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Abstract
Reward misspecification in RLHF threatens the reliability of large language models1

by amplifying spurious correlations and producing unstable or unsafe behavior2

Christiano et al. [2017], Skalse et al. [2022], Gao et al. [2023]. Expert-defined harm3

categories provide a stable signal for post-training evaluation Mitchell et al. [2019],4

but reward models often encode categorical biases that undermine trustworthiness.5

We address this challenge through an information-theoretic reliability objective:6

minimizing mutual information Belghazi et al. [2018] between reward scores and7

sensitive categories. Our approach enforces invariance via adversarial training8

Edwards and Storkey [2016], Zhao et al. [2018] while integrating curiosity-driven9

intrinsic rewards Pathak et al. [2017] into PPO Schulman et al. [2017] to preserve10

diversity. Framing debiasing as a minimax game yields reward models that are both11

robust and verifiably category-independent. Empirically, our Fair-RM achieves12

near-neutral bias on CrowS-Pairs Nangia et al. [2020] and StereoSet Nadeem13

et al. [2020], reduces post-PPO disparity on HH-RLHF, and scales to 19-category14

fairness in PKU-SafeRLHF Ji et al. [2024]. These results demonstrate improved15

calibration and stability under distribution shift, establishing our method as a16

practical reliability control for safety-critical RLHF deployment.17

1 Introduction18

Reinforcement Learning from Human Feedback (RLHF) has become essential for aligning large19

language models with human intent Christiano et al. [2017], Ouyang et al. [2022], yet reward20

misspecification poses significant risks for reliability in safety-critical applications Amodei et al.21

[2016], Pan et al. [2022]. When reward models inherit biases from pretraining or exploit spurious22

correlations Skalse et al. [2022], downstream policies can display unstable or unsafe behaviors23

across demographic groups or safety categories—a major barrier to deployment in domains such24

as healthcare, finance, and criminal justice. These failures undermine not only fairness but also25

calibration, robustness, and the broader trustworthiness of RLHF systems.26

Existing approaches to mitigating bias typically rely on penalty-based regularization Shen et al.27

[2023], Dai et al. [2023] that augments the training loss, or resource reallocation across groups28

Ouyang et al. [2025] and ensemble-based multi-objective methods Zhou et al. [2024]. While such29

techniques reduce observed disparities, they lack theoretical guarantees of reliability, often collapse30

under distribution shift, and may sacrifice response diversity. As a result, these strategies leave open31

important failure modes—including reward hacking and instability—that limit confidence in their32

use for safety-critical AI deployment.33

Our key insight is that reliability can be formalized as statistical independence between reward outputs34

and sensitive categories Belghazi et al. [2018], Zhao et al. [2018]. We implement this by introducing35

an adversarial minimax game Edwards and Storkey [2016] that enforces invariance in the reward36

model while preserving preference learning performance. To counteract the reduction in generative37

diversity that such constraints can impose, we further integrate a curiosity-driven intrinsic reward38
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during PPO training Pathak et al. [2017], Schulman et al. [2017]. Together, these components form39

a principled and scalable framework that embeds reliability requirements directly into the reward40

modeling stage, enabling verifiable improvements in calibration, robustness, and fairness across41

diverse categories.42

2 Related Work43

Reward Misspecification and Reliability in RLHF. Prior work has identified reward misspecifica-44

tion as a fundamental threat to RLHF reliability, including reward hacking and over-optimization45

Skalse et al. [2022], Gao et al. [2023]. Existing mitigation strategies—penalty-based regularization46

Shen et al. [2023], Dai et al. [2023], resource reallocation Ouyang et al. [2025], and multi-objective47

methods Zhou et al. [2024], Wu et al. [2023]—lack theoretical guarantees and often collapse under48

distribution shift. Our work formalizes reliability as statistical independence with verifiable adversar-49

ial constraints.50

Information-Theoretic Fairness and Adversarial Training. Mutual information has been used51

to enforce fairness through adversarial training that minimizes dependence on sensitive attributes52

Edwards and Storkey [2016], Zhao et al. [2018], Belghazi et al. [2018]. Parallel work explores53

adversarial and self-play approaches to better represent heterogeneous preferences and bypass reward54

models Cheng et al. [2024], Wu et al. [2024], Chen et al. [2024], Bukharin et al. [2025], Wang et al.55

[2025, 2024]. We combine adversarial debiasing with curiosity-driven rewards Pathak et al. [2017] to56

enforce category independence while preserving diversity during PPO training.57

3 Problem Setup and Method58

Reward Modeling in RLHF. An RLHF reward model (RM) assigns a scalar score rθ(x, y) to59

a prompt–response pair and is trained from human pairwise preferences Christiano et al. [2017],60

Ouyang et al. [2022]. We use the Bradley–Terry formulation Bradley and Terry [1952]61

P (yA ≻ yB) = σ
(
rθ(x, yA)− rθ(x, yB)

)
,

with training objective (averaged over pairs)62

LBT(θ) = − log σ
(
rθ(x, yA)− rθ(x, yB)

)
,

so minimizing LBT drives rθ(x, yA) > rθ(x, yB) when yA is preferred. The BT objective represents63

an MLE of the preference dataset onto the space of scalar-valued reward models Swamy et al. [2025].64

Reliability Constraint via Mutual Information. Following Ouyang et al. [2025], we treat relia-65

bility of an RM across categories c ∈ C (e.g., helpfulness/harmlessness or broader safety tags) as66

invariance of the reward scale with respect to these categories (see Appx. A.1 for how non-invariant67

RMs can induce undesirable downstream behavior). Formally, we target identical reward distributions68

rθ(x, y | c) for all c, i.e.,69

I
(
rθ(x, y); c

)
= 0,

zero mutual information between reward and category Belghazi et al. [2018], Zhao et al. [2018].70

Directly minimizing this dependence is intractable, so we adopt an adversarial surrogate: a classifier71

qϕ(c | r) attempts to predict c from rewards. This casts reliable (category-invariant) reward learning72

as a minimax game between the reward model and a discriminator solved via no-regret dynamics;73

our analysis (Appendix A.3) shows that such training drives the empirical MI toward zero.74

Adversarial Implementation. We impose the constraint during RM training on preference pairs,75

where each comparison (x, yA, yB) carries a category label. We optimize LBT for preference76

prediction while training an adversary qϕ on scored examples (x, y); a lightweight MLP consumes77

scalar rewards rθ(x, yA) and rθ(x, yB) to predict c. In practice, the adversarial weight λadv trades78

off invariance against stability and fit. To preserve output diversity while enforcing invariance, we79

add a small intrinsic reward via Random Network Distillation (RND) Pathak et al. [2017], Burda et al.80

[2019] during PPO, following recent introductions of intrinsic reward into RLHF Sun et al. [2025].81

4 Experiments and Results82

We evaluate our framework on a binary Helpful/Harmless (HH-RLHF) task Bai et al. [2022] and a83

19-class safety classification task Ji et al. [2024]. We fine-tune TinyLlama-1.1B TinyLlama Team84

[2024] policies with PPO Schulman et al. [2017], Hugging Face [2023], comparing a baseline reward85

model against our Fair and Fair+Curiosity variants. Full training and evaluation details are provided86

in Appendix A.4–B.87



Reward Distribution Analysis. In our main experiment, we compare reward model scores across88

Helpful versus Harmless completions. The baseline RM exhibits a systematic skew, consistently in-89

flating Helpful rewards. This distortion allows a weak completion from one category (e.g., unhelpful)90

to outrank a strong completion from another (e.g., harmless), violating the assumption of a shared91

reward scale.92

Our fairness-constrained model with λadv = 0.2 produces a substantially more balanced distribution93

(Figures 5, 6). The KS distance decreases from 0.43 to 0.10 (p < 0.001) and the Wasserstein-194

distance from 13.38 to 0.53 (p < 0.001), reflecting a statistically significant reduction in categorical95

bias. This enforces comparability of rewards across behavior types, yielding more reliable evaluations;96

a post-hoc predictability test (Appx. A.7) confirms that category membership is nearly unrecoverable97

from the debiased rewards.98

Hyperparameter settings are given in Appendix A.6, with MI estimator details in Section A.8.99

Figure 1: Reward distribution before applying
fairness constraint

Figure 2: Reward distribution after applying fair-
ness constraint

4.1 Post-PPO Fairness100

After PPO fine-tuning on HH-RLHF, we evaluate all policies on 100 Helpful and 100 Harmless101

prompts, scoring with an HH-RLHF-trained safety RM Bai et al. [2022]. The baseline policy102

exhibits a parity gap of 0.4814, reduced to 0.4001 (−16.9%) under the fairness constraint and 0.4126103

(−14.3%) with Fair+Curiosity. Curiosity slightly widens the gap relative to fairness alone but still104

markedly improves over baseline while recovering most variance and response diversity. See Sec. 4.1105

and Appx. B.1 for additional discussion.106

Policy Parity Gap Relative Drop

Baseline 0.4814 –
Fair 0.4001 −16.9%
Fair + Curiosity 0.4126 −14.3%

Table 1: Parity gap between Helpful and Harmless mean rewards on HH-RLHF prompts post-PPO.

Diversity. We measure semantic diversity via average pairwise cosine distance of107

all-mpnet-base-v2 embeddings Reimers and Gurevych [2019], Song et al. [2020]; de-108

tails are given in Appx. B.2. Fairness alone reduces diversity from 0.9638 to 0.9584 (p < 0.001),109

while adding curiosity restores it to 0.9616 (p = 0.002), nearly recovering baseline levels. This110

indicates that curiosity mitigates the diversity loss induced by fairness regularization. Results are111

reported from early-stage PPO training; longer runs may amplify these effects, which we leave to112

future work.113

4.2 Generalization to Unseen Biases114

Setup We train two HH-RLHF reward models Bai et al. [2022]: a baseline (λadv = 0,115

Bradley–Terry) and a fairness-constrained model (λadv = 0.2, MI penalty). Bias is assessed on116

CrowS-Pairs Nangia et al. [2020] and StereoSet Nadeem et al. [2020] as the proportion of stereotypical117

predictions (neutral = 50%).118

Results Table 2 shows that introducing the MI constraint shifts bias rates toward neutrality compared119

to the baseline RM, with statistically significant improvements (CrowS-Pairs: McNemar p<0.001;120

StereoSet: p<0.01). Notably, the fairness objective is trained without access to CrowS-Pairs or121



StereoSet, yet reduces stereotype bias across domains. This demonstrates generalization beyond122

training categories and highlights a scalable path to mitigating unseen RLHF biases.123

Model CrowS-Pairs Bias (%) StereoSet Bias (%)

Baseline RM 42.84%± 1.27% 46.58%± 1.09%
Fair RM 51.46%± 1.29% 49.95%± 1.09%

Table 2: Generalization results. Bias rates measure preference for stereotypical sentences (50% =
neutral). Values show mean ± standard error.

4.3 Fairness Across Multiple Harm Categories124

Figure 3: Before fairness. Figure 4: After fairness.

Setup We train two Llama-125

3.2-1B reward models on the126

19-category PKU-SafeRLHF127

dataset Ji et al. [2024]: a128

Baseline (λadv = 0) and129

a Fair model with an MI130

adversary (λadv = 0.2).131

While the baseline displays132

large reward disparities across133

harm categories, the fairness-134

constrained RM produces dis-135

tributions that are far more uniform. Crucially, the distributions do not collapse; the RM preserves its136

Bradley–Terry predictive performance, showing that a single model can be made fair across many137

categories simultaneously—scaling fairness beyond binary setups.138

4.4 Ablation: Adversarial Weight139

Setup We analyze the effect of the adversarial weight λadv on our MI objective by sweeping this140

parameter (full results in Appx. A.9). For each setting, we report both mutual information (MI) and141

Bradley–Terry (BT) loss. Table 3 shows a steep drop in MI as λadv increases, alongside improvements142

in BT loss. This suggests that the fairness constraint doubles as a regularizer, enhancing preference143

learning while suppressing categorical dependence.144

λadv BT loss MI

0.0 2.8712 0.2282
0.2 2.2307 0.0163
0.8 1.1879 0.0073
1.5 0.7432 0.0136

Table 3: Representative λadv settings; full sweep in Appx. A.9.
5 Conclusion145

We introduce an adversarial MI constraint that reduces bias in reward models while keeping alignment146

with human preferences intact. Across tasks like CrowS-Pairs, StereoSet, and SafeRLHF’s 19147

categories, our method improves fairness without sacrificing performance. By pairing this with an148

intrinsic reward in PPO, we position fairness as a built-in reliability goal rather than an add-on. This149

provides a scalable path toward preference-aligned reward models that are consistent and trustworthy.150

Looking ahead, we plan to test larger models and study how fairness interacts with emergent behaviors151

such as reward hacking.152

6 Ethics and Limitations153

Our adversarial training method is motivated by zero-information strategies, but practical noisiness154

makes it hard to tune Edwards and Storkey [2016], Belghazi et al. [2018]. Its effectiveness depends155

on well-defined, discrete categories, suggesting future work should extend to non-discrete attributes156

Mitchell et al. [2019], Bolukbasi et al. [2016]. The approach also increases time and memory costs157

Ouyang et al. [2022], requiring larger batch sizes for distribution-level statistics, and our experiments158

remain limited in characterizing the reward hacking dynamics introduced by this constraint.159
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A Appendix280

A.1 Why enforce fairness on Reward Models?281

In this section, we offer an intuitive thought experiment on why fairness defined as categorical282

independence of the reward model distribution mitigates undesired reward hacking scenarios in PPO.283

Consider the example given in the main text 4 and suppose yi,c, yi,r are chosen and rejected samples284

from the ith datapoint in our preference dataset respectively. We observe cases where ∃i, j such285

that yi,c > yi,r > yj,c > yj,r. That is, because datapoint i and datapoint j are independent of one286

another, we can have a good model in the Bradley-Terry definition prioritize chosen over rejected287

within the pair, but then across pairs end up rewarding a rejected sample of one pair over the chosen288

sample of another. In practice, we notice a systemic shift towards higher rewards for i ∈ Dhelpful289

(the subset of preference exemplars portraying helpful behaviors) over j ∈ Dharmless (the subset of290

preference exemplars portraying harmless behaviors). Then, for cases where yi,c > yi,r > yj,c, we291

will observe behavior in the post-trained LM where it prioritizes both helpful and unhelpful behavior292

over harmless behavior given a potentially harmful prompt.293

A.2 Theoretical Justification294

We ground our approach in adversarial training theory, considering a reward model rθ : X → R and295

a discriminator qϕ(c | ·) Edwards and Storkey [2016].296

Setting. We observe i.i.d. triples (X+
t , X−

t , Ct) with labels Yt ∈ {0, 1} indicating whether X+
t is297

preferred to X−
t from some unknown preference distribution. Let Rθ = rθ(X). The (population)298

Bradley–Terry loss is299

LBT(θ) = E
[
− log σ

(
rθ(X

+)− rθ(X
−)

)]
. (1)

Our discriminator qϕ(c | ·) tries to infer C from rewards. We thus have the zero-sum game300

min
θ

max
ϕ

J (θ, ϕ) = LBT(θ) + λE
[
log qϕ(C | Rθ)

]
. (2)

where our target is independence: Rθ ⊥ C (i.e., Iθ(C;Rθ) = 0).301

Our main theoretical result connects the adversarial training scheme to our original fairness objective:302

Theorem 1 (No-regret reaches mutual information target). Assume Lemma 1, feasible invariance (7),303

and no-regret play with RegG(T ),RegD(T ) = o(T ). Then304

1

T

T∑
t=1

Iθt(C;Rθt) ≤
RegG(T ) + RegD(T )

λT
−−−−→
T→∞

0. (3)

A.3 Proof of Theoretical Results305

In this section we provide a proof for our main convergence theorem, starting with supporting lemmas306

to demonstrate the equivalence of our adversarial game to mutual information minimization.307

Lemma 1 (Best response is a mutual-information penalty). If we take a fixed θ,308

sup
ϕ

E
[
log qϕ(C | Rθ)

]
= E

[
log pθ(C | Rθ)

]
= −Hθ(C | Rθ).

This implies that the inner game’s value is nothing more than −Hθ(C |Rθ), the negative conditional309

entropy of categories given the reward model distribution (for a slight abuse of notation), and so the310

reward model’s objective becomes311

J (θ) := sup
ϕ

J (θ, ϕ) = LBT(θ) + λ Iθ(C;Rθ). (4)

We drop the additive constant −λH(C) since it does not depend on θ.312

Moreover, any best-response discriminator satisfies qϕ⋆(· | r) = pθ(· | r) a.s.313

We turn to the literature of no-regret algorithms as solvers for two-player zero-sum (2p0s) games to314

show the convergence of this adversarial training procedure, defining the regret for the reward model315

and discriminator respectively.316



Repeated play and regrets. At round t = 1, . . . , T , the reward model chooses θt, the discriminator317

chooses ϕt, and both observe payoff J (θt, ϕt). Define external regrets318

RegG(T ) :=

T∑
t=1

J (θt, ϕt) − min
θ

T∑
t=1

J (θ, ϕt), RegD(T ) := max
ϕ

T∑
t=1

J (θt, ϕ) −
T∑

t=1

J (θt, ϕt).

We assume no-regret algorithms for both: RegG(T ) = o(T ) and RegD(T ) = o(T ). Let J̄T =319

1
T

∑T
t=1 J (θt, ϕt) denote the average payoff, and let the game value be320

V := min
θ

max
ϕ

J (θ, ϕ) = min
θ

J (θ) = min
θ

{
LBT(θ) + λIθ(C;Rθ)

}
.

Our next lemma bounds our defined objective J in terms of the value of the game, with a deviation321

equal to the average regret of our generator/discriminator algorithms.322

Lemma 2 (No-regret bound for zero-sum play). Let J (θ, ϕ) be zero-sum and let a play (θt, ϕt)
T
t=1323

induce324

J̄T :=
1

T

T∑
t=1

J (θt, ϕt),

RegG(T ) :=

T∑
t=1

J (θt, ϕt)−min
θ

T∑
t=1

J (θ, ϕt),

RegD(T ) := max
ϕ

T∑
t=1

J (θt, ϕ)−
T∑

t=1

J (θt, ϕt).

Let Vup := minθ maxϕ J (θ, ϕ) and Vlow := maxϕ minθ J (θ, ϕ). Then325

Vlow − RegD(T )
T ≤ J̄T ≤ Vup + RegG(T )

T . (5)
In particular, if the game has value V (i.e., Vup = Vlow = V ),326 ∣∣J̄T − V

∣∣ ≤ RegG(T )+RegD(T )
T . (6)

Proof. We start with the upper bound. By the generator’s regret definition,327

T∑
t=1

J (θt, ϕt) ≤ min
θ

T∑
t=1

J (θ, ϕt) + RegG(T ).

Let θ⋆ ∈ argminθ maxϕ J (θ, ϕ) (a minimax optimizer). Evaluating the RHS at θ⋆ and using328

maxϕ J (θ⋆, ϕ) = Vup yields329

min
θ

T∑
t=1

J (θ, ϕt) ≤
T∑

t=1

J (θ⋆, ϕt) ≤
T∑

t=1

max
ϕ

J (θ⋆, ϕ) = T Vup.

Combining gives
∑T

t=1 J (θt, ϕt) ≤ T Vup + RegG(T ), hence J̄T ≤ Vup + RegG(T )/T., which330

completes this part of the inequality.331

Next, we demonstrate the lower bound. By the discriminator’s regret definition,332

T∑
t=1

J (θt, ϕt) ≥ max
ϕ

T∑
t=1

J (θt, ϕ) − RegD(T ).

Let ϕ⋆ ∈ argmaxϕ minθ J (θ, ϕ) (a maxmin optimizer), so minθ J (θ, ϕ⋆) = Vlow. Then for every333

θ, J (θ, ϕ⋆) ≥ Vlow. In particular,334

max
ϕ

T∑
t=1

J (θt, ϕ) ≥
T∑

t=1

J (θt, ϕ
⋆) ≥

T∑
t=1

Vlow = T Vlow.

Thus
∑T

t=1 J (θt, ϕt) ≥ T Vlow − RegD(T ), i.e., J̄T ≥ Vlow − RegD(T )/T.335

Combining both sides finishes the proof – in particular, if Vup = Vlow = V (minimax theorem of336

zero-sum games), then337

V − RegD(T )

T
≤ J̄T ≤ V +

RegG(T )

T
,

and, since max{a, b} ≤ a+ b for a, b ≥ 0, the symmetric bound (6) follows.338



Another technicality is we require the optimal reward model– the one that satisfies our mutual339

information constraint while minimizing BT-loss, to lie in our function class. We frame this as the340

feasible invariance condition:341

Feasible invariance. Let L⋆
BT = infθ LBT(θ). We say feasible invariance holds if there exists θ†342

with343

LBT(θ
†) = L⋆

BT and Iθ†(C;Rθ†) = 0. (7)

In that case, the minimax value satisfies V = L⋆
BT by (4).344

With these results, we can then prove our main theorem that in no-regret, our reward model converges345

to zero mutual-information.346

Proof of Theorem 1 (No Regret Convergence)347

Proof. For each t, let V (θ) = maxϕ J (θ, ϕ) = LBT(θ) + λIθ(C;Rθ) by Lemma 1. By the348

discriminator’s regret definition,349

1

T

T∑
t=1

V (θt) =
1

T

T∑
t=1

max
ϕ

J (θt, ϕ) ≤ J̄T +
RegD(T )

T
.

Feasible invariance implies V = L⋆
BT, and Lemma 2 gives J̄T ≤ V + RegG(T )

T = L⋆
BT + RegG(T )

T .350

Hence351

1

T

T∑
t=1

[
LBT(θt) + λIθt(C;Rθt)

]
≤ L⋆

BT +
RegG(T ) + RegD(T )

T
.

Since LBT(θt) ≥ L⋆
BT for all t, canceling L⋆

BT yields352

λ · 1
T

T∑
t=1

Iθt(C;Rθt) ≤ RegG(T ) + RegD(T )

T
,

which proves the claim. Note that if the average of these terms converges to 0, then we also have that353

inft Iθt −→ 0, and so we can select the minimum running iterate that is bounded by this average to354

have a direct convergent subsequence.355

356

We view training the discriminator using CELoss on each batch as an approximate "best-response."357

More formally, we can think of it as an ϵt-Nash equilibrium for each round – that is, if qϕt
is trained358

to near-optimality per round so that maxϕ J (θt, ϕ) − J (θt, ϕt) ≤ ϵt with 1
T

∑
t ϵt → 0, then the359

proof above holds with RegD(T ) replaced by
∑

t ϵt.360

What if exact invariance is infeasible? That is, what if the Bradley-Terry-optimal reward model361

invariant to category does not lie in our function class? If no θ attains both L⋆
BT and I = 0, then362

V > L⋆
BT and our theorem instead yields the following bound:363

1

T

T∑
t=1

Iθt(C;Rθt) ≤ V − L⋆
BT

λ
+

RegG(T ) + RegD(T )

λT
,

where we cannot ignore the V − L∗
BT term, which we can think of approximation error-esque term364

in the learning theory language.365

A.4 Datasets and Preprocessing366

HH-RLHF (Helpful/Harmless): We construct (chosen, rejected) preference pairs and assign each367

pair a category label of either helpful or harmless. Prompts and responses are concatenated, and368

sequences are truncated to a maximum of 1,024 tokens.369

PKU-SafeRLHF (19 categories): We retain the official harm category labels from the dataset release.370

Samples with missing category annotations are removed to ensure label integrity.371

Deduplication: Exact duplicate (prompt, response) pairs are removed to avoid information leakage372

and inflated results.373

Tokenization and padding: All data is tokenized with padding=longest and truncation=true. Each374

prompt–response sequence is capped at 1,024 tokens in all reported experiments.375



A.5 Model and Training Details376

We use Llama-3.2-1B adapted into a scalar reward model for our RM backbone, with the Bradley-377

Terry pairwise log-likelihood on (chosen, rejected) pairs as our baseline training objective. We train378

for a single epoch on a balanced sample of helpful and harmless data from the Anthropic HH-RLHF379

dataset and evaluate on a held-out set of HH-RLHF dataset as well as RewardBench.380

A.6 Adversary and Fairness Optimization381

The fairness constraint uses a lightweight MLP adversary qϕ that receives summary statistics of382

rewards, computed separately for each category. For each batch, we calculate the mean, variance,383

skewness, and kurtosis of the chosen and rejected rewards, grouped by category, to form the adver-384

sary’s input features.385

Our training implementation follows the given alternating update schedule:386

1. Compute Bradley–Terry loss LBT = − log σ(rchosen − rrejected).387

2. Adversary step: update qϕ by minimizing cross-entropy loss to predict the category from the388

moment features.389

3. Fairness step: update the reward model to maximize adversary uncertainty, i.e., minimize390

LBT − λadv · CELoss
(
qϕ(· | moments), y

)
,

Ablation: For ablation studies, we sweep λadv ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}. The default391

setting for main experiments is λadv = 0.2.392

Post-training Category Predictability. As a post-training test, we train a fresh discriminator on393

frozen rewards from the above regularized model, which yields near-chance performance—AUC394

0.78 ± 0.03 → 0.53 ± 0.06, BA 0.70 ± 0.02 → 0.52 ± 0.05 (5-fold; see Appx. A.7)—indicating395

little recoverable category signal from the fair reward model.396

A.7 Post-hoc Category Predictability Audit397

To test whether category information remains after training, we freeze the reward model and train a398

new discriminator q̂(c | r) on its scalar outputs (no weights shared with the in-training adversary). We399

use stratified 5-fold cross-validation and report mean±sd over folds. The discriminator is a 2-layer400

MLP trained with cross-entropy and early stopping on validation AUC. Chance performance is 0.5401

for both AUC and balanced accuracy (BA).402

Model AUC Balanced Acc.

Baseline RM 0.78± 0.03 0.70± 0.02
Fair RM (ours) 0.53± 0.06 0.52± 0.05

Table 4: Post-hoc predictability from frozen rewards; lower is better (chance ≈ 0.5).

A.8 Mutual Information Estimation (Ablation)403

We measure the dependence between reward scores and category labels during the λadv sweep.404

Mutual information (MI) is computed with sklearn.metrics.mutual_info_score between category405

labels C ∈ {helpful, harmless} and a discretized reward variable, obtained by binning rewards into406

50 equal-width bins.407

Lower MI indicates that the rewards are more category-independent. As an additional check, we mon-408

itor the adversary’s balanced accuracy; values close to chance imply minimal category dependence.409



A.9 Full λadv Sweep410

In this section we provide the complete data for our full sweep over adversarial loss parameters.

λadv BT loss MI

0.0 2.8712 0.2282
0.2 2.2307 0.0163
0.4 1.5607 0.0088
0.6 1.7104 0.0059
0.8 1.1879 0.0073
1.0 0.8694 0.0141
1.5 0.7432 0.0136
2.0 0.8151 0.0076

Table 5: Complete sweep of λadv values.

411

A.10 Scaling Experiments412

To evaluate the scalability of our method, we conducted preliminary experiments on Meta’s Llama3-413

8B-Instruct model on an 8xH100 node. The reward distributions for our Fair-RM variant, shown414

below, exhibit a more complex, multimodal structure compared to the 1.1B model, which we415

hypothesize is due to the larger model’s capacity to capture finer-grained nuances in the preference416

data. Despite this, the results confirm that our approach remains effective at scale. There is clear417

separation between chosen and rejected rewards, indicating preference alignment is maintained.418

Crucially, the distributions for helpful and harmless categories remain tightly aligned, demonstrating419

that the fairness constraint successfully generalizes and prevents reward disparities even in larger420

models. However, both our base model and fair-RM variant achieve around 50% accuracy on a421

subset of RewardBench after our training, for a variety of reasons but mainly in part due to the small422

bandwidth we had to only run smaller training runs. Our Fair-RM had on-par performance with423

the baseline BT model, however, but to achieve SOTA-level eval results on both models, full-scale424

post-training of RewardBench-competitive models derived from the 8B models is part of our future425

intended work.426

Figure 5: Reward distributions for chosen vs.
rejected

Figure 6: Reward distributions for helpful vs.
harmless

B PPO Training Setup427

In this section we detail our setup for PPO training of downstream language models using our fair428

reward models.429

Base Actor. We initialize all policy variants from TinyLlama/TinyLlama-1.1B-Chat-v1.0430

to enable rapid convergence and reduce compute cost while still maintaining competitive generation431

quality for our evaluation tasks. Policies are adapted using LoRA with rank r = 16 and α = 32,432

targeting the query/key/value and output projection matrices in the attention layers.433

PPO Configuration. We use HuggingFace TRL’s PPOTrainer with minibatch size = 64, batch434

size = 512, and 2 PPO epochs per update. The KL control coefficient is set to β = 0.05 (adaptive435

control enabled), targeting the reference model (TinyLlama/TinyLlama-1.1B-Chat-v1.0).436

We set target_kl=0.1 to limit divergence from the reference.437



Reward Models. All reward models are Llama-3.2-1B sequence classifiers trained on preference438

data with the Bradley–Terry objective. The Fair variant applies a mutual information (MI) penalty439

with λadv = 0.2 between protected-category predictions and reward scores. Fair + Curiosity adds an440

intrinsic curiosity bonus from a Random Network Distillation (RND) module trained online during441

PPO.442

Curiosity Bonus. The RND network uses a 2-layer MLP with ReLU activations, hidden size 512.443

The predictor network is optimized with Adam (η = 1× 10−4) on the cosine similarity loss between444

target and predictor features. Intrinsic reward is scaled by ηcur = 0.05 and added to the scalar RM445

score before PPO optimization.446

Generation Settings. For PPO rollouts, we generate with temperature = 0.7, top-p = 0.9, and447

max length = 256 tokens. KL penalties are computed against the reference log-probabilities.448

Training Duration. Each run is trained for N = 5,000 PPO steps (≈1.5M tokens processed),449

which we found sufficient for convergence in both reward and policy loss metrics given the small450

model size.451

B.1 Parity Gap: Definition and Estimation452

In this section we detail a parity gap (effectively mean matching evaluation) for how fair a reward453

model is, for simplicity across only two categories.454

Definition. Let r(x, y) denote the scalar reward assigned by a (fixed) safety RM to a prompt–455

response pair (x, y). We consider two behavior categories c ∈ {Helpful,Harmless} and define the456

parity gap as the absolute difference in expected rewards:457

ParityGap =
∣∣E[r(x, y) | c = Helpful

]
− E

[
r(x, y) | c = Harmless

] ∣∣.
We define the parity gap as effectively a mean-matching surrogate evaluation – intuitively, a smaller458

parity gap indicates the RM (and the downstream policy it shapes) treats categories on a comparable459

reward scale, reducing category-dependent inflation/deflation.460

Estimator. Given disjoint evaluation sets DH and DA (Helpful vs. Harmless) with sizes nH and nA461

and rewards {rHi }
nH
i=1, {rAj }

nA
j=1, we compute462

r̄H = 1
nH

nH∑
i=1

rHi , r̄A = 1
nA

nA∑
j=1

rAj , ∆̂ = r̄H − r̄A, ̂ParityGap = |∆̂|.

When nH ̸= nA, the above remains unbiased under i.i.d. sampling within each group. In our main463

runs we use balanced sets (nH=nA).464

Relative change (vs. a baseline). When comparing a model M to a baseline B, we also report the465

relative drop:466

RelDrop(M ;B) =
̂ParityGap(M)− ̂ParityGap(B)

̂ParityGap(B)
× 100%.

Practical notes. (i) We score responses with the same fixed RM across all policies. (ii) Generation467

settings and seeds are identical across policies (Appendix B).468

B.2 Semantic Diversity Calculation469

In this section we detail our metric for diversity of LLM sampling to benchmark our intrinsic reward.470

Prompts and generation. For diversity evaluation we sample 1,030 LIMA prompts (seed 42) and471

generate one response per prompt with identical sampling across models. Prompts are drawn from472

GAIR/lima. Generation parameters: temperature = 0.9, top-p = 0.95, max_new_tokens= 100,473

max_length= 512, batch size = 8. All models use the same seed and generation parameters.474

Semantic diversity (primary metric). Let f(·) be all-mpnet-base-v2 with mean-pooling;475

embeddings are ℓ2-normalized. For the set of responses {yi}ni=1 with embeddings ei = f(yi), we476

report477

SemDiv = 2
n(n−1)

∑
i<j

(
1− cos(ei, ej)

)
.

Higher is better (more meaning-level variety).478



Statistics. To compare a fair model against the baseline, we use a paired bootstrap (1,000 resamples;479

two-sided) over aligned prompt sets, reporting the mean difference, 95% CI, and p-value. In the main480

text, we report semantic-diversity differences: Fair (no curiosity) vs. Baseline: −0.0054 (p<0.001);481

Fair + Curiosity vs. Baseline: −0.0022 (p=0.002).482

B.3 Compute and Runtime483

Hardware: For initial experiments of both reward model training and PPO, we used dual A100484

clusters, and currently are using a 8xH100 node for results on Llama3-8B.485
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