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ABSTRACT

Structured pruning efficiently compresses networks by identifying and removing
unimportant neurons. While this can be elegantly achieved by applying sparsity-
inducing regularisation on BatchNorm parameters, an L1 penalty would shrink
all scaling factors rather than just those of superfluous neurons. To tackle this
issue, we introduce a simple BatchNorm variation with bounded scaling param-
eters, based on which we design a novel regularisation term that suppresses only
neurons with low importance. Under our method, the weights of unnecessary neu-
rons effectively recede, producing a polarised bimodal distribution of importances.
We show that neural networks trained this way can be pruned to a larger extent
and with less deterioration. We one-shot prune VGG and ResNet architectures
at different ratios on CIFAR and ImagenNet datasets. In the case of VGG-style
networks, our method significantly outperforms existing approaches particularly
under severe pruning. Source code is available at: https://anonymous.
4open.science/r/receding-neuron-importances-40C9.

1 INTRODUCTION

Modern deep neural network architectures (Simonyan & Zisserman, 2014; He et al., 2016) achieve
state-of-the-art performance but require significant computational resources which makes their de-
ployment onto edge devices difficult. Even though it has been shown that it is possible to train less
over-parametrised models from scratch and obtain a similar performance (Frankle & Carbin, 2018),
it remains a non-trivial task to actually find such a winning subnetwork.

In this work, we focus on structured one-shot pruning as a means to network compression which is
typically composed of three stages – i) training a large model to convergence, ii) removing parame-
ters with low importance, and iii) fine-tuning the remaining network. Unstructured pruning, which
works on a weight level (Yang et al., 2019; Frankle & Carbin, 2018), can remove a much higher num-
ber of parameters but produces sparse weight matrices which cannot be efficiently utilised without
specialised hardware (Han et al., 2016). In contrast, by removing entire neurons structured pruning
finds efficient structures akin to an implicit architecture search (Liu et al., 2018).

Structured pruning methods attribute an importance score to each neuron, which enables their rank-
ing and ultimately the decision of which to dispose (Li et al., 2016; Molchanov et al., 2016a). To
this end, BatchNorm layers (Ioffe & Szegedy, 2015) become very appealing as they explicitly learn
parameters which uniformly scale the outputs of each neuron. This scaling parameter can be used
as a proxy for the importance the model attributes to a neuron, as a value of zero would effectively
suppress an output. Furthermore, one can regularise these layers to obtain neuron level sparsity
whilst maintaining classification performance (Liu et al., 2017; Zhuang et al., 2020). Such methods
typically define neuron importance as the absolute value of its scaling parameter, an approach which
limits the design of regularisers. Because the measure is only half-bounded one cannot easily define
levels of importance without looking at the overall distribution - making it difficult to target specific
neurons. An example is the L1 regulariser (Liu et al., 2017) which shrinks all parameters with a
constant gradient, even ones with high importance. Ideally, one would design a regulariser which
creates sparsity by only shrinking unimportant neurons, leaving the others untouched.

In this work, we create such a regulariser and show it outperforms existing approaches at a rate that
increases with the amount of neurons pruned. Our contributions are two-fold: we first introduce
a simple variation of BatchNorm, which linearly transforms channels using bounded scalers. This
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layer maintains the same performance as the original, while offering a bounded importance score
for neurons. Building on this measure we then define a novel regularisation, focused on shrinking
only neurons with lesser weight, by having its gradient decay exponentially for higher importances.
Our method significantly outperforms related approaches for VGG models, and we show that severe
degradation can be attributed to over-pruning early layers of the network.

2 RELATED WORK

Neural network compression through pruning is most commonly divided into structured and un-
structured approaches. Unstructured pruning has gained a lot of attention in recent years (Frankle &
Carbin, 2018) as it challenges conventional wisdom over the role of over-parametrisation and weight
initialisation in the optimisation of deep neural networks (Frankle et al., 2020). While these methods
can achieve superior theoretical compression rates (Renda et al., 2020), their use remains impracti-
cal without specialised hardware that can take advantage of sparsity (Han et al., 2016). Structured
pruning on the other hand removes entire neurons from an architecture thus achieving real memory
and computational efficiencies (Liu et al., 2018).

At the heart of structured pruning lies the task of identifying unimportant neurons to remove from
a network. Quantifying importance can be based on numerous criteria including filter norms (Li
et al., 2016; He et al., 2018), reconstruction errors (He et al., 2017; Luo et al., 2017; Molchanov
et al., 2016b; Yu et al., 2018), redundancy (He et al., 2019; Suau et al., 2020; Wang et al., 2018)
and BatchNorm parameters (Liu et al., 2017; Zhuang et al., 2020). Our work belongs in the latter
category as we focus on deriving an importance score solely based on channel scaling parameters.

In addition to defining importance measures, one can add regularisation during training to nudge
networks into utilising their capacity more sparingly. Most relevant to our work are methods which
apply sparsity regularisations on BatchNorm parameters (Liu et al., 2017; Zhuang et al., 2020). The
most popular approach is Network Slimming (Liu et al., 2017), which constrains the BatchNorm
scaling parameters using the L1 penalty. A drawback of this method is that it shrinks all parameters
with an equal gradient irrespective of their importance. This issue is also addressed by Zhuang et al.
(2020) who propose a regulariser that explicitly maximises the polarisation of the BatchNorm scaler
distribution. While the method effectively increases the margin between important and unimportant
neurons, it does so by both shrinking and expanding weights. Another method designed for non-
linear shrinking is Yang et al. (2019), who propose the ratio of the L1 and L2 norms as a sparsity
regulariser. Even though this method is not based on BatchNorm, but is targeted at filter weights,
we include it in our comparison as it has a similar motivation to our work.

In terms of pruning setup the most popular method is one-shot pruning (Li et al., 2016; Zhuang et al.,
2020; Yang et al., 2019) where all desired neurons are removed at once and the remaining network
is fine-tuned. Iterative approaches (Han et al., 2015) periodically prune and fine-tune until a target
ratio is met. Recent works aim to eliminate the need of fine-tuning (Chen et al., 2021) altogether or
prune models after intialisation in a data-free manner (Lee et al., 2018; Wang et al., 2020).

3 SIGMOID BATCHNORM

We introduce a variation of BatchNorm, which uses a single learnable parameter per channel and of-
fers a bounded importance score for filters. In its original formulation, BatchNorm (Ioffe & Szegedy,
2015) first normalises each input channel x using batch statistics mean µB and standard deviation
σB , then applies an affine transformation using learnable parameters γ and β.

BN(x, γ, β) = γ
x− µB√
σ2
B + ϵ

+ β (1)

While BatchNorm has become ubiquitous in Deep Learning, the reasons behind its effectiveness are
not fully understood (Santurkar et al., 2018). The proliferation of BatchNorm variations (Ba et al.,
2016; Wu & He, 2018; Ulyanov et al., 2016) suggests its benefits arise from normalising activations
rather than the affine transformation following it. We empirically show that the transformation can
be replaced to be linear without loss of performance.
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Figure 1: Distribution of parameters across all BatchNorm layers of pre-trained models available in
PyTorch (Paszke et al., 2017). The scale γ stays in the interval [0, 1], the offset β remains close to 0.

We look at the empirical distributions of BatchNorm parameters to understand the effects of the
affine transformation. While the scale γ and offset β are unbounded, in practice, these will be
suppressed due to weight decay. We can observe this in pre-trained models: Figure 1 shows the
parameter distributions for all BatchNorm layers of a VGG-19 (Simonyan & Zisserman, 2014) and
ResNet-50 (He et al., 2016) model. The BatchNorm parameters in both networks are well aligned
as almost all γ ∈ [0, 1], while a large proportion of β are concentrated around 0.

Because BatchNorm operates on a channel level, it is of particular interest to structured pruning,
as it offers a natural place to look for measures that quantify filter importance. In line with our
observation about the distribution of β, previous approaches (Liu et al., 2017; Zhuang et al., 2020)
define filter importance as the magnitude of γ and ignore the offset. While this has proven to work
in practice, one could argue it would be desirable to construct an importance score that incorporates
all the information available. Additionally, the utility of such a measure could be greatly improved
if it would be bounded - offering a better understanding by knowing the minimum and maximum
importance a filter could have.

Given the aforementioned considerations, we propose a simple alteration to BatchNorm, termed
σBN , which keeps the normalisation scheme, but changes the channel transformation to use a
bounded scaling parameter. We remove the offset β and bound the scale parameter by applying the
sigmoid function to γ before multiplication:

σBN(x, γ) = σ(γ)
x− µB√
σ2
B + ϵ

, where σ(γ) =
1

1 + e−γ
(2)

In Table 1 we see the performance of vanilla BatchNorm (BN) compared with our variation σBN.
Our variation performs comparable for VGG-16 and ResNet-56 on both CIFAR datasets. For
completeness we also add the performance of BN and σBN with and without the bias term β. We
can observe that the presence or absence of β does not have a profound impact on accuracy. With
σBN, we now have a normalisation layer that uses a single, bounded parameter to quantify the im-
portance of a filter. We will use this property to decide which filters to suppress and ultimately prune.

CIFAR10 BN-β BN σBN σBN+β

VGG-16 93.58 93.57 93.48 93.35
ResNet-56 92.87 93.34 93.11 93.33

CIFAR100 BN-β BN σBN σBN+β

VGG-16 72.81 72.99 72.75 73.12
ResNet-56 70.70 70.94 71.27 71.12

Table 1: No significant difference in classification accuracy can be seen between any BatchNorm
variation, including toggles of the bias term for vanilla BN and σBN. Results are averaged over three
runs and have standard deviation of ≈0.2. Normalisation layers are trained without regularisation.
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Figure 2: Left: The gradient of the RNI loss with respect to γ for different hyper-parameter choices.
b shifts the range of neuron importances which the regulariser will affect. Right: Histograms of
resulting neuron importances after using L1 or RNI regularisation.

4 RECEDING NEURON IMPORTANCE

Structured pruning aims to compress a network by identifying and removing unimportant neurons.
We define θ to be the parameters of a neural network and refer to the subset associated with Batch-
Norm as θBN . Let I(θi) be a measure of importance for neuron i, which can be computed from any
model parameters associated with that neuron, such as its filters in convolutional layers (Li et al.,
2016; Yang et al., 2019). In BatchNorm based pruning, I is derived only from θBN , and is com-
monly defined as I(θBN

i ) = |γi| (Liu et al., 2017; Zhuang et al., 2020). In this paper we use the
measure induced by our σBN layer such that I(θBN

i ) = σ(γi). As in previous work, we want to
solve the following risk minimisation problem:

min
θ

1

N
L (θ,X) + λR(θ) + λSRS(θ

BN ) (3)

where X = {xi, yi}Ni=1 is a labelled dataset with N training samples, and λ, λS are scalar weight-
ings for the regularisation terms R and RS . R(θ) is a regularisation against over-fitting, such as
weight decay, and is usually applied over all network parameters, including normalisation layers.
RS is targeting only θBN such that I exhibits the following property during pruning:

L (θ\{θi}, X) > L (θ\{θj}, X) , if I(θi) < I(θj) (4)

Such a property creates an ordering which ensures that removing a neuron θi with lower importance
will have less impact on model performance, than removing a more important θj . We will assess
the quality of such an ordering by looking at the model performance after pruning and fine-tuning.
However, an ordering is only partially evaluated when removing a single subset of neurons - since the
order of the remaining neurons is not taken into account. Therefore, for a comprehensive estimate
of the global ordering quality, it is necessary to prune a model at multiple thresholds.

Generally we want RS to induce sparsity over θBN such that outputs of unimportant neurons are
entirely suppressed during training. Pruning such a network would result in less damage and con-
sequently a quicker recovery during fine-tuning. The typical choice of Rs is the L1 norm, which
shrinks all scaling parameters with a constant gradient. Such a regularisation strategy simultane-
ously subdues both important and unimportant neurons with equal weighting. From an optimisation
perspective, L1 will create a bias such that at convergence, any equilibrium would require the classi-
fication loss to negate the constant gradient of the regulariser. Such a bias might lead to sub-optimal
solutions, and can be mitigated by having the regularisation reduce its strength once a suitable,
sparse distribution of importances has been found. We show that a better regularisation term can be
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designed by focusing on suppressing unimportant neurons, whilst leaving important ones untouched.
Without an idea of bounds for I(θBN ) it is difficult to decide on a threshold between important and
unimportant neurons. Using the importance measure from our σBN layers we propose a regulari-
sation loss whose strength decays exponentially as I(θBN ) reaches its maximum. We introduce the
Receding Neuron Importance regularisation (RNI) on batch normalisation parameters γ:

Rs(γ, b) = σ(γ + b) · (1− log(σ(γ + b))), with ∇σ(γ+b)(Rs) = − log(σ(γ + b))

and ∇γ(Rs) = − log(σ(γ + b))σ(γ + b)(1− σ(γ + b))
(5)

The hyper-parameter b controls the range defining which neuron importances to target. Its effects
can be visualised in Figure 2 (Left): b shifts the peak of the gradient after which an exponential
decay occurs. As b increases only neurons with lesser importance are affected by the regularisation.
With the weights of such neurons receding towards zero, the final distribution of importances will
have a polarised bimodal shape - only important and zero-weight neurons will be left (Right).

5 EXPERIMENTS

In this section, we will evaluate our sparsity regularisation under a one-shot pruning setting on the
CIFAR10/100 and ImageNet datasets using VGG and ResNet models. In most structured pruning
literature evaluation is performed only under relatively benign pruning ratios, which mostly preserve
the performance of the original model and can make it difficult to compare related methods. In our
evaluations we observe that the difference between approaches becomes noticeable when pruning
ratios are increased. Under more inauspicious circumstances we show that our method outperforms
existing state-of-the-art approaches and can, in some instances, significantly mitigate the detrimental
effects of severe pruning. We also compare the pruned VGG/ResNet networks with similarly sized
MobileNetV2 models and show that pruning outperforms these compact architectures.

5.1 EXPERIMENTAL SETUP

Pruning. Under a one-shot pruning scenario, a model is trained, then pruned and subsequently fine-
tuned to recuperate performance. An appropriate regularisation strength is selected such that it does
not impede training while also producing enough sparsity to prune the desired amount of neurons.
For practical reasons we train a model only once and then evaluate it under several pruning ratios. We
prune networks in a global fashion, removing filters based on their importance score and without
regard to the resulting distribution over the layers. To avoid the pruning of all neurons within a layer,
a minimum of three filters will be preserved. While this avoids the extreme case of layer collapse,
if a method disproportionately prunes the neurons of a single layer it could still irreparably damage
the network. From a technical perspective, pruning the filters of a layer changes its parameter count
but also that of the following layer, since the expected input dimensionality has changed. While this
has no further implications for VGG style architectures, it does pose some challenges for networks
with residual connections. Similar to related works, in order to avoid mismatched dimensions in
ResNets, we do not prune skip connections or the last layer in residual connections.

Related Methods. We compare our approach with L1 Slimming (Liu et al., 2017), Polarization
Regularisation (Zhuang et al., 2020), Deep Hoyer (Yang et al., 2019) and Uniform Channel Scaling
(UCS) (Zhuang et al., 2020). The same experimental settings are used for all methods during train-
ing, pruning and fine-tuning. An exception is the UCS baseline, which does not use any sparsity
regularisation and prunes in a local manner by removing the same percentage of filters across all
layers. All networks of related approaches are built using vanilla BatchNorm, and with the same ini-
tialisation scheme as Liu et al. (2017). Models trained with σBatchNorm layers are initialised with
γ drawn from a standard Normal distribution and will not use weight decay during training. The
learning rate of σBatchNorm is set to be higher by factor of 10 than that of the rest of the network -
we found this to help with polarisation.

Hyper-parameters. The same settings as Liu et al. (2017) are used for the CIFAR10 and CIFAR100
datasets. VGG-16 and ResNet-56 models are both trained and fine-tuned for 160 epochs, with the
same learning rate schedule and with a batch size of 64. Models are optimised using SGD with
momentum, weight decay of 10−4 and an initial learning rate of 10−1 which reduces stepwise by
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a factor of 10−1 at epochs 80 and 120. The respective sparsity regularisations are applied on all
layers of the models. Datasets are augmented using only random crops and horizontal flips. On
ImageNet, we evaluate methods on the ResNet-50 bottleneck architecture and regularise only its
prunable layers. Models are trained for 90 epochs and fine-tuned for 30, using a batch size of
512. The initial learning rate is 10−1 for training and 10−2 for fine-tuning, and is scheduled to
decrease after 1/3 and 2/3 of the respective training time. For our RNI experiments the following
hyper-parameters are used: λS = 10−3, b = 3 for VGG-16, λS = 10−4,b = 0 for ResNet-56, and
λS = 10−5, b = 3 for ResNet-50.
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Figure 3: Accuracy of fine-tuned VGG-16 models at varying pruning thresholds. Performance
differences between methods become more pronounced at higher ratios. RNI degrades gracefully
compared to related methods.

5.2 RESULTS

Apart from ImageNet, all methods are evaluated on three random seeds and their mean performance
is reported. For clarity, we will omit the standard deviation as we found the results to be very similar
across runs. Two scenarios are examined in more detail as they sit on opposite ends of the difficulty
spectrum: pruning 50% and 90% of filters. The 50% mark is the default setting in the structured
pruning literature and we expect all methods to recuperate most of their baseline performance. This
pruning level also ensures a fair comparison between methods as it acts as an anchor for hyper-
parameter choices. At 90% of filters pruned, we see a significant degradation in performance and a
far larger differentiation between methods and models.

In Figure 3 we have an overview of how VGG networks degrade as pruning ratios increase. On both
datasets our method deteriorates gracefully compared to the abrupt declines of related approaches.
While on CIFAR10 all methods have an easier time maintaining their performance, on CIFAR100
degradation becomes immediately visible due to the increased difficulty of the dataset. Surprisingly,
the locally pruning UCS baseline performs worst on CIFAR10 but outperforms all methods, apart
from ours, on CIFAR100. This shows that correctly identifying unimportant neurons in a global
manner becomes harder as the difficulty of the dataset increases. In our ablation studies we will
show that this deterioration can be directly linked to excessive pruning of early layers in VGGs.

CIFAR10. This task is relatively simple and we expect excess model capacity to be prunable without
much performance loss, as seen in Table 2. The only significant degradation happens for VGGs at the
90% mark, where UCS and DeepHoyer lose over 10% accuracy compared to the baseline. ResNets
are more robust and are lose less than 4% accuracy while reducing roughly 80% of FLOPs.

CIAFR100. Due to the increased difficulty, in Table 3 we see a larger deterioration for models
trained on the CIFAR100 dataset. Here networks require more capacity, thus the number of nec-
essary filters should be higher, and the identification of superfluous ones more difficult. With 90%
of filters removed, VGG networks experience severe degradation as methods fail to identify which
neurons to keep. In this scenario our approach considerably outperforms state-of-the-art methods by
30% classification accuracy. The only exception is the UCS baseline, which by design maintains the
stability of a model, as it will never prune excessive amounts of filters in any given layer. ResNets
again prove to be more robust to pruning and show less variation in performance between methods.
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VGG-16 Baseline 50% 90%

Acc. Acc. FLOPs Acc. FLOPs

Slimming 93.71 93.96 60.25 89.15 11.40
Polarization 93.91 94.27 64.15 88.37 14.69
DeepHoyer 93.66 93.96 61.32 80.82 8.09
UCS 93.84 93.02 25.19 83.69 1.13
RNI 93.53 93.64 48.24 90.96 8.40

Resnet-56 Baseline 50% 90%

Acc. Acc. FLOPs Acc. FLOPs

Slimming 93.68 93.45 54.07 89.90 19.55
Polarization 93.34 93.50 52.69 89.43 18.89
DeepHoyer 93.44 93.51 51.07 89.94 20.84
UCS 93.78 93.33 50.39 88.78 14.79
RNI 93.53 93.01 56.13 90.26 21.54

Table 2: Results on CIFAR10 for different pruning ratios, showing absolute accuracy (%) and re-
maining FLOPs (%) relative to the unpruned baseline. Due to the simplicity of the task, models can
be significantly pruned without deterioration.

VGG-16 Baseline 50% 90%

Acc. Acc. FLOPs Acc. FLOPs

Slimming 73.54 71.61 61.12 29.66 3.76
Polarization 73.47 71.23 63.82 25.62 2.59
DeepHoyer 73.19 71.66 67.23 25.42 4.98
UCS 73.80 70.84 25.19 54.39 1.13
RNI 72.28 72.46 36.72 57.92 6.31

Resnet-56 Baseline 50% 90%

Acc. Acc. FLOPs Acc. FLOPs

Slimming 71.94 70.06 56.97 63.92 15.29
Polarization 71.80 70.08 40.78 62.42 15.47
DeepHoyer 71.88 71.14 49.22 63.49 19.51
UCS 71.90 70.72 50.40 63.65 14.79
RNI 71.30 70.65 48.24 63.95 16.34

Table 3: Results on CIFAR100 for low and high ratios of filters pruned. Shown are the absolute
classification accuracy (%) and remaining FLOPs (%) relative to the unpruned baseline. Due to the
increased complexity of the classification task, it becomes more difficult to remove excess capacity.
The VGG architecture breaks down significantly after sever pruning.

ImageNet. On ImageNet in Table 4 the results are similar, however we observe bigger losses due
to the increased dataset difficulty. Under these circumstances our method still outperforms prior
state-of-the-art, but is worse than the UCS benchmark. This again indicates that for more difficult
datasets, global methods over-prune the wrong layers, something the UCS baseline will not do by
design. Nevertheless, ResNets show remarkable robustness to pruning, which we attribute to the
fact that their skip connections act as a fail-safe and limit the effect of over-pruned layers.

ResNet-50 Baseline 50% 90%

Acc. Acc. FLOPs Acc. FLOPs

Slimming 75.74 72.56 41.12 51.74 16.50
Polarization 75.12 73.11 46.12 49.43 17.00
DeepHoyer 75.36 68.72 57.56 50.98 24.14
UCS 76.14 73.28 44.78 58.13 16.94
RNI 74.75 72.31 48.13 54.08 17.66

Table 4: ImageNet results showing absolute ac-
curacy (%) and remaining FLOPs (%) relative
to the unpruned baseline.

Compact Networks. At higher pruning ratios
the parameter count of models is significantly
reduced, raising the question of whether they
would outperform networks specifically designed
to be lightweight. Compact networks such as
MobileNetV2 Sandler et al. (2018) have an ad-
justable width multiplier allowing the instantia-
tion of models with arbitrary number of parame-
ters. We thus conduct additional baseline exper-
iments comparing the RNI pruned VGG/ResNet
models from Tables 2 and 3 to non-sparse Mo-
bileNets of the same size. For each of the RNI
pruned models we find a width multiplier such
that the corresponding MobileNet has a similar
number of parameters, and then optimise it using the same training setup, but without a sparsity
loss. From the results in Table 5 we can see that our pruned models can outperform similar sized
MobileNets in almost every setting, proving the practical utility of higher pruning ratios.

Summary. Because of the evaluation over datasets with varying degrees of complexity, we can make
several observations about how models degrade under a spectrum of pruning ratios. Firstly, at 50% of
filters pruned differences between approaches are barely visible since all methods are able to regain
most of their pre-pruning performance. Differences become obvious only at higher ratios, where our
method clearly surpasses prior state-of-the-art. Unsurprisingly, residual networks are more robust
to pruning than VGG architectures, since their skip connections can propagate the signal even if
essential residual connections have been mistakenly over-pruned. This however comes at the cost
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Network Dataset Pruning Ratio

50% #P. 90% #P.

VGG-16 [RNI] CIFAR10 93.64 3.40M 90.96 167K
MobileNetV2 CIFAR10 93.38 3.43M 89.67 177K

VGG-16 [RNI] CIFAR100 72.46 3.23M 57.92 158K
MobileNetV2 CIFAR100 75.16 3.12M 52.72 163K

ResNet-56 [RNI] CIFAR10 93.01 401K 90.26 112K
MobileNetV2 CIFAR10 91.21 408K 88.55 124K

ResNet-56 [RNI] CIFAR100 70.65 429K 63.95 128K
MobileNetV2 CIFAR100 71.05 452K 52.72 163K

Table 5: Comparison between non-sparse MobileNetV2 models and RNI pruned VGG/ResNets on
CIFAR datasets. For each setting the width multiplier has been chosen such that the MobileNet will
have the same number of parameters as the pruned networks.

of pruning efficiency, as seen by the diminished reduction of FLOPs compared to VGG models. To
our surprise we find that while UCS is not suited for simple classification tasks, it outperforms prior
global pruning methods on more complex datasets. Because of its design, the UCS baseline avoids
any risk of excessively pruning individual layers, making models less prone to sudden performance
deterioration. This leads to the conjecture that the other related methods over-prune certain layers,
which leads to severe degradation in VGG models. In our ablative analysis we show that this is
indeed the case, and make the realisation that our method is the only one which does not significantly
prune early layers in a network. This offers an explanation why RNI noticeably outperforms similar
approaches at high pruning ratios. Finally, from additional evaluations on compact architectures we
see that pruned VGG/ResNet models outperform similarly sized MobileNets, which further proves
the utility of pruning as a means to obtaining compressed networks.
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Figure 4: Effects of hyper-parameters λS and b for VGG-16 on CIFAR100. Left, Middle: Filter
importance distributions after regularised training. Increasing λS or lowering b will produce sparser
models. Right: One-shot performance at a 90% pruning ratio. Both over- and under-regularising
can lead to performance degradation, however the search space for b is limited.

5.3 ABLATIVE ANALYSIS

In this section we will perform two ablation studies to better understand the behaviour of the Re-
ceding Neuron Importance regulariser. We first analyse the effects of different hyper-parameters
choices on neuron sparsity and one-shot pruning performance. Following that we investigate how
much each layer of a VGG network will be pruned under comparable approaches.

Sparsity. In addition to the regularisation strength λS , our approach introduces the shifting param-
eter b. We show that these two parameters are complementary in controlling the gradient of the
regularisation loss and effective at producing sparsity. While λS scales the amplitude of the gradi-
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ent, b will set the range at which neuron importances start to recede. Figure 4 (Left, Middle) shows
how λS and b choices create different distributions of neuron importances for a VGG model on CI-
FAR100. Sparsity can be measured as the density around the zero importance limit, and increases
with higher λS or lower b. The interplay between these two parameters creates flexibility in the level
of sparsity produced and the distribution of the remaining neuron importances. This ability to create
a high variety of distributions comes at the cost of relative hyper-parameter sensitivity with respect
to pruning accuracy, however this limitation only becomes visible at high pruning thresholds. Fig-
ure 4 (Right) shows the one-shot pruning accuracy at a 90% pruning ratio, of models trained with
selected hyper-parameters. We can observe that both under- and over-regularised models will suffer
from severe pruning. Unsurprisingly, inducing a strong degree of sparsity during training does not
translate into a highly prunable model.
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Figure 5: Percentage of filters removed from each layer when pruning a VGG-16 model at a 90%
ratio. The deeper half of layers contain over 70% of the total amount of filters in the network. RNI
stands out by not over-pruning layers in the first half.

Pruning Locations. Figure 5 shows what percentage of filters are removed from each layer during
pruning. UCS prunes in a local manner, removing the same fraction of filters from each layer, as can
be seen from the unchanging colour-coding. It is worth reminding that in a VGG-style architecture
the number of filters periodically doubles as the network becomes deeper.This has the consequence
that global pruning methods will achieve their target in a large part through the amount of filters
pruned from the deeper layers. These are less sensitive to pruning, as there will still be a high
absolute number of filters left. Consequently, removing a large percentage of neurons from the first
layers will not add much to the global target, but will significantly limit their expressive power.
Thus, it is reasonable to assume that filters in the early layers of a network have a higher importance,
since the capacity of these layers is already limited.

From Figure 5 we can see that deeper layers are indeed pruned more heavily than ones closer to
the input. There are however some exceptions: on the CIFAR10 dataset, the only method pruning
a significant amount of filters from the first layer is DeepHoyer - which also achieves the lowest
accuracy based on the results from Table 2. On the CIFAR100 dataset Network Slimming and
Neuron Polarization start excessively pruning from the 5th layer onward. RNI is the only approach
that starts to heavily prune only in the latter half of the network. Our method, along with UCS, are
the only ones that do not suffer catastrophic damage after pruning 90% of the total number of filters.

6 CONCLUSION

In this work we introduce RNI, a novel sparsity regularisation for structured pruning, under
which only the weights of unimportant neurons is designed to recede. To this end, we propose
σBatchNorm, a BatchNorm variation with bounded scaling factors, enabling the construction of
such targeted regularisation functions without sacrificing performance. Our method consistently out-
performs state-of-the-art methods for VGG/ResNet architectures on CIFAR and ImageNet datasets.
We show that accurately comparing methods requires evaluation on a spectrum of pruning ratios, as
differences become more pronounced at higher levels. For VGG architectures our method signif-
icantly reduces the performance degradation from severe pruning compared to prior art. In future
work we would like to explore more applications of the RNI regulariser as well as a way to schedule
its hyper-parameters to obtain a pre-determined sparsity ratio.
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REPRODUCIBILITY STATEMENT

This paper is entirely reproducible. All experimental details including setup and hyper-parameters
are described in depth in Sections 5.1 and 5.2. All reported results have been run on publicly
available datasets. Furthermore, a runnable PyTorch repository has been linked and attached as
supplementary material.
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