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Efficient machine-learning representations of a surface code with boundaries, defects,
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Machine-learning representations of many-body quantum states have recently been introduced as an ansatz
to describe the ground states and unitary evolutions of many-body quantum systems. We investigate one of the
most important representations, the restricted Boltzmann machine (RBM), in the stabilizer formalism. A general
method to construct RBM representations for stabilizer code states is given, and exact RBM representations for
several types of stabilizer groups with the number of hidden neurons equal to or less than the number of visible
neurons are presented. The result indicates that the representation is extremely efficient. Then we analyze a
surface code with boundaries, defects, domain walls, and twists in full detail and find that almost all the models
can be efficiently represented via the RBM ansatz: the RBM parameters of the perfect case, boundary case, and
defect case are constructed analytically using the method we provide in the stabilizer formalism, and the domain
wall and twist case is studied numerically. In addition, the case for Kitaev’s D(Zd ) model, which is a generalized
model of the surface code, is also investigated.
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I. INTRODUCTION

As the leading proposal for achieving fault-tolerant quan-
tum computation, surface codes have attracted researchers’
attention in recent years. Since Kitaev [1] made the inge-
nious step of transforming a quantum error correction code
(QECC) into a many-body interacting quantum system (more
precisely, he constructed a Hamiltonian, now known as a toric
code, which is a gapped anyon system and whose ground-state
space is exactly the code space; the encoded information is
protected by the topological properties of the system), the
surface code model has been extensively investigated from
both the QECC perspective and condensed matter perspective.
Studies on the surface code cross-fertilize both areas. Suppose
that we are encoding information with n physical bits, i.e.,
with the Hilbert space H = (C2)⊗n. The code space C is a
subspace of H. This subspace can be regarded as the ground-
state space of the corresponding surface code Hamiltonian H ,
which is just the negative of the summation of all stabilizer
generators.

From a condensed matter perspective, to conquer the chal-
lenge of efficiently representing the many-body states with
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exponential complexity, a neural network, one of the most
important tools in machine learning [2,3], is introduced to
efficiently represent the ground states of strongly correlated
many-body systems [4], which are beyond the mean-field
paradigm, for which the density matrices are of the tensor
product form in the thermodynamic limit. The mean-field
approach is very successful in bosonic systems (the quan-
tum de Finetti theorem) but fails for other strongly corre-
lated systems. There are also some other approaches: the
quantum Monte Carlo method [5–9], which suffers from the
sign problem, and the tensor network representation [10],
whose special form, matrix product states (MPS), has great
success in 1d systems [11,12], but for the 2d case, it is
unknown whether the corresponding projected entangled pair
states (PEPS) are enough and extracting information is #P -
hard in general; the best known approximation algorithm
still spends superpolynomial time under assumptions [13,14].
The connections between the machine-learning representa-
tion and other representations are also extensively exploited
[15–18].

Machine learning as a method for analyzing data has
been prevalent in many scientific areas [2,3,19], including
computer vision, speech recognition, and chemical synthesis,
among which the artificial neural network plays an important
role in recognizing or even discovering particular patterns
of the input data. Quantum machine learning (QML) [20],
which is an emerging interdisciplinary scientific area at the
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intersection of quantum mechanics and machine learning,
has recently attracted much attention [4,17,21–26]. There
are two crucial branches of QML: the first one is to de-
velop new quantum algorithms which share some features
of machine learning and behave faster and better than their
classical counterparts [21–23]; the second one, which is also
the focus of this work, is to use the classical machine-
learning methods to assist the study of quantum systems.
Machine-learning methods are so powerful that they can be
used for distinguishing phases [24], quantum control [27],
error-correcting of topological codes [28], quantum tomogra-
phy [29,30], and efficiently representing quantum many-body
states [4,17,25,26,31–33]. Among all of them, using neural
networks as variational wave functions to approximate the
ground state of many-body quantum systems has received
much attention recently. Many different neural network ar-
chitectures have been tested and the most successful one is
the restricted Boltzmann machine (RBM) [4,17,25,26]. It has
been shown that the RBM can efficiently represent ground
states of several many-body models, including the Ising model
[4], toric code model [25,26], and graph states [17].

In this work, we study the RBM representation in a
stabilizer formalism and we provide some more systematic
analyses. It is shown that for many stabilizer groups, the
RBM representations are extremely efficient: the number of
hidden neurons approximates the number of visible neurons.
We take the surface code with boundaries, defects, domain
walls, and twists as some concrete examples, and we find
that all these models can be represented by the RBM. The
exact solution is given for the boundary and defect cases. We
also analyze Kitaev’s D(G) model for the G = Zd case. Our
results can be useful for building the RBM neural network
when analyzing the anyon model or QECC in the stabilizer
formalism.

The work is organized as follows. In Sec. II we provide an
elaborate description of the stabilizer formalism, Kitaev D(G)
model, Z2 surface code model, and the properties when these
models are regarded as anyon models. Then we construct the
surface code models with boundaries, defects, domain walls,
and twists, and give the precise stabilizer operators and Hamil-
tonians of these models. In Sec. III, we give a brief review of
RBM representations of states. Then, in Sec. IV, the RBM
representations in the stabilizer formalism are worked out and
many explicit solutions of stabilizer states are constructed. In
Sec. V, using the results developed in Sec. IV, we provide a
detailed analysis of RBM representations of a surface code
with boundaries, defects, domain walls, and twists. And the
general Kitaev D(G) case is done in Sec. VI. Finally, in
Sec. VII we give our discussion and conclusions.

II. SURFACE CODE MODEL WITH BOUNDARIES,
DEFECTS, DOMAIN WALLS, AND TWISTS

In this section, we give a brief review of the basics of a sur-
face code in the stabilizer formalism, and the corresponding
surface code Hamiltonian is an anyon model. For simplicity
of illustration, we will assume hereinafter that the lattice is
a square lattice placed on a plane, but all our results can
be extended to general cases similarly. We will analyze the

boundaries, defects, domain walls, and twists in the surface
code from an anyon theoretic perspective.

A. Stabilizer formalism

QECCs are commonly expressed in the stabilizer formal-
ism [34,35]. To prevent the encoded information from noise,
the logical quantum states are encoded redundantly in a k-
dimensional subspace C of the n-qubit physical space H =
(C2)⊗n. The stabilizer group S for C is an Abelian subgroup
of the Pauli group Pn = {I, σx, σy, σz}⊗n × {±1,±i}; more
precisely, C is the invariant subspace for S acting on H. Since
each operator Tj in S is a Hermitian operator and [Ti, Tj ] = 0
for all i, j , the code states are the common eigenstates of all
elements Tj in S, i.e.,

Tj |�〉 = +1|�〉, ∀j. (1)

Suppose S is generated by m independent operators
{T1, . . . , Tm}. Note that T 2

j = I for all j = 1, . . . , m; then
any T ∈ S can be uniquely expressed as T = T

α1
1 T

α2
2 · · · T αm

m

where αj ∈ {0, 1}; thus the order of stabilizer group S is 2m.
The numbers of physical qubits n, generators of stabilizer
group m, and encoded logical qubits k are related by a simple
formula n = m + k.

To construct logical operators L̄ which leave the code
space invariant and transform the logical states into each
other, notice that any pair of Pauli operators must commute
or anticommute. Any Pauli operator that anticommutes with
elements in S cannot leave the code space invariant and
logical gates must not be in S or they cannot achieve the
logical transformation. Therefore, the logical gate operator
must live in the centralizer C ⊂ Pn of the stabilizer group.
It is worth mentioning that the representation of the log-
ical operator is not unique. Two logical operators L̄ and
L̄′ = L̄T with T ∈ S satisfy L̄′|�〉 = L̄|�〉 for all code
states |�〉.

Another important quantity to characterize the stabilizer
code is the code distance d. It is defined as the smallest set
of qubits which supports one nontrivial logical operator of the
code. The stabilizer code with n physical qubits, k encoded
logical qubits, and code distance d is denoted as [[n, k, d]].

B. Lattice model on a surface

The anyon model of the surface code is a D(Z2) quantum
double model [1]. For a given surface �, consider its cellu-
lation C(�) which is the set of all cells; we denote the set of
2-cells (i.e., plaquettes) as C2(�), 1-cells (i.e., edges) C1(�),
and 0-cells (i.e., vertices) C0(�). We can attach a physical
space Hei

on each edge ei of the lattice, the basis is chosen as
{|g〉 : g ∈ G} labeled by elements in G, and the whole space
is then H = ⊗

ei∈C1(�) Hei
. The quantum double model D(G)

for the general finite group G can be defined on a general
two-dimensional lattice, but here, for convenience, we only
employ the square lattice and the group G is chosen as the
Abelian group Z2. To proceed we define the operators L

g
±

which are associated with the vertices of the lattice C1(�) and
T h

± , which are associated with plaquettes of the lattice C2(�),
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FIG. 1. Surface code model on a surface �.

such that

L
g
+|z〉 = |gz〉, L

g
−|z〉 = |zg−1〉,

T h
+|z〉 = δh,z|z〉, T h

−|z〉 = δh−1,z|z〉.
It is easy to check that these operators satisfy the following
relations:

L
g
+T h

+ = T
gh
+ L

g
+, L

g
+T h

− = T
hg−1

− L
g
+,

L
g
−T h

+ = T
hg−1

+ L
g
+, L

g
−T h

− = T
gh
− L

g
−.

Now consider the orientable surface � as in Fig. 1, where
a square lattice is placed on it. To consistently define the
Hamiltonian we give each edge an orientation; here we take
the vertical edges upward and horizontal edges rightward.
Changing the orientation of an edge corresponds to changing
|g〉 to |g−1〉. For the Z2 case, 0−1 = 0 and 1−1 = 1; thus the
orientation is not necessary for the D(Z2) model. We now
define two types of operators: the star operators defined on
vertices (see s vertex as in Fig. 1)

A(s) = 1

|G|
∑
g∈G

L
g

−,1L
g

−,2L
g

+,3L
g

+,4, (2)

where for edges pointing to s we assign L
g
+, otherwise we

assign L
g
−, and plaquette operators defined as (see p plaquette

as in Fig. 1)

B(p) =
∑

h5h6h7h8=1G

T
h5
−,5T

h6
+,6T

h7
+,7T

h8
−,8, (3)

where if p is on the left of the edge we assign T h
+ to the edge;

otherwise we assign T h
− . A(s), A(s ′), B(p), B(p′) commute

with each other for all s, s ′ ∈ C0(�) and p, p′ ∈ C2(�).
Note that for group Z2, 0−1 = 0 and 1−1 = 1; thus

L0
+ = L0

− = I and L1
+ = L1

− = σx , and T 0
+ = T 0

− = �|0〉〈0|
and L1

+ = L1
− = �|1〉〈1|. We introduce new operators As and

Bp. For each vertex (star) s and each plaquette p, construct
the following vertex and plaquette operators:

As = �i∈star(s)σ
i
x, Bp = �i∈∂pσ i

z , (4)

where we use ∂p to represent the boundary edges of the
plaquette p. As and Bp are stabilizer operators in the stabilizer
QECC formalism and they commute with each other, i.e.,
[As,As ′ ] = [Bp,Bp′ ] = [As, Bp] = 0 for all vertices s, s ′ and

(a) (b) (c)

(d) (e) (f)

FIG. 2. The surface code with boundaries, defects, and twists.
(a) Smooth boundary; (b) rough boundary; (c) mixed boundary; (d)
smooth defect; (e) rough defect; (f) twist Q and domain wall W .

plaquettes p, p′. And all these operators are Hermitian with
eigenvalues ±1. Notice that A(s) = 1

2 (I + As ) and B(p) =
1
2 (I + Bp ). Here for simplicity we construct the following
Hamiltonian:

H� = −
∑

s

As −
∑

p

Bp, (5)

which will be referred to as the surface code Hamiltonian. H�

is the negative summation of all stabilizer generators; thus
the ground states for it correspond to the solution As |�〉 =
|�〉, Bp|�〉 = |�〉 for all s ∈ C0(�) and p ∈ C2(�), which
turn out to be code states in the stabilizer formalism.

C. Boundaries, defects, and twists

Real samples of quantum matter have boundaries and
defects, so it is also important to analyze the quantum double
model on a lattice with boundaries and defects. As discussed
in Refs. [36–39], we can construct boundary and defect
Hamiltonians. For convenience, we denote Hbulk, Hbondary,
Hdefect, and Htwist the Hamiltonians of bulk, boundaries, de-
fects, and twists, respectively.

1. Gapped boundaries of the surface code

In general, the gapped boundary of the quantum double
model D(G) is determined by the subgroup K ∈ G (up to
conjugation) and a 2-cocycle in H 2(K,C×) [37]. To define
a Hamiltonian for gapped boundaries, we first need to give
the orientation of the boundaries and then introduce the local
terms of each star and plaquette near the boundary (which
depend on a subgroup K of G). Here, we will focus on the
simplest Z2 case and we take K to be Z2 itself.

There are two types of boundaries for a planar code: a
smooth one and a rough one [40,41]. Let us now define
some new star and plaquette operators [see Figs. 2(a)–2(c)].
For smooth boundaries, we can see that the plaquettes do
not change near the boundary, but the star operators change.
We need to introduce two kinds of operators: a corner star
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operator Cs and a boundary star operator Ds [see Fig. 2(a)]:

Cs = σ 1
x σ 2

x , Ds = σ 3
x σ 4

x σ 5
x .

The smooth boundary Hamiltonian then reads

Hsboundary = −
∑

s

Cs −
∑

s

Ds,

in which all terms are commutative with each other; thus
Hsboundary is a gapped Hamiltonian.

For the rough boundaries, the star operators near the
boundary remain unchanged but the plaquette operators
change, and we similarly introduce two kinds of operators:
a corner plaquette operator Ep and a boundary plaquette
operator Fp [see Fig. 2(b)]:

Ep = σ 1
z σ 2

z , Fp = σ 3
z σ 4

z σ 5
z .

Similarly, we have the gapped Hamiltonian for rough bound-
aries:

Hrboundary = −
∑

p

Ep −
∑

p

Fp.

We can also introduce the mixed boundaries, which are the
mixed case of smooth and rough boundaries [see Fig. 2(c)].
The boundary Hamiltonian then reads

Hmboundary = −
∑

s

Cs −
∑

s

Ds −
∑

p

Ep −
∑

p

Fp.

When an e particle moves to the rough boundary, it will
condense into the vacuum of the boundary. Similarly, the
m particle will condense in the smooth boundary. Thus the
boundary phase is condensed from the bulk phase. Conversely,
the bulk phase can also be recovered from the boundary phase
via the half loop of the m and e particles. This is the content
of the famous boundary-bulk duality.

2. Defects of the surface code

Let us now consider the case where we punch several holes
h1, . . . , hk on the lattice. To describe the holes, we need to
specify k subgroups K1, . . . , Kk of G. Here, we still assume
that all Ki are equal to G = Z2. Then the hole Hamiltonian
will be

Hdefect =
∑

i

Hhi
.

Like the case for boundaries, there are two typical types of
holes: a smooth one and a rough one; see Figs. 2(d) and
2(e). The main difference is that we do not need to introduce
the corner star operator for the smooth hole, and do not
need to introduce corner plaquette operators for a rough hole.
Therefore, we have the Hamiltonians for holes as

Hsh = −
∑

s

Ds, Hrh = −
∑

p

Fp.

3. Twists of the surface code

As depicted in Fig. 2(f), there is a dislocation in the lattice,
along a line W (referred to as a one-dimensional domain wall).
Plaquettes are shifted such that the plaquette in the vicinity of

W is changed. W can be regarded as a mixed one-dimensional
defect, and the point between smooth and rough 1d defects
is also a special kind of defect named a twist defect [36,42].
A twist defect is a zero-dimensional defect, which has many
interesting properties.

The plaquette operators near the domain wall will change,
for example Wp = σ 5

z σ 6
z σ 7

z σ 4
x as depicted in Fig. 2(f). Be-

sides, we must introduce a new stabilizer operator Q =
σ 5

x σ 1
y σ 2

z σ 3
z σ 4

z as depicted in Fig. 2(f). It is easy to check that
each Wp and Q are commutative with bulk vertex operators
and plaquette operators. Therefore, we have the following
twist Hamiltonian:

Htwist = −
∑

p

Wp − Q. (6)

We see that a geometric change of lattice implies signif-
icant change of the Hamiltonian. If we move one e particle
around the point Q, it becomes an m particle, and similarly
for an m particle around Q. The m particle will condense to
vacuum as moving into the smooth part of W , the e particle
will condense as moving into the rough part W , but both the e

and m particles will condense into vacuum as moving into the
twist point Q.

III. NEURAL NETWORK ANSATZ

The restricted Boltzmann machine (RBM), a shallow gen-
erative stochastic artificial neural network that can learn a
probability distribution over its set of inputs, was initially
invented by Smolensky [43] in 1986. It is a particular kind of
Boltzmann machine [44,45]. It has recently been introduced
in many-body physics to efficiently represent the ground state
of gapped many-body quantum systems [4]. The approach
based on the RBM, the counterpart of the deep neural network
representation, is also developed later [17].

We now briefly introduce the machine-learning representa-
tion of a state based on the restricted Boltzmann architecture.
Consider an n-spin physical system S = {S1, . . . ,Sn}. An
RBM neural network contains two layers: a visible layer
and a hidden layer (see Fig. 4); we place n spin variables
{v1, . . . , vn} in a fixed basis {|v〉 = |v1, . . . , vn〉} on n corre-
sponding neurons in the visible layer. There are m auxiliary
variables {h1, . . . , hm} where vi, hj ∈ ±1 in the hidden layer.
The neurons in the visible layer are connected with the neu-
rons in the hidden layer, but there are no intralayer connec-
tions. The weights for visible neurons vi and hidden neurons
hj are denoted as ai and bj , respectively, and the weight on
the edge between hj and vi is denoted as Wji . Note that � =
{a = (a1, . . . , an), b = (b1, . . . , bm),W = (Wij )} are the pa-
rameters need to be trained which completely determine the
corresponding RBM construction. An RBM state (up to some
normalization constant) is then of the form

|�〉RBM =
∑

v

�(v,�)|v〉, (7)

where {v} is the chosen basis and the coefficient
�(v,�) is obtained by tracing out the hidden neuron
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variables [4]:

�(v,�) =
∑

h

eaT v+bT h+hT Wv,

=
∑

h

e
∑

i aivi+
∑

j bj hj +
∑

i,j hj Wjivi ,

= e
∑

i aivi

m∏
j=1

2 cosh

(
bj +

∑
i

Wjivi

)
. (8)

Hereinafter, we will choose the σz basis for each spin
space, and | + 1〉 and | − 1〉 are two basis states such that
σz| + 1〉 = +1| + 1〉 and σz| − 1〉 = −1| − 1〉, i.e., σ i

z |vi〉 =
vi |vi〉. Similarly, we have σ i

x |vi〉 = | − vi〉 and σ i
y |vi〉 =

ivi | − vi〉.
One of the most central problems of the RBM represen-

tation of quantum many-body states is its representational
power. The mathematical foundation of the neural network
representations originates from the representation theorem
developed by Kolmogorov [46,47] and Arnold [48], and Le
Roux and Bengio’s work [49], which stresses the case for
the RBM. It has been shown that the RBM can efficiently
represent toric code states [26], 1d symmetry protected topo-
logical states [26], and graph states [17]. The connection
between neural network states and tensor network states is
also extensively explored [15,17,18,31]. See Ref. [50] for a
review of the quantum neural network states.

IV. NEURAL NETWORK REPRESENTATION OF STATES
IN THE STABILIZER FORMALISM

It is believed that the RBM can represent the ground state
of local gapped systems. Here, we analyze RBM representa-
tions in the stabilizer formalism in a much more general way.
As we will see, since there is no intralayer connection in the
RBM, the concept of locality does not emerge. Even for some
nonlocal stabilizer group, the corresponding ground state can
be efficiently represented using the RBM.

To begin with, we introduce our general methodology of
constructing RBM representations of stabilizer states. Sup-
pose that the stabilizer group is generated by {T1, . . . , Tm}.
Since all other operators are just products of the generator
operators, to give the stabilizer state, we only need to restrict

Tk|�〉 = +1|�〉. (9)

Tk is the product of Pauli operators; thus we suppose that

Tk|vk, ṽ〉 = λk|v′
k, ṽ〉, (10)

where vk are the spins that Tk acts nontrivially on, ṽ are the
rest of the spins, and λk is the possible phase shift caused
by Tk .

Using Eqs. (9) and (10) and plugging in |�〉 =∑
v �(v; �)|v〉, we have

Tk|�〉 =
∑

v

�(vk, ṽ; �)Tk|vk, ṽ〉

=
∑

v

�(vk, ṽ; �)λk|v′
k, ṽ〉. (11)

Meanwhile,

|�〉 =
∑

v

�(v′
k, ṽ; �)|v′

k, ṽ〉. (12)

From Eqs. (11) and (12) we conclude that

λk�(vk, ṽ; �) = �(v′
k, ṽ; �). (13)

Equation (13) must hold for all spin configurations, and
is almost impossible to solve directly for large systems. To
tackle this problem, we employ the Jastrow wave function [51]
as a trial function and introduce the restriction that the wave
function takes the form

�(v; �) =
∏
k

fk (vk ), (14)

where each fk (vk ) is the function of several local spins in the
big system. We will first work out the values of fk (vk ), then
use hidden neuron connections to represent them.

Plugging Eq. (14) into Eq. (13), we have

λk�(vk, ṽ; �) = λk

∏
k

fk (vk ) = λkfk (vk )
∏
l 	=k

fl (vl )

and

�(v′
k, ṽ; �) = fk (v′

k )
∏
l 	=k

fl (v′
l ).

Thus,

λkfk (vk )
∏
l 	=k

fl (vl ) = fk (v′
k )

∏
l 	=k

fl (v′
l ). (15)

Finally, to find a solution to Eq. (15), we set the corresponding
terms equal to each other:

λkfk (vk ) = fk (v′
k ), (16)

fl (vl ) = fl (v′
l ). (17)

Given a set of stabilizers, we can find a set of fk (vk ) that
satisfies Eqs. (16) and (17), and then find the RBM parameters
corresponding to each fk (vk ).

Here, we argue that the most important thing is the stabi-
lizer’s configuration which determines the architecture of the
neural network. To begin with, we divide groups of stabilizer
generators into several types: SX, SY , SZ , which only contain
tensor products of σx , σy , and σz, respectively; SXY , SYZ ,
SXZ , which contain tensor products of σx and σy , of σy

and σz, and of σx and σz; and SXYZ , which only contains
tensor products of σx , σy , and σz. We will use the notation
SX 
 SZ to mean that the generators of the stabilizer group
only involve elements of SX and SZ type, and similarly for
others.

We will prove that all code states in the SX (resp. SY ,
SZ) stabilizer formalism can be exactly and efficiently rep-
resented by RBM. Specifically, we can assign one hid-
den neuron to each stabilizer operator which only connects
with visible neurons it acts nontrivially on [corresponding
to one fk (vk ) in Eq. (14)]. As for code states in the SXZ

(resp. SXY , SYZ) stabilizer formalism, using machine-learning
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FIG. 3. (a) A vertex and (b) a plaquette taken from the lattice
of the toric code model. Each edge corresponds to one spin, and
different circles on the vertices and faces correspond to different
stabilizer operators. The highlighted edges show the spins that the
stabilizer acts on.

techniques, we can give efficient RBM representations with
high accuracy.

A. SX , SY , and SZ

Equations (16) and (17) suggest that we should treat each
fk (vk ) (i.e., each stabilizer operator) individually. To begin
with, we draw the spins vk from the whole system and analyze
this subsystem. In general, there will be multiple stabilizers
acting on the subsystem vk . We will call Tk the “major
stabilizer” in the subsystem vk . The equation Tk|�〉 = +1|�〉
simply corresponds to Eq. (16), but for other stabilizers Tl ,
the equation Tl|�〉 = +1|�〉 does not correspond to Eq. (17).
Namely, the effect of Tl on |�〉 is split into two parts: the
possible phase shift λl , which is only shown in Eq. (16), and
the possible spin flip changing vl into v′

l , which is shown
in both Eq. (16) and Eq. (17). Thus, when analyzing the
subsystem vk , the nonmajor stabilizers can only flip spins and
cannot affect the phase.

Returning to our analysis of different types of stabilizers, as
a nonmajor stabilizer in the subsystem, T z ∈ SZ has no effect
on the subsystem, while T x ∈ SX and T y ∈ SY only have the
effect of flipping spins. When analyzing the subsystem vk , we
can ignore all nonmajor T z, while regarding all nonmajor T y

as T x .
In conclusion, when concerning the subsystem vk only,

there is one major stabilizer Tk and multiple nonmajor stabi-
lizers Tlvk

∈ SX acting on them. fk (vk ) describes the common
eigenstate of {Tk, Tlvk

}. Since the size of the subsystem is
small in general, fk (vk ) can be easily found by solving Eq. (1).
Treating every stabilizer Tk in the same way, we can get a
set of functions {fk (vk )}, and the wave function is given by
Eq. (14).

We take the Kitaev toric code state as an example, and give
a much simpler and more intuitive construction compared to
[26].

Figure 3(a) shows a vertex taken from the lattice. When
concerning the four spins connected to the vertex only, there
are five stabilizer operators acting on them (we ignored
the four Tz because of the reason stated above), with four

of them independent of each other (with the relationship
T x

k1T
x
k2T

x
k3T

x
k4 = T x

k ). We can check that T x
k �(vk, ṽ; �) =

�(−vk, ṽ; �) corresponds to Eq. (16), and the equations
for T x

k1, . . . , T
x
k4 correspond to Eq. (17). The dimension L

for this subsystem is 24−4 = 1, and it is easy to find that
the stabilizer state is | + + + +〉. For the plaquette shown
in Fig. 3(b), similar results can be obtained in the same
way.

Therefore, if we can construct the RBM representation of
each vertex and plaquette, we will get the RBM representa-
tion of the toric code state. With the functions fk (vk ), the
RBM representation is easy to find. Attaching one hidden
neuron to each vertex and plaquette, we can check that one
solution is

ak = iπ

4
, bp = −iπ, Wppk

= iπ

4
, for plaquettes,

ak = 0, bq = 0, Wqqk
= 0, for vertices.

For the general solution and details in calculation (in a less
intuitive way), see the Appendix.

This result is a special case for the general SX 
 SZ sta-
bilizer formalism that we will discuss here. For T z

p ∈ SZ

and T x
q ∈ SX, the commutation relation between them tells

us that they can only share an even number of spins. To
begin with, we take out the spins that T z

p acts on and try to
construct the function fp(vp ). The equation T z

p�(vp, ṽ; �) =∏
p vp�(vp, ṽ; �) corresponds to Eq. (16), and for the most

general case, there exists a T x
q for any pair of spins in vp,

which correspond to Eq. (17). Suppose there are l spins that
T z

p acts on; then the number of independent stabilizers is also
l (one T z

p , and l − 1 independent T x
q ), so the dimension L =

2l−l = 1. Therefore, we can find the unique stabilizer state of
this subsystem, and express it using the function fp(vp ).

Similarly, we can take out the s spins that T x
q acts on and

analyze this subsystem. Let T z
p and T x

q ′ be the stabilizers other
than T x

q that act on part of the spins in this subsystem. T z
p do

not flip spins; thus they have no effect on Eq. (17), and we can
ignore them in the analysis. Since T x

q commutes with every
other T x

q ′ , in the most general case there can exist a T x
q ′ for

every spin in this subsystem, and the number of independent
stabilizers is s (one for each spin). Therefore the dimension of
this subsystem is also 1, and we can also express the ground
state of the subsystem using a function fq (vq ).

Attaching one hidden neuron to each stabilizer, we can get
the RBM representation of the SX 
 SZ stabilizer formalism
similarly to the Kitaev toric code model. One solution is

ak = iπ

4
, bp = −l

iπ

4
, Wppk

= iπ

4
, for T z

p ,

ak = 0, bq = 0, Wqqk
= 0, for T x

q .

We can check that these solutions satisfy Eqs. (16) and
(17). Hidden neurons with b = 0 and W = 0 have no con-
tribution in the wave function; therefore we can remove the
hidden neurons corresponding to T x

q . The details in calcula-
tion can also be found in the Appendix.

012307-6



EFFICIENT MACHINE-LEARNING REPRESENTATIONS OF … PHYSICAL REVIEW A 99, 012307 (2019)

Algorithm 1 Constructing RBM representation for SX 
 SZ, SY 
 SZ ,
and SX 
 SY stabilizer states

Input: The group of stabilizer generators
1: G = {T1, T2, . . . , Tm}

Output: The RBM parameters {ai, bj , Wij }
2: Begin with no hidden neurons and all weights set to 0.
3: if G ∈ SY 
 SZ then
4: for vi in v do
5: ai = ai − iπ

4
6: Replace all SY with SX.
7: end for
8: else if G ∈ SX 
 SY then
9: Change to σy basis.

10: end if � Do nothing when G ∈ SX 
 SZ

11: for j = 1 to m do
12: if Tj ∈ SZ then
13: Add a hidden neuron hj

14: for vi ∈ vj do
15: ai = ai + iπ

4 , bj = bj − iπ

4 ,Wij = iπ

4
16: end for
17: else if Tj ∈ SX then
18: continue
19: end if
20: end for

However, this method fails if we try to generalize it to
the situation where T

y
r ∈ SY . Since T

y
r commutes with every

other T
y

r ′ , the number of spins shared by them can be odd.
However, our general methodology tells us that for the

subsystem vr , the major stabilizer is T
y
r , while the nonmajor

stabilizers are actually T x
r ′

vr
∈ SX, which may not commute

with T
y
r . Therefore there may not exist a common eigenstate

for the stabilizers in this subsystem, and this method fails.
The RBM representation of T

y
r can be deduced from

the T x
q case. Since σx |v〉 = | − v〉 and σy |v〉 = iv| − v〉 =

exp( iπ
2 v)| − v〉, using the function T

y
r |�〉 = +1|�〉, we have

T y
r �(vr , ṽ; �)|vr , ṽ〉

= exp

(
iπ

2

∑
r

vr

)
T x

r �(vr , ṽ; �)|vr , ṽ〉

= �(−vr , ṽ; �)| − vr , ṽ〉
or

T x
r

[
exp

(
iπ

4

∑
r

vr

)
�(vr , ṽ; �)

]
|vr , ṽ〉

=
{

exp

[
iπ

4

∑
r

(−vr )

]
�(−vr , ṽ; �)

}
| − vr , ṽ〉.

Suppose the eigenstate for T x
r with eigenvalue 1 is |� ′〉; then

we have

�(vr , ṽ; �) = exp

(
− iπ

4

∑
r

vr

)
� ′(vr , ṽ; �).

Therefore, we conclude that for T
y
r , the RBM parameters are

ak = a′
k − iπ

4
, br = b′

r , Wrrk
= W ′

rrk
, (18)

where the parameters with a prime denote the parameters for
the corresponding T x

r case. Note that the result here is for the
whole spin system, while the results we get for T z

p and T x
q

earlier are for the subsystems taken out from the big system.
Using Eq. (18) and our previous result for SX 
 SZ , we can

directly get the RBM representation for the SY 
 SZ cases.
Furthermore, as for the SX 
 SY cases, if we use the σy basis
instead of the σz basis, the matrix form of the Pauli operators
under the new basis reads

σ ′
x =

(
0 −i

i 0

)
→ σy, σ ′

y =
(

1 0
0 −1

)
→ σz,

σ ′
z =

(
0 1
1 0

)
→ σx.

In this way we convert SX 
 SY to SY 
 SZ , which we have
already solved.

To conclude, we have summarized our construction in
Algorithm 1. However, one must note that this algorithm
only specifies one code state in the entire code space. To
convert between different code states, we utilize the RBM
representation of string operators. See Sec. V D for details.

B. SXY , SX Z , SY Z , and SXY Z

When generalizing our method in Sec. IV A to more com-
plicated cases, problems arise. When G ∈ SX 
 SZ , for each
stabilizer Tj , we can always take vj as a subsystem, and the
solution is guaranteed to exist; however, when G ∈ SXZ , there
exist cases where there are more independent stabilizers than
spins in each subsystem, so there does not exist a common
eigenstate, and our method fails. Under such circumstances,
merging the neighboring subsystems into bigger subsystems
may help, but no general merging rules have been found, and
in the worst case the size of a subsystem might reach the
size of the whole system. Therefore, we resort to numerical
methods instead.

Reference [52] proved the existence of efficient RBM rep-
resentations for stabilizer states, confirming that a numerical
method would work. Therefore, we try to construct a fully
connected RBM for each subsystem, and obtain the RBM
representation of the state via Eq. (14). By appropriately
choosing subsystems, the system size we have to deal with
will be much smaller.

Here we briefly introduce the method of training the RBM.
Given the set of stabilizers {T1, . . . , Tm}, the Hamiltonian is
defined as H = −∑

j Tj , and the code states are ground states
of the Hamiltonian. This problem is already solved in [4], in
which was adopted reinforcement learning to minimize the
energy. But for small subsystems, higher accuracy can be
achieved by first calculating the full state vector |�j 〉 for the
subsystem, then minimizing the distance function

d = arccos

√
〈�j |�RBM〉〈�RBM|�j 〉
〈�j |�j 〉〈�RBM|�RBM〉 .

The cost for exactly computing |�j 〉 and |�RBM〉 grows
exponentially, but is tractable for subsystems with moderate
size. A small trick to reduce complexity by a constant factor
is to evaluate the RBM coefficients in the sequence of the gray
code.
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FIG. 4. Restricted Boltzmann machine representation of Shor’s
[[9,1,3]] code state in stabilizer formalism.

So far, we have given the relatively complete construction
of the RBM state in the stabilizer formalism. Later in this
paper we will give examples for different situations.

Let us take Shor’s [[9,1,3]] code [53] as an example
to illustrate our general approach for constructing stabilizer
states. The stabilizer generators S[[9,1,3]] for Shor’s code
are

T1 = σ 1
z σ 2

z I IIIIII,

T2 = Iσ 2
z σ 3

z I IIIII,

T3 = σ 1
x σ 2

x σ 3
x σ 4

x σ 5
x σ 6

x I II,

T4 = IIIσ 4
z σ 5

z I III,

T5 = IIIIσ 5
z σ 6

z I II,

T6 = IIIσ 4
x σ 5

x σ 6
x σ 7

x σ 8
x σ 9

x ,

T7 = IIIIIIσ 7
z σ 8

z I,

T8 = IIIIIIIσ 8
z σ 9

z .

(19)

As depicted in Fig. 4, we assign a hidden neuron hk to each
stabilizer Tk such that it is only connected with the qubits
(visible neurons) which Tk acts on nontrivially. Note that
S[[9,1,3]] = SX 
 SZ; T1, T2, T4, T5, T7, T8 are of SZ type with
each of them acting on l = 2 qubits nontrivially. T3 and T6

are of SX type, and among the qubits they act on nontrivially,
the number of T z

p that act on v1, v3, v4, v6, v7, v9 is 1, and that
act on v2, v5, v8 is 2. Thus the RBM parameters �[[9,1,3]] for
|�[[9,1,3]]〉 are

ak = i
π

4
, k = 1, 3, 4, 6, 7, 9,

ak = i
π

2
, k = 2, 5, 8,

bp = −i
π

2
, Wppk

= i
π

4
, p = 1, 2, 4, 5, 7, 8,

bq = 0, Wqqk
= 0, q = 3, 6.

V. EFFICIENT NEURAL NETWORK REPRESENTATION
OF THE SURFACE CODE

Using the general result obtained above, now we explic-
itly construct the RBM representation of the defect surface
code.

0 1 3 4 65 872 0 1 3 4 65 872 0 1 3 4 65 872
0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

(a) (b) (c)

FIG. 5. Planar code with boundaries. (a) Smooth boundary; (b)
rough boundary; (c) mixed boundary. The different types of sta-
bilizers and the corresponding qubits they act on nontrivially are
highlighted using different colors.

A. Planar code with boundaries

There are two types of boundaries for the planar code—
smooth ones and rough ones, as shown in Fig. 5—and we will
construct RBM representations for both cases.

1. Smooth boundaries

We take the 4 × 4 square lattice as a concrete example. We
use 0, 1, 2, . . . to label the rows and columns, and Xij for
the star (plaquette) operator on the vertex (face) (i, j ) when
both i and j are even (odd), as shown in Fig. 5. Similarly, vij

denotes the qubit attached to the edge (i, j ), where i and j

have different parity. There are four types of stabilizers:

Aij =
∏

(m,n)∈star(i,j )

σmn
x , Bij =

∏
(m,n)∈∂ (i,j )

σmn
z ,

Cij =
∏

(m, n) ∈ star(i, j )(i, j ) on the corner

σmn
x ,

Dij =
∏

(m, n) ∈ star(i, j )(i, j ) on the boundary

σmn
x ,

where Cij and Dij denote the star operators on the corner
and boundary, respectively. If (i, j ) is not on the boundary
or corner, then star(i, j ) contains the 4 adjacent edges of
the vertex (i, j ), or star(i, j ) = {(i − 1, j ), (i + 1, j ), (i, j −
1), (i, j + 1)}. Otherwise it contains only 3 or 2 adjacent
edges, as depicted in Fig. 5(a). ∂ (i, j ) has the same expression
except that (i, j ) denotes a face instead of a vertex. As an
example, the highlighted operators in Fig. 5(a) can be written
as

A44 = σ 34
x σ 54

x σ 43
x σ 45

x , B51 = σ 41
z σ 61

z σ 50
z σ 52

z ,

C08 = σ 07
x σ 18

x , D04 = σ 14
x σ 03

x σ 05
x .

Using our conclusion above, we can connect a hidden neuron
to each Bij , and the RBM parameters are

aij =
{

iπ
2 , i, j ∈ {1, 2, . . . , 7},
iπ
4 , i ∈ {0, 8} or j ∈ {0, 8},

bBij
= −iπ, WBij ,k = iπ

4
.
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2. Rough boundaries

We also take the 4 × 4 square lattice as an example. There
are four types of stabilizers, as shown in Fig. 5(b):

Aij =
∏

(m,n)∈star(i,j )

σmn
x ,

Bij =
∏

(m,n)∈∂ (i,j )

σmn
z ,

Eij =
∏

(m, n) ∈ ∂ (i, j )(i, j ) on the corner

σmn
z ,

Fij =
∏

(m, n) ∈ ∂ (i, j )(i, j ) on the boundary

σmn
z .

As an example, the highlighted stabilizer operators are written
as

A22 = σ 12
x σ 32

x σ 21
x σ 23

x , B53 = σ 43
z σ 63

z σ 52
z σ 54

z ,

E17 = σ 27
z σ 16

z , F57 = σ 47
z σ 67

z σ 56
z .

Using our conclusion above, the RBM parameters for this case
are

aij = iπ

2
, bBij

= −iπ, bEij
= − iπ

2
, bFij

= −3iπ

4
,

WXij ,k = iπ

4
, X ∈ {B,E, F }.

3. Mixed boundaries

In this example, the upper and left-hand sides of the lattice
have smooth boundaries, while the lower and right-hand sides
have rough boundaries. Therefore all six types of stabilizers
appear in this example, as shown in Fig. 5(c). We can calculate
the RBM parameters in this case, which are

aij =
{

iπ
4 , i = 0 or j = 0,

iπ
2 , otherwise,

bBij
= −iπ, bEij

= − iπ

2
, bFij

= −3iπ

4
,

WXij ,k = iπ

4
, X ∈ {B,E, F }.

B. Planar code with defects

In this section, we will discuss the RBM representation of
smooth and rough defects in the planar code.

1. Smooth defect

As Fig. 6(a) shows, the smooth defect causes the change in
the four highlighted stabilizers, which are

D24 = σ 14
x σ 23

x σ 25
x , D42 = σ 32

x σ 52
x σ 41

x ,

D46 = σ 36
x σ 56

x σ 47
x , D64 = σ 63

x σ 65
x σ 74

x .

And the vertices (2,2),(2,6),(6,2),(6,6) have no operators de-
fined on them. Using our conclusions above, the RBM param-

0 1 3 4 65 8720 1 3 4 65 872
0
1
2

3
4
5
6

7

8

0
1
2

3
4
5
6

7

8

(a) (b)

FIG. 6. Planar code with defects. (a) Smooth defect; (b) rough
defect. The stabilizers affected by the defect are highlighted in the
graph, and there are no operators defined on the vertices labeled with
a cross.

eters in this case are

aij =
{

iπ
4 , (i, j ) on the boundary of the defect,
iπ
2 , otherwise,

bBij
= −iπ, WBij ,k = iπ

4
.

2. Rough defect

As Fig. 6(b) shows, the rough defect causes the change in
the eight highlighted stabilizers, where F31 = σ 21

z σ 41
z σ 30

z , and
similarly for the others. The eight vertices labeled with a cross
have no stabilizers defined on them. In this case, the RBM
parameters are

aij = iπ

2
, bBij

= −iπ, bFij
= −3iπ

4
,

WBij ,k = iπ

4
, WFij ,k = iπ

4
.

C. Planar code with twists and typical machine-learning
procedure for complicated cases

The domain wall and twist have already been described
in Sec. V C. We introduced a new twist operator Q =
σ 5

x σ 1
y σ 2

z σ 3
z σ 4

z , and the plaquette operators near the domain
wall W also changed, such as Wp = σ 5

z σ 6
z σ 7

z σ 4
x . Since Q ∈

SXYZ and Wp ∈ SXZ , which we have not obtained a general
result yet, in this section we explicitly construct the RBM
representation of the planar code with twists using machine-
learning techniques.

Figure 7 shows the planar code with a domain wall and
twist. As described in Sec. IV B, we need to find a minimal
subsystem in which the number of independent stabilizers is at
most the same as the number of spins. It turns out that we need
to include all the spins near the domain wall in the subsystem,
and in this case the subsystem is the 13 highlighted spins,
with 13 independent stabilizers acting on them. Therefore the
dimension of this subsystem is 213−13 = 1, so that we can find
a unique ground state for it.

Then we construct a local fully connected RBM for the 13
spins, with 13 hidden neurons. The target state � is the ground
state of the subsystem, and the RBM state is denoted as �′.
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FIG. 7. Planar code with a domain wall and twist.

In the training process, we use an optimization procedure to
minimize the distance function

d = arccos

√
〈�′|�〉〈�|�′〉
〈�′|�′〉〈�|�〉 .

Since this system is small, we can calculate the target
state � exactly. We used the MATLAB Optimization Toolbox,
which applies the sequential quadratic programming (SQP)
algorithm, an iterative method for nonlinear optimization,
to minimize the distance function d and to find a set of
RBM parameters {ai, bj ,Wij }. Figure 8 shows the typical
optimization procedure, in which the final value of d is 0.007,
indicating the fidelity is 0.99995. We can see that the distance
function converges smoothly to 0.

D. Topological excitations

The RBM representation of excited states in the Kitaev
toric code model has already been constructed by Deng et al.
in [26]. For the completeness of our paper, we quote their
results and show that edge excitation can also be represented
in similar ways.

There are two types of excitations: electric excitation cre-
ated by the string operator Sz(t ) = ∏

j∈t σ
j
z , and magnetic

FIG. 8. The typical training procedure of a full connected RBM.
The distance function converges smoothly to 0.

e

m

1

2

3

4

5

6

7

8

9

FIG. 9. String operators Sz(t ) and Sx (t ′). Since one end of the
string operator is on the boundary, only one e (or m) particle is
created.

excitation created by the string operator Sx (t ′) = ∏
j∈t ′ σ

j
x .

Reference [26] showed that acting the operator Sz(t ) =∏
j∈t σ

j
z on the ground state corresponds to connecting a hid-

den neuron hj to each vj that Sz(t ) acts on, with parameters
bj = − iπ

2 ,Wj = iπ
2 . After this operation, we have

� ′(vj , ṽ)|vj , ṽ〉

=
∏
j

{
cosh

[
iπ

2
(vj − 1)

]}
�(vj , ṽ)|vj , ṽ〉

=
⎛
⎝∏

j

σ j
z

⎞
⎠�(vj , ṽ)|vj , ṽ〉,

and a pair of e particles are created. Meanwhile, acting the
operator Sx (t ′) = ∏

j∈t ′ σ
j
x on the ground state corresponds

to flipping all the signs of the parameters associated with vj .
In this way,

� ′(vj , ṽ)|vj , ṽ〉 = �(−vj , ṽ)|vj , ṽ〉

=
⎛
⎝∏

j

σ j
x

⎞
⎠�(−vj , ṽ)| − vj , ṽ〉,

and a pair of m particles are created.
Figure 9 shows the two types of string operators. The string

operator Sz(t ) = σ 6
z σ 7

z σ 8
z σ 9

z should have created a pair of e

particles, but since it has one end on the rough boundary, one
e particle condensed into vacuum as it moved into the rough
boundary. Similarly, Sx (t ′) = σ 1

x σ 2
x σ 3

x σ 4
x σ 5

x has one end on
the smooth boundary, so that it only creates one m particle on
the other end. With the RBM representation of string operators
Sz(t ) and Sx (t ′), such physical process can be exactly and
efficiently represented in RBM language.

VI. RBM REPRESENTATION FOR THE GENERAL
D(G) KITAEV MODEL

Consider a lattice with square geometry and assign d-level
spins on each edge of the lattice. By labeling spin states with
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the group elements |0〉, . . . , |d − 1〉, we then can introduce
the generalized Pauli operators

X =
∑
h∈Zd

|h + 1(modd )〉〈h|, Z =
∑
h∈Zd

ωh|h〉〈h|, (20)

where ω = e2πi/d is the dth root of unity. For the d = 2
case, we get the usual Pauli operators σx and σz, and they
are anticommutative. In general, we have the commutation
relation

ZX = ωXZ. (21)

Since X only displaces the label of basis by unity, it is easy to
check that the eigenstates of X are of the form

|x〉 = 1√
d

∑
h∈Zd

ωxh|h〉, (22)

with the corresponding eigenvalue ω−x for each x ∈ Zd .
Then we can define the star operators and plaquette opera-

tor as (see Fig. 1)

As = X1X2X
†
3X

†
4, Bp = Z

†
5Z6Z7Z

†
8. (23)

Note that now the lattice is a directed graph; thus the different
directions are distinguished by operators and their Hermitian
conjugates. All eigenvalues of Av and Bp are of the form ωg

for some g ∈ Zd .
The Hamiltonian of the D(Zd ) model is then

H = −
∑

s

∑
h∈Zd

(As )h −
∑

p

∑
h∈Zd

(Bp )h. (24)

Now, we try to construct the RBM representation for the
general D(G) Kitaev model. Since the spins can take d dif-
ferent values, we need to generalize the traditional two-value
RBM to d-value cases. Specifically, for the generalized RBM,
the visible-layer variables {v1, . . . , vn} can have d different
values, while the hidden-layer variables {h1, . . . , hm} are still
two-valued, where vi ∈ {0, 1, . . . , d − 1} and hj ∈ {+1,−1}.
The RBM ansatz takes the same form as Eq. (8), except that
vi becomes d-valued.

To begin with, consider the equation Bp|�〉 = +1|�〉.
Using |�〉 = ∑

v �(v; �)|v〉, we have

Bp�(v; �)|v〉 = exp

(
2πi

d

∑
k

v∗
pk

)
�(v; �)|v〉

= �(v; �)|v〉, (25)

where v∗
pk

= ±vpk
, in which the plus sign is taken for

the edge pointing in the positive direction (with respect
to the plaquette), and the minus sign for the nega-
tive direction. To make Eq. (25) hold, we only need to
restrict ∑

k

v∗
pk

= nd, (26)

where n is an integer. To this end, we connect d −
1 hidden neurons hl, l ∈ {1, . . . , d − 1}, to {vp1 , . . . , vpk

},
with W ∗

pl,pk
= iπ

d
and bpl

= iπl
d

− iπ
2 . In this way, we

have

�(v; �) =
∏
p

{
2d−1

∏
l

cosh

[(
l +

∑
k

v∗
pk

)
iπ

d
− iπ

2

]}

=
∏
p

{
2d−1

∏
l

sin

[(
l +

∑
k

v∗
pk

)
π

d

]}
.

Since

∏
l

sin

[(
l +

∑
k

v∗
pk

)
π

d

]

=
{± sin π

d
sin 2π

d
· · · sin (d−1)π

d
,

∑
k v∗

pk
= nd,

0, otherwise,

we can see that this set of parameters meets our requirement.
Then let us consider the equation As |�〉 = +1|�〉. Since

X is the shifting operator and each As acts on two adjacent
spins in a plaquette, we can check that if both edges point
in the positive (or negative) direction (with respect to the
plaquette), As will raise one spin while lowering the other;
otherwise As will raise or lower both spins. In both cases, the
operator As conserves the sum (

∑
k v∗

pk
mod d ).

In most cases, the restriction As |�〉 = +1|�〉 is automat-
ically satisfied because the quantity

∑
k v∗

pk
does not change

after applying the operator As . However,
∑

k v∗
pk

can also
change by d, and we would have an extra −1 in the wave
function. To make the restriction hold, we add an extra term
exp( iπ

d

∑
k v∗

pk
) to the wave function, which also adds an

additional −1 to the wave function when
∑

k vpk
changes by

d, and does not change when
∑

k v∗
pk

does not change. We can
check that As |�〉 = +1|�〉 holds for this new wave function.

In conclusion, to represent the D(G) Kitaev model in
RBM language, we can connect d − 1 hidden neurons to each
plaquette, with RBM parameters

apk
= ± iπ

d
, bpl

= iπl

d
− iπ

2
, Wpl,pk

= ± iπ

d
,

where for apk
and Wpl,pk

, the plus sign is taken for the edge
pointing in the positive direction, and minus for the negative
direction. For d = 2, this model becomes the regular toric
code model, and the RBM representation is equivalent to what
we have constructed in Sec. IV A except that we use 0 and 1
to label spins here.

VII. CONCLUSIONS AND DISCUSSION

We have provided a systematic analysis of the RBM repre-
sentation in the stabilizer formalism, and we find that for many
crucial stabilizer groups, the exact RBM solutions exist and
the number of hidden neurons is almost equal to the visible
neurons. The developed results then enable us to analyze a
surface code model with boundaries, defects, domain walls,
and twists, and we also investigate the Kitaev D(Zd ) model
in the form of an RBM that can be optimized using the varia-
tional Monte Carlo method, with the exact solution provided.
Our result sheds light on the representational power of neural
network states and gives guidance when building the RBM
neural network in the stabilizer formalism. We also mention
that in Ref. [52], we have shown that all stabilizers can be
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reduced to the stabilizer groups which we studied in this
work, see also [54] for the construction from the view point of
topologically ordered states. Thus it is of central importance to
construct the RBM representation in the stabilizer formalism.
Many directions can been exploited further, such as providing
the exact RBM solution of Kitaev’s D(G) model for non-
Abelian group G and developing an algorithm to create the
RBM solution in the stabilizer formalism. All these are left
for future study.
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APPENDIX: RBM REPRESENTATION IN THE
STABILIZER FORMALISM

In this appendix, we give the detailed calculation as a
supplement to Sec. IV A.

For T z
p = σ

p1
z σ

p2
z · · · σpl

z ∈ SZ , T z
p only flips the

phases of spins vp1 , vp2 , . . . , vpl
, i.e., T z

p |v1, v2, . . . , vn〉 =
(
∏l

k=1 vpk
)|v1, v2, . . . , vn〉. Therefore the constraint T z

p |�〉 =
+1|�〉 can be represented in the RBM form as

T z
p�(v; �)|v〉

=
(

l∏
k=1

vpk

)
e
∑

i aivi

m∏
j=1

2cosh

(
bj +

∑
i

Wjivi

)
|v〉

= e
∑

i aivi

m∏
j=1

2cosh

(
bj +

∑
i

Wjivi

)
|v〉.

By canceling the terms which are unrelated with the hidden
neuron corresponding to Tp, we will get that(

l∏
k=1

vpk

)
cosh

(
bp +

∑
k

Wppk
vpk

)

= cosh

(
bp +

∑
k

Wppk
vpk

)
,

where we use pk to label the l visible neurons which are
connected with hp. Now if the number of −1 among vpk

is
0, 2, 4, . . ., then we further have cosh(bp + ∑

k Wppk
vpk

) =
cosh(bp + ∑

k Wppk
vpk

) which is obviously true; if the num-
ber of −1 among vpk

is 1, 3, 5, . . ., then we have −cosh(bp +∑
k Wppk

vpk
) = cosh(bp + ∑

k Wppk
vpk

), from which we
know that cosh(bp + ∑

k Wppk
vpk

) must be zero. To this end,
we restrict ourselves to

bp +
∑

k

Wppk
vpk

= i
2m + 1

2
π (A1)

when the number of −1 among vpk
is odd, with m an integer.

There are many solutions of Eq. (A1); we need to adjust the
bp and Wppk

to fit our need. Here we provide a solution, where
we take Wppk

the same for all vpk
. It is easy to check that the

weights related to the hidden neuron hp (which corresponds
to Tp) can be

bp = −i
π

4
, Wppk

= i
π

4
; l = 1, 5, 9, 13, . . . ,

bp = −i
π

2
, Wppk

= i
π

4
; l = 2, 6, 10, 14, . . . ,

(A2)
bp = i

π

4
, Wppk

= i
π

4
; l = 3, 7, 11, 15, . . . ,

bp = i
π

2
, Wppk

= i
π

4
; l = 4, 8, 12, 16, . . . .

From Eq. (A1), we can see that adding niπ to bp will not
change the result, where n can be an arbitrary integer. As we
only need one solution, we can rewrite Eq. (A2) in a more
compact form:

bp = −i
lπ

4
, Wppk

= i
π

4
. (A3)

However, we must point out that this result only holds when
there only exists one type of stabilizer T z

p . More general cases
will be discussed later.

The case for T x
q = σ

q1
x σ

q2
x · · · σqs

x ∈ SX is more com-
plicated. T x

q will flip the spins of vq1 , vq2 , . . . , vql
, i.e.,

T x
q |vq1 , . . . , vqs

, . . .〉 = | − vq1 , . . . ,−vqs
, . . .〉. Therefore the

constraint T x
q |�〉 = +1|�〉 can be represented in RBM form

as

T x
q �(vq, ṽ; �) = �(−vq, ṽ; �).

More precisely, if we cancel the terms unrelated to visible
neurons vqk

, k = 1, . . . , s, we have

e
∑

k aqk
(−vqk

)cosh

[
bq +

∑
k

Wqqk
(−vqk

)

]

×
∏

q ′,〈q ′q〉
cosh

⎡
⎣bq ′ +

∑
k

Wq ′qk
(−vqk

) +
∑
q ′

k 	=qk

Wq ′q ′
k
vq ′

k

⎤
⎦

= e
∑

k aqk
vqk cosh

(
bq +

∑
k

Wqqk
vqk

)

×
∏

q ′,〈q ′q〉
cosh

⎛
⎝bq ′ +

∑
k

Wq ′qk
vqk

+
∑
q ′

k 	=qk

Wq ′q ′
k
vq ′

k

⎞
⎠,

where by 〈q ′q〉 we mean that Tq and Tq ′ share some visible
neurons. To solve the equation directly is very difficult; now
to illustrate the validity of our architecture, we only give one
special solution to this equation, where we let the correspond-
ing terms on each side of the equation equal each other. The
solution can be chosen as

aqk
= niπ, Wqqk

= 0,

and bq can take any value. Specifically, we choose

aqk
= 0, bq = 0, Wqqk

= 0.

We need to explain this result here, for it seems that we only
obtained a trivial solution, since we supposed that T x

q ∈ SX,
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which means that all stabilizer generators only flip the spins
without adding a phase factor, or that all the involved spin
configurations have the same coefficient in the wave function,
which is exactly the same with our result above. Therefore,
we can remove the hidden neuron corresponding to T x

q . Again
we must emphasize that this result only holds for T x

q ∈ SX,
without any other types of stabilizers.

Now let us consider what will happen if we combine two
sets of constraints together. To begin with we consider the case

where {T z
p , T x

q } ∈ SX 
 SZ . T z
p does not involve spin flips, and

the constraint T z
p |�〉 = +1|�〉 still needs to be satisfied. Thus

the hidden neuron corresponding to T z
p remains unchanged,

with the weights

bp = −i
lπ

4
, Wppk

= i
π

4
. (A4)

However, T x
q will flip spins that T z

p acts on, and the result is
different. After canceling the terms unrelated to vqk

, we have

e
∑

k aqk
vqk cosh

(
bq +

∑
k

Wqqk
vqk

) ∏
q ′,〈q ′q〉

cosh

⎛
⎝bq ′ +

∑
k

Wq ′qk
vqk

+
∑
q ′

k 	=qk

Wq ′q ′
k
vq ′

k

⎞
⎠

×
∏

p,〈pq〉
cosh

⎛
⎝bp +

∑
k

Wpqk
vqk

+
∑

pk 	=qk

Wppk
vpk

⎞
⎠

= e
∑

k aqk
(−vqk

)cosh

[
bq +

∑
k

Wqqk
(−vqk

)

] ∏
q ′,〈q ′q〉

cosh

⎡
⎣bq ′ +

∑
k

Wq ′qk
(−vqk

) +
∑
q ′

k 	=qk

Wq ′q ′
k
vq ′

k

⎤
⎦

×
∏

p,〈pq〉
cosh

⎡
⎣bp +

∑
k

Wpqk
(−vqk

) +
∑

pk 	=qk

Wppk
vpk

⎤
⎦.

In order to find a solution to this equation, we first analyze the last term:

cosh

⎡
⎣bp +

∑
k

Wpqk
(−vqk

) +
∑

pk 	=qk

Wppk
vpk

⎤
⎦

= cosh

(
bp +

∑
k

Wppk
vpk

− 2
∑

k

Wpqk
vqk

)
= cosh

(
bp +

∑
k

Wppk
vpk

− iπ

2

∑
k

vqk

)
, (A5)

where in the last equation we used the result Wpqk
= iπ

4 . Since T z
p and T x

q commute with each other, the number of visible
neurons shared by T z

p and T x
q is even, or

∑
k,〈pq〉 vqk

= 2m. Thus, we can further simplify Eq. (A5) into

cosh

(
bp +

∑
k

Wppk
vpk

− iπ

2

∑
k

vqk

)
=

{
cosh(bp + ∑

k Wppk
vpk

),
∑

k,〈pq〉 vqk
= 4n,

− cosh(bp + ∑
k Wppk

vpk
),

∑
k,〈pq〉 vqk

= 4n + 2,

or

cosh

(
bp +

∑
k

Wppk
vpk

− iπ

2

∑
k

vqk

)
= e

iπ
2

∑
k,〈pq〉 vqk cosh

(
bp +

∑
k

Wppk
vpk

)
.

In this way, the equation following Eq. (A4) becomes

e
∑

k aqk
vqk cosh

(
bq +

∑
k

Wqqk
vqk

) ∏
q ′,〈q ′q〉

cosh

⎛
⎝bq ′ +

∑
k

Wq ′qk
vqk

+
∑
q ′

k 	=qk

Wq ′q ′
k
vq ′

k

⎞
⎠

= e
∑

k aqk
(−vqk

)cosh

[
bq +

∑
k

Wqqk
(−vqk

)

] ∏
q ′,〈q ′q〉

cosh

⎡
⎣bq ′ +

∑
k

Wq ′qk
(−vqk

) +
∑
q ′

k 	=qk

Wq ′q ′
k
vq ′

k

⎤
⎦

×
∏

p,〈pq〉
e

iπ
2

∑
k,〈pq〉 vqk .
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To find a solution, we let

e
∑

k aqk
vqk = e

∑
k aqk

(−vqk
)

∏
p,〈pq〉

e
iπ
2

∑
k,〈pq〉(vqk

), cosh

(
bq +

∑
k

Wqqk
vqk

)
= cosh

[
bq +

∑
k

Wqqk
(−vqk

)

]
,

cosh

⎛
⎝bq ′ +

∑
k

Wq ′qk
vqk

+
∑
q ′

k 	=qk

Wq ′q ′
k
vq ′

k

⎞
⎠ = cosh

⎡
⎣bq ′ +

∑
k

Wq ′qk
(−vqk

) +
∑
q ′

k 	=qk

Wq ′q ′
k
vq ′

k

⎤
⎦.

Therefore the solution is

aqk
= np,qk

iπ

4
, bq = 0, Wqqk

= 0, (A6)

where np,qk
denotes the number of T z

p that acts on vqk
. bq can

take any value, so we choose it to be 0 and remove the hidden
neuron corresponding to T x

q .
To better illustrate the physical meanings of these parame-

ters, we rearrange Eqs. (A4) and (A6):

ak = iπ

4
, bp = −l

iπ

4
, Wppk

= iπ

4
, for T z

p ,

ak = 0, bq = 0, Wqqk
= 0, for T x

q .

We reassigned the parameters ak , and this is the result we
give in Sec. IV A. In this way, the wave function becomes

�(v; �) =
∏
p

{
exp

(
iπ

4

∑
k

vpk

)

× 2 cosh

[
iπ

4

∑
k

(
vpk

− 1
)]}

=
∏
p

fp(vp ).

We can check that fp(vp ) = el iπ
4 is the same for all spin

configurations with
∏

k vpk
= 1. Or, the wave function re-

mains unchanged after flipping an even number of spins,
which meets our requirement. We can further check that every
condition in Sec. IV A is satisfied.
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