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Abstract

Video Question Answering (VideoQA) aims
to answer questions about the visual content
of a video. Current methods mainly focus on
improving joint representations of video and
text. However, these methods pay little atten-
tion to the fine-grained semantic interaction
between video and text. In this paper, we pro-
pose Mulan: a Multi-Level Alignment Model
for Video Question Answering, which estab-
lishes alignment between visual and textual
modalities at the object-level, frame-level, and
video-level. Specifically, for object-level align-
ment, we propose a mask-guided visual feature
encoding method and a visual-guided text de-
scription method to learn fine-grained spatial
information. For frame-level alignment, we in-
troduce the use of visual features from individ-
ual frames, combined with a caption generator,
to learn overall spatial information within the
scene. For video-level alignment, we propose
an expandable ordinal prompt for textual de-
scriptions, combined with visual features, to
learn temporal information. Experimental re-
sults show that our method outperforms the
state-of-the-art methods, even when utilizing
the smallest amount of extra visual-language
pre-training data and a reduced number of train-
able parameters. Our code is publicly available
at https://github.com/fuyu1998/Mulan.

1 Introduction

Video Question Answering (VideoQA) is a task
that focuses on answering questions related to the
visual content of a video. It serves as a represen-
tative task that showcases the fusion of visual and
linguistic modalities. It demands the ability to com-
prehend and integrate data from both modalities to
learn complex spatiotemporal information.

Given the videos are a continuous sequence of
images, the mainstream models (Li et al., 2020,
2022c; Yang et al., 2021, 2022a; Zellers et al., 2021;
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Figure 1: The difference between existing methods and
our method. In contrast to existing methods that solely
establish visual-language alignment at the video level,
our method incorporates visual-language alignment at
multiple levels.

Xu et al., 2023) commonly adopt a two-step ap-
proach to establish a joint representation of video
and text. First, an image-language model (He et al.,
2016; Radford et al., 2021) is utilized to extract
visual and textual features from the video frames.
Then, alignment between the visual and textual
modalities is established based on the extracted vi-
sual and textual features. However, existing meth-
ods align video and text globally to learn semantic
correlations, disregarding the fine-grained interac-
tion between local salient information in the video
and important textual descriptions. Furthermore,

https://github.com/fuyu1998/Mulan


the majority of subtitles in the dataset are brief, re-
sulting in a lack of detailed textual descriptions for
significant video content, which further undermines
the effectiveness of semantic alignment. Therefore,
relying solely on global alignment is insufficient to
address the semantic gap issue.

To address the above issues, we propose Mu-
lan: a Multi-Level Alignment Model for Video
Question Answering. Specifically, we establish
alignment between visual and textual modalities at
the video-level, frame-level, and object-level, as
shown in Figure 1. Our method can be divided into
three stages:

(1) Stage one involves the process of multi-level
visual features generation. The image encoding
of all sampled frames is regarded as video-level
visual features. The image encoding of an individ-
ual frame is regarded as frame-level visual features.
For object-level visual features, we have introduced
a mask-guided object-level visual feature encoding
method.

(2) Stage two involves the process of multi-level
textual description generation. The original descrip-
tion of the video is regarded as video-level textual
description. For frame-level textual descriptions,
we have introduced the use of a caption genera-
tor. For object-level textual descriptions, we have
proposed a vision-guided generative approach.

(3) Stage three involves the process of multi-
level alignment and training. Specifically, we ini-
tially convert visual features into inputs for a lan-
guage model and design prompts to concurrently
establish alignment at the video-level, frame-level,
and object-level. Finally, we employ a masked lan-
guage modeling objective for training the language
model, enabling it to acclimatize to visual input
and establish multi-level alignment.

Our contributions can be summarised as follows:
(1) We introduce a multi-level visual-language

alignment method for video question answering.
To the best of our knowledge, this is the first work
in the field of video question answering that ex-
plores multi-level visual-language alignment.

(2) We give a clear and unified spatiotemporal in-
formation learning framework. At the object-level
and the frame-level, the method can learn spatial
information, while acquiring temporal information
at video-level.

(3) The experimental results illustrate that our
method surpasses state-of-the-art baselines in video
question answering tasks, even when using a mini-
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Figure 2: Comparison of the size of extra pre-training
dataset and performance between our method and state-
of-the-art methods. Our method demonstrates superior
performance compared to state-of-the-art methods, even
when utilizing extra pre-training datasets that are at least
one order of magnitude smaller.

mal amount of visual-language extra pre-training
data (Figure 2), and a reduced number of train-
able parameters. Moreover, as the size of the pre-
training dataset increases, the performance of our
method can be further improved.

2 Related work

2.1 Pre-Trained Image-Language Models
In the realm of visual and language fusion method-
ologies, exploratory methods, as exemplified by the
multi-stream approach(Lei et al., 2018), entail the
utilization of a unified encoder to merge various
information streams. This method facilitates the
utilization of visual and language information at
diverse levels of granularity and offers straightfor-
ward scalability. However, information of the same
granularity is merged into distinct streams before
alignment, resulting in a relatively poor semantic
consistency among these streams.

In recent years, contrastive learning has been
substantiated as an efficacious approach for acquir-
ing cross-modal joint representations. The image-
language pre-trained model, based on contrastive
learning, aims to establish a mapping between
global image features and global text features in a
shared space (Radford et al., 2021; Li et al., 2022c;
Lin et al., 2022; Jia et al., 2021; Wang et al., 2022b).
These model considers aligned image-text pairs as
positive samples and unaligned pairs as negative
samples to optimize visual-language alignment.

Due to the requirement of a substantial amount
of training data for video-language models to
perform well, recent research has focused on
transferring image-language models to video-text
tasks (Yang et al., 2022a; Li et al., 2023b; Yeh et al.,
2023). This is because there is a strong correlation



between images and videos. Sparse sampling offers
an effective approach to video representation (Li
et al., 2022a; Lei et al., 2021), contrasting with
the use of 3D dense features (Feichtenhofer et al.,
2019). It facilitates the more efficient utilization
of pre-trained image-language models within the
realm of video processing tasks (Wang et al., 2022e;
Fang et al., 2021; Luo et al., 2022).

Our method continues along this line of method-
ology by ingeniously constructing a bridge from
image-language to video-language through metic-
ulous design, thereby facilitating the transfer of
knowledge.

2.2 Language Models for Visual-Language
Alignment

Some works focus on converting visual information
entirely into symbolized textual information (Yang
et al., 2022b; Wang et al., 2022e; Lin et al., 2023).
Some other works use raw textual descriptions of
videos, adopt the approach of freezing the weights
of pre-trained language models, and integrate vi-
sual information to address tasks that involve both
visual and language processing (Alayrac et al.,
2022; Eichenberg et al., 2022; Yang et al., 2022a).
However, the first category of methods disregards
visual information, particularly fine-grained visual
details. Conversely, the second category of meth-
ods lacks detailed textual descriptions and only
achieves alignment at the video level.

In contrast, our method considers multi-level
visual information and goes beyond by con-
structing semantic representations with multi-level
visual-language alignment. In addition, we use
lightweight Adapter layers (Houlsby et al., 2019;
Hu et al., 2022) and frozen the language model.
Our model can be easily applied to different types
of language models, thereby facilitating practical
application and deployment.

3 Method

3.1 Overall Framework

Our method can be divided into three stages, as
illustrated in Figure 3: (1) multi-level visual fea-
ture generation, (2) multi-level textual description
generation, (3) multi-level alignment and training.

Firstly, for a given sampled frame, an image
encoder is applied to extract global frame visual
features. Then, a mask generator is utilized to cre-
ate masks for the objects within the frame, and the
same image encoder is applied to obtain local frame

visual features. Global frame visual features pro-
vide a comprehensive representation of the overall
spatial information, while local frame visual fea-
tures accurately capture specific object details such
as position and attributes. It is worth noting that in
this process, a mask generator is employed instead
of an object detector. This choice is motivated by
the fact that the output bounding boxes from an
object detector are often not specific enough and
can also struggle to accurately recognize objects in
an open-vocabulary setting. Furthermore, due to
the fact that both local frame visual features and
global frame visual features are derived via a uni-
fied image encoder, it allows for the coexistence of
local frame visual features and global frame visual
features within the same semantic space.

Next, for global frame visual features, frame
captions are generated using the image-language
model BLIP (Li et al., 2022b). From these frame
captions, the part-of-speech tagging tool provided
by spaCy (Honnibal and Johnson, 2015) is em-
ployed to extract noun phrases, thus establishing
a dynamic vocabulary tailored to the frame. The
dynamic vocabulary terms are subsequently amal-
gamated with predefined static vocabulary, thereby
creating the vocabulary input for the object filter.
The object filter is then utilized to extract global
and local frame objects from the respective global
and local frame visual features. It is worth noting
that in this process, due to the differences in the
information contained in global and local frame vi-
sual features, the extracted global and local frame
objects may also differ.

Finally, the global and local frame visual fea-
tures, in conjunction with global and local frame
object descriptions and global frame captions, serve
as the input to a language model equipped with
the adapter. Within the information fusion process,
alignment between frame-level and object-level has
been established. Simultaneously, temporal infor-
mation is integrated by implementing an expand-
able ordinal prompt approach, thereby enabling the
establishment of video-level alignment.

3.2 Multi-Level Visual Features Generation

To capture multi-level visual information, it is cru-
cial to understand both the relationships between
objects within video frames, which are represented
as global frame visual features, and the local se-
mantic information of the objects, which are repre-
sented as local frame visual features.
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Figure 3: Overall framework of our method. (1) Multi-Level Visual Feature Generation. For each sampled
frame, we use an image encoder to generate global frame visual features and utilize the mask generator to guide the
generation of local frame visual features. (2) Multi-Level Textual Description Generation. We utilize a caption
generator to extract frame captions and construct both dynamic and static vocabulary. The object filter is then
utilized to generate frame objects based on these vocabularies. (3) Multi-Level Alignment and Training. We
integrate visual and textual information to establish object-level and frame-level alignment, incorporating temporal
cues to extend the alignment to the video level. Subsequently, we utilize a language model equipped with adapters
to obtain the answers.

Global Frame Visual Features. The video is
represented as a sequence of frames f = {fi}T1 ob-
tained through uniform and sparse sampling, where
T is the total number of sampled frames. Each
frame fi is individually encoded using the image
encoder ϕCLIP to generate global frame visual fea-
tures vG:

vGi = ϕCLIP(fi) ∈ RDv (1)

vG = {vGi }T1 ∈ RT×Dv (2)

where Dv is the dimension of the visual features.
As vG represents the visual features of the origi-

nal frames, it contains the overall spatial informa-
tion of those frames. Therefore, we consider vG

to represent frame-level visual information. Dur-
ing the experimental process, the image encoder is
frozen, meaning that its weights are not updated.

Local Frame Visual Features. Our goal is
to establish multi-level visual-language alignment.

Given the effectiveness of contrastive learning-
based image-language models in learning shared
representations of images and text in a common
space, we employ CLIP (Radford et al., 2021),
a contrastive learning-based model, as the image
encoder. However, due to its focus on capturing
global information of images, CLIP is not well-
suited for directly capturing local details. To ad-
dress this issue, we leverage the existing unsuper-
vised mask generator CutLER (Wang et al., 2023b)
to guide the image encoder CLIP in generating
local frame visual features.

To obtain local frame visual features, we first
utilize the mask generator CutLER ϕCutLER to gen-
erate a set of image masks mi for each frame fi.
We refer to the collection of mask sets for each
frame as m:

mi = ϕCutLER(fi) (3)

m = {mi}T1 (4)



Then, we apply cropping and masking opera-
tions to the images and feed them into the image
encoder ϕCLIP to obtain the local frame visual fea-
tures vL:

vLi = ϕCLIP(Tcrop(fi ⊙mi)) ∈ RNi×Dv (5)

vL = {vLi }T1 ∈ R(
∑T

i=1 Ni)×Dv (6)

where Tcrop(·) denotes the operations of cropping
and masking, and ⊙ is the Hadamard product oper-
ation. We assume that the number of masks for the
i-th frame is Ni.

Due to the removal of object-irrelevant regions
in vL, it focuses solely on the target objects them-
selves. Therefore, we consider vL to represent
object-level visual information. During the experi-
mental process, the mask generator is also frozen.

3.3 Multi-Level Textual Description
Generation

To capture multi-level textual information, it is
crucial to utilize both the text that describes the
relationships between objects, represented by the
global frame captions, and the detailed information
about the objects, represented by the descriptions
of global and local frame objects.

Global Frame Captions. To establish textual
connections among objects in the frame and ob-
tain an overall description of the frame’s informa-
tion, we utilize the image-language model BLIP (Li
et al., 2022b) to generate global frame captions
c = {ci}T1 . We consider c to represent frame-level
textual information.

Global and Local Frame Object Descriptions.
Global frame captions alone may not capture the
fine-grained details of objects. Therefore, con-
structing textual descriptions only at the frame level
is insufficient. To address this issue, we further
utilize global and local frame visual features to
construct global and local object descriptions.

Firstly, we construct a predefined static vocab-
ulary V S , which includes a set of candidate ob-
ject names and attributes. However, the predefined
static vocabulary cannot cover all objects and at-
tributes. To address this issue, we utilize spaCy
to extract noun phrases from the global frame cap-
tions c, creating a dynamic vocabulary V D. The
final vocabulary V is defined as follows:

V = V S ∪ V D (7)

Next, we utilize the text encoder ϕCLIP-text in
the CLIP model, which is based on contrastive

learning, to compute the text features r for the final
vocabulary V :

r = {ϕCLIP-text(Vi)}L1 (8)

where L is the size of the final vocabulary V .
Finally, we determine object descriptions for

each visual feature by evaluating the cosine sim-
ilarity between the visual features vG or vL and
text features r. For the global frame visual features
vG, we generate a total of MG global object de-
scriptions for each visual feature, denoted as tG.
Similarly, for the local frame visual features vL,
we generate a total of ML local object descriptions
for each visual feature, denoted as tL.

Due to the different focuses of global frame vi-
sual features vG and local frame visual features vL,
there are also differences in the global object de-
scriptions tG and local object descriptions tL. We
consider tG and tL to represent object-level textual
information.

3.4 Multi-Level Alignment and Training

Multi-Level Alignment Prompting. To achieve
Visual-Language alignment, we integrate the ob-
tained object-level and frame-level visual features
with their corresponding textual descriptions. This
integration allows us to align and fuse the visual
and textual information at both the object-level and
frame-level. Then, we integrate expandable tempo-
ral markers to facilitate visual-language alignment
at the video-level.

As illustrated in Figure 3, we have devised the
following prompt:

“Question: <Question>? Answer: [MASK].

Caption: <Caption>. Global: <Global Objects>.

Local: <Local Objects>. Subtitles: <additional

description>.”

For the alignment at the object-level, we con-
sider “a visual feature and its corresponding object
description” as the alignment unit. We iteratively
combine these units to align the global and local
frame visual features (vG or vL) with their respec-
tive object descriptions (tG or tL). To leverage the
inductive bias of language proximity, we sort the
object descriptions in descending order based on
their cosine similarity between text features and
visual features. Specifically, for each global frame
visual feature “[GLOBAL]” and local frame visual fea-
ture “[LOCAL]”, we construct the following prompt:

“[GLOBAL] <Description 1>, ...”

“[LOCAL] <Description 1>, ...”



For the alignment at the frame-level, we con-
sider all object-level information grouping by
frame and global frame captions “First, <Caption

1>. Second, <Caption 2>. ...” as the alignment
unit.

For the alignment at the video-level, we con-
sider the frame-level information and additional
descriptions as the alignment unit. At the video-
level, temporal information is indeed crucial for
video understanding. Therefore, we incorporate
expandable ordinal markers into our model, such
as “First,” “Second,” and so on.

Language Model with Adapter. We use the
same Adapter layer as in the FrozenBiLM (Yang
et al., 2022a) model. Each visual feature is passed
through a linear projection layer and incorporated
into the language model as an individual prompt.
The global and local visual features (vG and vL)
are linearly mapped using the projection matrices
(PG and PL) to obtain the global and local feature
prompts (uG and uL):

uG = {PG(vGi )}T1 (9)

uL = {PL(vLi )}
∑T

j=1 Nj

1 (10)

For autoencoder language models like De-
BERTa (He et al., 2021), we employ a frozen MLM
classifier head, denoted as mθ, to predict answers
from the vocabulary set A, which is constructed
from the answers appearing in the training set.

Multimodal Training. During training, we only
update the parameters of the visual-to-text projec-
tion modules P and the adapter module. To en-
sure consistency with language models, We use
the visually-conditioned Masked Language Mod-
eling (MLM) objective, where some tokens {xm}
are randomly masked, and the model has to pre-
dict these masked tokens based on the other tokens
and the visual input. Formally, we minimize the
following loss:

Lµ(x, y) = − 1

M

∑
m

log pµ(x̃, y)
xm
m , (11)

where x̃ is the corrupted text sequence, y is the
sequence of visual input, pµ(x̃, y)xm

m is the proba-
bility for the (masked) m-th token in x̃ to be xm,
and M is the number of masks in the sequence
x̃. In detail, we adopt the same configuration as
BERT (Devlin et al., 2019) for our method.

4 Experiments

4.1 Experimental Setup and Datasets

General Setup. To ensure reproducibility, we uti-
lize the same fixed seed for all experiments. Each
experiment was conducted three times, and the av-
erage results were reported as the final outcome.
For all other methods, we report the experimental
results as documented in the paper.

Pre-Trained Models. We utilize the CLIP
ViT-L/14 model (Radford et al., 2021) as the im-
age encoder ϕCLIP with an input image resolu-
tion of 336 × 336. We utilize the Cutler (Wang
et al., 2023b) model as the mask generator ϕCutLER,
which leverages the Cascade Mask R-CNN (Cai
and Vasconcelos, 2021) as the detector for gener-
ating masks. We utilize the BLIP model (Li et al.,
2022b) with ViT-L (Dosovitskiy et al., 2021) as
the caption generator. We utilize the DeBERTa-V2-
XLarge model (He et al., 2021) as the language
model.

Note that in practical applications, the cap-
tion generator usually incorporates an image en-
coder (Li et al., 2022b, 2023a; Wang et al., 2022c),
which facilitates the integration of the image en-
coder and caption generator to streamline the pro-
cess. In our experiments, we intentionally sepa-
rated the image encoder and subtitle generator to
ensure a fairer comparison with other CLIP-based
methods.

Datasets. We pre-trained our model using the
WebVid-2M (Bain et al., 2021) dataset. We con-
ducted evaluations on the iVQA (Yang et al., 2021),
MSRVTT-QA (Xu et al., 2017), MSVD-QA (Xu
et al., 2017), and TGIF-FrameQA (Jang et al.,
2017) datasets to assess the performance of our
approach. Detailed information about the dataset
is provided in the Appendix A.

Furthermore, given that pre-trained models are
trained with additional datasets before being used,
our method also incorporates these additional
datasets. Our method predominantly integrates 400
million image-text pairs from the image encoder
CLIP, along with 14 million image-text pairs from
BLIP(Li et al., 2022b), and an additional 1.3 mil-
lion image-text pairs from CutLER(Wang et al.,
2023b). Therefore, we incorporate a total of 415.3
million image-text pairs through all pre-trained
models.

Implementation Details. Detailed implementa-
tion information is provided in the Appendix B.



Method Trained
Params

Extra
PT Data iVQA MSRVTT-QA MSVD-QA TGIF-FrameQA

FrozenBiLM (Yang et al., 2022a) 30M 10M 39.6 47.0 54.8 68.6
HiTeA (Ye et al., 2022) 297M 17M — 45.9 55.3 73.2
mPLUG-2 (Xu et al., 2023) — 17M — 48.0 58.1 75.4
Flamingo-3B (Alayrac et al., 2022) 1.4B 27M 37.7 25.6 42.6 —
Flamingo-9B (Alayrac et al., 2022) 1.8B 27M 40.7 29.4 47.2 —
Flamingo (Alayrac et al., 2022) 10B 27M 45.3 47.4 52,3 —
LAVENDER (Li et al., 2023b) 198M 30M — 45.0 56.6 73.5
Just Ask (Yang et al., 2021) 157M 69M 35.4 41.8 47.5 —
VideoCoCa (Yan et al., 2022) 2.1B 100M 39.0 46.3 56.9 —
InternVideo (Wang et al., 2022d) 1.3B 110M — 47.1 55.5 72.2
MERLOT (Zellers et al., 2021) 223M 180M — 43.1 — 69.5
All-in-one (Wang et al., 2023a) 110M 283M — 46.8 48.3 66.3
GIT (Wang et al., 2022a) 700M 800M — 43.2 56.8 72.8
GIT2 (Wang et al., 2022a) 5.1B 12.9B — 45.6 58.2 74.9
Mulan 31M 2.5M 47.4 48.2 58.2 72.0

Table 1: Comparison with the state of the art on fully-supervised benchmarks. Top-1 accuracy is reported. “Extra
PT Data” refers to the quantity of extra video-text pairs and image-text pairs utilized during the pre-training phase.
All methods are sorted in ascending order based on the “Extra PT Data” from smallest to largest. Throughout the
paper, we utilize bold and underline formatting to emphasize the top two results.

Method Trained
Params

Extra
PT Data iVQA MSRVTT-QA MSVD-QA TGIF-FrameQA

CLIP (Radford et al., 2021) — — 9.2 2.1 7.2 3.6
HiTeA (Ye et al., 2022) 297M 5M — 8.6 18.2 —
HiTeA (Ye et al., 2022) 297M 5M — 21.7 37.4 —
FrozenBiLM (Yang et al., 2022a) 30M 10M 26.9 16.7 33.8 41.9
UnFrozenBiLM (Yang et al., 2022a) 890M 10M 21.0 17.6 31.9 30.7
mPLUG-2 (Xu et al., 2023) — 17M — 43.8 55.3 —
Flamingo-3B (Alayrac et al., 2022) 1.4B 27M 32.7 11.0 27.5 —
Flamingo-9B (Alayrac et al., 2022) 1.8B 27M 35.2 13.7 30.2 —
Flamingo (Alayrac et al., 2022) 10B 27M 40.7 17.4 35.6 —
Just Ask (Yang et al., 2021) 157M 69M 13.3 5.6 13.5 —
Mulan 31M 2.5M 35.7 20.3 38.7 55.6

Table 2: Comparison with the state of the art on zero-shot benchmarks. Top-1 accuracy is reported. We gray out the
method additionally supervised pre-training on VQA v2(Antol et al., 2015) dataset.

4.2 Comparison with State-of-the-art

In this section, we conduct a comprehensive eval-
uation of our method by comparing it with state-
of-the-art methods in both the fully-supervised and
zero-shot settings.

Fully-Supervised Benchmarks. Table 1
presents the results of our method compared to
the state-of-the-art fully-supervised methods. Our
method achieves state-of-the-art performance on
the iVQA, MSRVTT-QA and MSVD-QA datasets,
while obtaining competitive results on the TGIF-
FrameQA dataset. Note that we have utilized the
smallest extra pre-training dataset compared to all
methods. In particular, our method outperforms
FrozenBiLM (Yang et al., 2022a), which also uti-
lizes a language model with Adapter. This can be
attributed to the effective transfer of the zero-shot
capability of the mask generator, image encoder,
and caption generator in our method, which reduces

the dependency on additional pre-training data.

Zero-Shot Benchmarks. Table 2 presents the
results of our method compared to the state-of-
the-art zero-shot methods. The few-shot results
of our method can be found in Appendix C. Our
method achieves state-of-the-art performance on
the TGIF-Frame dataset, while obtaining competi-
tive results on the iVQA dataset. Similarly, we have
utilized the smallest extra pre-training dataset and a
reduced number of trained parameters. Similar to a
fully-supervised setting, our method demonstrates
a relative advantage over FrozenBiLM (Yang et al.,
2022a) in the zero-shot setting. In zero-shot tasks,
the size of the pre-training dataset plays a more
crucial role compared to fully-supervised tasks.
However, even with the smallest extra pre-training
dataset, our method still achieves state-of-the-art
or competitive performance. This can be attributed
to the effective transfer of the zero-shot capability



Video
Level

Frame
Level

Object
Level iVQA MSRVTT-QA MSVD-QA TGIF-FrameQA

1 ✓ ✗ ✗ 26.5 16.3 31.0 25.3
2 ✓ ✓ ✗ 35.5 19.6 38.3 36.7
3 ✓ ✗ ✓ 30.3 18.3 35.3 47.5
4 ✓ ✓ ✓ 35.7 20.3 38.7 55.6

Table 3: Ablation studies on frame-level and object-level alignment utilizing video-level alignment.

Video
Level

Frame
Level

Object
Level iVQA MSRVTT-QA MSVD-QA TGIF-FrameQA

1 ✗ ✓ ✗ 24.6 9.7 18.8 42.7
2 ✗ ✗ ✓ 24.5 10.7 19.8 42.9
3 ✗ ✓ ✓ 27.5 11.3 21.2 47.5
4 ✓ ✓ ✓ 35.7 20.3 38.7 55.6

Table 4: Ablation studies on frame-level and object-level alignment without utilizing video-level alignment.
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Figure 4: The influence of the size of the pre-training
dataset on performance.

of the mask generator, image encoder, and cap-
tion generator in our method, which reduces the
dependency on additional pre-training data.

The influence of the size of the pre-training
dataset is shown in Figure 4, and detailed data can
be found in Appendix C.2. For all datasets, our
method exhibits enhanced performance as the size
of the pre-training dataset expands. This indicates
that our method still has significant potential for
improvement.

Dataset-Specific Analysis. For the TGIF-
FrameQA dataset, 51% of the questions focus on
concrete object-related information such as color
and quantity, while 49% of the questions address
abstract information, such as actions. Our method
performs well in capturing concrete object-related
information in the zero-shot setting, resulting in
a strong performance in that scenario. However,
in the fully-supervised setting, our method faces
challenges in further improving its capability to
extract concrete information, and it exhibits rela-
tively low ability in capturing abstract information

compared to concrete information. As a result, our
method achieves suboptimal performance in the
fully-supervised setting.

For the iVQA dataset, in the zero-shot setting,
our method demonstrates comparable performance
to Flamingo-9B, which has 1.8 billion trained pa-
rameters. In practice, it is commonly observed
that larger trained parameter sizes tend to lead to
improved generalization performance. Therefore,
although our method achieved suboptimal perfor-
mance compared to Flamingo, which has 10 bil-
lion trained parameters, it is still a significant ac-
complishment considering that our trained parame-
ters constitute only 0.3% of Flamingo and 1.7% of
Flamingo-9B.

4.3 The Influence of Multi-Level Alignment

In this section, we conduct an ablation study to an-
alyze the influence of multi-level alignment and
explore the complementary and substitutive ef-
fects among the three levels of alignment. All
experiments were conducted with the identical pre-
training configuration, as elucidated in appendix B.
To minimize the influence of fine-tuning and con-
serve computational resources, all ablation exper-
iments will be conducted and reported under the
zero-shot setting.

The Complementary Effect. Table 3 presents
the results of the ablation studies on frame-level
and object-level alignment, with the utilization of
video-level alignment. This experiment aims to un-
cover the complementary effects of frame-level and
object-level alignment on video-level alignment.

For the MSRVTT-QA and MSVD-QA datasets,
where the primary question types involve global de-
scriptions of the videos, and for the iVQA dataset,



which focuses on scene and coarse-grained object
information, frame-level alignment plays a dom-
inant role as it encompasses a significant major-
ity of the spatiotemporal information relevant to
the questions. In contrast, for the TGIF-FrameQA
dataset, which primarily focuses on object infor-
mation, object-level alignment assumes the leading
role as it helps capture fine-grained spatial informa-
tion of the objects.

Overall, the comparison between row 4 and the
other rows in Table 3 supports the complementary
effect of object-level and frame-level alignment,
and further confirms that utilizing three levels of
alignment simultaneously is the optimal method.

The Alternative Effect. Table 4 presents the
results of the ablation studies on frame-level and
object-level alignment, without the utilization of
video-level alignment. This experiment aims to
uncover the alternative effects of frame-level and
object-level alignment on video-level alignment.

Overall, the comparison between row 3 and rows
1 to 2 in Table 4 provides evidence that the com-
bined effect of frame-level and object-level align-
ment is superior to their individual effects. Addi-
tionally, the comparison between row 4 and rows 1
to 3 confirms the importance of video-level align-
ment, suggesting that object-level and frame-level
alignment have less substitutive effects on video-
level alignment.

Experimental Summary. Considering all the
conclusions, it can be inferred that the three levels
of alignment exhibit complementary effects. Addi-
tionally, we investigate the influence of misalign-
ment between the visual and textual modalities in
Appendix D. For the influence of temporal infor-
mation, please refer to Appendix E. Moreover, we
conducted experiments to examine the influence of
accumulated errors in the Appendix F.

5 Conclusions

In this paper, we introduce Mulan: A Multi-Level
Alignment Model for Video Question Answering,
which enhances temporal and spatial information
learning through multi-level alignment. Addition-
ally, we conduct experiments on public VideoQA
datasets and achieve state-of-the-art results. Fi-
nally, we provide ablation studies to demonstrate
the complementary effects of multi-level alignment
and the effectiveness of our method.

Limitations

In this work, we analyze the limitations as follows:
(1) Influence of maximum sequence length: Our

method is influenced by the maximum sequence
length of the language model. Although, as dis-
cussed in Appendix E, there is a diminishing
marginal utility of increasing the number of sam-
pled frames, and expanding sequence lengths is a
crucial direction in the development of large lan-
guage models. However, reducing the temporal
and spatial redundant information between differ-
ent levels can still be beneficial.

(2) Abstraction ability: Our method provides
less assistance in answering questions that focus on
abstract information, while it offers greater assis-
tance in answering questions that focus on concrete
information. To enhance the abstraction ability of
the model, we believe that deeper interactions be-
tween different levels and modalities are beneficial.

Ethics Statement

This work does not involve any direct ethical con-
cerns. We are dedicated to advancing the field of
video question answering. All experiments were
conducted on open datasets, and the findings and
conclusions of this paper are accurately and objec-
tively reported.
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A Datasets

WebVid-2M (Bain et al., 2021) consists of 2.5 mil-
lion videos and their corresponding text pairs, col-
lected from the Shutterstock website. The dataset
does not include audio, and the video captions are
obtained from pre-existing alternative textual de-
scriptions.

iVQA (Yang et al., 2021) is an open-end
VideoQA benchmark that focuses on objects,
scenes, and people in instructional videos. It con-
sists of 10k video clips and 10k QA pairs, split into
6k/2k/2k for training/validation/testing.

MSVD-QA (Xu et al., 2017) is an open-end
VideoQA benchmark that consists of 2k video clips
and 51k QA pairs, split into 32k/6k/13k for train-
ing/validation/testing. The QA pairs in MSVD-QA
are automatically generated from video descrip-
tions.

MSRVTT-QA (Xu et al., 2017) is an open-end
VideoQA benchmark that consists of 10k video
clips and 243k QA pairs, split into 158k/12k/73k

for training/validation/testing. Similar to MSVD-
QA, the QA pairs in MSRVTT-QA are also auto-
matically generated from video descriptions.

TGIF-FrameQA (Jang et al., 2017) is an open-
end VideoQA benchmark based on GIF videos. In
the TGIF-FrameQA dataset, the majority of videos
have short durations, typically less than 5 seconds.
These videos are primarily classified into four cat-
egories: objects, quantities, colors, and positions.
It consists of 46k gifs and 53k QA pairs, split into
39k/13k for training/testing.

B Implementation Details

Hyperparameter Settings. For all experiments,
we employ uniform sampling to select 8 frames
(T = 8) from each video. For pre-training ex-
periments, we solely utilize video-level textual de-
scriptions to avoid the model gathering information
from other frame-level and object-level textual de-
scriptions, which could potentially impact perfor-
mance. For evaluation and fine-tuning experiments,
we impose certain constraints to accommodate the
token limitations of the language model. Specif-
ically, we limit the generation of a maximum of
8 objects per frame. Additionally, the maximum
number of global frame object descriptions per
frame is set to 8, and the maximum number of local
frame object descriptions per object is set to 2. For
pre-training experiments, we use a sequence length
of 128, and for evaluation and fine-tuning experi-
ments, we use a sequence length of 512. The visual
feature dimension of the pre-trained image encoder
ViT-L/14 (Dosovitskiy et al., 2021) is 768, while
the hidden dimension of the pre-trained language
model DeBERTa-V2-XLarge (He et al., 2021) is
1536.

Training. We conducted all experiments on
8 NVIDIA GeForce RTX 3090 GPUs. The pre-
training on the WebVid-2M (Bain et al., 2021)
dataset took approximately 10 hours, with a total
of 2 epochs. For the pre-training experiments, we
set the learning rate to 3× 10−5 and trained for 2
epochs with a batch size of 16. For the fine-tuning
experiments, we set the learning rate to 5× 10−5

and trained for 40 epochs with a batch size of 4. For
all training experiments, we employ the Adam opti-
mizer (Kingma and Ba, 2015) with β = (0.9, 0.95)
and no weight decay.

Static Vocabulary Setting. We constructed the
static vocabulary based on the class names from the
OpenImage v7 dataset (Kuznetsova et al., 2020),
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Supervision iVQA MSRVTT-QA MSVD-QA TGIF-FrameQA
0% (zero-shot) 35.7 20.3 38.7 55.6
1% (few-shot) 41.3 37.6 48.7 63.7
10% (few-shot) 43.0 42.9 52.3 67.7

100% (fully-supervised) 47.4 48.2 58.2 72.0

Table 5: Zero-shot and few-shot Results.

Extra PT Data iVQA MSRVTT-QA MSVD-QA TGIF-FrameQA
250 7.2 5.5 18.7 26.7
2.5k 20.4 15.8 30.3 28.4
25k 28.1 16.2 31.6 31.0
250k 31.8 18.1 32.3 44.1
2.5M 35.7 20.3 38.7 55.6

Table 6: The influence of the pre-training dataset size. Zero-shot results are reported.

which consists of 21k noun phrases. For these noun
phrases, we calculate the cosine similarity between
each pair, and if the cosine similarity between two
words exceeds 0.95, we remove the word with the
smaller frequency. In addition, we manually re-
moved less informative words from the vocabulary,
such as “video,” “picture,” “photo,” and so on.

C Results in Low-Data Regime

To examine the influence of the low-data regime
on the performance of our method, we conducted
experiments during both the pre-training and fine-
tuning stages.

C.1 Few-Shot Setting

We employed few-shot learning as an experimental
setup to evaluate the performance of our method
in the low-data regime during the fine-tuning stage.
The experimental results under the few-shot set-
ting are presented in Table 5. The experimental
results reveal a substantial performance improve-
ment when utilizing only 1% and 10% of the train-
ing data compared to the zero-shot setting.

C.2 Size of the Pre-Training Dataset

We manipulated the size of the pre-training dataset
and performed zero-shot testing to evaluate the per-
formance of our method in the low-data regime
during the fine-tuning stage. The detailed experi-
mental results are presented in Table 6. The exper-
imental results confirm the substantial impact of
the pre-training dataset size on the model’s perfor-
mance. The performance of our method improves
as the size of the pre-training dataset increases.

D The Influence of Misalignment

To examine the influence of modality misalign-
ment, we conducted experiments that involved the
separation of visual and textual modalities. The ex-
perimental results are presented in Table 7. In this
experiment, we conducted pre-training using all
modalities and evaluated the performance by sepa-
rately considering the visual and textual modalities
in the zero-shot setting.

From the perspective of the individual effects
of the visual and textual modalities, the textual
modality plays a more prominent role compared to
the visual modality. This is primarily because we
leverage the language model for multimodal fusion.
In terms of question types, the textual modality
demonstrates significant assistance, especially for
questions of the “number”, “where”, and “when”
types. These question types often require a higher
level of abstraction, and the textual modality pro-
vides a more abstract representation compared to
the visual modality. Conversely, the visual modal-
ity proves to be particularly advantageous for “who”
type of questions, as this type of question requires
the model to distinguish between visual entities
present in the scene. The visual modality provides
more detailed information about different visual
entities, enabling the model to better address “who”
type questions. Overall, the experimental results
across all datasets consistently demonstrate that
the synergistic alignment between the visual and
textual modalities can effectively improve the per-
formance.

E The Influence of Temporal Information

The temporal nature of videos is the fundamental
distinction between videos and images. In this sec-



Benchmark Modality Acc What Number Color Where Who WhenVisual Textual
1.1

iVQA
✓ ✗ 28.3 — — — — — —

1.2 ✗ ✓ 34.3 — — — — — —
1.3 ✓ ✓ 35.7 — — — — — —
2.1

MSRVTT-QA
✓ ✗ 18.3 11.6 20.9 12.9 9.4 35.4 3.6

2.2 ✗ ✓ 19.4 13.1 65.1 11.9 12.6 31.8 4.6
2.3 ✓ ✓ 20.3 13.1 69.6 12.6 11.0 34.6 5.2
3.1

MSVD-QA
✓ ✗ 34.8 25.7 29.5 50.0 46.4 51.7 1.7

3.2 ✗ ✓ 37.1 30.2 62.6 37.5 50.0 47.6 10.3
3.3 ✓ ✓ 38.7 30.4 68.8 56.3 53.6 51.5 6.9
4.1

TGIF-FrameQA
✓ ✗ 31.9 42.3 4.5 41.4 22.4 — —

4.2 ✗ ✓ 53.6 46.0 64.2 64.1 23.8 — —
4.3 ✓ ✓ 55.6 46.6 69.8 65.5 23.8 — —

Table 7: The influence of misalignment between visual and textual modalities. “Acc” refers to the overall Top-1
accuracy of the dataset.

Sampling Frame Numbers iVQA MSRVTT-QA MSVD-QA TGIF-FrameQA
1 26.2 16.0 34.2 48.4
2 31.3 19.4 37.4 51.4
4 33.6 19.8 37.6 53.4
8 35.7 20.3 38.7 55.6

Table 8: The infulence of the number of sampling frame numbers.

Benchmark Temporal Prompt Acc What Number Color Where Who When

1.1 iVQA ✗ 34.8 — — — — — —
1.2 ✓ 35.7 — — — — — —
2.1 MSRVTT-QA ✗ 19.3 12.9 59.4 12.3 10.2 32.7 4.5
2.2 ✓ 20.3 13.1 69.6 12.6 11.0 34.6 5.2
3.1 MSVD-QA ✗ 37.8 29.9 61.3 62.5 46.4 50.2 6.9
3.2 ✓ 38.7 30.4 68.8 56.3 53.6 51.5 6.9
4.1 TGIF-FrameQA ✗ 55.0 46.6 69.0 64.4 23.0 — —
4.2 ✓ 55.6 46.6 69.8 65.5 23.8 — —

Table 9: Ablation studies on the expandable ordinal prompt approach.

tion, we examine the influence of temporal informa-
tion in videos. Specifically, we will conduct exper-
iments to investigate the influence of different sam-
pling frame numbers and our proposed expandable
ordinal prompt approach. When two frames are
sampled, our method shows a notable improvement
in performance as it becomes capable of capturing
the temporal information present in the video. As
the number of sampled frames increases, the perfor-
mance of our method continues to improve, albeit
with diminishing returns.

E.1 The Influence of Sampling Frame
Numbers

Table 8 presents the influence of sampling frame
numbers. When only a single frame is sampled,
the video question answering system degrades to
an image question answering system, resulting in
the poorest performance due to the inability to cap-
ture the temporal information of the video. As the

number of sampled frames increases, the perfor-
mance of our method continues to improve, albeit
with diminishing returns. In conclusion, we have
confirmed the importance of the temporal nature of
videos.

E.2 The Influence of the Expandable Ordinal
Prompt Approach

Table 9 presents the influence of the expandable
ordinal prompt approach. The experimental results
demonstrate that the expandable ordinal prompt
approach enhances the performance of nearly all
question types across all datasets when compared
to not utilizing the temporal prompt method. The
experimental results confirm that our proposed ex-
pandable ordinal prompt approach facilitates the
language model’s acquisition of temporal informa-
tion in videos.



Ratio of Random Noise 0% 25% 50% 75% 100%
Frame-Level Visual Features 38.7 36.0 33.8 30.2 15.4
Object-Level Visual Features 38.7 38.2 38.1 38.0 37.4

Frame-Level Textual Description 38.7 38.6 38.0 37.2 35.4
Object-Level Textual Description 38.7 38.6 38.1 38.0 37.6

Table 10: Top-1 accuracy at different levels of random noise ratio in the MSVD-QA dataset.

Ratio of Random Noise 0% 25% 50% 75% 100%
Frame-Level Visual Features 55.6 52.3 49.5 45.4 20.4
Object-Level Visual Features 55.6 54.7 53.6 51.2 48.4

Frame-Level Textual Description 55.6 55.5 54.5 52.8 48.5
Object-Level Textual Description 55.6 54.9 53.7 53.5 51.5

Table 11: Top-1 accuracy at different levels of random noise ratio in the TGIF-FrameQA dataset.

F The Influence of Accumulated Errors

From a structural standpoint, our method conforms
to a pipeline structure. At an equivalent scale, a
pipeline structure, when compared to an end-to-end
structure, offers increased flexibility. However, the
pipeline structure method tends to result in a higher
incidence of cascading errors.

To examine the influence of cascading errors, We
designed experiments in which we introduced sim-
ulated errors by randomly substituting language
information and adding random noise to visual
information. Specifically, concerning the textual
information of a sample, we randomly substitute
sentences or words with sentences or words from
another sample. Regarding the visual information
of a sample, we randomly added Gaussian noise to
the pixel images of frames or objects.

Table 1 presents the results on the MSVD-QA
dataset, which emphasizes the overall video infor-
mation. Table 2 presents the results on the TGIF-
FrameQA dataset, which focuses on fine-grained
details. Overall, the cascading errors generated by
frame-level features surpass those of object-level
features due to the dependence of object-level fea-
tures on frame-level features. Similarly, the cas-
cading errors arising from the visual modality out-
pace those from the textual modality, primarily
attributed to the demanding visual capabilities re-
quired in video question answering tasks and the
dependence of text description generation on visual
features. Furthermore, as the ratio of random noise
increases, the performance undergoes an acceler-
ated decline rather than a linear descent. When
the random noise ratio reaches 75%, our method
still manages to maintain a relatively comparable
performance. From a dataset perspective, the TGIF-
FrameQA dataset exhibits heightened sensitivity to

the cascading errors arising from object-level in-
formation in comparison to the MSVD-QA dataset.
This differentiation stems from the fact that the
TGIF-FrameQA dataset is designed to focus on
intricate details, whereas the MSVD-QA dataset
emphasizes the holistic video information.


