
Published in Transactions on Machine Learning Research (10/2023)

Population-based Evaluation in Repeated Rock-Paper-
Scissors as a Benchmark for Multiagent Reinforcement
Learning

Marc Lanctot lanctot@google.com
Google DeepMind

John Schultz jhtschultz@google.com
Google DeepMind

Neil Burch nburch@ualberta.ca
Sony AI
University of Alberta

Max Olan Smith mxsmith@umich.edu
University of Michigan

Daniel Hennes hennes@google.com
Google DeepMind

Thomas Anthony twa@google.com
Google DeepMind

Julien Pérolat perolat@google.com
Google DeepMind

Reviewed on OpenReview: https: // openreview. net/ forum? id= gQnJ7ODIAx

Abstract

Progress in fields of machine learning and adversarial planning has benefited significantly
from benchmark domains, from checkers and the classic UCI data sets to Go and Diplo-
macy. In sequential decision-making, agent evaluation has largely been restricted to few
interactions against experts, with the aim to reach some desired level of performance (e.g.
beating a human professional player). We propose a benchmark for multiagent learning
based on repeated play of the simple game Rock, Paper, Scissors along with a population
of forty-three tournament entries, some of which are intentionally sub-optimal. We describe
metrics to measure the quality of agents based both on average returns and exploitability.
We then show that several RL, online learning, and language model approaches can learn
good counter-strategies and generalize well, but ultimately lose to the top-performing bots,
creating an opportunity for research in multiagent learning.

1 Introduction

How should agents be evaluated when learning with other learning agents? One metric is simply the average
return over an agent’s lifetime. Another is the agent’s robustness against a potential nemesis whose goals
are only to minimize the agent’s return. The first is the conventional metric used in the evaluation of
reinforcement learning (RL) agents, while the second is quite common among game-theoretic AI techniques
for imperfect information games. In this paper, we argue our position that neither of these is generally
sufficient in isolation: good agents should both maximize return and be robust to adversarial attacks.

1

https://openreview.net/forum?id=gQnJ7ODIAx

Published in Transactions on Machine Learning Research (10/2023)

Player 0

Player 1
R P S

R (0, 0) (1, −1) (−1, 1)
P (1, −1) (0, 0) (−1, 1)
S (−1, 1) (1, −1) (0, 0)

Figure 1: Rock, Paper, Scissors. Player 0 chooses an action assigned to a row, and similarly player 1 for a
column. Each entry shows the reward for player 0, then player 1 respectively.

The classical method to demonstrate superior AI performance is head-to-head matches, or direct comparisons
of average return, against the strongest known agents. This method has driven progress of the field since
the beginning: from Samuel’s checkers program, to chess, Go, poker, modern real-time games, and so on.
On the other hand, game-theoretic approaches to learning result in agents that approximately respond to
a population of opponents which are enumerated in hopes that the full strategic complexity of the game
is captured among the set of opponents, and convergence to an approximate Nash equilibrium is obtained.
The extent to which current AI systems are robust to adversarial attacks is unclear. Nevertheless, there is
evidence that even expert level AI agents can be demonstrably susceptible to adversarial behavior (Timbers
et al., 2022; Wang et al., 2022). While current evaluation methodologies over-emphasize the single metric of
cumulative reward or performance against experts, human or AI, we argue that the more important problem
is the lack of benchmarks that prioritize the evaluation of agents in a more general way, where multiple
metrics could lead to a better understanding of an agent’s capabilities.

In this paper, we propose a benchmark based on the classical game of Rock, Paper, Scissors augmented in
two ways: first, it is a repeated game and hence a sequential decision-making problem; second, performance
is measured against a population of agents with varied skill. The simplicity of the stage game is of paramount
importance: it is a well-understood two-player zero-sum game whose game-theoretic optimal strategy is well-
known, and by construction maximizing rewards against fallible opponents naturally leads to behavior that
is potentially exploitable. For learning agents to find exploits in the opponents, they must correctly deduce
their strategies from observations. We describe a population of forty-three openly-available hand-crafted
agents that were submitted to competitions and characterize their head-to-head performance, exploitability,
and the extent to which they are predictable (by supervised learning). We then train agents using several
modern approaches with different capabilities, against the population and independently trained against
copies of themselves. These approaches show promise in various ways: out-of-distribution generalization of
exploitative behavior, a clear lack of exploitable behavior, and a good balance between these two metrics.
Ultimately, none of the agents are able to outperform the top two participants in head-to-head matches while
being more robust to exploits, leading to a challenge and opportunity for novel multiagent reinforcement
learning research.

2 Repeated Rock, Paper, Scissors

In this section, we describe the basic notations, the environment, competition and participants, and
population-based evaluation. The environment and population are freely available within OpenSpiel (Lanctot
et al., 2019).

2.1 Notation and Environment Description

A normal-form game has a discrete set of players N = {1, 2, · · · , n}. A matrix game is a two-player game
with a set of actions per player A1 and A2, a joint action set A = A1 × A2, and utility functions for each
player i ∈ N , ui : A → ℜ. A zero-sum game is one where ∀a ∈ A,

∑n
i=1 ui(a).

Rock, Paper, Scissors (RPS), also called RoShamBo, is a two-player zero-sum matrix game described by the
matrix depicted in Figure 1: Rock (R) beats Scissors (S), Paper (P) beats Rock (R), and Scissors (S) beats
Paper (P).

2

Published in Transactions on Machine Learning Research (10/2023)

The sequential version is repeated: there are K identical plays of RPS. At state s0, agents simultaneously
decide their actions and agent i receives intermediate reward rt,i by joint action at composed of all agents’
actions combined and payoff matrix in Figure 1. A trajectory is a state and (joint) action sequence of
experience: ρ = (s0, a0, s1, a1, · · · , sK−1, aK−1, sK). In this environment, every episode has length K and
the full (undiscounted) return is defined as G0,i =

∑K−1
t=0 rt,i. We choose K = 1000 as a default from the

competitions described in Section 2.2.

Similarly to previous work in this environment (Hernandez et al., 2019), observations to the agent depend
on the recall, R. With a R = 1, the observation at st includes the most recently executed joint action at−1,
encoded as a 6-bit observation (two one-hot actions). With R = 2, the observation includes the two most
recent join actions, and so on, where R = K includes the full action sequence. For example, when R = 10
there are 910 ≈ 3.5 billion unique observations; a tabular Q-learning agent would a table of 10.5 billion
entries. Unless otherwise noted, use R = 1 as a default value.

Finally, as is standard (Sutton & Barto, 2017), a policy πi is a mapping from an observation to a distribution
over actions used by agent i, and π (without subscripts) is the joint policy used by both agents. In RPS, there
is a large incentive to use stochastic policies because any deterministic policy is fully exploitable (Shoham
& Leyton-Brown, 2009). For simplicity of notation, we denote Gt,i,π = Ea∼π[Gt,i].

2.2 Competition and Participants (Bots)

In early 2000s, Darse Billings ran two Repeated Rock, Paper, Scissors (RRPS) competitions (Billings,
2000a;b). In this subsection, we describe the participant entries that were released and still openly accessible,
which have since been integrated into OpenSpiel (Lanctot et al., 2019). In each competition, participants
were asked to submit a bot1 to play RRPS, with K = 1000, all played within a one-second time limit. Each
program had full recall, the entire action sequence in each episode, but nothing more that would identify the
other bots. Participants were told in advance that the population would include some sub-optimal bots.

The majority of the entries in the competition were hand-crafted heuristic bots that were developed inde-
pendently by different programmers. A few participants submitted two entries. The resulting population
consists of 43 bots: 25 entrant bots and 18 seed bots from the first competition. Including the winner of the
second competition Andrzej Nagorko’s greenberg, made open-source seperately, and the first competition
winner Dan Egnor’s iocainepowder.

We now summarize the approach taken by most bots. The simplest seed bots do not use their observation
to inform their action. randbot generates an action uniformly at random. rockbot always plays rock.
r226bot plays 20% rock, 20% paper, 60% scissors. rotatebot rotates between R, P, S in that order.
pibot, debruijn81, textbot all play a fixed sequence of actions derived from the digits of pi, De Bruijn
sequences, and the competition rules in base 3, respectively.

Other seed bots have a recall R = 1, i.e. they use only the current observation. switchbot never repeats its’
previous action, and chooses uniformly between the two alternatives. switchalot repeats previous action
with 12% probability; otherwise, chooses uniformly between the two alternatives. copybot plays to beat
the opponent’s previous action. driftbot and adddriftbot2 bias their action by the opponent’s action
or joint-action, respectively, with an increase, or “drift”, in bias over time. foxtrotbot alternates between
playing randomly, and an offset of its’ previous action.

The remaining seed bots used historical observations either directly or through statistical summaries. flat-
bot3 plays a flat distribution. addshiftbot3 biases decision by previous joint action, shifting the bias
if losing. antiflatbot maximally exploits flatbot3. antirotnbot exploits rotations played by the
opponent. freqbot2 plays to beat opponent’s most frequent choice.

The entrant’s bots also used historical observations. robertot uses a voting algorithm informed by ob-
servation counts. predbot, piedra, and sweetrock predict play from action counts. mod1bot models
the opponent as predbot. biopic maintains four prediction models differing in available information.

1In this paper, “bot” always refers to a previous competition participant, whereas “agent” refers to an RRPS player more
generally.

3

Published in Transactions on Machine Learning Research (10/2023)

markov5, markovbails, russrocker4, and halbot inform their prediction with Markov chain models.
phasenbott, peterbot, multibot, and mixed_strategy all switch between a fixed set of policies de-
pending on which is currently the most profitable. inocencio, zq_move, marble, granite, boom, and
shofar also implement complex rule-based decisions informed by summary statistics of the history.

Several bots took very innovative approaches. sunNervebot implemented a “nervous” network reminiscent
of a deep neural network. actr_lag2_decay implemented the cognitive architecture ACT-R (Anderson,
1993).

iocainebot (Egnor, 2000), which won the first competition, works by maintaining a set of predictions about
its opponent, and building a set of strategies from each predictor. Predictions included random guessing,
frequency analysis, and history matching across six different history sizes. From each prediction six strategies
are constructed based on recursive response computations (e.g., triple-guessing). iocainebot then plays
the most historically successful strategy. greenberg, by Andrzej Nagorko, won the second competition by
extending iocainebot to include additional predictors utilizing more advanced history matching algorithms.

2.3 Population-Based Evaluation

We propose several ways to use this population to evaluate agents. We define an agent’s PopulationRe-
turn to be the average return per episode against a bot drawn uniformly at random at the start of the
episode. Performance against specific bots can also be reported; we compute the cross-table between all bots
in Figure 2. The exploitability of an agent i is by how much their nemesis (best response) beats them. Let
−i refer to agent i’s opponent. Then,

Expl(πi) = G0,−i,(πi,b(πi)), where b(πi) ∈ BR(πi), and

BR(πi) = {π−i|G0,−i,(πi,π−i) = maxπ′
−i

{G0,−i,(πi,π′
−i

)}} is the set of best responses to πi. Notice that
exploitability is expressed in the opponent’s return; it is non-negative and its lowest value is zero when
an agent is not exploitable. However, due to the maximization over the entire policy space, it can be
too computationally expensive to compute exactly, so we can approximate it by running several learning
algorithms and taking the maximum achievable value. Another measure of approximate exploitability uses
the bots as exploiters, taking the maximum over the bots, where P is the population:

WithinPopExpl(πi) = max
π−i∈P

Ea∼(πi,π−i)[G0,−i].

Head-to-head performance of all bots in the population is visualized in Figure 22. Each cell represents an
average over 1000 episodes. Figure 3 summarizes some properties of the population. First, the population
returns of each bot range from −648.42 to 288.15, achieved by greenberg. greenberg dominates (achieves
higher value against all opponents) five bots, and iocainebot dominates one bot. Second, the within-
population exploitabilities range from 1.2 (randbot) to 1000, with several reaching this upper-bound,
316.1 on average. We then trained several RL algorithms until empirical converges (millions of episodes)
against each bot independently: Q-learning and IMPALA (Espeholt et al., 2018) with R ∈ {1, 3, 5, 10},
and defined the external-learned exploitability of that bot as the maximum value achieved among these
eight. These values range from 4.8 to 1000.0, with an average of 420.3. The within-population exploitability
achieves 75.2% of the external-learned exploitability on average, and varies between 50-100% of the external-
learned exploitability on most bots. Due to this consistency across bots and significantly less computation
requirements, we mainly use within-population exploitability from here on.

One simple way to rank agents under both metrics is to assume they both matter equally:
AggregateScore(πi) = PopulationReturn(πi) − WithinPopExpl(πi). This definition makes sense
since the units are identical; it could naturally be extended with different weights depending on the evalua-
tion context. These two metrics (population return and within-population exploitability) capture the essence
of the RPS game in the repeated setting: the only way another agent can predict an agent’s next action is

2The precise values in this table are available from OpenSpiel (Lanctot et al., 2019): https://github.com/google-deepmind/
open_spiel/tree/master/open_spiel/data/paper_data/pbe_rrps

4

https://github.com/google-deepmind/open_spiel/tree/master/open_spiel/data/paper_data/pbe_rrps
https://github.com/google-deepmind/open_spiel/tree/master/open_spiel/data/paper_data/pbe_rrps

Published in Transactions on Machine Learning Research (10/2023)

 g
re

en
be

rg
 io

ca
in

eb
ot

 p
ha

se
nb

ot
t

 h
al

bo
t

 m
od

1b
ot

 b
io

pi
c

 ro
be

rto
t

 ru
ss

ro
ck

er
4

 b
oo

m
 p

re
db

ot
 sh

of
ar

 g
ra

ni
te

 m
ar

bl
e

 a
ct

r_
la

g2
_d

ec
ay

 p
ie

dr
a

 sw
ee

tro
ck

 su
nN

er
ve

bo
t

 zq
_m

ov
e

 a
nt

iro
tn

bo
t

 m
ixe

d_
st

ra
te

gy
 m

ar
ko

v5
 m

ar
ko

vb
ai

ls
 m

ul
tib

ot
 in

oc
en

cio
 d

eb
ru

ijn
81

 p
ib

ot
 ra

nd
bo

t
 a

dd
dr

ift
bo

t2
 d

rif
tb

ot
 fo

xt
ro

tb
ot

 fl
at

bo
t3

 te
xt

bo
t

 a
dd

sh
ift

bo
t3

 sw
itc

ha
lo

t
 su

nC
ra

zy
bo

t
 sw

itc
hb

ot
 p

et
er

bo
t

 r2
26

bo
t

 fr
eq

bo
t2

 c
op

yb
ot

 ro
ta

te
bo

t
 ro

ck
bo

t
 a

nt
ifl

at
bo

t

greenberg
iocainebot

phasenbott
halbot

mod1bot
biopic

robertot
russrocker4

boom
predbot

shofar
granite
marble

actr_lag2_decay
sweetrock

piedra
sunNervebot

zq_move
antirotnbot

mixed_strategy
markovbails

markov5
multibot

inocencio
debruijn81

pibot
randbot

adddriftbot2
driftbot

foxtrotbot
flatbot3
textbot

addshiftbot3
switchalot

sunCrazybot
switchbot
peterbot
r226bot
freqbot2
copybot

rotatebot
rockbot

antiflatbot

1000 750 500 250 0 250 500 750 1000

Figure 2: RoShamBo bots payoff table. Each cell shows the return for the row bot versus the column bot
averaged across 1000 episodes.

by determining their learning rule from the history of choices made by both agents. Ultimately the goal is to
maximize return, but finding a best response to the other player’s action choice is the entire game, so agent
cannot be too exploitable in doing so without risking giving up reward to its opponents from the population.
Hence, the combined score acts as a summary of how well an agent is performing on both fronts within is
population, allowing agent designers to compare a single number. Under this metric, we list the top 10 bots
in Table 1. The complete ranked list is given in Appendix A.1. For reference, we also include the scores of
the best learning algorithm in each category from Secton 4.

3 Predictability of RPS Bots

In order to win at RRPS, the bots must attempt to predict the actions chosen by other bots, while not
becoming predictable themselves by their opponent. In this section, we investigate to what extent the bots
are predictable by a neural network.

To assess how predictable each bot was, we sampled games of RRPS between the bot and each other bot,
including itself. We trained an LSTM per bot to predict that bot’s next action with recall R = 20 (details

5

Published in Transactions on Machine Learning Research (10/2023)

Bot Names Pop. Return W.P. Expl. Agg. Score
greenberg 288.15 3.65 284.50
iocainebot 255.00 5.00 250.00
biopic 196.36 36.66 159.70
boom 169.11 27.93 141.19
shofar 152.01 16.87 135.14
robertot 177.77 50.16 127.61
phasenbott 232.25 111.71 120.54
mod1bot 203.16 90.16 113.00
sweetrock 146.25 41.21 105.04
piedra 146.08 41.44 104.64

Algorithm/Agent Names Pop. Return W.P. Expl. Agg. Score
PopRL 258.00 10.98 247.02
LLM (Chinchilla 70B) 201.00 45.80 155.20
ContRM 164.77 16.27 148.51
QL (R = 10) −0.52 8.62 8.10
R-NaD [−10, 5] [20, 40] [−50, −25]

Table 1: Top 10 bots ranked by AggregateScore, and top learning algorithms in each category from
subsections of Section 4. The bot results are computed on 1000 episodes per profile. The algorithm results
are averaged over 5 seeds.

600 400 200 0 200 400 600
Average population return per episode

antiflatbot
rockbot

rotatebot
copybot
freqbot2
r226bot

peterbot
switchbot

sunCrazybot
switchalot

addshiftbot3
textbot
flatbot3

foxtrotbot
driftbot

adddriftbot2
randbot

pibot
debruijn81
inocencio
multibot
markov5

markovbails
mixed_strategy

antirotnbot
zq_move

sunNervebot
piedra

sweetrock
actr_lag2_decay

marble
granite
shofar

predbot
boom

russrocker4
robertot

biopic
mod1bot

halbot
phasenbott
iocainebot
greenberg

Ag
en

t

0 200 400 600 800 1000
Average return per episode

randbot
greenberg
iocainebot

shofar
markovbails

markov5
boom
biopic

sweetrock
piedra

sunNervebot
robertot

antirotnbot
pibot

mixed_strategy
mod1bot

phasenbott
halbot

textbot
actr_lag2_decay

marble
granite
driftbot
predbot

adddriftbot2
debruijn81

multibot
switchalot

addshiftbot3
zq_move
r226bot

foxtrotbot
flatbot3

switchbot
russrocker4

sunCrazybot
inocencio
peterbot
copybot

rotatebot
freqbot2

antiflatbot
rockbot

Ag
en

t

External-learned approximate exploitability
Within-population exploitability

Figure 3: Left: Population Returns for each bot. Right: Approximate exploitabilities for each bots.

6

Published in Transactions on Machine Learning Research (10/2023)

co
py

bo
t

ro
ck

bo
t

ro
ta

te
bo

t
te

xt
bo

t
pi

bo
t

de
br

ui
jn

81
fre

qb
ot

2
an

tif
la

tb
ot

pe
te

rb
ot

zq
_m

ov
e

pr
ed

bo
t

m
ar

bl
e

ad
ds

hi
ftb

ot
3

m
ul

tib
ot

gr
an

ite
an

tir
ot

nb
ot

su
nC

ra
zy

bo
t

in
oc

en
cio

m
od

1b
ot

sw
ee

tro
ck

pi
ed

ra
ha

lb
ot

ro
be

rto
t

fo
xt

ro
tb

ot
ac

tr_
la

g2
_d

ec
ay

ad
dd

rif
tb

ot
2

gr
ee

nb
er

g
m

ixe
d_

st
ra

te
gy

dr
ift

bo
t

bo
om

bi
op

ic
r2

26
bo

t
ru

ss
ro

ck
er

4
su

nN
er

ve
bo

t
io

ca
in

eb
ot

sh
of

ar
fla

tb
ot

3
ph

as
en

bo
tt

sw
itc

hb
ot

m
ar

ko
v5

m
ar

ko
vb

ai
ls

sw
itc

ha
lo

t
ra

nd
bo

t

copybot
rockbot

rotatebot
textbot

pibot
debruijn81

freqbot2
antiflatbot

peterbot
zq_move
predbot
marble

addshiftbot3
multibot
granite

antirotnbot
sunCrazybot

inocencio
mod1bot

sweetrock
piedra
halbot

robertot
foxtrotbot

actr_lag2_decay
adddriftbot2

greenberg
mixed_strategy

driftbot
boom
biopic

r226bot
russrocker4

sunNervebot
iocainebot

shofar
flatbot3

phasenbott
switchbot
markov5

markovbails
switchalot

randbot

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Action prediction accuracy. Each cell shows the action prediction accuracy for row bot versus the
column bot averaged across 100 episodes.

in App. A.5). We report the prediction accuracy, i.e. the proportion of the time that the predicted action
matched the bot’s action, shown in Fig. 4.

Some bots are deterministic and easy to predict, e.g. rockbot was predicted correctly 100% of the time.
Stochastic bots, such as randbot, have low predictability, but this comes at the cost of their ability to exploit
other bots. Prediction accuracy for the entrants was substantially greater than for the Nash equilibrium,
but varied substantially from 48% for markovbails to 94% for peterbot.

Successful action prediction reveals the existence of structure within the bot population. In principle, RRPS
is a purely non-transitive game, and there is no such thing as a ‘better’ strategy. Under a unique Nash
equilibrium, an agent’s past actions are not predictive of their future actions. Still, we hypothesize that it is
possible to learn action predictions from a sub-population that generalise to the whole population.

To test this, we sample 30 bots from the population randomly, and generate RPS games between these bots.
We then train the same LSTM model as before to predict the bots’ actions. To succeed at this task, the
agent must identify the strategy a bot is employing to predict the next action as it no longer knows the bot
identities a priori. This also means that if held-out bots employ similar strategies, the agent should be able

7

Published in Transactions on Machine Learning Research (10/2023)

co-player
train test

predicted bot train 69.14% 67.35%
test 57.80% 55.65%

Table 2: Action prediction accuracy.

to predict their actions too. We repeated the experiment 10 times with different splits of training/testing
bots.

On games between the training bots, the neural network achieved an average accuracy of 69.1%. In games
between the held-out test population, the neural network achieved an accuracy of 55.7%, which is significantly
better than chance, and demonstrates there is learnable structure in the bot behaviours. In Table 2, we break
down accuracy by whether the bot being predicted or the co-player are in the training population. We show
that prediction accuracy drops for either bot or co-player being from the held-out population, but the effect
is larger when the bot being predicted is not in the training set.

4 Learning to Play Repeated RPS

Can an agent learn to earn high population return and not be very exploitable? Here, we show baselines
and RL agent performance on this environment. We evaluate them using the population-based evaluation
(PBE) criteria in Section 2.3. The resulting best achievable score of each learning approach is summarized
in Table 1.

4.1 Baseline Independent RL Results

In this section we report the performance of fixed policies and baseline RL agents. Each individual run
reports the best achieved performance of an fixed agent or one trained by playing against another copy of an
agent of the same type (independent RL). Note that we differentiate this training from “self-play” due to the
agents using the same algorithm but separate networks. We then evaluate the agents against the population
after 700k - 1M episodes of training, with the population return and returns of each bot against the agent
being averaged over a sliding window of the 50 most recent evaluations. Each reported value represent the
the average over five individual runs using different seeds Table 3.

For Q-learning (QL), we report results over varying recall size R ∈ {1, 3, 5, 10}. Interestingly, the within-
population exploitability of uniform is greater than zero, which is possible to due to maximization over noisy
estimates and the deterministic nature of the random number generators. In addition, we run DQN (Mnih
et al., 2015), A2C (Mnih et al., 2016), and Boltzmann DQN (BDQN) (Cui & Koeppl, 2021) with various
temperatures η ∈ {0.1, 0.5, 1, 2}. Overall we found that the algorithms improve as R increases, achieving a
population return of at most 18, and can be particularly exploitable. The high exploitability is somewhat
mitigated by a sufficiently large (R = 10) table in Q-learning, higher temperature in Boltzman DQN, and
entropy bonuses in A2C. The best achievable aggregate score across these baselines is 8.1. Appendix A.2
contains hyperparameter selection details for the RL agents.

We then assessed the quality of independent RL agents when the recall is set to a much larger value (R ∈
{100, 1000}). This leads to observations that are 10-100 times larger and too many states to fit in memory,
so we use only DQN, BDQN, and A2C. We run independent RL for the same amount of wall-clock time
as the shorter recall results (12 days), which leads to fewer episodes due to the added computational cost
per episode. In all cases, we noticed variation among hyper-parameters, but that many dropped to a low
aggregate score (-1600) and then never recovered a higher score. The best values over all the runs are
presented in Table 4. The highest achieved aggregate score among these runs was 7.60.

8

Published in Transactions on Machine Learning Research (10/2023)

Name Pop. Return W.P. Expl. Agg. Score
rock −610.20 1000.00 −1610.20
paper −613.50 999.20 −1612.70
scissors −648.10 1000.00 −1648.10
uniform 0.00 9.31 −9.31
QL (R = 1) −531.28 994.54 −1525.82
QL (R = 3) −280.65 910.56 −1191.21
QL (R = 5) −89.67 405.89 −495.56
QL (R = 10) −0.52 8.62 8.10
DQN −194.49 693.13 −887.62
BDQN (η = 0.1) −124.52 515.60 −640.12
BDQN (η = 0.5) −19.59 164.25 −183.84
BDQN (η = 1) 18.00 51.93 −33.93
BDQN (η = 2) 12.75 11.20 1.55
A2C 0.18 9.84 −9.66

Table 3: Baseline bots and agent performance. Results are averaged over 5 seeds.

Name R Num. Episodes Agg. Score
DQN 100 316300 -653.59
BDQN 100 306770 -15.50
A2C 100 161660 -13.9
DQN 1000 65520 -1143.5
BDQN 1000 75840 7.60
A2C 1000 17170 -78.45

Table 4: Baseline bots and agent performance with longer recalls (R ∈ {100, 1000}). Results are averaged
over 5 seeds.

4.2 Language Model Agent

Large language models (LLMs) have achieved state-of-the-art performance across a wide variety of natural
language processing tasks. This is accomplished by simple token-level training objectives, applied to massive
amounts of text data scraped from the web. LLMs can be further fine-tuned on specific tasks, and have been
successfully utilized as components in game-playing systems, most notably Cicero which achieved human-
level performance in Diplomacy (Meta et al., 2022). Even without fine-tuning, LLMs demonstrate some
game-playing ability like finding legal chess moves, but exhibit poor performance at identifying checkmate-
in-one moves (Srivastava et al., 2022).

Here we benchmark four model sizes (400M, 1B, 7B, 70B) from the Chinchilla family of LLMs (Hoffmann
et al., 2022) on the RRPS task. As the information gain in RRPS per step is relatively low, to excel at this
game, a successful agent has to anticipate the other agent’s actions through the history. The language model
agent is particularly relevant for RRPS because transformers have the unique ability to attend to (relative)
patterns in the history that are important for prediction of the next token.

We utilize the LLM as a game-playing agent by selecting actions based on the model’s prediction of what
action the opponent will play next. The model is given a zero-shot prompt that plainly states the task and
provides the game history (see Appendix A.3 for full prompt). The model’s prediction of the opponent’s
next action is determined by choosing the max over the logprobs of the tokens {R, P, S}. The LLM
agent then deterministically plays the action that beats the opponent’s predicted action. The true actions
played are appended to the prompt and the process is repeated. No parameters are fine-tuned at any point.
Methodologies for prompting and fine-tuning LLMs and integrating them into larger systems are areas of

9

Published in Transactions on Machine Learning Research (10/2023)

active research, and optimizing the LLM’s performance on RRPS is beyond the scope of this paper. However,
even in this simple zero-shot setting, and despite not having been trained on RRPS, LLMs demonstrate a
surprising ability to to predict opponent actions that improves with model size. The largest LLM model
achieves an average population return of 201.0 and aggregate score of 155.2, placing it fourth behind only
Greenberg, IocaineBot, and Biopic; though, we did notice that size of the model size had a significant
effect on the performance: our smallest model achieves an aggregate score of −212.9 in comparison (see
Appendix A.3 for full results). Domain-specific fine-tuning would likely yield improvements and offers a
promising direction for progress on this benchmark. Moreover, RRPS also offers a measure of an LLM’s
capacity for identifying and adapting to members of a population it interacts with.

4.3 Regularized Nash Dynamics

To minimize the exploitability (i.e. thus converging to a Nash equilibrium), a solution that empirically
scale well is to learn a policy with the Regularized Nash Dynamics (R-NaD) algorithm (Perolat et al.,
2022). In a nutshell, this method repeat a 3 step process: 1) building a reward transformation based on a
regularisation policy, 2) a step where the process converges to a new fixed point of the game and 3) update
the regularization policy with the fixed point found at step 2). With R = 1, R-NaD achieves Pop. Return
in the set [−10, −5], W.P. Expl in the set [20, 40] and an Agg. Score in the set [−50, −25] which is not
far away from what the random policy achieves. The implementation used to produce these results uses
the OpenSpiel implementation of R-NaD (Lanctot et al., 2019). We used the parameters from the open-
source implementation and did a sweep over the following parameters (randomized over 5 seeds): η reward
transform : [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], trajectory max : 10, 000, 000, batch size : [64, 128, 256, 512], entropy
schedule size : (20000,), finetune from : [−1, 300000, 600000].

This algorithm achieves a strategy that is hard to exploit but it will not exploit the other players.

4.4 Contextual Regret Minimization

RRPS fits into the setting of online learning and adversarial bandits, which looks at maximising value over
repeated interactions in an environment with a fixed set of actions and unknown, dynamic payoffs. From
the perspective of either player in a RRPS episode, they are repeatedly choosing an action of R, P, or S.
The payoffs for each action are unknown because the player does not know their opponent’s strategy for the
next action. So, one natural choice for making decisions in RRPS is using an adversarial bandit algorithm.
Regret minimizing algorithms all have theoretical guarantees that their average expected online performance
is close to some optimal baseline, in hindsight. For example, an algorithm which minimises external regret
is expected to do roughly as well any single static action a, if we looked back in time and asked how well
we would have done if we had played a instead. In RRPS, an agent that has low external regret would not
have done significantly better by playing one the always-R, always-P, or always-S baseline policies against
the opponent’s sequence of actions. Other regret measures consider richer sets of baseline policies.

We look at four different algorithms for bandits with full information feedback, with different regret guar-
antees. Regret Matching (RM) is a simple, parameter-free algorithm which minimises external regret (Hart
& Mas-Colell, 2000). Regret Matching+ (RM+) is a modification of RM that often has better empirical
performance (Tammelin et al., 2015). RM+ also has a weak guarantee with respect to k-switching re-
gret, which compares performance to all possible k-piecewise policies. The strongly adaptive online learner
(SAOL) provides a strong guarantee for non-stationary environments, with a performance bound on any
sub-interval (Daniely et al., 2015). SAOL is a meta-algorithm operating on top of another regret minimizing
algorithm, and we used RM+ for the base algorithm in our implementation. Minimizing swap regret ensures
that an agent would not have wanted to play action a any time in the past when they had played b, for any
actions a and b. For swap regret, we used the meta-algorithm of Ito (Ito, 2020) on top of RM+.

While these four algorithms depend on the history – the historical actions played determine the current policy
– they do not explicitly consider the current context (R = 0). One way to frame RRPS as a contextual
regret minimization problem is to completely separate each possible recalled history for R > 0 into separate
contexts, with independent regret minimizing algorithms running in each context. An agent using this
discrete set of contexts has 9, 81, and 729 independent instances for R = 1, R = 2, and R = 3 respectively.

10

Published in Transactions on Machine Learning Research (10/2023)

Context Agent Pop. Return W.P. Expl. Agg. Score

R = 0

RM 48.45 27.39 21.06
SAOL 67.30 34.73 32.57
RM+ 59.66 26.36 33.30
swap-RM+ 62.73 21.96 40.77

R = 1

SAOL 178.08 91.32 86.76
RM 164.75 76.30 88.44
RM+ 169.88 63.99 105.89
swap-RM+ 167.99 48.41 119.58

R = 2

SAOL 171.46 155.39 16.07
RM 175.43 148.89 26.54
RM+ 174.44 121.79 52.65
swap-RM+ 173.52 99.93 73.59

R = 1
History Experts

RM 157.55 23.92 133.62
RM+ 157.99 17.51 140.48
swap-RM+ 156.93 15.69 141.24
SAOL 164.77 16.27 148.51

Table 5: Performance of regret minimizing agents across very historical contexts. Results are averaged over
5 seeds.

Another way to add context is to instead augment the environment actions with context experts that suggest
environment actions: “history experts”. For R = 1, we added six history experts suggesting the opponent’s
last action o, our last action u, the actions that beat o and u, and the actions that lose to o and u.

The full results from this experiment are included in Table 5. We see that, generally, SAOL performs best
among all the choices of bandit rules, in all contexts. Overall, this context regret-minimizing agent is able
to increase its population return as R increases, but its exploitability also increases as well. In terms of
aggregate score, the more dynamic definition of experts that are functions of the most recent actions o
and u as well as their counter-strategies (history experts) perform significantly better than using the raw
observation histories as context, which were also used by the baselines in Section 4.1. The best-performing
version of this agent achieves an aggregate score of 148.51, which places it between third and fourth place
among the bots in the population.

4.5 IMPALA and Generalization

In this subsection, we try a more modern implementation of a policy gradient algorithm that allows for boot-
strapping and recurrent neural networks: Important-Weighted Actor-Learner Architectures (IMPALA) (Es-
peholt et al., 2018). IMPALA is a synchronous variant of (batched) A2C which uses importance-weighted
corrections for its value function estimates, and has been show to work on visual environments such as the
Atari suite (Bellemare et al., 2013) and at scale.

Specifically, we adapt the implementation provided in Haiku (Hennigan et al., 2020) to online (batched)
agent consistent with the other agent implementations in OpenSpiel. We run two IMPALA agents against
each other, similarly to the baselines in Section 4.1, sweeping over hyper-parameters policy learning weight
∈ {0.001, 0.0004, 0.0001}, entropy cost ∈ {0.01, 0.003, 0.001}, unroll length ∈ {20, 50, 100}, and R ∈ {1, 3, 5}.
For IMPALA we use a basic recurrent network with two hidden layers of size (256, 128) followed by an
LSTM layer of size 256. After 600k episodes of training, the best population return and within-population
exploitability achieved by this agent was 16.43 and 9.3, respectively (in both cases when R = 1) for an
aggregate score of 7.13.

11

Published in Transactions on Machine Learning Research (10/2023)

Algorithm 1: Population Reinforcement Learning (PopRL) for Two Players
Input: Bot population B, batch size B, prediction weight ρ, probability of self-play p
Input: RL learning rule L (e.g. IMPALA)
for batch number 1, 2, · · · do

Reset data sets D1 = D2 = ∅
for episode t ∈ {1, · · · , B} do

for i ∈ {1, 2} do
Place PopRL agent i in player slot i
Sample z ∼ Uniform([0, 1])
if z < p then

Place PopRL agent 3 − i in player slot j
Set opponent identification label o to |B|

else
Sample bot b ∼ Uniform(B) with index bindex, where 0 ≤ bindex < |B|
Set opponent identification label o to bindex

end
Generate episode using agents (i, 3 − i)
Add data from episode to Di with combined loss: Loss = (1 − ρ)Loss(L) + ρLossaux

end
end
Perform separate learning steps on data sets D1, D2

end

4.5.1 IMPALA as a General Bot Exploiter Agent

Since IMPALA was designed to be a single-agent algorithm and was unable to significantly improve over
the baseline algorithms, we now verify its ability to act as an approximate best response (“exploiter”) agent
when playing against the population. In this setup, a new opponent bot is uniformly sampled at the start
of each episode to play against the IMPALA agent. By using similar hyper-parameter sweeps as before, we
find a small set of good hyper-parameters (learning rate 0.0004, entropy cost 0.003, and vary only the unroll
length ∈ {20, 50}). In this case, we find IMPALA can consistently reach a population return of 220 after
200k episodes, which is significantly higher than the independent RL setting.

One benefit of PBE is the ability to assess the capacity of an agent to generalize. In particular, we evaluate
the ability of an IMPALA exploiter agent against bots that it has not trained to exploit. We apply cross
validation over bot opponents: IMPALA trains against 33 agents, and evaluates only against the left-out
set of 10 agents. We average the performance over 50 distinct sets of 10 left-out opponents. IMPALA
consistently reaches an average of 120-130 per episode against the left-out bots, a significant drop compared
to when training and testing opponent distribution are identical.

To investigate whether the generalization ability can be improved, inspired by UNREAL (Jaderberg et al.,
2017), we augment the network and training procedure with an auxiliary task of opponent prediction. A
new output head is added that predicts which specific opponent bot the agent is facing, and a standard
classification loss is added to the combined RL loss with some prediction weight ρ ∈ {0.001, 0.01, 0.1, 0.5}.
The results are shown in Figure 6 (in Appendix A.4). We observe that opponent identification helps, and
improvements get are better with higher ρ. We also measure the average difference of the area-under-the-
curve (interpreted as population return advantage per episode) between ρ = 0.5 and the baseline ρ = 0),
achieving 12.94, 15.81, 13.00, and 11.05 at training episodes 25k, 50k, 100k, and 175k, respectively. The
advantage diminishes slightly over time but maintains a significant positive advantage well into the training
run.

12

Published in Transactions on Machine Learning Research (10/2023)

0 100000 200000 300000 400000
Training episodes

0

50

100

150

200

250
Ag

gr
eg

at
e

Sc
or

e
Aggregate Score for PopRL

PopRL (rho = 0.01, p = 0.1)
PopRL (rho = 0.01, p = 0.25)
PopRL (rho = 0.1, p = 0.1)
PopRL (rho = 0.1, p = 0.25)
PopRL (rho = 0.5, p = 0.1)
PopRL (rho = 0.5, p = 0.25)

Figure 5: PopRL’s aggregate score across hyperparameters. Each setting of hyperparameters was averaged
across 5 seeds.

4.5.2 PopRL: A Hybrid Population-Based Training Algorithm

We now propose a new general training algorithm (“Population RL” in constrast to “IndRL”) based on
IMPALA with opponent identification. Inspired by Restricted Nash Response (Johanson et al., 2008) and
game-theoretic population-based approaches (Lanctot et al., 2017; Hernandez, 2022; Strouse et al., 2021b),
PopRL mixes between best responding to itself and to population members. Rather than train against the
bot population only, a PopRL agent trains against an augmented population containing the 43 bots and
an identical copy of another PopRL agent that is also independently training (concurrently or alternately).
At the start of each episode, with probability p the opponent is set to be the other PopRL agent, or
(with probability 1 − p) it is set to a uniformly sampled bot. In both cases, the agent uses opponent
identification auxiliary task, but unlike before the number of classes is one greater to include identifying
the other PopRL learning agent (44 instead of 43). The motivation is to leverage the population to train
a generalist agent, while still guarding against being exploited by a similar learning agent. Pseudo-code is
presented in Algorithm 1.

Results are shown in Figure 5. The best combination of hyper-parameters is able to achieve an aggregate score
of 247.02, placing PopRL just behind IocaineBot and far above Biopic, between second and third ranks.
In addition, we show how the best PopRL agent scores against individual bots compared to Greenberg in
Figure 7 (Appendix A.4): while they score similarly on many of the agents in the population, they differ
significantly against several bots.

We believe that PopRL combines several strengths in one approach: first, as was shown in Section 4.5.1,
IMPALA equipped with a recurrent neural network and an opponent identification auxiliary task learns a
very good bot exploitation strategy that generalizes across bots.

13

Published in Transactions on Machine Learning Research (10/2023)

To ensure that it doesn’t become exploitabile, another copy of the agent tries to find weaknesses (100p% of
the time) while its learning its bot responses. In essence, this combination balances maximizing return and
minimizing exploitability.

5 Discussion: Limitations, Related Work, and Future Directions

The purpose of this paper is to propose a new challenge for multiagent RL algorithms. While there has been
impressive progress in MARL research producing agent that indicate human-level win rates in Go (Silver
et al., 2016), Dota 2 (Berner et al., 2019), and Starcraft (Vinyals et al., 2019), humans (and in some cases,
AI bots (Timbers et al., 2022; Wang et al., 2022)) could find counter-strategies that consistently exploit
these agents. Our arguments in this paper are aligned with the ones in Player of Games (Schmid et al.,
2021): that win rate alone is insufficient to determine human-level ability, and that game-theoretic reasoning
is important to demonstrate robustness against exploits. However, unlike Player of Games which includes a
complex search procedure, this domain focuses on repeated interactions with a population in the purely RL
domain.

We highlight the property that RRPS is simple, has a low barrier to entry and yet complex dynamics when
playing against a populations akin to Axelrod’s tournaments in iterated prisoner’s dilemma (Axelrod, 1984);
additionally, RPPS allows the challenge to focus mainly on the tenuous balance between maximizing reward
while not being exploitable. To the best of our knowledge, this a unique addition to the community: there
is currently no challenge benchmark for learning agents that highlights these two axes in a single domain
coupled with a population of human-crafted expert bots for finer-grained evaluation.

5.1 Limitations

The main limitation is that employing PBE requires a bot population and that the approximation quality
of within-population-exploitability depends on there being bots that can exploit the various population
mistakes within the repeated game. As such, the specific benchmark we are proposing and bot population
we are characterizing are necessarily restricted to the domain of RRPS.

The population-based evaluation could be extended to other domains. To do so would require another set
of hand-crafted bots. The aggregate score we are proposing in this paper only addresses the combination of
maximizing reward and minimizing exploitability; a different domain may necessitate new metrics.

Finally, as mentioned above, this benchmark focuses on RRPS and the interactive between reward and
exploitability. As such, we are not proposing PBE as an evaluation methodology for comparing multiagent
RL algorithms more generally, such as in (Zawadzki et al., 2014). The values achieved by the learning
agents we ran should be interpreted as yardsticks to challenge the community in a specific way, rather than
providing an evaluation methodology for the broader problem of general MARL.

5.2 Related Work

RRPS has served as a dyadic test bed for understanding strategic interactions in both human and agents.
The plurality of this research has focused on either learning opponent models or understanding learning
dynamics. These two topics can be seen in the implementation of many of the competition bots—note, the
majority of the related work occurs after the competitions. On opponent models, Cook et al. (2011) showed
that imitation can be a powerful tool for learning strategies and understanding your opponent. Concurrent
to this work, Lebiere & Anderson (2011) investigated human decision-making models, and notably discussed
both that benefits of opponent models and their complications due to many models corresponding to the
same behavior. Brockbank & Vul (2021) quantified human play by quantifying information gain regarding
the behavior of your opponent.

The other plurality of work focuses on the evolving dynamics of players. Evolutionary algorithms have been
the primary mechanism for understanding how learners develop over time (Ali et al., 2000; Bédard-Couture
& Kharma, 2019). Wang et al. (2014) found that strategies often follow a cyclic pattern in the actions
that are employed throughout a gameplay. However, studies have also discussed the possibility of chaos

14

Published in Transactions on Machine Learning Research (10/2023)

accounting for the inability to learn in RRPS (Sato et al., 2002). Despite the apparent simplicity of RRPS,
it is clear that there is still much we have to understand about learning dynamics within it.

5.3 Future Directions

There are several avenues of potential future work. Firstly, we one could try different populations in RRPS.
Specifically, there are larger populations are openly available that could be easily adapted to fit within the
PBE framework (Knoll et al., 2011).

Secondly, a more complex extension would be to introduce a continual version of RRPS with a dynamic
population that can introduce or remove agents over time. This would test the general capability of an RL
agent in a more dynamic way: could the agent also guard against anticipated new strategies, or learn now
ways to counter these new strategies?

Finally, it could be interesting to see population-based evaluation methods applied to larger extensive-form
games. There are several games being adopted by the community with hand-crafted strategies being used
as a benchmark. Poker is a popular challenge domain; poker competitions were organized and run regularly
as well as several man-machine poker competitions against human experts. Population-based evaluation
could offer an alternative evaluation methodology, especially for games that current AI techniques have not
mastered, such as variants beyond Texas Hold’em. There are several examples of domains in the cooperative
AI (Dafoe et al., 2020), such as Hanabi (Bard et al., 2020; Hu et al., 2020) and Overcooked (Carroll et al.,
2019; Strouse et al., 2021a), that might benefit from a replicable population-based evaluation rather than
evaluation in self-play or one-time human/AI evaluations. And finally, population-based evaluation may be
the only satisfying way to evaluate the quality of agents in general-sum or n-player games, such as Diplomacy,
where there is no clear solution concept nor definition of “optimal strategy”.

6 Conclusion and Future Extensions

We propose repeated Rock, Paper, Scissors, a population of previous tournament bots, and population-based
evaluation as new challenge in sequential decision-making with multiple agents. The bots range widely in
terms of population return, exploitability, and predictability. Several standard Deep RL baseline algorithms,
that have attained human-level performance on various challenge domains, fail to achieve both high reward
and to be robust to a population of RRPS bots.

We show that an LLM agent is able to achieve an aggregate score of 155.2, significantly higher than most
baseline RL algorithms. The best agent trained via self-play (a contextual regret minimizer using SAOL)
achieves an aggregate score of 148.51. When training against the population, IMPALA is able to to leverage
opponent identification to learn general responses, and when combined with population-based training,
achieves a high aggregate score of 247.02; but, even with the added information, it was unable to defeat the
top two bots.

Several modern approaches are unable to defeat the top two hand-crafted bots, IocanBot and Greenberg,
that were submitted over 20 years ago. We invite the community to try their own approaches to achieve
this result and contribute their findings in an effort to understand how learning agents could both maximize
reward and reduce exploitability simultaneously.

References
F. F. Ali, Z. Nakao, and Y.-W. Chen. Playing the rock-paper-scissors game with a genetic algorithm. In

Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), volume 1,
pp. 741–745, 2000.

John R. Anderson. Rules of the Mind. Lawrence Erlbaum Associates, Inc., 1993.

Robert Axelrod. The Evolution of Cooperation. 1984.

15

Published in Transactions on Machine Learning Research (10/2023)

Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, Iain Dunning, Shibl Mourad, Hugo
Larochelle, Marc G. Bellemare, and Michael Bowling. The Hanabi challenge: A new frontier for ai re-
search. Artificial Intelligence, 280, 2020. URL http://www.sciencedirect.com/science/article/pii/
S0004370219300116.

R. Bédard-Couture and N. Kharma. Playing iterated rock-paper-scissors with an evolutionary algorithm.
In Proceedings of the 11th International Joint Conference on Computational Intelligence (IJCCI), pp.
205–212, 2019.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation
platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, jun 2013.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy Dennison,
David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz, Scott Gray, Catherine
Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim
Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and
Susan Zhang. Dota 2 with large scale deep reinforcement learning. CoRR, abs/1912.06680, 2019. URL
http://arxiv.org/abs/1912.06680.

Darse Billings. The first international roshambo competition. ICGA Journal, 23(1):42–50, 2000a.

Darse Billings. The Second International RoShamBo Programming Competition, 2000b. https://groups.
google.com/g/comp.ai.games/c/3LgNlV5dsbo. Retrieved Nov 30th, 2022.

Erik Brockbank and Edward Vul. Formalizing opponent modeling with the rock, paper, scissors game.
Games, 12(3):70, 2021.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca Dragan. On
the utility of learning about humans for human-ai coordination. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf.

R. Cook, G. Bird, G. Lünser Unser, S. Huck, and C. Heyes. Automatic imitation in a strategic context:
players of rock-paper-scissors imitate opponents’ gestures. In Proc. the Royal Society B: Biological Sciences.
The Royal Society, 2011.

Kai Cui and Heinz Koeppl. Approximately solving mean field games via entropy-regularized deep rein-
forcement learning. In Twenty-Fourth International Conference on Artificial Intelligence and Statistics,
2021.

Allan Dafoe, Edward Hughes, Yoram Bachrach, Tantum Collins, Kevin R. McKee, Joel Z. Leibo, Kate
Larson, and Thore Graepel. Open problems in cooperative AI. CoRR, abs/2012.08630, 2020. URL
https://arxiv.org/abs/2012.08630.

Amit Daniely, Alon Gonen, and Shai Shalev-Shwartz. Strongly adaptive online learning. In International
Conference on Machine Learning, pp. 1405–1411, 2015.

Dan Egnor. Iocaine powder. International Computer Games Association Journal, 23(1):33–35, 2000.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA: Scalable
distributed deep-RL with importance weighted actor-learner architectures. In Jennifer Dy and An-
dreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1407–1416. PMLR, 10–15 Jul 2018. URL https:
//proceedings.mlr.press/v80/espeholt18a.html.

16

http://www.sciencedirect.com/science/article/pii/S0004370219300116
http://www.sciencedirect.com/science/article/pii/S0004370219300116
http://arxiv.org/abs/1912.06680
https://groups.google.com/g/comp.ai.games/c/3LgNlV5dsbo
https://groups.google.com/g/comp.ai.games/c/3LgNlV5dsbo
https://proceedings.neurips.cc/paper_files/paper/2019/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://arxiv.org/abs/2012.08630
https://proceedings.mlr.press/v80/espeholt18a.html
https://proceedings.mlr.press/v80/espeholt18a.html

Published in Transactions on Machine Learning Research (10/2023)

S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econometrica,
68(5):1127–1150, 2000.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX, 2020. URL
http://github.com/deepmind/dm-haiku.

Daniel Hernandez. Opponent awareness at all levels of the multiagent reinforcement learning stack. PhD
thesis, University of York, 2022.

Daniel Hernandez, Kevin Denamganaï, Yuan Gao, Peter York, Sam Devlin, Spyridon Samothrakis, and
James Alfred Walker. A generalized framework for self-play training. In 2019 IEEE Conference on Games
(CoG), pp. 1–8, 2019. doi: 10.1109/CIG.2019.8848006.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Training compute-optimal large language
models. In Thirty-sixth International Conference on Neural Information Processing Systems, 2022.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “Other-play” for zero-shot coordination.
In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 4399–4410. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/hu20a.html.

Shinji Ito. A tight lower bound and efficient reduction for swap regret. Advances in Neural Information
Processing Systems, 33:18550–18559, 2020.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver,
and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In 5th International
Conference on Learning Representations (ICLR), 2017.

Michael Johanson, Martin Zinkevich, and Michael Bowling. Computing robust counter-strategies. In J.C.
Platt, D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural Information Processing Systems 20
(NIPS), pp. 721–728, Cambridge, MA, 2008. MIT Press.

Byron Knoll, Daniel Lu, and Jonathan Burdge. Rpscontest, 2011. http://www.rpscontest.com/.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Perolat, David
Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement learning. In
Thirtieth International Conference on Neural Information Processing Systems, 2017.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay, Julien Péro-
lat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel Hennes, Dustin Morrill,
Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De Vylder, Brennan Saeta, James Brad-
bury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian Schrittwieser, Thomas Anthony, Edward
Hughes, Ivo Danihelka, and Jonah Ryan-Davis. OpenSpiel: A framework for reinforcement learning in
games. CoRR, abs/1908.09453, 2019. URL http://arxiv.org/abs/1908.09453.

C. Lebiere and J. R. Anderson. Cognitive constraints on decision making under uncertainty. Frontiers in
psychology, 2:305, 2011.

FAIR Meta, Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried,
Andrew Goff, Jonathan Gray, Hengyuan Hu, Athul Paul Jacob, Mojtaba Komeili, Karthik Konath, Minae
Kwon, Adam Lerer, Mike Lewis, Alexander H. Miller, Sasha Mitts, Adithya Renduchintala, Stephen Roller,
Dirk Rowe, Weiyan Shi, Joe Spisak, Alexander Wei, David Wu, Hugh Zhang, and Markus Zijlstra. Human-
level play in the game of Diplomacy by combining language models with strategic reasoning. Science, 378
(6624):1067–1074, 2022. doi: 10.1126/science.ade9097. URL https://www.science.org/doi/abs/10.
1126/science.ade9097.

17

http://github.com/deepmind/dm-haiku
https://proceedings.mlr.press/v119/hu20a.html
http://www.rpscontest.com/
http://arxiv.org/abs/1908.09453
https://www.science.org/doi/abs/10.1126/science.ade9097
https://www.science.org/doi/abs/10.1126/science.ade9097

Published in Transactions on Machine Learning Research (10/2023)

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.
doi: 10.1038/nature14236. URL https://doi.org/10.1038/nature14236.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Thirty-
Third International Conference on Machine Learning, pp. 1928–1937, 2016.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer, Paul
Muller, Jerome T. Connor, Neil Burch, Thomas Anthony, Stephen McAleer, Romuald Elie, Sarah H.
Cen, Zhe Wang, Audrunas Gruslys, Aleksandra Malysheva, Mina Khan, Sherjil Ozair, Finbarr Timbers,
Toby Pohlen, Tom Eccles, Mark Rowland, Marc Lanctot, Jean-Baptiste Lespiau, Bilal Piot, Shayegan
Omidshafiei, Edward Lockhart, Laurent Sifre, Nathalie Beauguerlange, Remi Munos, David Silver, Satin-
der Singh, Demis Hassabis, and Karl Tuyls. Mastering the game of stratego with model-free multiagent
reinforcement learning. Science, 378(6623):990–996, 2022. doi: 10.1126/science.add4679.

Y. Sato, E. Akiyama, and J. D. Farmer. Chaos in learning a simple two-person game. In Proceedings of
the National Academy of Sciences of the United States of America, volume 99, pp. 4748–4751. National
Academy of Sciences, 2002.

Martin Schmid, Matej Moravcik, Neil Burch, Rudolf Kadlec, Josh Davidson, Kevin Waugh, Nolan Bard,
Finbarr Timbers, Marc Lanctot, Zach Holland, Elnaz Davoodi, Alden Christianson, and Michael Bowling.
Player of games, 2021.

Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Founda-
tions. Cambridge University Press, 2009.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529:484–489, 2016.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor
Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, and over 300 additional authors not shown. Be-
yond the imitation game: Quantifying and extrapolating the capabilities of language models. 2022. URL
https://arxiv.org/abs/2206.04615.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating with
humans without human data. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Thirty-Fifth Neural Information Processing Systems, volume 34, pp. 14502–14515, 2021a.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating with
humans without human data. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 14502–
14515. Curran Associates, Inc., 2021b. URL https://proceedings.neurips.cc/paper/2021/file/
797134c3e42371bb4979a462eb2f042a-Paper.pdf.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd edition, 2017.

Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit texas hold’em.
In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

Finbarr Timbers, Nolan Bard, Edward Lockhart, Marc Lanctot, Martin Schmid, Neil Burch, Julian Schrit-
twieser, Thomas Hubert, and Michael Bowling. Approximate exploitability: Learning a best response in
large games. In Thirty-First International Conference on Artificial Intelligence, 2022.

18

https://doi.org/10.1038/nature14236
https://arxiv.org/abs/2206.04615
https://proceedings.neurips.cc/paper/2021/file/797134c3e42371bb4979a462eb2f042a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/797134c3e42371bb4979a462eb2f042a-Paper.pdf

Published in Transactions on Machine Learning Research (10/2023)

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss,
Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S.
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy,
Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario
Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis
Hassabis, Chris Apps, and David Silver. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350–354, 2019. doi: 10.1038/s41586-019-1724-z. URL https://doi.org/10.
1038/s41586-019-1724-z.

Tony Tong Wang, Adam Gleave, Nora Belrose, Tom Tseng, Joseph Miller, Michael D Dennis, Yawen Duan,
Viktor Pogrebniak, Sergey Levine, and Stuart Russell. Adversarial policies beat professional-level go ais,
2022. URL https://arxiv.org/abs/2211.00241.

Zhijian Wang, Bin Xu, and Hai-Jun Zhou. Social cycling and conditional responses in the rock-paper-scissors
game. Scientific Reports, 4:5830, 2014.

Erik Zawadzki, Asher Lipson, and Kevin Leyton-Brown. Empirically evaluating multiagent learning algo-
rithms. CoRR, abs/1401.8074, 2014. URL http://arxiv.org/abs/1401.8074.

19

https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://arxiv.org/abs/2211.00241
http://arxiv.org/abs/1401.8074

Published in Transactions on Machine Learning Research (10/2023)

A Additional Results

In this appendix, we give supplemental results referred to in the main text.

A.1 Full Ranking of Bots

The performance and full ranking of bots in the population is given in Table 6.

A.2 Hyperparameter Search

For Q-learning, we swept over learning rates α ∈ {0.001, 0.02, 0.01} and R ∈ {1, 3, 5, 10}. We observed that
while different learning rates had differently-shaped curves, that ultimately the differences were small (with
α = 0.02 working best); on the other hand, the amount of recall made a significant difference.

For DQN and BDQN we swept over hyper-parameters batch size ∈ {32, 128}, R ∈ {1, 3, 5}, learn-
ing rate ∈ {0.02, 0.01, 0.001}, replay buffer capacity ∈ {105, 106}. For A2C we swept over hyper-
parameters R ∈ {1, 3, 5}, λ ∈ {0.99, 0.9, 0.75}, entropy cost ∈ {0.01, 0.003, 0.001}, policy learning rate
∈ {0.0002, 0.0001, 0.00005}, critic learning rate ∈ {0.0001, 0.0002, 0.0005}. In all cases, networks were two-
layer MLPs with layers of size (256, 128) and ReLU activations except the final output layer.

A.3 Language Model Agent

Language model prompt after two rounds of RRPS:

A repeated game of rock, paper, scissors is being played.
Guess the next move based on the game history.
Game history (player1, player2):
R,P
P,S

Minor variations in the prompt did not significantly impact performance. The scores are shown in Table 7.

A.4 IMPALA Agent

A.5 Behavioral Cloning

To access the extent to which the bots are predictable, we train action-prediction models that predict the
bot’s next action based on the full game history. We investigate three types of action-prediction models:

• Individual: a model trained to clone a single agent’s behavior against the full population.

• Population: a model trained to the full population’s behavior against the full population.

• k-Fold: a model trained to clone a fold (nin=30) of the population, and is also evaluated for gener-
alization on the held-out population (nout = 13).

Hereafter, the sub-population being modelled is referred to as the demonstrator population/individual (e.g.,
in the case of the Individual model, it is the singleton bot). Common to all of the models is that the identity
of the bots are never revealed.

Figure 4 shows results for the case in which a separate LSTM is trained per bot. In Figure 8 we compare
average action prediction accuracy of individual LSTM models to a single LSTM model trained to predict
next actions for a randomly sampled bot from the full population of 43 bots.

20

Published in Transactions on Machine Learning Research (10/2023)

Rank Bot Name Pop. Return W.P. Expl. Agg. Score
1 greenberg 288.153 3.648 284.505
2 iocainebot 255.003 5.006 249.997
3 biopic 196.365 36.665 159.700
4 boom 169.119 27.928 141.191
5 shofar 152.008 16.865 135.143
6 robertot 177.767 50.154 127.613
7 phasenbott 232.245 111.708 120.537
8 mod1bot 203.162 90.158 113.004
9 sweetrock 146.250 41.207 105.043

10 piedra 146.080 41.441 104.639
11 markovbails 111.192 17.601 93.591
12 sunNervebot 138.054 45.490 92.564
13 markov5 111.186 18.720 92.466
14 antirotnbot 121.387 58.616 62.771
15 halbot 212.429 176.229 36.200
16 mixed_strategy 114.131 83.488 30.643
17 randbot 0.234 1.197 −0.963
18 pibot 4.516 81.000 −76.484
19 actr_lag2_decay 146.319 236.865 −90.546
20 marble 148.661 240.988 −92.327
21 granite 149.252 241.840 −92.588
22 predbot 167.112 267.687 −100.575
23 zq_move 124.799 368.744 −243.945
24 multibot 56.057 307.065 −251.008
25 textbot −73.394 185.000 −258.394
26 debruijn81 10.250 301.679 −291.429
27 driftbot −49.499 263.493 −312.992
28 adddriftbot2 −41.855 283.910 −325.765
29 russrocker4 172.334 529.751 −357.417
30 switchalot −82.877 315.612 −398.489
31 addshiftbot3 −78.117 342.420 −420.537
32 foxtrotbot −51.019 407.418 −458.437
33 flatbot3 −71.952 416.524 −488.476
34 inocencio 17.616 579.868 −562.252
35 r226bot −212.619 399.845 −612.464
36 sunCrazybot −83.609 578.089 −661.698
37 switchbot −173.178 497.182 −670.360
38 peterbot −174.238 927.986 −1102.224
39 freqbot2 −341.744 999.000 −1340.744
40 copybot −475.327 997.000 −1472.327
41 rotatebot −602.641 998.121 −1600.762
42 rockbot −610.116 1000.000 −1610.116
43 antiflatbot −648.420 999.002 −1647.422

Table 6: The full ranking of bots in the population.

21

Published in Transactions on Machine Learning Research (10/2023)

Chinchilla Parameters Size
Bot Name 400M 1B 7B 70B
ac_l2_decay −123.3 −1.5 −28.0 −13.1
adddriftbot2 27.5 52.4 82.4 89.7
addshiftbot3 73.5 188.0 222.6 155.5
antiflatbot 995.0 995.6 991.4 992.6
antirotnbot 51.4 55.8 59.4 60.9
biopic −193.5 −63.4 −52.8 −20.0
boom −65.7 10.4 −6.8 9.5
copybot 981.0 981.0 983.0 979.0
debruijn81 −51.0 −11.0 −30.0 −20.0
driftbot 80.3 123.4 182.6 155.4
flatbot3 106.6 148.2 106.5 154.2
foxtrotbot −1.7 57.3 44.8 33.9
freqbot2 598.0 774.0 871.0 919.0
granite −16.8 120.6 156.8 128.6
greenberg −305.9 −121.2 −108.6 −39.8
halbot −300.9 −145.6 −134.9 −8.9
inocencio 449.3 337.6 793.1 382.1
iocainebot −323.0 −144.4 −148.7 −28.6
marble 20.6 141.7 146.1 123.0
markov5 −78.6 3.5 −14.4 −19.3
markovbails −80.4 2.4 −10.9 −21.1
mixed_strat −15.4 31.2 34.0 57.4
mod1bot −206.9 −87.7 −76.2 −25.0
multibot 198.0 211.0 366.0 224.0
peterbot 652.1 815.2 831.0 846.2
phasenbott −315.3 −174.7 −165.4 −45.8
pibot −2.0 −11.0 1.0 9.0
piedra 42.4 42.8 44.4 44.7
predbot −143.2 12.3 24.4 67.6
r226bot 372.4 364.3 370.8 344.4
randbot 1.1 3.4 6.3 −3.7
robertot −94.5 −8.6 3.0 −5.8
rockbot 998.0 998.0 996.0 994.0
rotatebot 983.0 992.0 995.0 1000.0
russrocker4 −234.4 −55.1 −55.8 −14.5
shofar −80.2 −34.5 −23.6 −15.8
sunCrazybot 292.5 389.7 423.2 466.3
sunNervebot −141.3 −45.7 −37.0 −16.5
sweetrock 43.9 49.6 30.8 45.3
switchalot 116.5 123.9 115.1 154.5
switchbot 200.1 230.7 225.1 276.6
textbot 144.0 113.0 129.0 31.0
zq_move 80.4 154.9 196.2 196.1
Pop. Return 110.1 177.2 198.6 201.0
W.P. Expl. 323.0 174.7 165.4 45.8
Agg Score −212.9 2.5 33.2 155.2

Table 7: LLM agent performance against bot population (avg over 10 runs).

22

Published in Transactions on Machine Learning Research (10/2023)

0 25000 50000 75000 100000 125000 150000 175000
Training episodes

40

60

80

100

120

140
Po

pu
la

tio
n

Re
tu

rn
 o

ve
r H

el
d-

ou
t O

pp
on

en
ts

Average Population Return over 10 Held-out Opponents

IMPALA (rho = 0)
IMPALA (rho = 0.001)
IMPALA (rho = 0.01)
IMPALA (rho = 0.1)
IMPALA (rho = 0.5)

Figure 6: Population return over held-out opponents when IMPALA is trained as an exploiter agent. Each
method is averaged over 50 held-out splits.

Training The models are trained with a behavioral cloning objective that maximize the action-prediction
model’s likelihood of playing a demonstration action (from the bot). Demonstration data is generated
dynamically by uniformly sampling a demonstrator and co-player. Note, that the co-player is sampled
uniformly from the full population for bot the Individual and Population models, but is sampled only from
the within-fold population for the k-Fold model. Data is generated in parallel by 20 processes populating a
temporary data buffer that is uniformly sampled to prevent correlation in complete batches from the same
strategy profile. The training batches contain 128 sub-trajectories of length 20 providing a limited recall
during training, but during evaluation full recall can be maintained within the learned memory. Each model
is trained for 1B frames corresponding to 1M episodes.

Evaluation The trained models are fixed and their predictability is measured by their agreement with a
demonstrator playing 100 episode for each unique profile (across both demonstration- and co-player-bots).
Agreement is measured by average action accuracy across all episodes.

Model Implementation The models are implemented with a 2-layer LSTM with sizes [64, 64]. The
output of final layer of the LSTM is projected into action space by an 3-layer fully-connected neural network
with sizes [64, 32, 3].

23

Published in Transactions on Machine Learning Research (10/2023)

actr_lag2_decay
adddriftbot2
addshiftbot3antiflatbotantirotnbot

biopic
boomcopybotdebruijn81driftbotflatbot3foxtrotbotfreqbot2granitegreenberg
halbotinocencioiocainebotmarblemarkov5

markovbails

mixed_strategymod1botmultibotpeterbot
phasenbott

pibot
piedrapredbotr226botrandbotrobertotrockbotrotatebot

russrocker4
shofar

sunCrazybot
sunNervebotsweetrockswitchalotswitchbottextbotzq_move

O
pponent

0

200

400

600

800

1000

Return versus opponent

Return of the PopRL Agent/Greenberg vs. each bot (average over 50 episodes)
PopRL agent
Greeberg

Figure 7: Population return of PopRL agent against individual bots compared to Greenberg.

24

Published in Transactions on Machine Learning Research (10/2023)

0.0 0.2 0.4 0.6 0.8 1.0
Action prediction accuracy

randbot
switchalot

markovbails
markov5

switchbot
phasenbott

flatbot3
shofar

iocainebot
sunNervebot
russrocker4

r226bot
biopic
boom

driftbot
mixed_strategy

greenberg
adddriftbot2

actr_lag2_decay
foxtrotbot

robertot
halbot
piedra

sweetrock
mod1bot
inocencio

sunCrazybot
antirotnbot

granite
multibot

addshiftbot3
marble

predbot
zq_move
peterbot

antiflatbot
freqbot2

debruijn81
pibot

textbot
rotatebot

rockbot
copybot

Pr
ed

ic
te

d
bo

t

individual models
single model

Figure 8: Average action prediction accuracy comparison between individual LSTM models and a single
LSTM model cloning all bots.

25

	Introduction
	Repeated Rock, Paper, Scissors
	Notation and Environment Description
	Competition and Participants (Bots)
	Population-Based Evaluation

	Predictability of RPS Bots
	Learning to Play Repeated RPS
	Baseline Independent RL Results
	Language Model Agent
	Regularized Nash Dynamics
	Contextual Regret Minimization
	IMPALA and Generalization
	IMPALA as a General Bot Exploiter Agent
	PopRL: A Hybrid Population-Based Training Algorithm

	Discussion: Limitations, Related Work, and Future Directions
	Limitations
	Related Work
	Future Directions

	Conclusion and Future Extensions
	Additional Results
	Full Ranking of Bots
	Hyperparameter Search
	Language Model Agent
	IMPALA Agent
	Behavioral Cloning

