	34.93
GO-120B w/ AutoSchemaKG (Bai et al., 2025)	6.52	16.97	9.42	12.28
GO-120B w/ HippoRAG (Gutiérrez et al., 2024) 2-shot	28.57	12.12	17.02	17.22
GO-120B flatten	36.43	34.59	35.49	31.74
GO-120B 2-shot flatten	42.27	46.26	44.18	40.40
Baselines (Script-gen)				
Q-14B agentic-3-iter	8.11	8.26	8.18	7.14
Q-14B agentic-3-iter 2-shot	8.59	11.13	9.70	8.01
Q-32B agentic-3-iter	10.41	9.08	9.70	8.74
Q-32B agentic-3-iter 2-shot	18.56	27.20	22.07	19.41
Q-72B agentic-3-iter	9.67	9.65	9.66	7.19
Q-72B agentic-3-iter 2-shot	16.40	19.41	17.78	14.97
GO-20B agentic-3-iter	24.70	23.22	23.94	20.87
GO-20B agentic-3-iter 2-shot	13.06	27.30	17.66	14.40
GO-120B agentic-3-iter	27.63	24.76	26.12	23.30
GO-120B agentic-3-iter 2-shot	33.86	40.96	37.07	34.30
GPT-4o agentic-3-iter	19.05	14.72	16.61	13.81
GPT-4o agentic-3-iter 2-shot	25.95	33.04	29.07	24.42
L-70B agentic-3-iter	10.05	15.49	12.19	10.47
L-70B agentic-3-iter 2-shot	8.23	8.08	8.15	7.10
SCRIBES				
Q-14B	22.96	24.26	23.59	19.91
Q-14B (+CC)	25.24	22.98	24.05	21.77
Q-32B	29.88	31.53	30.68	28.05
Q-32B (+CC)	37.41	36.03	36.71	33.24

Table 11: List of all baselines and SCRIBES-trained models. LLM-judged metrics on all data. P^{LM} , R^{LM} , harmonic $F_1^{H,\text{LM}}$, and average per-example F_1^{LM} .

We placed *Products & Brands* and *Encyclopedias & Reference* in the test set, with all remaining categories assigned to the training set. This split yielded 196 training examples and 72 test examples. After applying the maximum-context constraint described in Section D.1, 147 training examples and 59 test examples remained.

G.4 COMPLETE BASELINE NUMBERS

For F_1 , we provide two variants: (i) the macro-average of per-example F_1 scores, and (ii) a harmonic-mean variant defined as

$$F_1^H = \frac{2\bar{P}\bar{R}}{\bar{P} + \bar{R}} \quad (4)$$

where \bar{P} and \bar{R} denote the mean precision and recall, respectively. The complete list of baseline performance is shown in Table 11 and 12.

H DETAILS ON QA DATASET USED IN SEC. 5.1

The QA pairs in Sec. 5.1 are collected by Sun et al. (2025) through an LLM-generated followed by human-auditing process. We summarize their process below:

Method	Example				Holdout			
	R^{LM}	P^{LM}	$F_1^{\text{H,LM}}$	F_1^{LM}	R^{LM}	P^{LM}	$F_1^{\text{H,LM}}$	F_1^{LM}
Baselines								
Q-14B agentic-3-iter	11.96	11.81	11.88	10.57	6.47	6.90	6.68	5.77
Q-14B agentic-3-iter 2-shot	13.21	17.97	15.23	12.63	6.29	7.79	6.96	5.73
Q-32B agentic-3-iter	18.84	17.17	17.97	16.46	6.36	5.33	5.80	5.07
Q-32B agentic-3-iter 2-shot	24.53	34.83	28.79	25.90	15.79	23.91	19.02	16.40
Q-72B agentic-3-iter	13.03	13.15	13.09	10.12	8.20	8.12	8.16	5.94
Q-72B agentic-3-iter 2-shot	24.11	28.59	26.16	21.78	13.26	15.83	14.43	12.38
GO-20B agentic-3-iter	29.25	26.38	27.74	24.91	22.51	21.78	22.14	18.94
GO-20B agentic-3-iter 2-shot	13.48	27.68	18.13	14.41	13.07	27.11	17.64	14.66
GO-120B agentic-3-iter	31.32	26.76	28.86	25.70	25.86	23.86	24.82	22.16
GO-120B agentic-3-iter 2-shot	35.83	42.27	38.78	36.60	32.98	40.47	36.34	33.26
GPT-4o agentic-3-iter	25.19	18.35	21.23	18.47	16.00	12.89	14.28	11.47
GPT-4o agentic-3-iter 2-shot	32.98	36.48	34.64	31.19	22.52	31.32	26.20	21.11
L-70B agentic-3-iter	16.65	23.76	19.58	16.78	6.86	11.16	8.49	7.36
L-70B agentic-3-iter 2-shot	7.77	6.77	7.23	6.18	8.42	8.68	8.54	7.51
SCRIBES								
Q-14B	31.22	29.81	30.50	26.71	19.01	21.65	20.24	16.66
Q-14B (+CC)	34.88	30.96	32.80	29.96	20.45	19.06	19.73	17.69
Q-32B	31.99	33.88	32.90	30.32	28.79	30.28	29.51	26.83
Q-32B (+CC)	39.54	35.48	37.40	34.60	36.24	36.15	36.20	32.41

Table 12: List of all baselines and SCRIBES-trained models by Example and Holdout. LLM-judged metrics on all data. P^{LM} , R^{LM} , harmonic $F_1^{\text{H,LM}}$, and average per-example F_1^{LM} .

First, a 70B Llama model generated initial question–answer pairs using webpage content and ground truth data. Then, these pairs were refined by:

1. **Removing overly complex questions** that required heavy reasoning, focusing instead on comprehension of semi-structured webpages.
2. **Eliminating compound questions** that combined multiple queries into one to avoid inflated difficulty.
3. **Filtering out trivial questions** that all tested models answered correctly, ensuring better differentiation among model performances.

Finally, **human auditors** reviewed and removed any pairs that were ungrounded in the source content or contained incorrect answers.

For more details and statistics, refer to Sun et al. (2025).

I EXAMPLE MODEL PREDICTIONS

Here, we show an example of our best model’s prediction on the eval set to better illustrate the task and associated difficulties.

For [this website](#), our model generated the code shown in Table 13. The prediction versus gold entries are shown in Table 14. This code achieves the following scores: $R^{\text{LM}} = 53.3$, $P^{\text{LM}} = 50.0$, $F_1^{\text{LM}} = 51.6$.

The model code misses some information such as the “Business Address” and “Mailing Address” fields, penalizing the recalls. It also produces some false positives, including triples where the relation is “sequence” but no corresponding object is returned, reducing precision. Additionally, the model incorrectly treats the filing document number as the subject throughout, rather than using more appropriate subjects such as “Class/Contract C000008114.”

```

1242
1243
1244     from bs4 import BeautifulSoup
1245     from typing import List
1246
1247     def main(html: str) -> List[List[str]]:
1248         soup = BeautifulSoup(html, 'html.parser')
1249         triples = []
1250
1251         # Extract title
1252         title = soup.title.text if soup.title else ""
1253         triples.append(["EDGAR Filing", "title", title])
1254
1255         # Extract form information
1256         form_name = soup.find("div", id="formName")
1257         if form_name:
1258             triples.append([title, "form", form_name.text.strip()])
1259
1260         sec_num = soup.find("div", id="secNum")
1261         if sec_num:
1262             triples.append([title, "accessionNumber", sec_num.text.strip()])
1263
1264         # Extract filing details
1265         info_heads = soup.find_all("div", class_="infoHead")
1266         info_values = soup.find_all("div", class_="info")
1267         for head, value in zip(info_heads, info_values):
1268             triples.append([title, head.text.strip(), value.text.strip()])
1269
1270         # Extract document table information
1271         table = soup.find("table", class_="tableFile")
1272         if table:
1273             rows = table.find_all("tr")
1274             for row in rows[1:]: # Skip header row
1275                 cols = row.find_all(["td", "th"])
1276                 if len(cols) >= 5:
1277                     seq = cols[0].text.strip()
1278                     description = cols[1].text.strip()
1279                     document = cols[2].text.strip()
1280                     doc_type = cols[3].text.strip()
1281                     size = cols[4].text.strip()
1282                     triples.append([title, "sequence", seq])
1283                     triples.append([title, "description", description])
1284                     triples.append([title, "document", document])
1285                     triples.append([title, "type", doc_type])
1286                     triples.append([title, "size", size])
1287
1288         # Extract series and classes information
1289         series_table = soup.find("table", class_="tableSeries")
1290         if series_table:
1291             rows = series_table.find_all("tr")
1292             for row in rows[2:]: # Skip header rows
1293                 cols = row.find_all(["td", "th"])
1294                 if len(cols) >= 4:
1295                     status = cols[0].text.strip()
1296                     name = cols[2].text.strip()
1297                     ticker = cols[3].text.strip()
1298                     triples.append([title, "status", status])
1299                     triples.append([title, "name", name])
1300                     triples.append([title, "tickerSymbol", ticker])
1301
1302     return triples

```

Table 13: An example SCRIBES-generated code discussed in Appendix I.

1296	Subject	Relation	Object
Gold			
1297	EDGAR Filing Documents for 0000894189-10-002875	Filing Date	2010-08-10
1298	EDGAR Filing Documents for 0000894189-10-002875	Accepted	2010-08-10 10:58:25
1299	EDGAR Filing Documents for 0000894189-10-002875	Documents	2
1300	EDGAR Filing Documents for 0000894189-10-002875	Period of Report	2010-06-30
1301	EDGAR Filing Documents for 0000894189-10-002875	Effectiveness Date	2010-08-10
1302	empiric..63010nq.htm	Seq	1
1303	empiric..63010nq.htm	Description	QUARTERLY NOTICE OF PORTFOLIO HOLDINGS
1304	empiric..63010nq.htm	Type	N-Q
1305	empiric..63010nq.htm	Size	530257
1306	certs.htm	Seq	2
1307	certs.htm	Description	OFFICER CERTIFICATIONS
1308	certs.htm	Type	EX-99.CERT
1309	certs.htm	Size	24222
1310	0000894189-10-002875.txt	Description	Complete submission text file
1311	0000894189-10-002875.txt	Size	556496
1312	Series S000002964	Name	Core Equity Fund
1313	Class/Contract C000008114	Name	C
1314	Class/Contract C000008114	Ticker Symbol	EMCCX
1315	Class/Contract C000008115	Name	A
1316	Class/Contract C000008115	Ticker Symbol	EMCAX
1317	EDGAR Filing Documents for 0000894189-10-002875	EMPIRIC FUNDS, INC (Filer) CIK	0001000069 (see all company filings)
1318	EDGAR Filing Documents for 0000894189-10-002875	IRS No.	742759654
1319	EDGAR Filing Documents for 0000894189-10-002875	State of Incorp.	TX
1320	EDGAR Filing Documents for 0000894189-10-002875	Fiscal Year End	931
1321	EDGAR Filing Documents for 0000894189-10-002875	Type	N-Q
1322	EDGAR Filing Documents for 0000894189-10-002875	Act	40
1323	EDGAR Filing Documents for 0000894189-10-002875	File No.	811-09088
1324	EDGAR Filing Documents for 0000894189-10-002875	Film No.	101003905
1325	EDGAR Filing Documents for 0000894189-10-002875	Business Address	6300 BRIDGEPOINT PARKWAY BUILDING II, SUITE 105 AUSTIN TX 78730 5123289321X1
1326	EDGAR Filing Documents for 0000894189-10-002875	Mailing Address	6300 BRIDGEPOINT PARKWAY BUILDING II, SUITE 105 AUSTIN TX 78730
Predicted			
1327	EDGAR Filing Documents for 0000894189-10-002875	title	EDGAR Filing Documents for 0000894189-10-002875
1328	EDGAR Filing Documents for 0000894189-10-002875	form	Form N-Q - Quarterly Schedule of portfolio holdings of management investment companies:
1329	EDGAR Filing Documents for 0000894189-10-002875	accessionNumber	SEC Accession No. 0000894189-10-002875
1330	EDGAR Filing Documents for 0000894189-10-002875	Filing Date	2010-08-10
1331	EDGAR Filing Documents for 0000894189-10-002875	Accepted	2010-08-10 10:58:25
1332	EDGAR Filing Documents for 0000894189-10-002875	Documents	2
1333	EDGAR Filing Documents for 0000894189-10-002875	Period of Report	2010-06-30
1334	EDGAR Filing Documents for 0000894189-10-002875	Effectiveness Date	2010-08-10
1335	EDGAR Filing Documents for 0000894189-10-002875	sequence	1
1336	EDGAR Filing Documents for 0000894189-10-002875	description	QUARTERLY NOTICE OF PORTFOLIO HOLDINGS
1337	EDGAR Filing Documents for 0000894189-10-002875	document	empiric..63010nq.htm
1338	EDGAR Filing Documents for 0000894189-10-002875	type	N-Q
1339	EDGAR Filing Documents for 0000894189-10-002875	size	530257
1340	EDGAR Filing Documents for 0000894189-10-002875	sequence	2
1341	EDGAR Filing Documents for 0000894189-10-002875	description	OFFICER CERTIFICATIONS
1342	EDGAR Filing Documents for 0000894189-10-002875	document	certs.htm
1343	EDGAR Filing Documents for 0000894189-10-002875	type	EX-99.CERT
1344	EDGAR Filing Documents for 0000894189-10-002875	size	24222
1345	EDGAR Filing Documents for 0000894189-10-002875	sequence	Complete submission text file
1346	EDGAR Filing Documents for 0000894189-10-002875	description	0000894189-10-002875.txt
1347	EDGAR Filing Documents for 0000894189-10-002875	document	0000894189-10-002875
1348	EDGAR Filing Documents for 0000894189-10-002875	type	556496
1349	EDGAR Filing Documents for 0000894189-10-002875	size	CIK 0001000069
1350	EDGAR Filing Documents for 0000894189-10-002875	status	
1351	EDGAR Filing Documents for 0000894189-10-002875	name	Class/Contract C000008114
1352	EDGAR Filing Documents for 0000894189-10-002875	tickerSymbol	C
1353	EDGAR Filing Documents for 0000894189-10-002875	status	EMCCX
1354	EDGAR Filing Documents for 0000894189-10-002875	name	Class/Contract C000008115
1355	EDGAR Filing Documents for 0000894189-10-002875	tickerSymbol	A
1356	EDGAR Filing Documents for 0000894189-10-002875	status	EMCAX

Table 14: Comparison of predicted and gold triples for Code 13.

J PROMPTS USED

All prompts used in our experiments are shown here in Jinja2 format, including the classifier prompt (Prompt 15), LLM direct extraction prompt (Prompt 16), LLM-as-a-judge prompt (Prompt 17), QA prompt (Prompt 18), the main script generation prompt (Prompt 19) used in both baseline and in SCRIBES training data, and the QA evaluation prompt (Prompt 20).

```

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359 # instruction
1360 Your task is to classify an input HTML to see whether it contains semi-structured content.
1361 You are shown below with one example with semi-structured content and one without.
1362 Output a JSON with the following two fields: "reason" and "decision".
1363 Reason should specify your chain of thought and decision should be one of:
1364 - Semi-structured content: Respond with "Yes" if the HTML contains semi-structured content,
1365 such as tables and infoboxes.
1366 - No semi-structured content: Respond with "No" if the HTML does not contain any semi-structured content.
1367 - Explicit content: Respond with "Exclude" if the HTML contains explicit content
1368 (e.g., adult material, graphic violence).
1369 # input
1370 Examples containing the following HTML:
1371 {{ HTML_example_1 }}
1372 # output
1373 {
1374     "reason": "This HTML contains a table which falls into the definition of semi-structured content",
1375     "decision": "Yes"
1376 }
1377 # input
1378 {{ HTML_example_2 }}
1379 # output
1380 {
1381     "reason": "Even though this HTML contains structured discussions and Q&As, it does not have tables or
1382     infoboxes",
1383     "decision": "No"
1384 }
1385 # input
1386 An HTML with the following info:
1387 {{ HTML_example_3 }}
1388 # output
1389 {
1390     "reason": "This HTML show cases a infobox, which should be treated as a semi-structured content.",
1391     "decision": "Yes"
1392 }
1393 # input
1394 {{ html }}
1395
1396
1397
1398
1399
1400
1401
1402
1403

```

Table 15: Classifier prompt used to determine whether a webpage contains semi-structured content or not.

```

1404
1405
1406
1407
1408 # instruction
1409 You are given a doc in HTML and its title. Please return all (subject, predicate, object) triples
1410 that can be extracted from the doc, in the order they appear in the doc. For large chunk of descriptions
1411 or sections of free-form text, you should keep them as object. Do not attempt to break big chunks
1412 of texts down into smaller portions.
1413
1414 Subject, predicate, and object should generally be gained from the text spans in the doc or the title.
1415 Please only include complete triples; if for any section the predicate or object is missing from the doc,
1416 you may skip it.
1417 Output a list of lists, where each inner list is a triple. I will use python's eval to parse your output.
1418
1419 # input
1420 {% if example_global_html_triples %}
1421 Here are {{ example_global_html_triples|length }} examples of flattened HTML pages and their expected triples:
1422 {% for single_example in example_global_html_triples %}
1423 Example {{ loop.index0 }} Flattened HTML: {{ single_example["html_flatten"] }}
1424 Example {{ loop.index0 }} Expected Triples: {{ single_example["triples_annotation"] }}
1425 {% endfor %}
1426 {% endif %}
1427
1428 {% if example_triples %}
1429 Here are 10 triples we are expecting in the output randomly chosen: {{ example_triples }}
1430 {% endif %}
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

```

Table 16: LLM direct extraction prompt used to directly generate triples from a webpage.

```

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

```

Table 17: LLM-as-a-judge prompt for judging whether two triples are semantically equivalent.

```

1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

```

Table 18: Question Answering prompt with reference.

```

1458
1459
1460
1461
1462 # instruction
1463 Your task is to generate semantic triples from a given HTML.
1464 A triple contains a subject, a predicate, and an object.
1465 You should write python code to extract triples from the HTML.
1466 The final executable function should be called 'def main(html) -> List[tuple(str, str, str)]:',
1467 where it will output a list of triples.
1468 You should output the python code only. Feel free to add comments to explain your code.
1469 Do not include any text other than the code in your response.
1470
1471 IMPORTANT: we will re-use the same script for other webpages with similar HTML contents.
1472 So you should make your script re-usable across different websites
1473 (do not hardcode for values for this particular HTML).
1474
1475 # input
1476
1477 (% if example_global_html_triples %)
1478 Here are {{ example_global_html_triples|length }} examples of other HTML sites and
1479 what the script-generated output we are looking for:
1480 (% for single_example in example_global_html_triples %)
1481 Example {{ loop.index0 }} HTML: {{ single_example["html_content"] }} 
1482 Example {{ loop.index0 }} Expected Outputs: {{ single_example["triples_annotation"] }} 
1483 (% endfor %)
1484 (% endif %)
1485
1486 HTML: {{ html }}
1487
1488 (% if example_triples %)
1489 Here are 10 triples we are expecting in the output randomly chosen: {{ example_triples }}
1490 (% endif %)
1491 (% if all_triples %)
1492 Here are all the triples we are expecting in the output: {{ all_triples }}
1493 (% endif %)
1494
1495 (% if prev_script %)
1496 You previously generated a script:
1497 {{ prev_script }}
1498
1499 This script generated the following result:
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

```

Table 19: Main script generation prompt for baselines and SCRIBES-trained models.

```

1499 # instruction
1500 You need to check whether the prediction of a question-answering system to a question is correct.
1501 You should make the judgment based on the ground truth answer provided to you.
1502 Your response should be "correct" if the prediction is correct or "incorrect" if the prediction is wrong.
1503
1504 # input
1505 Question: {{ question }}
1506 Ground truth: {{ gold }}
1507 Prediction: {{ answer }}
1508
1509
1510
1511

```

Table 20: QA evaluation prompt.