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Abstract

Grounding the instruction in the environment is a key step in solving language-1

guided goal-reaching reinforcement learning problems. In reinforcement learning,2

the primary aim is to maximize cumulative rewards, which frequently have sparse3

values in goal-conditioned settings. However, in goal-reaching scenarios, the agent4

must comprehend the different parts of the instructions within the environmental5

context in order to complete the overall task successfully. In this work, we propose6

CAREL (Cross-modal Auxiliary REinforcement Learning) as a new framework to7

solve this problem using auxiliary loss functions inspired by video-text retrieval8

literature. The results of our experiments suggest superior sample efficiency and9

generalization for this framework in different multi-modal reinforcement learning10

problems.11

1 Introduction12

Numerous studies have examined the use of language goals or instructions within the context of13

reinforcement learning (RL) [30, 10, 19]. Language goals typically provide a higher-level and more14

abstract representation than goals derived from the state space [31]. While state-based goals often15

specify the agent’s final expected goal representation [18, 9], language goals offer more information16

about the desired sequence of actions and the necessary subtasks [18]. Therefore, it is important to17

develop approaches that can extract concise information from states or observations and effectively18

align it with textual information, a process referred to as grounding [30].19

Previous research has attempted to ground instructions in observations or states using methods20

such as reward shaping [12, 24] or goal-conditioned policy/value functions [40, 14, 1, 8], with21

the latter being a key focus of many studies. Their approaches incorporate various architectural or22

algorithmic inductive biases, such as cross-attention [13], hierarchical policies [16, 2], and feature-23

wise modulation [22, 4]. Typically, these works involve feeding instructions and observations into24

policy or value networks, extracting internal representations of tokens and observations at each25

time step, and propagating them through the network. Previous studies have explored auxiliary loss26

functions to improve these internal representations in RL [35, 36, 39]. However, these loss functions27

lack the alignment property between different input modalities, such as visual/symbolic states and28

textual commands/descriptions. Recent studies have suggested contrastive loss functions to align29

text and vision modalities in an unsupervised manner [21, 37, 29, 38, 17]. Most of these studies fall30

under the video-text retrieval literature [41, 21], where the language tokens and video frames align at31

different granularities.32

Since these methods require a corresponding textual input along with the video, the idea has not yet33

been employed in language-informed reinforcement learning, where the sequence of observation34

might not always match the textual modality (due to action failures or inefficacy of trials). One can35

leverage the success signal or reward to detect the successful episodes and consider them aligned to36
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the textual modality containing instructions or environment descriptions. Doing so, the application of37

the abovementioned auxiliary loss functions makes sense.38

In this study, we propose a new framework, called CAREL (Cross-modal Auxiliary REinforcement39

Learning), for the adoption of auxiliary grounding objectives from the video-text retrieval literature40

[41], particularly X-CLIP [21], to enhance the learned representations within these networks and41

improve cross-modal grounding at different granularities. By leveraging this grounding objective, we42

aim to enhance the grounding between language instructions and observed states by transferring the43

multi-grained alignment property of video-text retrieval methods to instruction-following agents. Our44

experiments on the BabyAI environment [4] showcase the effectiveness of the idea in improving the45

systematic generalization and sample efficiency of instruction-following agents.46
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Figure 1: Overall view of CAREL. In this figure, we showcase CAREL over a candidate baseline
model from [4]. (Left) The blue box handles the instruction and its local/global representations,
while the pink box contains the components related to observation. (Right) The purple box shows the
calculation steps for the X-CLIP loss.

2 Related Work47

Language-informed RL: There has been a plethora of research on the involvement of natural48

language [30, 10, 19], either as instructions [29, 22, 24] or descriptions [40] in sequential decision-49

making [14, 30, 8], especially RL [19]. Besides the fully textual problems where the action/state50

space is text-based [6], the involvement of language has proven to help agents in visual [16, 12, 23,51

34] or symbolic [37, 24, 4, 3] environments, improving their sample efficiency and generalisation52

[32]. The main approaches to such problems include reward shaping [12, 24], hierarchical RL [16,53

2], transfer learning from pre-trained vision-language models [26, 25, 27], or architectural inductive54

biases in the involvement of language modality as input [40, 14, 1, 8]. One crucial aspect of all of55

these methods is grounding [30, 40], which enables an embodied agent to understand the language56

modality in the context of observations [40], reward [12, 24], or dynamics of the environment [32].57

This understanding relies on a proper alignment between the language modality and the non-language58

modalities e.g., visual observations. In this work, we address this problem by means of multi-modal59

and multi-grained auxiliary unsupervised loss functions borrowed from video-text retrieval literature60

[21].61

Video-text retrieval studies: Across the domain of language-grounding problems, Video-Text62

Retrieval (VTR), a task involving intricate alignment and abstraction of temporal images (videos),63

has gained prominence as a fundamental challenge within text-based retrieval. Recent advancements64

in VTR and Image-Text Retrieval (ITR) research have seen a notable shift towards the adoption of65

contrastive loss [41], in contrast to the earlier prevalent self/cross-attention mechanisms [11, 28].66

Notably, CLIP [29], a Large-scale Vision-Language Pre-training (VLP) model, has successfully67
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leveraged contrastive loss for image-text retrieval, inspiring a wave of video-text retrieval models68

to follow suit. Among these models, X-CLIP [21] and CLIP4CLIP [20] have emerged as exemplar,69

yielding remarkable results. Particularly, X-CLIP excels at extracting fine-grained and coarse-grained70

features from videos, enhancing the alignment between individual frames and the overall video content71

with textual instructions. However, these ideas have not been employed in RL problems. Inspired by72

the success of approaches like X-CLIP, we have introduced an auxiliary loss designed to assist RL73

model encoders in achieving improved representations for both sequences of observations/states and74

text.75

3 CAREL Framework76

In this study, we incorporate an auxiliary loss inspired by the X-CLIP model [21] to enhance the77

grounding between instruction and observations in instruction-following RL agents. This auxiliary78

loss serves as a supplementary objective, augmenting the primary RL task with a multi-grained79

alignment property which introduces an additional learning signal to guide the model’s learning80

process. This design choice was motivated by the need to improve the model’s ability to extract mean-81

ingful information from its observations and align it more effectively with the intended instruction,82

ultimately enhancing the overall performance of the RL system.83

We calculate the proposed loss function over the successful episodes generated by an arbitrary84

instruction-conditioned RL model within a batch of online trials. To avoid the model being influenced85

by goal-unrelated behavioral patterns in unsuccessful trajectories, we exclude those trajectories from86

consideration and leverage reward values to organize only successful ones into a separate batch for87

the auxiliary loss.88

Each successful episode contains a sequence of observations ep = (O1, ..., On) meeting the instructed89

criteria and an accompanying instruction instr = (I1, ..., Im) with m tokens. Since the X-CLIP loss90

requires local and global encoders for each modality, we must choose such representations from the91

model or incorporate additional modules to extract them. To explore the exclusive impact of the92

auxiliary loss and minimize any changes to the architecture, we use the model’s existing observation93

and instruction encoders, which are crucial components of the model itself. We utilize these encoders94

to extract local representations for each observation Ot denoted as xt ∈ Rd×1, t = 1, ..., n and each95

instruction token Ii denoted by vi ∈ Rd×1, i = 1, ...,m. The global representations can be chosen96

from the model itself or added to the model by aggregation techniques such as mean-pooling or97

attention. We denote the global representations for observations and the instruction by X̃ and Ṽ ,98

respectively. The auxiliary loss function is then calculated according to [21] as below. We restate the99

formulas in our context to make this paper self-contained.100

To utilize contrastive loss, we first need to calculate the similarity score for each episode (ep) -101

sequence of observations- and instruction (instr) pair denoted as s(ep, instr). To do this, we102

calculate four separate values; Episode-Instruction (SE−I ) score, as well as Episode-Word (SE−W ),103

Observation-Instruction (SO−I ) and Observation-Word (SO−W ) similarity values.104

Episode-Instruction score can be calculated using this formula105

SE−I = (X̃)T (Ṽ ) (1)

with X̃, Ṽ ∈ Rd×1, SV−T ∈ R.106

Other values are calculated in a similar manner:107

SE−W = (V X̃)T (2)
108

SO−I = XṼ (3)
109

SO−W = XV T (4)
where X = (x1, ..., xn) ∈ Rn×d, V = (v1, ..., vm) ∈ Rm×d, SE−W ∈ R1×m, SO−I ∈ Rn×1 and110

SO−W ∈ Rn×m are respectively the local representations for the observations and the instruction111

tokens, and similarity values. These values are then aggregated with appropriate attention weights112

via a technique called Attention Over Similarity Matrix (AOSM). Episode-Word (S′
E−W ) and113

Observation-Instruction (S′
O−I ) scores are calculated from the values as follows:114

S′
O−I =

n∑
i=1

exp(SO−I [i, 1]/τ)∑n
j=1 exp(SO−I [j, 1]/τ)

SO−I [i, 1] (5)
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115

S′
E−W =

m∑
i=1

exp(SE−W [1, i]/τ)∑m
j=1 exp(SE−W [1, j]/τ)

SE−W [1, i] (6)

For the Observation-Word score a bi-level attention is performed, resulting in two fine-grained116

similarity vectors. These vectors are then converted to scores similar to the previous part:117

Sinstr =

m∑
i=1

exp(SO−W [1, i]/τ)∑m
j=1 exp(SO−W [1, j]/τ)

SO−W [1, i] (7)

118

Sep =

n∑
i=1

exp(SO−W [i, 1]/τ)∑m
j=1 exp(SO−W [j, 1]/τ)

SO−W [i, 1] (8)

where Sinstr ∈ Rn×1 show the similarity score between the instruction and n observations in119

the episode and Sep ∈ R1×m represents the similarity between the episode and m words in the120

instruction.121

The second attention operation is performed on these vectors to calculate the Observation-Word122

similarity score (S′
F−W ), which represents the similarity between all observations and words:123

S′
instr =

n∑
i=1

exp(Sinstr[i, 1]/τ)∑n
j=1 exp(Sinstr[j, 1]/τ)

Sinstr[i, 1] (9)

124

S′
ep =

m∑
i=1

exp(Sep[1, i]/τ)∑m
j=1 exp(Sep[1, j]/τ)

Sep[1, i] (10)

Where S′
instr, S

′
ep ∈ R1 are instance-level scores. We average the two scores to find the Observation-125

Word score:126

S′
O−W =

S′
ep + S′

instr

2
(11)

127

The final similarity score between an episode and an instruction is computed using the previously128

calculated scores:129

s(ep, instr) =
SE−I + S′

E−W + S′
O−I + S′

O−W

4
(12)

This method takes into consideration both fine-grained and coarse-grained contrasts. Considering N130

episode-instruction pairs in a batch of successful trials, the auxiliary loss is calculated as below:131

Laux = − 1

n

N∑
i=1

(log
exp(s(epi, instri)∑N

j=1 exp(s(epi, instrj))
+ log

exp(s(epi, instri)∑N
j=1 exp(s(epj , instri))

) (13)

The total objective is calculated by adding this loss to the primary RL loss, LRL, with a coefficient of132

λC .133

Ltotal = LRL + λC .Laux (14)

The overall architecture of a base model [4] and the calculation of the auxiliary loss is depicted in134

Figure 1. If the shape of the output representations from the observation and instruction encoders135

does not align, we employ linear transformation layers to bring them into the same feature space. This136

transformation is crucial as it facilitates the calculation of similarity between these representations137

within our loss function.138

4 Experiments139

In our experiments, we conducted a comparative analysis to assess the impact of X-CLIP [21]140

auxiliary loss on generalization and sample efficiency of instruction-following agents. We try to141

answer the following questions:142
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• Does the proposed CAREL approach actually help instruction-following agents (Section143

4.1)?144

• Is it possible to apply CAREL to other multi-modal settings in the context of RL agents145

(Section 4.2)?146

Two series of experiments are performed to answer the abovementioned questions. In the following147

parts, we explain the experimental settings for each set of experiments and state the results to148

showcase the efficacy of CAREL.1149

4.1 Instruction-following with CAREL150
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Figure 2: Test time comparison between success rates of the proposed method (CAREL) and the
baseline model.

We employ the BabyAI environment [4], a lightweight but logically complex benchmark with151

procedurally generated difficulty levels, which enables in-depth exploration of grounded language152

learning in the goal-conditioned RL context. This environment provides a 2D grid-world environment153

with multiple objects, such as keys, balls, boxes, and doors, which can be distractors at specific154

1For the experiments reported in this paper, we have used one NVIDIA 3090 GPU and one TITAN RTX
GPU over two weeks.
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difficulty levels and take one of the six possible colors in the BabyAI environment. The agent is155

tasked with a synthetic and natural-looking instruction and receives a sparse reward at the end of the156

episode if all steps of the instruction are accomplished successfully.157

We use BabyAI’s baseline model as the base model and minimally modify its current structure. Word-158

level representations are calculated using a simple token embedding layer. Then, a GRU encoder159

calculates the global instruction representation. Similarly, we use the model’s default observation160

encoder, a convolutional neural network with three two-dimensional convolution layers. All obser-161

vations pass through this encoder to calculate local representations. Mean-pooling/Attention over162

these local representations is applied as the aggregation method to calculate the global observation163

representation. The RL agent is trained using the PPO algorithm [33] and Adam optimizer with164

parameters β1 = 0.9 and β2 = 0.999. The learning rate is 7e − 4, and the batch size is 256. We165

set λC = 0.01 and the temperature τ = 1 as CAREL-specific hyperparameters. To minimize the166

changes to the baseline model updates, we backpropagate the gradients in an outer loop of PPO loss167

to be able to capture episode-level similarities. This gradient update with different frequencies has168

been tried in the literature before [22].169

The evaluation framework for this work is based on systematic generalization to assess the language170

grounding property of the model. We report agent’s success rate and mean return over a set of unseen171

tasks at each BabyAI level, according to Table 1. These metrics are recorded during validation172

checkpoints throughout training. We recorded and analyzed the success rate achieved by these models173

across various levels. Furthermore, Figure 2 illustrates the improved sample efficiency brought about174

by CAREL. All results are reported over two random seeds.175

The results indicate improved sample efficiency of CAREL methods across all levels, especially176

those with step-by-step solutions that require the alignment between the instruction parts and episode177

interactions more explicitly, namely GoToSeq and OpenDoorsOrder which contain a sequence of178

Open/GoTo subtasks described in the instruction. The generalization is significantly improved in179

more complex tasks, e.g., Synth.180

Table 1: Test splits for BabyAI levels (For more details on the environment, please see [4]).

Level Test split

GoToSeq
Instructions containing "red box", "green ball", "purple key",
"yellow box", "blue ball", and "grey key".PickupLoc

PutNextLocalS6N4

SynthS5R2

"put the red ball next to the green key",
"put the purple box next to the yellow ball",
"put the blue key next to the grey box",
"go to the red box",
"go to the green ball",
"pick up the purple key",
"pick up the yellow box",
"open the blue door",
"open the grey door",

OpenDoorsOrderN4

"open the blue door, then open the yellow door",
"open the green door, then open the grey door",
"open the grey door, then open the red door",
"open the yellow door, then open the purple door",
"open the red door, then open the green door",
"open the purple door, then open the blue door",

6



4.2 Multi-modal RL with CAREL181

To assess the performance of CAREL in more general multi-modal scenarios of RL, we incorporate182

the proposed framework in a recently proposed model called SHELM [26], which leverages the183

knowledge hidden in pre-trained models such as CLIP [29] and Transformer-XL [7]. SHELM uses184

CLIP to extract textual tokens related to every observation, and then these tokens are passed through185

the frozen Transformer-XL network to form a memory of tokens throughout the episode. This hidden186

memory is then concatenated to a local representation of the observation through a CNN network and187

then passed to actor/critic heads.188

For this model, we consider the selected token’s representation and the CNN’s output as local189

representations. The global representations for text come from the hidden state of Transformer-XL,190

and an additional attention aggregator is applied on top of the CNN encoder of observations to191

obtain the global representations. In order to allow the auxiliary loss to refine local and global192

representations to the current task with more degrees of freedom, we apply a network similar to193

adapters [15] consisting of linear layers with ReLU non-linearity in between and a final residual194

connection. One adapter comes over the Transformer-XL representations and another comes after195

CLIP for observations. Doing so, we hope the auxiliary X-CLIP loss function will improve the196

learnable representations to be more suitable for multi-grained alignment. Figure 3 shows the197

effectiveness of CAREL in the Miniworld environment [5]. We also use a logarithmic scheduler in198

this experiment to decline λC from 0.1 to 0.01. The gradient backpropagation is separated from RL199

loss similar to section 4.1. These results are reported over two random seeds as well.200

Although the model has to train more parameters due to additional adapters, we can observe the201

improved sample efficiency, which can hint at the improved internal representations by means of the202

CAREL framework. This can affect the choice of related tokens in CLIP and the hidden representation203

of Transformer-XL, which corresponds to the memory of tokens and global representation for the204

textual modality.205
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Figure 3: Training time comparison between mean total rewards of the proposed method (CAREL)
and the baseline model, SHELM.

5 Conclusion206

This paper proposes the CAREL framework to adopt auxiliary cross-modal contrastive loss functions207

to the multi-modal RL setting, especially instruction-following agents. The aim is to improve the208

multi-grained alignment between different modalities, leading to superior grounding in the context of209

learning agents. We apply this method over existing instruction-following agents and multi-modal210

actor/critic networks. The results indicate the sample efficiency and generalization boost from the211

proposed framework.212

As for the future directions of this study, we suggest further experiments on more complex envi-213

ronments and other multi-modal sequential decision-making agents. Also, there could be various214

versions of the auxiliary loss, e.g., at multiple levels of granularity with additional modalities such215
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as descriptive text or higher-level information from the image modality. The involvement of the216

auxiliary signal in the reward function could also be an interesting future direction.217
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