Under review as a conference paper at ICLR 2023

RECEDING NEURON IMPORTANCES FOR
STRUCTURED PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Structured pruning efficiently compresses networks by identifying and removing
unimportant neurons. While this can be elegantly achieved by applying sparsity-
inducing regularisation on BatchNorm parameters, an L1 penalty would shrink
all scaling factors rather than just those of superfluous neurons. To tackle this
issue, we introduce a simple BatchNorm variation with bounded scaling param-
eters, based on which we design a novel regularisation term that suppresses only
neurons with low importance. Under our method, the weights of unnecessary neu-
rons effectively recede, producing a polarised bimodal distribution of importances.
We show that neural networks trained this way can be pruned to a larger extent
and with less deterioration. We one-shot prune VGG and ResNet architectures
at different ratios on CIFAR and ImagenNet datasets. In the case of VGG-style
networks, our method significantly outperforms existing approaches particularly
under severe pruning. Source code is available at: https://anonymous.
4open.science/r/receding—-neuron—-importances—-40C9.

1 INTRODUCTION

Modern deep neural network architectures (Simonyan & Zisserman, 2014{ [He et al., 2016)) achieve
state-of-the-art performance but require significant computational resources which makes their de-
ployment onto edge devices difficult. Even though it has been shown that it is possible to train less
over-parametrised models from scratch and obtain a similar performance (Frankle & Carbin, |[2018),
it remains a non-trivial task to actually find such a winning subnetwork.

In this work, we focus on structured one-shot pruning as a means to network compression which is
typically composed of three stages — 1) training a large model to convergence, ii) removing parame-
ters with low importance, and iii) fine-tuning the remaining network. Unstructured pruning, which
works on a weight level (Yang et al.,[2019; [Frankle & Carbinl |2018)), can remove a much higher num-
ber of parameters but produces sparse weight matrices which cannot be efficiently utilised without
specialised hardware (Han et al.| |2016). In contrast, by removing entire neurons structured pruning
finds efficient structures akin to an implicit architecture search (Liu et al.| [2018).

Structured pruning methods attribute an importance score to each neuron, which enables their rank-
ing and ultimately the decision of which to dispose (Li et al., |2016; Molchanov et al., 2016a). To
this end, BatchNorm layers (loffe & Szegedy, 2015) become very appealing as they explicitly learn
parameters which uniformly scale the outputs of each neuron. This scaling parameter can be used
as a proxy for the importance the model attributes to a neuron, as a value of zero would effectively
suppress an output. Furthermore, one can regularise these layers to obtain neuron level sparsity
whilst maintaining classification performance (Liu et al.,2017; Zhuang et al., 2020). Such methods
typically define neuron importance as the absolute value of its scaling parameter, an approach which
limits the design of regularisers. Because the measure is only half-bounded one cannot easily define
levels of importance without looking at the overall distribution - making it difficult to target specific
neurons. An example is the L1 regulariser (Liu et al., |2017) which shrinks all parameters with a
constant gradient, even ones with high importance. Ideally, one would design a regulariser which
creates sparsity by only shrinking unimportant neurons, leaving the others untouched.

In this work, we create such a regulariser and show it outperforms existing approaches at a rate that
increases with the amount of neurons pruned. Our contributions are two-fold: we first introduce
a simple variation of BatchNorm, which linearly transforms channels using bounded scalers. This

https://anonymous.4open.science/r/receding-neuron-importances-40C9
https://anonymous.4open.science/r/receding-neuron-importances-40C9

Under review as a conference paper at ICLR 2023

layer maintains the same performance as the original, while offering a bounded importance score
for neurons. Building on this measure we then define a novel regularisation, focused on shrinking
only neurons with lesser weight, by having its gradient decay exponentially for higher importances.
Our method significantly outperforms related approaches for VGG models, and we show that severe
degradation can be attributed to over-pruning early layers of the network.

2 RELATED WORK

Neural network compression through pruning is most commonly divided into structured and un-
structured approaches. Unstructured pruning has gained a lot of attention in recent years (Frankle &
Carbin| 2018)) as it challenges conventional wisdom over the role of over-parametrisation and weight
initialisation in the optimisation of deep neural networks (Frankle et al.|[2020). While these methods
can achieve superior theoretical compression rates (Renda et al., 2020), their use remains impracti-
cal without specialised hardware that can take advantage of sparsity (Han et al.| 2016)). Structured
pruning on the other hand removes entire neurons from an architecture thus achieving real memory
and computational efficiencies (Liu et al.| [2018).

At the heart of structured pruning lies the task of identifying unimportant neurons to remove from
a network. Quantifying importance can be based on numerous criteria including filter norms (L1
et al., 2016} [He et al., [2018]), reconstruction errors (He et al., 2017; [Luo et al., 2017; Molchanov
et al., 2016Db; |Yu et al., 2018), redundancy (He et al., [2019} [Suau et al.l |2020; [Wang et al., [2018])
and BatchNorm parameters (Liu et al., |2017; |Zhuang et al., [2020). Our work belongs in the latter
category as we focus on deriving an importance score solely based on channel scaling parameters.

In addition to defining importance measures, one can add regularisation during training to nudge
networks into utilising their capacity more sparingly. Most relevant to our work are methods which
apply sparsity regularisations on BatchNorm parameters (Liu et al.,|2017; [Zhuang et al.,[2020). The
most popular approach is Network Slimming (Liu et al., |2017), which constrains the BatchNorm
scaling parameters using the L1 penalty. A drawback of this method is that it shrinks all parameters
with an equal gradient irrespective of their importance. This issue is also addressed by |Zhuang et al.
(2020) who propose a regulariser that explicitly maximises the polarisation of the BatchNorm scaler
distribution. While the method effectively increases the margin between important and unimportant
neurons, it does so by both shrinking and expanding weights. Another method designed for non-
linear shrinking is Yang et al.| (2019), who propose the ratio of the L1 and L2 norms as a sparsity
regulariser. Even though this method is not based on BatchNorm, but is targeted at filter weights,
we include it in our comparison as it has a similar motivation to our work.

In terms of pruning setup the most popular method is one-shot pruning (L1 et al., 2016; Zhuang et al.,
2020; Yang et al.l 2019) where all desired neurons are removed at once and the remaining network
is fine-tuned. Iterative approaches (Han et al., 2015) periodically prune and fine-tune until a target
ratio is met. Recent works aim to eliminate the need of fine-tuning (Chen et al., [2021]) altogether or
prune models after intialisation in a data-free manner (Lee et al., [2018; Wang et al., 2020).

3 SIGMOID BATCHNORM

We introduce a variation of BatchNorm, which uses a single learnable parameter per channel and of-
fers a bounded importance score for filters. In its original formulation, BatchNorm (loffe & Szegedy),
2015) first normalises each input channel = using batch statistics mean pp and standard deviation
o B, then applies an affine transformation using learnable parameters ~ and /3.

r — UB
N

While BatchNorm has become ubiquitous in Deep Learning, the reasons behind its effectiveness are
not fully understood (Santurkar et al., [2018). The proliferation of BatchNorm variations (Ba et al.,
2016;(Wu & He), 2018} [Ulyanov et al.,2016) suggests its benefits arise from normalising activations
rather than the affine transformation following it. We empirically show that the transformation can
be replaced to be linear without loss of performance.

BN(z,v,8) =~ +5)

Under review as a conference paper at ICLR 2023

v B
6
—1VGG-19
6 ResNet-50
24
4
5
&)
2,
2,
(O T /\ L//\‘\ 0 - T T T T
-1 =05 0 0.5 1 1.5 -1 =05 0 0.5 1 1.5

Figure 1: Distribution of parameters across all BatchNorm layers of pre-trained models available in
PyTorch (Paszke et al., 2017). The scale - stays in the interval [0, 1], the offset /3 remains close to 0.

We look at the empirical distributions of BatchNorm parameters to understand the effects of the
affine transformation. While the scale « and offset 5 are unbounded, in practice, these will be
suppressed due to weight decay. We can observe this in pre-trained models: Figure |I| shows the
parameter distributions for all BatchNorm layers of a VGG-19 (Simonyan & Zisserman, |2014) and
ResNet-50 (He et al.,[2016) model. The BatchNorm parameters in both networks are well aligned
as almost all y € [0, 1], while a large proportion of 3 are concentrated around 0.

Because BatchNorm operates on a channel level, it is of particular interest to structured pruning,
as it offers a natural place to look for measures that quantify filter importance. In line with our
observation about the distribution of 3, previous approaches (Liu et al.,[2017; Zhuang et al., [2020)
define filter importance as the magnitude of v and ignore the offset. While this has proven to work
in practice, one could argue it would be desirable to construct an importance score that incorporates
all the information available. Additionally, the utility of such a measure could be greatly improved
if it would be bounded - offering a better understanding by knowing the minimum and maximum
importance a filter could have.

Given the aforementioned considerations, we propose a simple alteration to BatchNorm, termed
o BN, which keeps the normalisation scheme, but changes the channel transformation to use a
bounded scaling parameter. We remove the offset 5 and bound the scale parameter by applying the
sigmoid function to v before multiplication:

T — B 1

= where o(y) =
N N

In Table [T| we see the performance of vanilla BatchNorm (BN) compared with our variation ¢BN.
Our variation performs comparable for VGG-16 and ResNet-56 on both CIFAR datasets. For
completeness we also add the performance of BN and ¢BN with and without the bias term 5. We
can observe that the presence or absence of 8 does not have a profound impact on accuracy. With
oBN, we now have a normalisation layer that uses a single, bounded parameter to quantify the im-
portance of a filter. We will use this property to decide which filters to suppress and ultimately prune.

oBN(z,7v) = o(v)

2

CIFAR10 BN-g BN oBN oBN+S CIFAR100 BN-5 BN o¢BN o¢BN+g
VGG-16 93.58 93.57 93.48 93.35 VGG-16 72.81 7299 72.75 73.12
ResNet-56 92.87 93.34 93.11 93.33 ResNet-56 70.70 70.94 71.27 71.12

Table 1: No significant difference in classification accuracy can be seen between any BatchNorm
variation, including toggles of the bias term for vanilla BN and cBN. Results are averaged over three
runs and have standard deviation of ~(0.2. Normalisation layers are trained without regularisation.

Under review as a conference paper at ICLR 2023

Neuron Importances

0.25 2 103 foL1
0.2 - O 10!
0
0.15 0 0.2 04 0.6 0.8 1 1.2
0.1 ol
z 103 DERNI
0.05 3 102
SRUS MM
0.0 i ‘ 0 T 1 T
0 0.5 1 0 02 04 06 0.8 1
a(v) a(v)

Figure 2: Left: The gradient of the RNI loss with respect to ~y for different hyper-parameter choices.
b shifts the range of neuron importances which the regulariser will affect. Right: Histograms of
resulting neuron importances after using L1 or RNI regularisation.

4 RECEDING NEURON IMPORTANCE

Structured pruning aims to compress a network by identifying and removing unimportant neurons.
We define 6 to be the parameters of a neural network and refer to the subset associated with Batch-
Norm as #5 . Let I(6;) be a measure of importance for neuron i, which can be computed from any
model parameters associated with that neuron, such as its filters in convolutional layers (Li et al.,
2016; |Yang et al., 2019). In BatchNorm based pruning, I is derived only from BN and is com-
monly defined as I(0”Y) = |v;| (Liu et al., [2017; Zhuang et al., 2020). In this paper we use the
measure induced by our ¢ BN layer such that I(6%") = o(~;). As in previous work, we want to
solve the following risk minimisation problem:

min % L0, X) + AR(0) + A\sRs(6%N) (3)

where X = {x;,y;}, is a labelled dataset with N training samples, and A, \g are scalar weight-
ings for the regularisation terms R and Rg. R(6) is a regularisation against over-fitting, such as
weight decay, and is usually applied over all network parameters, including normalisation layers.
Rg is targeting only 08" such that I exhibits the following property during pruning:

L(0\{0:}, X) > L(0O\{0;}, X), if 1(0;) < 1(6;))

Such a property creates an ordering which ensures that removing a neuron #; with lower importance
will have less impact on model performance, than removing a more important ;. We will assess
the quality of such an ordering by looking at the model performance after pruning and fine-tuning.
However, an ordering is only partially evaluated when removing a single subset of neurons - since the
order of the remaining neurons is not taken into account. Therefore, for a comprehensive estimate
of the global ordering quality, it is necessary to prune a model at multiple thresholds.

Generally we want Rg to induce sparsity over §2/V such that outputs of unimportant neurons are

entirely suppressed during training. Pruning such a network would result in less damage and con-
sequently a quicker recovery during fine-tuning. The typical choice of R is the L1 norm, which
shrinks all scaling parameters with a constant gradient. Such a regularisation strategy simultane-
ously subdues both important and unimportant neurons with equal weighting. From an optimisation
perspective, L1 will create a bias such that at convergence, any equilibrium would require the classi-
fication loss to negate the constant gradient of the regulariser. Such a bias might lead to sub-optimal
solutions, and can be mitigated by having the regularisation reduce its strength once a suitable,
sparse distribution of importances has been found. We show that a better regularisation term can be

Under review as a conference paper at ICLR 2023

designed by focusing on suppressing unimportant neurons, whilst leaving important ones untouched.
Without an idea of bounds for I (9% it is difficult to decide on a threshold between important and
unimportant neurons. Using the importance measure from our 0 BN layers we propose a regulari-
sation loss whose strength decays exponentially as I(0P) reaches its maximum. We introduce the
Receding Neuron Importance regularisation (RNI) on batch normalisation parameters +y:

Rs(v:0) =0y +b)- (1 —loglo(y+0))), with Vi(14)(Rs) = —log(a(y + b))

and V,(R.) = ~log(o(y +b)o(y + B)(1 — 0(7+ b)) ®
The hyper-parameter b controls the range defining which neuron importances to target. Its effects
can be visualised in Figure |2| (Left): b shifts the peak of the gradient after which an exponential
decay occurs. As b increases only neurons with lesser importance are affected by the regularisation.
With the weights of such neurons receding towards zero, the final distribution of importances will
have a polarised bimodal shape - only important and zero-weight neurons will be left (Right).

5 EXPERIMENTS

In this section, we will evaluate our sparsity regularisation under a one-shot pruning setting on the
CIFAR10/100 and ImageNet datasets using VGG and ResNet models. In most structured pruning
literature evaluation is performed only under relatively benign pruning ratios, which mostly preserve
the performance of the original model and can make it difficult to compare related methods. In our
evaluations we observe that the difference between approaches becomes noticeable when pruning
ratios are increased. Under more inauspicious circumstances we show that our method outperforms
existing state-of-the-art approaches and can, in some instances, significantly mitigate the detrimental
effects of severe pruning. We also compare the pruned VGG/ResNet networks with similarly sized
MobileNetV2 models and show that pruning outperforms these compact architectures.

5.1 EXPERIMENTAL SETUP

Pruning. Under a one-shot pruning scenario, a model is trained, then pruned and subsequently fine-
tuned to recuperate performance. An appropriate regularisation strength is selected such that it does
not impede training while also producing enough sparsity to prune the desired amount of neurons.
For practical reasons we train a model only once and then evaluate it under several pruning ratios. We
prune networks in a global fashion, removing filters based on their importance score and without
regard to the resulting distribution over the layers. To avoid the pruning of all neurons within a layer,
a minimum of three filters will be preserved. While this avoids the extreme case of layer collapse,
if a method disproportionately prunes the neurons of a single layer it could still irreparably damage
the network. From a technical perspective, pruning the filters of a layer changes its parameter count
but also that of the following layer, since the expected input dimensionality has changed. While this
has no further implications for VGG style architectures, it does pose some challenges for networks
with residual connections. Similar to related works, in order to avoid mismatched dimensions in
ResNets, we do not prune skip connections or the last layer in residual connections.

Related Methods. We compare our approach with L1 Slimming (Liu et al., [2017), Polarization
Regularisation (Zhuang et al., 2020), Deep Hoyer (Yang et al.,2019) and Uniform Channel Scaling
(UCS) (Zhuang et al.,|2020). The same experimental settings are used for all methods during train-
ing, pruning and fine-tuning. An exception is the UCS baseline, which does not use any sparsity
regularisation and prunes in a local manner by removing the same percentage of filters across all
layers. All networks of related approaches are built using vanilla BatchNorm, and with the same ini-
tialisation scheme as|Liu et al.|(2017). Models trained with cBatchNorm layers are initialised with
v drawn from a standard Normal distribution and will not use weight decay during training. The
learning rate of cBatchNorm is set to be higher by factor of 10 than that of the rest of the network -
we found this to help with polarisation.

Hyper-parameters. The same settings as|Liu et al.|(2017) are used for the CIFAR10 and CIFAR100
datasets. VGG-16 and ResNet-56 models are both trained and fine-tuned for 160 epochs, with the
same learning rate schedule and with a batch size of 64. Models are optimised using SGD with
momentum, weight decay of 10~* and an initial learning rate of 10~ which reduces stepwise by

Under review as a conference paper at ICLR 2023

a factor of 10~! at epochs 80 and 120. The respective sparsity regularisations are applied on all
layers of the models. Datasets are augmented using only random crops and horizontal flips. On
ImageNet, we evaluate methods on the ResNet-50 bottleneck architecture and regularise only its
prunable layers. Models are trained for 90 epochs and fine-tuned for 30, using a batch size of
512. The initial learning rate is 10~! for training and 10~2 for fine-tuning, and is scheduled to
decrease after 1/3 and 2/3 of the respective training time. For our RNI experiments the following
hyper-parameters are used: Ag = 1073,b = 3 for VGG-16, \g = 10~%,b = 0 for ResNet-56, and
As = 1075, b = 3 for ResNet-50.

CIFARI10 CIFAR100
949% 70% —
92%
. 90% 60% -
< -
§ 88% [__ Slimming 50% 7
& 86% Polarization
849, | — DeepHoyer 40%
—UCS
82% - __RNI 30% -
T T T T T T T T T T
50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
Filters Pruned Filters Pruned

Figure 3: Accuracy of fine-tuned VGG-16 models at varying pruning thresholds. Performance
differences between methods become more pronounced at higher ratios. RNI degrades gracefully
compared to related methods.

5.2 RESULTS

Apart from ImageNet, all methods are evaluated on three random seeds and their mean performance
is reported. For clarity, we will omit the standard deviation as we found the results to be very similar
across runs. Two scenarios are examined in more detail as they sit on opposite ends of the difficulty
spectrum: pruning 50% and 90% of filters. The 50% mark is the default setting in the structured
pruning literature and we expect all methods to recuperate most of their baseline performance. This
pruning level also ensures a fair comparison between methods as it acts as an anchor for hyper-
parameter choices. At 90% of filters pruned, we see a significant degradation in performance and a
far larger differentiation between methods and models.

In Figure[3|we have an overview of how VGG networks degrade as pruning ratios increase. On both
datasets our method deteriorates gracefully compared to the abrupt declines of related approaches.
While on CIFARI0 all methods have an easier time maintaining their performance, on CIFAR100
degradation becomes immediately visible due to the increased difficulty of the dataset. Surprisingly,
the locally pruning UCS baseline performs worst on CIFAR10 but outperforms all methods, apart
from ours, on CIFAR100. This shows that correctly identifying unimportant neurons in a global
manner becomes harder as the difficulty of the dataset increases. In our ablation studies we will
show that this deterioration can be directly linked to excessive pruning of early layers in VGGs.

CIFAR10. This task is relatively simple and we expect excess model capacity to be prunable without
much performance loss, as seen in Table[2] The only significant degradation happens for VGGs at the
90% mark, where UCS and DeepHoyer lose over 10% accuracy compared to the baseline. ResNets
are more robust and are lose less than 4% accuracy while reducing roughly 80% of FLOPs.

CIAFR100. Due to the increased difficulty, in Table |3| we see a larger deterioration for models
trained on the CIFAR100 dataset. Here networks require more capacity, thus the number of nec-
essary filters should be higher, and the identification of superfluous ones more difficult. With 90%
of filters removed, VGG networks experience severe degradation as methods fail to identify which
neurons to keep. In this scenario our approach considerably outperforms state-of-the-art methods by
30% classification accuracy. The only exception is the UCS baseline, which by design maintains the
stability of a model, as it will never prune excessive amounts of filters in any given layer. ResNets
again prove to be more robust to pruning and show less variation in performance between methods.

Under review as a conference paper at ICLR 2023

VGG-16 Baseline 50% 90% Resnet-56 Baseline 50% 90%

Acc. Acc. FLOPs Acc. FLOPs Acc. Acc. FLOPs Acc. FLOPs
Slimming 93.71 9396 60.25 89.15 1140 Slimming 93.68 93.45 54.07 89.90 19.55
Polarization 93.91 94.27 64.15 88.37 14.69 Polarization 93.34 93.50 52.69 89.43 18.89
DeepHoyer 93.66 93.96 61.32 80.82 8.09 DeepHoyer 93.44 93.51 51.07 89.94 20.84
UCsS 93.84 93.02 25.19 83.69 1.13 UCS 93.78 93.33 50.39 88.78 14.79
RNI 93.53 93.64 48.24 90.96 8.40 RNI 93.53 93.01 56.13 90.26 21.54

Table 2: Results on CIFAR10 for different pruning ratios, showing absolute accuracy (%) and re-
maining FLOPs (%) relative to the unpruned baseline. Due to the simplicity of the task, models can
be significantly pruned without deterioration.

VGG-16 Baseline 50% 90% Resnet-56 Baseline 50% 90%

Acc. Acc. FLOPs Acc. FLOPs Acc. Acc. FLOPs Acc. FLOPs
Slimming 73.54 71.61 61.12 29.66 3.76 Slimming 71.94 70.06 56.97 63.92 15.29
Polarization 73.47 71.23 63.82 25.62 2.59 Polarization 71.80 70.08 40.78 62.42 15.47
DeepHoyer 73.19 71.66 67.23 2542 498 DeepHoyer 71.88 71.14 49.22 63.49 19.51
UCsS 73.80 70.84 25.19 54.39 1.13 UCS 7190 70.72 50.40 63.65 14.79
RNI 7228 7246 36.72 5792 6.31 RNI 71.30 70.65 48.24 63.95 16.34

Table 3: Results on CIFAR100 for low and high ratios of filters pruned. Shown are the absolute
classification accuracy (%) and remaining FLOPs (%) relative to the unpruned baseline. Due to the
increased complexity of the classification task, it becomes more difficult to remove excess capacity.
The VGG architecture breaks down significantly after sever pruning.

ImageNet. On ImageNet in Table [the results are similar, however we observe bigger losses due
to the increased dataset difficulty. Under these circumstances our method still outperforms prior
state-of-the-art, but is worse than the UCS benchmark. This again indicates that for more difficult
datasets, global methods over-prune the wrong layers, something the UCS baseline will not do by
design. Nevertheless, ResNets show remarkable robustness to pruning, which we attribute to the
fact that their skip connections act as a fail-safe and limit the effect of over-pruned layers.

Compact Networks. At higher pruning ratios

the parameter count of models is significantly

reduced, raising the question of whether they ResNet-50 - Bascline 50% 0%

would outperform networks specifically designed Acc. Acc. FLOPs Acc. FLOPs

to be lightweight. Compact networks such as glimming ~ 75.74 72.56 41.12 51.74 16.50

MobileNetV2 Sandler et al| (2018) have an ad- Polarization 75.12 73.11 46.12 49.43 17.00

justable width multiplier allowing the instantia- DeepHoyer 75.36 68.72 57.56 50.98 24.14

tion of models with arbitrary number of parame- UCS 76.14 7328 4478 58.13 16.94
RNI 7475 7231 48.13 54.08 17.66

ters. We thus conduct additional baseline exper-

iments comparing the RNI pruned VGG/ResNet

models from Tables [2] and [3] to non-sparse Mo-
bileNets of the same size. For each of the RNI
pruned models we find a width multiplier such

Table 4: ImageNet results showing absolute ac-
curacy (%) and remaining FLOPs (%) relative
to the unpruned baseline.

that the corresponding MobileNet has a similar

number of parameters, and then optimise it using the same training setup, but without a sparsity
loss. From the results in Table [5] we can see that our pruned models can outperform similar sized
MobileNets in almost every setting, proving the practical utility of higher pruning ratios.

Summary. Because of the evaluation over datasets with varying degrees of complexity, we can make
several observations about how models degrade under a spectrum of pruning ratios. Firstly, at 50% of
filters pruned differences between approaches are barely visible since all methods are able to regain
most of their pre-pruning performance. Differences become obvious only at higher ratios, where our
method clearly surpasses prior state-of-the-art. Unsurprisingly, residual networks are more robust
to pruning than VGG architectures, since their skip connections can propagate the signal even if
essential residual connections have been mistakenly over-pruned. This however comes at the cost

Under review as a conference paper at ICLR 2023

Pruning Ratio
50% #P. 90% #P.

VGG-16 [RNI] CIFARIO 93.64 3.40M 90.96 167K
MobileNetV2 CIFAR10 93.38 3.43M 89.67 177K

VGG-16 [RNI] CIFAR100 72.46 3.23M 57.92 158K
MobileNetV2 CIFAR100 75.16 3.12M 52.72 163K

ResNet-56 [RNI] CIFARIO 93.01 401K 90.26 112K
MobileNetV2 CIFAR10 91.21 408K 88.55 124K

ResNet-56 [RNI] CIFAR100 70.65 429K 63.95 128K
MobileNetV2 CIFARIO0 71.05 452K 52.72 163K

Network Dataset

Table 5: Comparison between non-sparse MobileNetV2 models and RNI pruned VGG/ResNets on
CIFAR datasets. For each setting the width multiplier has been chosen such that the MobileNet will
have the same number of parameters as the pruned networks.

of pruning efficiency, as seen by the diminished reduction of FLOPs compared to VGG models. To
our surprise we find that while UCS is not suited for simple classification tasks, it outperforms prior
global pruning methods on more complex datasets. Because of its design, the UCS baseline avoids
any risk of excessively pruning individual layers, making models less prone to sudden performance
deterioration. This leads to the conjecture that the other related methods over-prune certain layers,
which leads to severe degradation in VGG models. In our ablative analysis we show that this is
indeed the case, and make the realisation that our method is the only one which does not significantly
prune early layers in a network. This offers an explanation why RNI noticeably outperforms similar
approaches at high pruning ratios. Finally, from additional evaluations on compact architectures we
see that pruned VGG/ResNet models outperform similarly sized MobileNets, which further proves
the utility of pruning as a means to obtaining compressed networks.

Ag=1073 Ag=10"% Acc.
15 —1b6=0 4 4 50% -
z 107 :”b’=§) 30% \
6= n _
A 20% . y.—10-3
5 C1b=4 | As=10
10%)\5':1074
0- 0 T \ T T 0% — T T T T
0 0.5 1 0 0.5 1 0 1 2 3 4
a(v) a(v) b

Figure 4: Effects of hyper-parameters Ag and b for VGG-16 on CIFAR100. Left, Middle: Filter
importance distributions after regularised training. Increasing \g or lowering b will produce sparser
models. Right: One-shot performance at a 90% pruning ratio. Both over- and under-regularising
can lead to performance degradation, however the search space for b is limited.

5.3 ABLATIVE ANALYSIS

In this section we will perform two ablation studies to better understand the behaviour of the Re-
ceding Neuron Importance regulariser. We first analyse the effects of different hyper-parameters
choices on neuron sparsity and one-shot pruning performance. Following that we investigate how
much each layer of a VGG network will be pruned under comparable approaches.

Sparsity. In addition to the regularisation strength Ag, our approach introduces the shifting param-
eter b. We show that these two parameters are complementary in controlling the gradient of the
regularisation loss and effective at producing sparsity. While \g scales the amplitude of the gradi-

Under review as a conference paper at ICLR 2023

ent, b will set the range at which neuron importances start to recede. Figure [d] (Left, Middle) shows
how Ag and b choices create different distributions of neuron importances for a VGG model on CI-
FAR100. Sparsity can be measured as the density around the zero importance limit, and increases
with higher Ag or lower b. The interplay between these two parameters creates flexibility in the level
of sparsity produced and the distribution of the remaining neuron importances. This ability to create
a high variety of distributions comes at the cost of relative hyper-parameter sensitivity with respect
to pruning accuracy, however this limitation only becomes visible at high pruning thresholds. Fig-
ure [4] (Right) shows the one-shot pruning accuracy at a 90% pruning ratio, of models trained with
selected hyper-parameters. We can observe that both under- and over-regularised models will suffer
from severe pruning. Unsurprisingly, inducing a strong degree of sparsity during training does not
translate into a highly prunable model.

CIFAR10 CIFAR100

100%
75%
50%
25%
0%

0123456789101112 01234567 89101112

Figure 5: Percentage of filters removed from each layer when pruning a VGG-16 model at a 90%
ratio. The deeper half of layers contain over 70% of the total amount of filters in the network. RNI
stands out by not over-pruning layers in the first half.

Pruning Locations. Figure [5|shows what percentage of filters are removed from each layer during
pruning. UCS prunes in a local manner, removing the same fraction of filters from each layer, as can
be seen from the unchanging colour-coding. It is worth reminding that in a VGG-style architecture
the number of filters periodically doubles as the network becomes deeper.This has the consequence
that global pruning methods will achieve their target in a large part through the amount of filters
pruned from the deeper layers. These are less sensitive to pruning, as there will still be a high
absolute number of filters left. Consequently, removing a large percentage of neurons from the first
layers will not add much to the global target, but will significantly limit their expressive power.
Thus, it is reasonable to assume that filters in the early layers of a network have a higher importance,
since the capacity of these layers is already limited.

From Figure [5] we can see that deeper layers are indeed pruned more heavily than ones closer to
the input. There are however some exceptions: on the CIFAR10 dataset, the only method pruning
a significant amount of filters from the first layer is DeepHoyer - which also achieves the lowest
accuracy based on the results from Table On the CIFARI100 dataset Network Slimming and
Neuron Polarization start excessively pruning from the 5th layer onward. RNI is the only approach
that starts to heavily prune only in the latter half of the network. Our method, along with UCS, are
the only ones that do not suffer catastrophic damage after pruning 90% of the total number of filters.

6 CONCLUSION

In this work we introduce RNI, a novel sparsity regularisation for structured pruning, under
which only the weights of unimportant neurons is designed to recede. To this end, we propose
oBatchNorm, a BatchNorm variation with bounded scaling factors, enabling the construction of
such targeted regularisation functions without sacrificing performance. Our method consistently out-
performs state-of-the-art methods for VGG/ResNet architectures on CIFAR and ImageNet datasets.
We show that accurately comparing methods requires evaluation on a spectrum of pruning ratios, as
differences become more pronounced at higher levels. For VGG architectures our method signif-
icantly reduces the performance degradation from severe pruning compared to prior art. In future
work we would like to explore more applications of the RNI regulariser as well as a way to schedule
its hyper-parameters to obtain a pre-determined sparsity ratio.

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

This paper is entirely reproducible. All experimental details including setup and hyper-parameters
are described in depth in Sections [5.1 and [5.2] All reported results have been run on publicly
available datasets. Furthermore, a runnable PyTorch repository has been linked and attached as
supplementary material.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. Advances in Neural Information Processing Systems, 34, 2021.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Pruning neural
networks at initialization: Why are we missing the mark? arXiv preprint arXiv:2009.08576,
2020.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural networks. arXiv preprint arXiv:1506.02626, 2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: Efficient inference engine on compressed deep neural network. ACM SIGARCH
Computer Architecture News, 44(3):243-254, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE international conference on computer vision, pp. 1389-1397,
2017.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448-456.
PMLR, 2015.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Zhuang Liu, Jianguo Li, Zhigiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2736-2744, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

10

Under review as a conference paper at ICLR 2023

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016a.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016b.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. arXiv preprint arXiv:2003.02389, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510-4520, 2018.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? arXiv preprint arXiv:1805.11604, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Xavier Suau, Nicholas Apostoloff, et al. Filter distillation for network compression. In 2020 IEEE
Winter Conference on Applications of Computer Vision (WACV), pp. 3129-3138. IEEE, 2020.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

Dong Wang, Lei Zhou, Xueni Zhang, Xiao Bai, and Jun Zhou. Exploring linear relationship in
feature map subspace for convnets compression. arXiv preprint arXiv:1803.05729, 2018.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3-19, 2018.

Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differen-
tiable scale-invariant sparsity measures. arXiv preprint arXiv:1908.09979, 2019.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao, Ching-
Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance score propagation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9194—
9203, 2018.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level
structured pruning using polarization regularizer. Advances in Neural Information Processing
Systems, 33, 2020.

11

	Introduction
	Related Work
	Sigmoid BatchNorm
	Receding Neuron Importance
	Experiments
	Experimental Setup
	Results
	Ablative Analysis

	Conclusion

