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ABSTRACT

Pruning assumes a subnetwork exists in the original deep neural network (Frankle
& Carbin, 2019), which can achieve comparative model performance with less
computation than the original. However, it is unclear how the model performance
varies with the different subnetwork extractions. In this paper, we choose the rep-
resentation dimension (or embedding dimension, model dimension, the dimension
of the residual stream in the relevant literature) as the entry point to this issue. We
investigate the linear transformations in the LLM transformer blocks and consider
a specific structured pruning approach, SliceGPT (Ashkboos et al., 2024), to ex-
tract the subnetworks of different representation dimensions. We mechanistically
analyse the activation flow during the model forward passes, and find the repre-
sentation dimension dominates the linear transformations, model predictions, and,
finally, the model performance. Explicit analytical relations are given to calculate
the pruned model performance (perplexity and accuracy) without actual evalua-
tion, and are empirically validated with Llama-3-8B-Instruct and Phi-3-mini-4k-
Instruct.

1 INTRODUCTION

Recent progress in pruning for LLMs has proved that freezing or deleting unnecessary LLM model
weights can retain similar language task performances with less computations (Frantar & Alistarh,
2023; Men et al., 2025). However, current research has not fully addressed the functionality shifts
after pruning, which may cause safety issues (e.g. model collapse (Yang et al., 2024) and unknown
backdoor features (Wang et al., 2024)), and makes it difficult to set pruning hyperparameters (e.g.,
sparsity).

To investigate this functionality shifting issue, we take the LLM as a self-contained system. We
analyse the mappings from the input space to the output space, how pruning transforms these map-
pings, and then transforms the model predictions, as shown in Fig. 1. This analysis compiles well
with structured pruning on LLM transformers since 1 structured pruning works on structural com-
ponents, which means it edits the linear representations and linear transformations in LLMs (Park
et al., 2024), then rewrites the transmitted signals throughout the network; 2 the extracted subnet-
works are also the subgraphs in the model computational graph with distinct functionality, so they
are human-understandable “circuits” (Wang et al., 2023).

Focusing on the representation dimension in LLMs, our contributions are as follows:

1. We carry out a mechanistic investigation and find that the representation dimension dominates
the transformations (linear and non-linear) in the LLM forward passes. This dominance includes
global input-output mappings and how the weight matrices of different dimensions interact with
the activation flow locally.

2. With the definition of the model performance metrics (i.e. perplexity and multiple-choice ac-
curacy), we give the analytical relations to quantify the pruned model performance with spar-
sity. We verify our analytical relations empirically with two LLMs, LlaMa-3 and Phi-3, using
SliceGPT (Ashkboos et al., 2024) for dimension reduction.
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Figure 1: The linear transformations before (solid arrows) and after (dashed arrows) pruning in the
model. The original model maps the input embeddings Ein from the input space (illustrated with
the shading grey ellipse) to the output embedding Eout in the output space, through a series of
linear transformations (i.e. those defined by the weight matrices W1, . . . , WN ). After pruning,
Wi is converted to W′

i (i ∈ {1, 2, . . . , N}), and the original output Eout is shifted to E
′

out. The
final predictions (y and ŷ) are generated (normally non-linearly) from Eout and E

′

out. Denote
the prediction domain of the pruned model as Ŷ and that of the unpruned model Y , the mapping
g : Y → Ŷ shifts the model performance.

2 ACTIVATION FLOW IN LLM TRANSFORMERS

This section clarifies how the linear representations are transmitted throughout the network, so that
we can analyse the impacts of dimension reduction on this transmission in Sec. 3. We use the trans-
former architecture structure in Vaswani et al. (2017), denoting the LLM transformer module as M.
M contains groups of linear and non-linear transformations in multi-head attention implementation,
as shown in Fig. 2.

Proposition 1. The mapping M : Ein →
⊕h

i=1 Ai defined by the transformer M, consists of h
groups of the following transformations:

• linear transformations defined by {Wnorm, Wq, Wk, Wv, Wo, Wgate, Wup, Wdown};
• non-linear transformations involved in {RMSNorm(·),softmax(·), σ(·)}.

With the transformations in Propos. 1, we have the following analysis of the activation flow.

Let d denote the representation dimension. We input a text of l tokens to the embedding layer and
obtain the encoded texts (embedding matrix) Ein ∈ Rl×d. Ein is then processed by a series of
linear and non-linear transformations, as clarified in Appx. A.1.

Suppose there are h parallel attention layers in M, the attention outputs of the ith attention layer is
Ai, so the final output of the transformer module M is

h⊕
i=1

Ai = A1 ⊕ A2 ⊕ · · · ⊕ Ah ∈ Rh×l×hattnhdim . (1)

Here, ⊕ denotes the direct sum, which is equivalent to concatenation in the actual implementa-
tion (Xu et al., 2024; Barbero et al., 2024). Since in the default setting, hattnhdim = d, we have the
final hidden states output

⊕h
i=1 Ai ∈ Rh×l×d.

We can observe that most of this transmission implemented by the transformer is linear transforma-
tions, which are also the investigated objects in the scaling law (Kaplan et al., 2020). The represen-
tation dimension d dominates the linear transformation throughout the whole network.

3 FUNCTIONALITY SHIFTING CAUSED BY DIMENSION REDUCTION

In this section, we discuss the functionality shifting caused by the structured pruning, i.e., the map-
ping from the unpruned model prediction domain to that of the pruned model (g : Y → Ŷ in Fig. 1),
and then the shift in the model performance. We adopt SliceGPT as the structure pruning approach,
since this approach unifiedly reduces the representation dimension in the attention and feedforward
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Figure 2: Activation flow in the LLM transformer. Linear transformations are defined by weight
matrices like Wi, and non-linear transformations are represented with teletype font. The
detailed shapes of the weight matrices are clarified in Tab. 2.

layers. We denote sparsity as s (0 < s < 1), (1 − s)d ∈ Z+ the representation dimension after
pruning.

3.1 PERPLEXITY

Perplexity, denoted as PPL(·), represents the uncertainty of a discrete probability distribution. Let us
start with a single token sequence X = (x1, x2, . . . , xl). We assign each token in X to an embedding
vector vi = (vi,1, vi,2, . . . , vi,d) ∈ R1×d, and obtain the stacked embedding vectors (embedding
matrix) E = (v1, v2, . . . , vl) ∈ Rl×d. The differential entropy of the stacked embedding vectors is
H(Ein) = H(Eout) = ld · κ(t), where κ(t) = −

∫
p(t) log(p(t)) dt. After pruning, the entropy

of the output embeddings shifts from ld · κ(t) to (1 − s)ld · κ(t), such that H(E
′
out)

H(Eout) = 1 − s. Given

the definition of perplexity correlation is PPL(E) = 2H(E), we have the following theorem about
the perplexity before and after pruning:

Proposition 2. For structured pruning with representation dimension sparsity s, the perplexity of the
pruned model, denoted as PPL(D), and the perplexity of the original model, denoted as PPL0(D),
satisfy

lnPPL0(D)
lnPPL(D) = 1 − s, (2)

where D is the test dataset from the same distribution as the dataset used for pruning.

To verify Propos. 2, we pruned Llama-3-8B-Instruct (Dubey et al., 2024) and Phi-3-mini-4k-
Instruct (Abdin et al., 2024) with different dimension sparsity with SliceGPT, then evaluated the
pruned and unpruned models on WikiText2, as shown in Fig. 3a. We can observe that the perplexi-
ties fit well with the linear function, which justifies our analytical expression Eq. (2).

3.2 ACCURACY

Accuracy of generative language models is bonded to the sequence probability, while perplexity is
defined as the multiplicative inverse of the sequence probability. A well-generalized model would
assign a high probability to the correct sequence (high accuracy but low perplexity). Therefore,
intuitively, accuracy is inversely relevant to perplexity.

We postulate that a logarithmic form like Eq. (2) might also exist in the correlation between accuracy
and representation dimension sparsity. Note that here we consider the accuracy of short, multiple-
choice answers (e.g. “Yes”/“No”, or “A”/“B”/“C”), since this accuracy can be computed via exact
match without ambiguity. We tried possible logarithmic expressions similar to ln PPL0(D)

ln PPL(D) with the
same LLMs used for perplexity evaluation. We replaced the perplexities with multiple-choice ac-
curacies on ARC-e, ARC-c, WinoGrande and PIQA. Among these logarithmic expressions, the
best-fitted form is ln acc

acc0
, as shown in Fig. 3b. Thus we have the following empirical theorem with

similar analytical expressions as Propos. 2:

Proposition 3. For structured pruning with representation dimension sparsity s, the multiple-choice
accuracy of the pruned model, denoted as acc(D), and that of the original model, denoted as
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Figure 3: Fitted evaluation results. The fitting coefficients and errors are in Appx. A.2.

acc0(D), satisfy

ln acc(D)
acc0(D) ∝ 1 − s, (3)

where D is the test dataset for evaluating multiple-choice accuracy.

We can observe that the left-hand side of Eq. (3) is almost the multiplicative inverse of the left-
hand side of Eq. (2). This is consistent with the fact that 1

PPL and acc are positively correlated
when the model generalizes well, and they have (nearly) the same range ( 1

PPL ∈ (0, 1] and acc ∈
[0, 1]). The right-hand sides of Eq. (2) and (3) are exactly the same, indicating that the representation
dimension dominates the model predictions. Though the multiple-choice accuracies fit Eq. (3) albeit
less accurately than the perplexities, this formula consistency further empirically justifies what we
claimed in Sec. 2.

4 RELATED WORK

Sparsity and Scaling Law in LLM. Sparsifying LLMs at the matrix level (Frantar & Alistarh,
2023), module level (Men et al., 2025) or representation dimension level (Ashkboos et al., 2024),
has drawn a lot of attention in recent years. The correlation between sparsity and model performance
has remained underexplored. In this work, we analytically investigate this correlation. Frantar et al.
(2024) put sparsity into the original scaling law (Kaplan et al., 2020), but consider other factors,
such as the size of the dataset and training steps. In the context of scaling law, we solely focus on
the entropy loss shifting with sparsity, and our Eq. (2) and (3) are expressed in standard evaluation
metrics. Broadly speaking, our work is a special case of scaling law, but finer-grained, more precise
and more analytical than the original scaling law.

Circuits in Transformers. In the field of mechanistic interpretability, circuits are the subgraphs in
the neural networks that have distinct computation mechanisms (Jain et al.; Conmy et al., 2023). In
the context of the circuit analysis in transformers, Elhage et al. (2021) discusses the contributions of
the weight matrices to the final residual stream from a mathematical perspective. However, they do
not fully address the impacts of the representation dimension on the model predictions. We dive into
these impacts and give quantitative conclusions on two common evaluation metrics (i.e. perplexity
and accuracy).

5 CONCLUSION

This work mechanistically investigates the impacts of representation dimension on the model pre-
dictions and, herein, model performance. It introduces analytical relations to estimate the pruned
model performance, which is empirically valid in real-world LLM settings. Limitations and future
work are discussed in Appx. A.3.
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Rocktäschel, Edward Grefenstette, and David Krueger. Mechanistically analyzing the effects of
fine-tuning on procedurally defined tasks. In The Twelfth International Conference on Learning
Representations.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
weipeng chen. ShortGPT: Layers in large language models are more redundant than you expect,
2025. URL https://openreview.net/forum?id=JMNht3SmcG.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geom-
etry of large language models. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Hao Wang, Tao Xiang, Shangwei Guo, Jialing He, Hangcheng Liu, and Tianwei Zhang. Transtroj:
Transferable backdoor attacks to pre-trained models via embedding indistinguishability. arXiv
preprint arXiv:2401.15883, 2024.

5

https://openreview.net/forum?id=i9K2ZWkYIP
https://openreview.net/forum?id=JMNht3SmcG


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. In The Eleventh
International Conference on Learning Representations, 2023.

Mingxue Xu, Sadia Sharmin, and Danilo P Mandic. Geometry is all you need: A unified taxonomy
of matrix and tensor factorization for compression of generative language models. arXiv preprint
arXiv:2410.03040, 2024.

Wanli Yang, Fei Sun, Jiajun Tan, Xinyu Ma, Du Su, Dawei Yin, and Huawei Shen. The fall of rome:
Understanding the collapse of llms in model editing. arXiv preprint arXiv:2406.11263, 2024.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

6



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

A APPENDIX

Table 1: Notation in this paper.

Symbol Meaning
⊕ Direct sum (concatenation in practice).
d Embedding dimension, or model dimension (Kaplan et al., 2020),

the dimension of the residual stream
(Elhage et al., 2021; Kaplan et al., 2020)

m Intermediate size of the MLPs.
hdim Dimension of the attention heads.
hattn Number of the attention heads.
v Number of the key-value heads.
h Number of the attention layers.
l Token sequence length.
s Embedding dimension sparsity.
γ Scaling factor.
v, vi Embedding vector, ith row the embedding matrix E.
W Weight matrix.
M Transformer module.
D Dataset.
N The number of the layers to be compressed in M.
E, Ein, Eout Embedding matrix, input embedding matrix, output

embedding matrix.
A, Ai Output of the attention layer, output of the ith attention layer.
H Entropy.
κ Unit entropy of a real scalar variable.
σ Activation function.

Table 2: The weight matrices in the transformer modules and their sizes, or-
dered by their appearances during the forwarding pass. The detailed notation
is in Tab. 1.

WRMSNorm d Wv d × vhdim Wup d × m
Wq d × hattnhdim

⋆ Wo hattnhdim × d Wdown m × d
Wk d × vhdim Wgate d × m
⋆ hattnhdim = d

A.1 ACTIVATION FLOW ALYSIS

Let d be the embedding dimension. Input a text of l tokens to the embedding layer first, we then
have the encoded texts (embeddings) Ein ∈ Rl×d. Ein is then processed by a layer norm operation.
Take the current widely-used RMSNorm (Zhang & Sennrich, 2019) as our case, the normalized
embeddings after the layer norm operation is

Ēin = WnormEin · RMSNorm(Ein) ∈ Rl×d, (4)

RMSNorm(E) =

√√√√1
d

d∑
i=1

E⊤[:, i]E[:, i] ∈ R, (5)

where WRMSNorm ∈ Rd is the weight of the RMSNorm layer, Ein[:, i] is the ith column of Ein.

The attention layer typically consists of four linear layers with weight matrices Wq ∈ Rd×hattnhdim ,
Wk ∈ Rd×vhdim , Wv ∈ Rd×vhdim and Wo ∈ Rhattnhdim×d. hattn is the number of the attention
heads, hdim is the head dimension, and v is the number of key-value heads1. In the default setting of

1We use the same notation names as listed in Llama-3-8B Configuration.
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Llama2, hattnhdim = d. Then we have the hidden states of query Q, key K and value V as follows:

Q = WqĒin, K = WkĒin, V = WvĒin, (6)

and then we get the attention weights of parallel attention layers in M, Wa, and attention outputs
A as

Wa = softmax(QK⊤)γ ∈ Rhattn×hattn×l, A
′

= Wo(WaV ) ∈ Rl×hattnhdim , (7)

where γ is the scaling factor. The attention outputs are then normalized again as Ā
′ =

RMSNorm(A′), then input to an MLP MMLP = {Wgate, Wup, Wdown}, such that we have the
hidden state

A = RMSNorm(Wdown(σ((WgateĀ
′
)(WupĀ

′
)))) ∈ Rl×hattnhdim , (8)

where σ is the activation function. Suppose there are h parallel attention layers in M, the attention
outputs of the ith attention layer is Hi, so the final output of the transformer module M is

h⊕
i=1

Ai = A1 ⊕ A2 ⊕ · · · ⊕ Ah ∈ Rh×l×hattnhdim . (9)

Here, ⊕ denotes the direct sum, which means concatenation in the actual implementation. Since in
the default setting, hattnhdim = d, we have the final hidden states output

⊕h
i=1 Ai ∈ Rh×l×d.

A.2 ADDITIONAL EXPERIMENT RESULTS

The fitting details in Fig. 3 are clarified in Tab. 3.

Table 3: Fitting perplexities in Fig. 3a and accuracies in Fig. 3b.

Perplexity (Fig. 3a) Dataset(D) y = as + b (y = ln PPL0(D)
ln PPL(D)

a b RMSE

Llama-3-8B-Instruct WikiText2 -1.08 0.96 0.03
Phi-3-mini-4k-Instruct -0.90 1.02 0.01

Accuracy (Fig. 3b) Dataset(D) y = as + b (y = ln acc(D)
acc0(D) )

a b RMSE

Llama-3-8B-Instruct ARC-e -2.14 0.04 0.05
Phi-3-mini-4k-Instruct -1.84 0.04 0.04

Llama-3-8B-Instruct ARC-c -2.02 -0.07 0.09
Phi-3-mini-4k-Instruct -1.88 -0.01 0.02

Llama-3-8B-Instruct WinoGrande -0.86 -0.02 0.02
Phi-3-mini-4k-Instruct -0.66 -0.02 0.02

Llama-3-8B-Instruct PIQA -0.91 -0.01 0.03
Phi-3-mini-4k-Instruct -0.90 0.01 0.01

A.3 LIMITATIONS AND FUTURE WORK

This paper gives explicit analytical relations between the pruned model performance and sparsity.
However, these relations are derived from the direct representation dimension reduction, which is
implemented by SliceGPT. The representation dimension may play similar roles in other pruning
approaches (explicitly or implicitly), and it is worth investigating how it impacts their pruned model
performance.

2For simplicity, we do not consider position encoding, dropout, attention mask, and MLP bias in LLMs.
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