Tree-of-Report: Table-to-Text Generation for Sports Game Reports with
Tree-Structured Prompting

Shang-Hsuan Chiang!, Tsan-Tsung Yang'!, Kuang-Da Wang!',
Wei-Yao Wang!, An-Zi Yen', Wen-Chih Peng!,
'National Yang Ming Chiao Tung University,

Correspondence: andy10801@ gmail.com

Abstract

Generating sports game reports from structured
table data is a challenging table-to-text gen-
eration task that requires balancing structured
data comprehension with narrative storytelling.
While model-based approaches demand large
training datasets, prompt-based methods with
large language models (LLMs) often suffer
from hallucination issues due to poor table com-
prehension. To address these challenges, we
propose Tree-of-Report, a novel framework
inspired by the "divide and conquer" concept
of merge sort, which divides the task into three
stages: Content Planning, Operation Execution,
and Content Generating. Our method decom-
poses large tables into smaller sub-tables us-
ing a hierarchical tree structure, enabling more
effective table comprehension. Additionally,
it merges and rewrites texts to produce more
detailed and coherent long-form outputs. Ex-
perimental results on the RotoWire, MLB, and
ShuttleSet+ datasets show that Tree-of-Report
outperforms existing prompt-based baselines
with relatively lower time and cost, demonstrat-
ing its advantage in both effectiveness and effi-
ciency. In summary, this work sets a new prece-
dent for prompt-based table-to-text generation
in sports game reports.

1 Introduction

Writing sports game reports requires journalists
to analyze match data and craft engaging reports
under tight deadlines. Beyond conveying scores
and player performance, they must construct com-
pelling narratives that highlight key moments. Au-
tomating this process could greatly improve the
efficiency and accessibility of sports journalism.
However, converting structured match data into
natural language remains challenging. Sports re-
porting also demands adherence to journalistic con-
ventions, integrating game flow, player dynamics,
and contextual insights, which require reasoning
and advanced text organization skills.

Thus, sports game report generation is a com-
plex table-to-text generation task involving not only
data transformation but also discourse structuring,
content selection, and information organization. Ef-
fectively generating sports articles requires balanc-
ing structured data processing with the storytelling
aspects of journalism to ensure accuracy and read-
ability. In this study, we focus specifically on the
sports domain, utilizing datasets such as RotoWire
(Wiseman et al., 2017), MLB (Puduppully et al.,
2019b), and ShuttleSet+. These datasets are char-
acterized by high data fidelity and longer textual
outputs, making the task more challenging. Fig-
ure 1 presents an example from ShuttleSet+. The
text contained in the tables is highlighted in bold,
with different colors used to distinguish informa-
tion from different tables. This figure also show-
cases the high data fidelity and long-form text char-
acteristic of sports game reports.

For this task, numerous model-based methods
have been proposed, such as NCP (Puduppully
et al., 2019a), NDP (Chen et al., 2021), DUV
(Gong et al., 2020), Macro (Puduppully and La-
pata, 2021), and SeqPlan (Puduppully et al., 2022).
However, these approaches require large amounts
of training data, making them impractical when
datasets are scarce and costly to collect. With
advancements in large language models (LLMs),
prompt-based methods have become increasingly
popular, including Zero-shot, One-shot, and Few-
shot learning (Brown et al., 2020), as well as tech-
niques like Chain-of-Thought (Wei et al., 2022),
Tree-of-Thought (Yao et al., 2023), and Chain-of-
Table (Wang et al., 2024). Although these methods
are widely used, in the task of generating sports
game reports, LLMs fail to effectively analyze and
comprehend information within tables, resulting
in the generation of text that is inaccurate or not
present in the tables, commonly known as the hal-
lucination issue.

To address these challenges, we propose a novel

mailto:andy10801@gmail.com

Table

match
tournament round winner loser
All England Semi-finals Akane CHEN Yufei
Open 2022 YAMAGUCHI
set 1
rally winner_score loser_score player
6 1 5 CHEN Yufei
32 21 11 Akane .
YAMAGUCHI
set 2
rally winner_score loser_score player
5 1" 4 Akane
YAMAGUCHI
34 21 13 Akane
YAMAGUCHI

Text

Yamaguchi Akane defeats Chen Yufei in the women's singles
semi-final.

Yamaguchi Akane has beaten Chen Yufei 21-11, 21-13 in the
women's All England semi-final, setting up a final with An
Seyoung tomorrow, Sunday 20 March.

Billed as a battle between the world champ and the Olympic
champ, Yamaguchi came out on top and put on a clinic after a
slow start.

She came from 1-5 down to clinch the first game 21-11 and
never looked back, Chen simply had no answer to Yamaguchi's
all-action style as she returned absolutely everything and took her
chances clinically.

11-4 ahead at the interval of game two there was no coming
back for Chen and Yamaguchi put it away with some
breathtaking badminton.

She'll face South Korean An tomorrow who also had a straight
games victory over Tai Tzu Ying in her semi-final.

Figure 1: An example from ShuttleSet+, which includes multiple structured tables containing match data along with

a corresponding human-written report for the game.

approach, Tree-of-Report, which divides the task
into three stages: Content Planning, Operation Ex-
ecution, and Content Generating. First, in the Con-
tent Planning stage, the LLM plans the operations
for child nodes based on the table structure. Second,
in the Operation Execution stage, these selected op-
erations are executed respectively to update the
table, which is then passed to the child nodes. Fi-
nally, in the Content Generating stage, the LLM
generates text based on the table and returns it to
the parent node, which then utilizes the LLM to
merge and rewrite these texts into a new text.

Tree-of-Report effectively leverages a hierarchi-
cal tree structure to decompose large tables into
smaller sub-tables, enhancing the LLM’s ability
to comprehend tabular information. Additionally,
we employ a merge-and-rewrite approach to gen-
erate longer and more comprehensive reports. Ex-
perimental results demonstrate that Tree-of-Report
outperforms other prompt-based baselines on the
RotoWire, MLB, and ShuttleSet+ datasets. Fur-
thermore, with optimizations, our method achieves
lower time and cost compared to Tree-of-Thought
and Chain-of-Table, highlighting its advantages in
both effectiveness and efficiency.

We summarize the three main contributions of
this paper:

* In the task of table-to-text generation for
sports game reports, we introduce Tree-of-
Report, a novel framework that recursively de-

composes tables into smaller sub-tables, gen-
erates short textual descriptions for each sub-
table, and merges these short texts into a com-
plete report.

* We introduce a new sports report dataset, Shut-
tleSet+, containing rally-level data from 58
badminton matches along with the correspond-
ing human-written reports.

* Tree-of-Report outperforms other prompt-
based baselines on the RotoWire, MLB, and
ShuttleSet+ datasets while maintaining rel-
atively lower time and cost, demonstrating
its superiority in both effectiveness and effi-
ciency.

2 Related Work

2.1 Table-to-Text Generation

The goal of the table-to-text generation task is to
convert structured tables into unstructured text, typ-
ically following a two-stage process: Content Plan-
ning and Content Generating (Lin et al., 2024).
Content Planning, or “What to say,” involves ana-
lyzing and filtering the given structured data, select-
ing relevant information for abstraction and associa-
tion. Content Generating, or “How to say,” focuses
on accurately and fluently describing the selected
data using natural language. Tree-of-Report fol-
lows this principle in its architectural design.
There are numerous datasets available for table-
to-text generation, such as WikiBio (Lebret et al.,

2016), ToTTo (Parikh et al., 2020), and Tab-
Fact (Chen et al., 2020). Nevertheless, this pa-
per focuses on domain-specific datasets, particu-
larly for sports game reports. For instance, Ro-
toWire (Wiseman et al., 2017) is a dataset consist-
ing of human-written summaries of NBA basket-
ball games paired with their corresponding box
and line scores. MLB (Puduppully et al., 2019b)
provides baseball statistics accompanied by human-
authored summaries from the ESPN website. Shut-
tleSet+, derived from ShuttleSet22 (Wang et al.,
2023), contains rally-level data from 58 badminton
matches along with corresponding human-written
reports. These datasets share two common charac-
teristics: high data fidelity and long textual outputs.
High data fidelity ensures accurate and important
information, enabling readers to gain a deeper un-
derstanding of the sports matches. Long textual
outputs, on the other hand, provide rich and vivid
descriptions, enhancing reader engagement and in-
terest in the sports games.

2.2 Model-based Methods

Several previous studies have introduced model-
based approaches for table-to-text generation.
NCP (Puduppully et al., 2019a) employs a two-
stage framework, first generating a content plan
that specifies what information to include and in
what order before passing it to the text generation
stage. NDP (Chen et al., 2021) dynamically selects
relevant information from the input data during text
generation. DUV (Gong et al., 2020) enhances neu-
ral content planning by incorporating contextual
numerical value representations for improved value
comparison, and applying policy gradient to ver-
ify the importance and order of selected records.
Macro (Puduppully and Lapata, 2021) introduces
a macro planning stage prior to text generation,
where macro plans structure key entities, events,
and their interactions. SeqPlan (Puduppully et al.,
2022) employs a structured variational model to in-
fer latent plans sequentially, interleaving planning
and generation steps.

However, under our experimental setup, the
dataset size is limited (e.g., ShuttleSet+ contains
only 58 instances), making it infeasible to train a
model. Therefore, we explore prompt-based meth-
ods as an alternative approach.

2.3 Prompt-based Methods

With the rise of LLMs, prompt-based methods
have gained increasing attention. Brown et al.

(2020) first introduced the Zero-shot, One-shot,
and Few-shot approaches, demonstrating that pro-
viding some reference examples enables LLMs to
achieve strong performance across various tasks.
Chain-of-Thought (Wei et al., 2022) enhances LLM
reasoning by incorporating a series of intermedi-
ate reasoning steps within the prompt. Tree-of-
Thought (Yao et al., 2023) enables LLMs to make
deliberate decisions by exploring multiple reason-
ing paths, self-evaluating choices, and backtrack-
ing when necessary to optimize global decision-
making. Chain-of-Table (Wang et al., 2024) guides
LLMs to iteratively generate operations, updating
the table to form a tabular reasoning chain, allow-
ing for dynamic operation planning based on previ-
ous results.

However, previous methods directly input the
entire table into the LLM, making it difficult for
the model to fully understand the table structure,
thereby resulting in hallucination and failing to en-
sure high data fidelity. Similarly, these methods di-
rectly output the final text in a single step, limiting
the model’s ability to process comprehensive in-
formation, thus failing to produce sufficiently long
and detailed textual outputs. Therefore, we propose
Tree-of-Report to address these challenges.

3 Tree-of-Report

3.1 Overview

In the task of table-to-text generation, the input
consists of multiple tables 7', and the output is a
textual description ¢ of these tables. We propose
a method called Tree-of-Report, inspired by the
"divide and conquer” concept of merge sort (Bron,
1972), which constructs a tree structure and divides
the task into three stages: Content Planning, Oper-
ation Execution, and Content Generating.

In the Content Planning stage, the LLM deter-
mines the operations and arguments O A for the
child nodes based on the input tables 7', the op-
eration history O H, the operation pool OP, and
the level L. The number of child nodes must not
exceed the maximum degree M AX_DFEGREE.

In the Operation Execution stage, the opera-
tions are executed sequentially to update T, OH,
OP, and L, which are then passed to the child
nodes, respectively. This process continues recur-
sively until either a write() operation is encoun-
tered, or the level L reaches the maximum depth
MAX_DEPTH.

In the Content Generating stage, a short text ¢’

O

root()

[Tables | [Op.Pool | [Op.History |
LLM O
select_table(match) select_table(set_1) select_table(set_2)

[Tablesi | [op.Pooli | [Op. History: | [Tablesz | [Op.Poolz | [Op. History | [Tabless | [op.Pools | [Op. Historys |
LLM] (LLM) (LLM]
wri%e() selectj:w(o)/ \select;ol(score) count(player)

[Tablesz1 | [Op.Poolzt | [Op. Historyz1| [Tableszz | [Op.Poolzz | [Op. Historyz2| [Tabless1 | [Op.Pools1 | [Op. Historyst]
LLM LLM LLM
)) '
write() write() write()
(LLM)
[Tewn | Texts

LLM

Figure 2: The overall workflow diagram of Tree-of-Report, which divides the Table-to-Text Generation task into

three stages: Content Planning, Operation Execution, an

d Content Generating. To simplify the illustration, we use a

simple tree structure as an example; in practice, the tree structure is more complex.

is first generated based on the updated tables 7’
and returned to the parent node. The LLM then
merges and rewrites these texts into a new text ¢,
continuing this process until returning back to the
root node.

The overall workflow of Tree-of-Report is illus-
trated in Figure 2, and the algorithm is presented
in Algorithm 1.

3.2 Content Planning

Starting from the root node, the inputs consist of the
initial tables T < (T7 | j = 1,2,...,n), the op-
eration history OH <« (op | op = root()), the op-
eration pool OP <« (op | op € operations, op #
root()), and the level L < 0. Based on these inputs,
the LLM determines the operations and arguments
for the child nodes, denoted as OA < (O;(A;) |
0; € OP,i =1,2,...,d), where d represents the
degree of this node and must not exceed the maxi-
mum degree M AX_DFEGREE. The prompt for
Content Planning is provided in Appendix A.1.

3.3 Operation Execution

To execute operations that split large tables into
smaller ones or generate textual descriptions, we
define a total of eight operations as follows:
* root(): Does nothing; represents the root
node of the tree.
* select_table(): Selects a table by its table

name.

select_row(): Selects rows based on their
row indices.

select_col(): Selects columns based on
their column names.

count(): Counts the number of unique values
in the specified columns of the tables.
sort(): Sorts rows based on the specified
column names and sorting orders.

filter(): Filters rows based on column
names, comparison symbols, and values.
write(): Generates text based on the tables
using the LLM; represents the leaf node of the
tree. The prompt for the write() operation is
provided in Appendix A.2.

The operations in OA are then executed re-
spectively to update T, OH, OP, and L, where
OP — OZ(), L; < L + 1. The updated T3, OH;,
OP;, and L; are then passed to the child nodes,
and the process continues recursively until either
awrite() operation is encountered or the level L
reaches the maximum depth M AX_DFEPTH.

When the level L reaches the maximum
depth MAX_DFEPTH, we directly call write(),
where the LLM generates a short text ¢ describing
the current input table 7" and returns ¢ to the parent
node. Similarly, when encountering a write() op-
eration, the LLM is invoked to generate a short text

t; describing the current input table 7". Since child
nodes also return texts ¢, we collect them into a
sequence t' = (t; |1 =1,2,...,d).

3.4 Content Generating

The LLM then merges and rewrites ¢ into a new
text ¢, which is passed to the parent node. This re-
cursive process continues until it returns to the root
node. The text ¢ returned from the root node is the
final output. The prompt for Content Generating is
provided in Appendix A.3.

For efficiency considerations, we implemented
additional optimizations. First, unlike Chain-of-
Table, which generates operations first and then
arguments, our method generates operations and
arguments in one step. Second, if a node has a
degree of one, there is no need to use the LLLM for
merging; the single text can be directly returned.
Finally, we experimented with an approach where
the LLM is used for merging only at the root node,
while other nodes simply concatenate texts. With
these optimizations, Tree-of-Report significantly
reduces both time and cost.

4 Experiment

4.1 Dataset

4.1.1 RotoWire

The RotoWire (Wiseman et al., 2017) dataset com-
prises human-written NBA basketball game sum-
maries in English paired with their corresponding
box and line scores. These summaries, sourced
from rotowire.com, are relatively general compared
to other datasets, providing more high-level infor-
mation. The dataset includes 4,853 unique sum-
maries covering NBA games played between Jan-
vary 1, 2014, and March 29, 2017, with some
games featuring multiple summaries. The dataset is
randomly divided into training, validation, and test
sets, containing 3,398, 727, and 728 summaries,
respectively. Data preprocessing for RotoWire is
provided in Appendix B.1 for further details.

41.2 MLB

The MLB (Puduppully et al., 2019b) dataset con-
tains baseball statistics paired with human-written
summaries in English sourced from the ESPN web-
site. Compared to RotoWire, it is approximately
five times larger, featuring a broader vocabulary
and longer summaries. The dataset is divided into
22,821 training, 1,739 validation, and 1,744 testing

instances. Data preprocessing for MLB is delivered
in Appendix B.2 for further details.

4.1.3 ShuttleSet+

We introduce a new dataset, ShuttleSet+, derived
from ShuttleSet22 (Wang et al., 2023). Shuttle-
Set22 is a human-annotated, stroke-level singles
dataset for badminton tactical analysis, comprising
140 sets, 3,992 rallies, and 33,612 strokes from
58 matches played between 2018 and 2022. The
dataset features 35 top-ranking men’s and women’s
singles players. Since ShuttleSet22 does not in-
clude corresponding textual reports for each match,
we collected human-written reports in English for
each game from online sources such as the BWF
and Olympics websites, and renamed the dataset
as ShuttleSet+. Compared to RotoWire and MLB,
ShuttleSet+ has fewer data samples, representing a
low-resource scenario. In addition, ShuttleSet+ re-
ports contain more detailed information, including
rally-level data and tactical analysis. Finally, we
randomly split the dataset into training, validation,
and test sets using a 40:9:9 ratio. Data preprocess-
ing for ShuttleSet+ is given in Appendix B.3 for
further details.

4.2 Evaluation Metric
4.2.1 Automatic Evaluation

To quantify the similarity of information between
two texts, we use the Information Extraction (IE)
metrics introduced by Wiseman et al. (2017).
These metrics are based on the output of an IE
model, which extracts relation pairs, formatted as
(table|column|value), from the generated sum-
mary.

Due to the lack of sufficient data to train a new IE
model for ShuttleSet+, we propose an alternative
approach that leverages the LLM as a substitute for
the IE model. To validate its reliability, we manu-
ally annotated a set of relations and compared them
with those extracted by the LLM, finding that it
achieved over 60% on all evaluation metrics. Based
on this experiment, we consider that using an LLM
as an IE model is a reliable alternative. The full
experimental results are provided in Appendix C.

In the experiment, let t denote the model output
and ¢ symbolize the gold text. Relation Generation
(RG) evaluates the count (#) and precision (P%)
of relations extracted from 7 that are present in the
input table 7', representing the amount and accu-
racy of information in the generated text. Content
Selection (CS) assesses the precision (P%), recall

(R%), and F1 score (F%) of relations extracted
from £ that also appear in ¢, indicating the informa-
tion similarity between the generated text and the
reference text. Content Ordering (CO) quantifies
the complement of the Damerau-Levenshtein Dis-
tance (DLD%) (Damerau, 1964) between relations
extracted from # and ¢, meaning the ordering simi-
larity between the generated text and the reference
text. We also compute the average (Avg.) of RG
P%, CS P%, CS R%, CS F%, and CO DLD% to
represent overall performance. Higher values of
RG, CS, CO, and Avg. indicate better effective-
ness.

Additionally, to evaluate the efficiency of each
method, we compute the average time (in seconds)
and cost (in $0.001 USD) required to generate a
text. The cost is estimated based on the API Pricing
published by OpenAl (OpenAl, 2025). Lower time
and cost values mean better efficiency.

4.2.2 Human Evaluation

To further validate the effectiveness of our pro-
posed method, we conducted a human evaluation
study involving three annotators. All annotators are
fluent in English and possess at least a university-
level education. Before the evaluation, we provided
detailed instructions outlining the task procedure
and conducted a preliminary qualification test to
ensure that participants fully understood the experi-
mental protocol. Additionally, we compensated all
annotators at a rate above the local minimum wage
to ensure fair labor conditions.

Our human evaluation follows the methodology
proposed in Puduppully et al. (2022) and is di-
vided into two parts. First, we randomly selected
ten matches from each of the three datasets. For
each match, we compiled one gold reference sum-
mary and four generated summaries from Chain-
of-Thought, Tree-of-Thought, Chain-of-Table, and
Tree-of-Report, then randomly shuffled their or-
der. In the first part of the evaluation, annotators
were asked to analyze each summary against the
corresponding tables and count the number of Sup-
ported Facts (i.e., statements consistent with the
table) and Contradicted Facts (i.e., statements in-
consistent with the table). We report the average
scores across all evaluations. In the second part,
annotators were instructed to select the best and
worst summary from the five options based on three
criteria: Coherence (how logically and smoothly
the ideas and events are connected throughout the
report), Conciseness (how effectively a report con-

veys information using as few words as necessary,
without unnecessary repetition or irrelevant details),
and Grammaticality (whether the text follows the
rules of standard English grammar). The results
were then converted into a score between +100 and
-100 using the Best-Worst Scaling method (Lou-
viere et al., 2015), with higher scores indicating
better quality.

4.3 Implementation Detail

For all datasets, Tree-of-Report employs gpt-4o-
mini (OpenAl, 2024) as the backbone large lan-
guage model. We set the maximum depth to 5 and
the maximum degree to 5, utilize the full operation
pool, and represent all tables in CSV format. All
of our experiments are single-run.

4.4 Quantitative Result
4.4.1 Automatic Evaluation

We compared Tree-of-Report with other prompt-
based methods on the RotoWire, MLB, and Shut-
tleSet+ datasets. The quantitative results are shown
in Table 1.

From the quantitative results, we observe that
Tree-of-Report achieves the best overall perfor-
mance across all datasets, outperforming other
baselines by 2.49% on RotoWire, 3.25% on MLB,
and 4.57% on ShuttleSet+, demonstrating its su-
periority in effectiveness. This improvement is
attributed to the tree-structured design of Tree-of-
Report, which divides tables into smaller sub-tables
and merges generated text into longer reports, facil-
itating high data fidelity and long-text generation.

Although Tree-of-Report does not achieve the
highest RG # on RotoWire and MLB, this is be-
cause the reports in these two datasets are more
general. Compared to Zero-shot, which includes
too little information, and Chain-of-Table, which
includes too much information, Tree-of-Report se-
lects an appropriate amount of information while
maintaining a relatively high RG P%. This demon-
strates the significance of Content Planning, which
selects operations to extract relevant information.

Except for CS P% on RotoWire and CS R%
on MLB, Tree-of-Report achieves the best perfor-
mance in all CS metrics. The reason is that Tree-
of-Report produces more detailed text, leading to
higher scores on the detailed ShuttleSet+ dataset,
but lower scores on the general RotoWire and MLB
datasets. This reveals the significance of Operation
Execution, which extracts more detailed informa-

RotoWire RG# RGP% CSP% CSR% CSF% CODLD% Avg. Time Cost

Zero-shot 29.69 97.54 56.70 55.77 50.85 30.77 58.33 793 0.63
One-shot 31.17 95.72 57.86 56.26 51.12 29.53 58.10 5.07 090
Few-shot 28.27 95.37 57.67 54.45 51.07 30.60 57.83 5.38 1.48
Chain-of-Thought 28.46 96.52 58.33 55.57 52.20 32.83 59.09 776 0.61
Tree-of-Thought 34.97 95.26 54.43 60.17 52.41 33.66 59.19 5462 8.18
Chain-of-Table 41.96 92.47 53.47 61.53 50.70 32.63 58.16 6375 12.54
Tree-of-Report 32.89 96.81 56.98 63.33 54.92 36.37 61.68 21.07 243
MLB RG# RGP% CSP% CSR% CSF% CODLD% Avg. Time Cost
Zero-shot 53.17 84.22 60.45 60.65 49.03 39.25 5872 7.08 1.62
One-shot 41.15 90.91 70.94 61.95 56.67 47.32 6556 8.2 1.77
Few-shot 44.16 89.69 71.64 61.91 56.68 46.80 65.34 10.36 1.78
Chain-of-Thought 39.88 94.11 73.72 63.40 56.79 46.46 6690 9.34 1.73
Tree-of-Thought 33.78 95.83 73.28 64.00 59.34 48.50 68.19 5096 7.25
Chain-of-Table 28.13 95.37 80.20 60.33 59.60 50.21 69.15 55.60 10.80
Tree-of-Report 30.78 97.54 84.19 63.48 62.99 53.78 7240 29.18 6.77

ShuttleSet+ RG# RGP% CSP% CSR% CSF% CODLD% Avg. Time Cost

Zero-shot 13.67 85.19 86.01 86.01 86.01 86.01 8585 7.53 0.86
One-shot 12.22 84.02 83.26 74.42 78.38 56.99 7542 6.59 1.12
Few-shot 14.33 90.22 87.72 86.58 86.99 82.31 86.76 6.00 2.20
Chain-of-Thought 13.67 85.53 84.97 84.62 84.70 83.49 84.66 6.68 0.81
Tree-of-Thought ~ 13.33 81.92 81.35 82.48 81.88 81.35 81.80 63.11 9.62
Chain-of-Table 15.00 93.46 89.37 89.37 89.37 89.37 90.19 73.67 14.44
Tree-of-Report 15.78 98.04 93.94 93.94 93.94 93.94 94.76 29.04 5.71

Table 1: The results of automatic evaluation for RotoWire, MLLB, and ShuttleSet+ datasets, where the best scores are
highlighted in bold, the second-best scores are underlined, and our method is marked with a yellow background.

RotoWire #Supp. #Cont. Cohe. Conc. Gram.

Gold 9.00 0.44 100.00 100.00 100.00

Chain-of-Thought ~ 10.22 2.11 -100.00 66.67 -66.67

Tree-of-Thought 14.67 1.44 -50.00 50.00 -50.00
Chain-of-Table 11.11 0.56 66.67 -50.00 0.00

Tree-of-Report 13.33 0.44 100.00 -77.78 55.56

MLB #Supp. #Cont. Cohe. Conc. Gram.

Gold 6.67 0.33 100.00 100.00 100.00
Chain-of-Thought 13.44 1.67 -100.00 50.00 -100.00
Tree-of-Thought 11.00 1.44 -66.67 0.00 0.00

Chain-of-Table 7.89 0.89 50.00 -33.33 4444

Tree-of-Report 7.11 0.89 100.00 -66.67 100.00

ShuttleSet+ #Supp. #Cont. Cohe. Conc. Gram.

Gold 3.78 0.78 100.00 100.00 100.00
Chain-of-Thought 3.67 2.33 -100.00 100.00 -100.00
Tree-of-Thought 6.56 2.33 -66.67 -44.44 0.00

Chain-of-Table 7.00 2.11 77.78 -100.00 50.00

Tree-of-Report 8.22 1.00 100.00 -100.00 55.55

Table 2: The results of human evaluation for RotoWire, MLB, and ShuttleSet+ datasets, where the best scores are
highlighted in bold, the second-best scores are underlined, and our method is marked with a yellow background.

LLMs RG# RGP% CSP% CSR% CSF% CODLD%
llama3.1-8b 17.22 69.67 39.65 55.95 41.61 21.82
llama3.1-70b 21.89 96.61 43.88 47.15 43.69 15.23
llama3.1-405b 27.56 96.17 45.86 63.53 49.05 18.04
gpt-40-mini 15.78 98.04 93.94 93.94 93.94 93.94
gpt-40 15.78 98.04 93.29 93.29 93.29 93.29

Table 3: The experimental results for different LLMs on
ShuttleSet+, where the highest scores are highlighted in
bold, the second-highest scores are underlined, and the
best configuration is marked with a yellow background.

tion by executing operations to decompose the ta-
bles.

As for CO, Tree-of-Report achieves the highest
score across all datasets. This shows the signifi-
cance of Content Generating, which merges and
rewrites texts to maintain the original structure and
order of the tables.

Furthermore, while Tree-of-Report does not
have the lowest time and cost, it is still lower than
Tree-of-Thought and Chain-of-Table. For example,
on ShuttleSet+, Tree-of-Report achieves only 39%
of Chain-of-Table’s time and 40% of its cost, show-
ing its advantage in efficiency. This improvement
is attributed to the optimizations that significantly
reduce the time and cost of the Tree-of-Report.

4.4.2 Human Evaluation

Table 2 presents the human evaluation results on the
ShuttleSet+, RotoWire, and MLB datasets. First,
we observe that Tree-of-Report achieves the high-
est or second-highest scores in Supported Facts
(#Supp.) on ShuttleSet+ and RotoWire, and the
lowest or second-lowest scores in Contradicted
Facts (#Cont.) on RotoWire, ShuttleSet+, and
MLB. These results suggest that our method ef-
fectively includes more factual information while
reducing the incidence of LLM hallucinations. Fur-
thermore, Tree-of-Report ranks first or second in
Coherence (Cohe.) and Grammatically (Gram.)
across all three datasets, only slightly behind the
gold reference texts. However, Tree-of-Report
performs poorly in terms of Conciseness (Conc.),
mainly because the generated text tends to be
longer and more detailed. This further confirms
that our method generates text that is fluent and
grammatically correct, but with more details. The
inter-rater agreement, measured by Krippendorff’s
«, was 0.79 for supported and contradicted facts,
and 0.77 for coherence, conciseness, and grammat-
icality, indicating that our human evaluation falls
within an acceptable range.

The qualitative result is provided in Appendix D.

Max Depth Max Degree RG# RGP% CSP% CSR% CSF% CODLD% Time Cost

5 5 1578 98.04 93.94 93.94 93.94 93.94 29.04 571
3 5 15.67 95.99 91.42 92.72 92.03 91.42 16.60 2.37
5 3 1567 9721 92.46 92.46 92.46 9246 29.48 4.90
3 3 13.89 88.18 83.43 82.00 82.56 82.00 11.79 1.82

Table 4: The experimental results for comparing differ-
ent max depth and max degree on ShuttleSet+, where
the best scores are highlighted in bold, the second-
best scores are underlined, and the best configuration is
marked with a yellow background.

4.5 Ablation Study
4.6 The Effects of Large Language Models

To validate the generalizability of Tree-of-Report
and examine the impact of model size on per-
formance, we conducted additional experiments
on ShuttleSet+ using open-source LLMs of dif-
ferent sizes (e.g., llama3.1-8b, llama3.1-70b, and
llama3.1-405b) and closed-source LLMs (e.g., gpt-
40-mini, gpt-40) as the backbone LLMs. We ac-
cess open-source LL.Ms via the LLM API (?), but
in practical applications, these models can be run
on local devices, thereby mitigating concerns re-
garding cost. The results are presented in Table
3.

The results show that as the model size increases,
performance improves, but conversely, both time
and cost also increase. This is because larger mod-
els are better able to adhere to the prompts and pro-
duce the expected results. Additionally, the perfor-
mance of llama3.1-405b is only slightly worse than
that of gpt-40-mini, validating the generalizability
of our method on open-source LLLMs. However,
gpt-4o did not outperform gpt-4o-mini, suggesting
that gpt-4o-mini already performs sufficiently well
on this task. Considering both time and cost factors,
we ultimately chose gpt-40-mini as the backbone
LLM.

4.6.1 The Analysis of Max Depth & Max
Degree

To determine the optimal maximum depth and max-
imum degree for Tree-of-Report, we conducted the
following experiments. The baseline setting uses a
max depth and max degree of 5. In one experiment,
we reduced the max depth to 3 while keeping the
max degree at 5. In another, we set the max degree
to 3 while maintaining the max depth at 5. Finally,
we tested a configuration where both the max depth
and max degree were set to 3. The experimental
results on ShuttleSet+ are presented in Table 4.
From the experimental results, we observe that
setting both max depth and max degree to 5 yields

Operation Pool RG# RGP% CSP% CSR% CSF% CODLD% Time Cost

Table Format RG# RGP% CSP% CSR% CSF% CODLD% Time Cost

All operations 1578 98.04 9394 9394 93.94 9394 2004 571
wio select_table() 1544 98.69 8257 9294 8557 8257 4445 6.1
wio select_row() 1533 9804 8453 9490 87.53 84.53 4800 6.80
wio select_col() 1511 98.69 8519 9333 8695 8296 49.80 7.49
wio count () 1544 98.69 8257 9294 8557 82.57 2530 420
wlo sort() 1544 9869 85.19 9556 88.18 85.19 3664 564
wlo filter() 1544 9869 8257 9294 8557 82.57 3334 553

Table 5: The experimental results for comparing dif-
ferent operation pools on ShuttleSet+, where the best
scores are highlighted in bold, the second-best scores
are underlined, and the best configuration is marked
with a yellow background.

the best performance; however, it also results in
higher time and cost. When reducing the max
depth to 3 while keeping the max degree at 5, the
performance drops more significantly compared to
reducing the max degree to 3 while keeping the
max depth at 5. This suggests that max depth has
a greater impact on the generated text than max
degree. This finding is intuitive, as max depth con-
trols the level of detail in the text, whereas max
degree influences its richness.

Finally, setting both max depth and max degree
to 3 yields the worst performance, as expected.
However, it is worth noting that this setting also re-
sults in the lowest time and cost. This suggests that
max depth and max degree can be adjusted based
on the desired level of detail in the generated text.
If more detailed text is required, increasing max
depth and max degree improves performance at the
expense of higher computational cost. Conversely,
for more general text, reducing the max depth and
max degree lowers both the level of detail and cost.

4.6.2 The Influences of Operation Pool

To demonstrate the significance of each operation,
we performed the following experiments. The base-
line configuration includes all operations in the op-
eration pool. Then, in each experiment, we system-
atically removed one operation from the operation
pool and evaluated the impact on performance.
The experimental results on ShuttleSet+ in
Table 5 show that removing select_table(),
select_row(), and select_col() leads to a sig-
nificant performance drop, highlighting their im-
portance. Without these operations, the LLM pro-
cesses the entire table to generate text, leading to
increased time and cost. In contrast, removing
count(), sort(), and filter() has a less pro-
nounced effect, suggesting that they are relatively
less critical. However, without these operations,
it becomes impossible to compute more detailed
information, resulting in a lower RG # but a higher

CSsv 15.78 98.04 93.94 93.94 93.94 93.94 29.04 571
PIPE 15.78 98.04 93.29 93.29 93.29 93.29 78.53 9.63
HTML 15.67 97.39 92.64 92.64 92.64 92.64 10499 19.26

Markdown 14.67 9231 87.56 86.75 87.10 84.14 62.65 9.80

Table 6: The experimental results for comparing dif-
ferent table formats on ShuttleSet+, where the best
scores are highlighted in bold, the second-best scores
are underlined, and the best configuration is marked
with a yellow background.

RG P%. Overall, maintaining all operations pro-
vides the most balanced performance, demonstrat-
ing greater robustness.

4.6.3 The Impacts of Table Formats

We also analyzed the impact of different table for-
mats on Tree-of-Report’s performance by compar-
ing four commonly used formats: CSV (Comma-
Separated Values), PIPE, Markdown, and HTML
(HyperText Markup Language). The experimental
results on ShuttleSet+ in Table 6 show that CSV
achieves the best performance. While PIPE and
HTML perform similarly, they have significantly
higher time and cost due to requiring more symbols
to represent the table, resulting in a longer input
context. Markdown performs the worst, likely be-
cause LLMs have been pre-trained on fewer exam-
ples of this format, leading to weaker table compre-
hension. Based on these findings, we adopted CSV
as the table format for all following experiments.

5 Conclusion

In this paper, we propose Tree-of-Report, a novel
framework for table-to-text generation in sports
game reports. Inspired by the "divide and conquer”
concept of merge sort (Bron, 1972), our method di-
vides the generation process into three stages: Con-
tent Planning, Operation Execution, and Content
Generating. By recursively decomposing large ta-
bles into smaller sub-tables and merging short texts
into a long text, our approach effectively enhances
data fidelity and generates coherent long-form out-
puts. Experimental results demonstrate that Tree-
of-Report achieves the best overall performance
across all datasets, surpassing other prompt-based
baselines by 2.49% on RotoWire, 3.25% on MLB,
and 4.57% on ShuttleSet+, highlighting its effec-
tiveness. Furthermore, our method achieves only
40% of Chain-of-Table’s time and cost, showing
its efficiency. In summary, Tree-of-Report opens a
new path for prompt-based table-to-text generation
in sports game reports.

Limitations

While Tree-of-Report demonstrates strong perfor-
mance, our approach requires manually tuning
configurations and prompts for the corresponding
dataset. Therefore, one of the interesting research
directions could be to explore automatic selection
for configurations and prompts. On the other hand,
Tree-of-Report achieves more efficient time and
cost compared to Tree-of-Thought and Chain-of-
Table, yet we leave the efficiency direction as the
future work as our proposed approach still requires
higher time and cost than Few-shot and Chain-of-
Thought.

Ethical Considerations

First, although Tree-of-Report does not require
large training datasets compared to model-based
baselines, using external LL.Ms raises concerns
about data privacy, especially for sensitive informa-
tion. Second, while Tree-of-Report achieves higher
data fidelity compared to other prompt-based base-
lines, hallucination issues may still occur, poten-
tially generating incorrect or non-existent informa-
tion that could mislead readers.

Acknowledgments

In this work, we used Copilot to automatically com-
plete some basic code and utilized ChatGPT for
grammar corrections, language translation, and lit-
erature searches. All uses were reviewed to ensure
compliance with the ACL Rolling Review’s Al
Writing/Coding Assistance Policy.

References

C. Bron. 1972. Algorithm 426: Merge sort algorithm
[m1]. Commun. ACM, 15(5):357-358.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Kai Chen, Fayuan Li, Baotian Hu, Weihua Peng, Qing-
cai Chen, Hong Yu, and Yang Xiang. 2021. Neural
data-to-text generation with dynamic content plan-
ning. Knowledge-Based Systems, 215:106610.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact: A large-scale
dataset for table-based fact verification. In Interna-
tional Conference on Learning Representations.

Frederick J. Damerau. 1964. A technique for computer
detection and correction of spelling errors. Commu-
nications of the ACM, 7(3):171-176.

Heng Gong, Wei Bi, Xiaocheng Feng, Bing Qin, Xiao-
jiang Liu, and Ting Liu. 2020. Enhancing content
planning for table-to-text generation with data under-
standing and verification. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 2905-2914, Online. Association for Computa-
tional Linguistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1203—-1213.

Yupian Lin, Tong Ruan, Jingping Liu, and Haofen Wang.
2024. A survey on neural data-to-text generation.
IEEE Transactions on Knowledge and Data Engi-
neering, 36(4):1431-1449.

Jordan J. Louviere, Terry N. Flynn, and A. A. J. Marley.
2015. Best-Worst Scaling: Theory, Methods and
Applications. Cambridge University Press.

OpenAl. 2024. Gpt-4o mini: Advancing cost-efficient
intelligence.

OpenAl. 2025. API Pricing. Accessed: 2025-02-15.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Di-
panjan Das. 2020. Totto: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1173-1186.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019a.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 6908-6915.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019b.
Data-to-text generation with entity modeling. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2023—
2035, Florence, Italy. Association for Computational
Linguistics.

Ratish Puduppully, Yao Fu, and Mirella Lapata. 2022.
Data-to-text generation with variational sequential
planning. Transactions of the Association for Com-
putational Linguistics, 10:697-715.

Ratish Puduppully and Mirella Lapata. 2021. Data-to-
text generation with macro planning. Transactions of
the Association for Computational Linguistics, 9:510—
527.

Wei-Yao Wang, Wei-Wei Du, and Wen-Chih Peng.
2023. Shuttleset22: Benchmarking stroke forecast-
ing with stroke-level badminton dataset. CoRR,
abs/2306.15664.

https://doi.org/10.1145/355602.361317
https://doi.org/10.1145/355602.361317
https://doi.org/10.1016/j.knosys.2020.106610
https://doi.org/10.1016/j.knosys.2020.106610
https://doi.org/10.1016/j.knosys.2020.106610
https://openreview.net/forum?id=rkeJRhNYDH
https://openreview.net/forum?id=rkeJRhNYDH
https://doi.org/10.18653/v1/2020.findings-emnlp.262
https://doi.org/10.18653/v1/2020.findings-emnlp.262
https://doi.org/10.18653/v1/2020.findings-emnlp.262
https://doi.org/10.1109/TKDE.2023.3304385
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/api/pricing/
https://doi.org/10.18653/v1/P19-1195
https://doi.org/10.1162/tacl_a_00484
https://doi.org/10.1162/tacl_a_00484
https://doi.org/10.1162/tacl_a_00381
https://doi.org/10.1162/tacl_a_00381

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
In The Twelfth International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253-2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. In Advances in Neural

Information Processing Systems, volume 36, pages
11809-11822. Curran Associates, Inc.

A Example Prompt

A.1 Example Prompt for Content Planning

Figure 3 shows an example prompt for Con-
tent Planning on the ShuttleSet+ dataset. In
this prompt, {TABLE_DESCRIPTION} provides
descriptions for each column in the table,
{OPERATION_DESCRIPTION} explains each avail-
able operation, {TABLES} represents the input
tables, {OPERATION_HISTORY} lists the opera-
tions previously used by the parent node, and
{OPERATION_POOL} indicates the remaining un-
used operations. Then, the LLM outputs the
Operations & Arguments based on the input
prompt.

A.2 Example Prompt for write() operation

Figure 4 shows an example prompt for the write()
operation on the ShuttleSet+ dataset. In this
prompt, { TABLE_DESCRIPTION} provides descrip-
tions for each column in the table, and {TABLES}
represents the input tables. Then, the LLM gener-
ates the Report based on the input prompt.

A.3 Example Prompt for Content Generating

Figure 5 shows an example prompt for Content
Generating on the ShuttleSet+ dataset. In this
prompt, {REPORTS} represents multiple reports.

Then, the LLM merges and rewrites the reports
into a New Report based on the input prompt.

A.4 Example Prompt for the LLM-based IE
model

Figure 6 shows an example prompt for the LLM-
based IE model on the ShuttleSet+ dataset. In this
prompt, { TABLE_DESCRIPTION} provides descrip-
tions for each column in the table, {REPORT} is a
report of a match, and { TABLE_RELATION} lists all
relations from the match’s tables. The LLM then
extracts relations from the report based on the input
prompt.

B Data Preprocessing

B.1 Data Preprocessing for RotoWire

To ensure the input aligns with the Tree-of-Report
format, we first preprocess the RotoWire dataset.
Initially, we convert the original data from JSON
format into multiple CSV tables: game, home_line,
vis_line, and box_score. Specifically, game con-
tains overall game information, home_line repre-
sents the line score of the home team, vis_line
represents the line score of the visiting team, and
box_score records individual player statistics. Fi-
nally, we reorder the table columns according to
the sequence specified in the table description of
RotoWire.

B.2 Data Preprocessing for MLB

To ensure the input conforms to the Tree-of-Report
format, we also preprocess the MLLB dataset. Sim-
ilar to RotoWire, we first convert the original
data from JSON format into multiple CSV tables:
game, home_line, vis_line, box_score, and
play_by_play. Specifically, game contains overall
game information, home_line represents the line
score of the home team, vis_line represents the
line score of the visiting team, box_score records
individual player statistics, and play_by_play de-
tails the scoring of each at-bat. Next, since the
box_score table contains many rows with N/A val-
ues, we remove these redundant rows to stream-
line the dataset. Eventually, we reorder the table
columns according to the sequence specified in the
table description of MLB.

B.3 Data Preprocessing for ShuttleSet+

ShuttleSet22 is a stroke-level dataset; however, gen-
erating textual descriptions does not require such
detailed information. Therefore, we retain only the

https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/D17-1239
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf

Prompt RG# RGP% CSP% CSR% CSF% CODLD%
Zero-shot 14.0000 100.00 70.56 76.57 71.51 26.80
One-shot 12.3333 100.00 75.35 70.46 70.71 38.24
Few-shot 10.3333 100.00 93.89 76.57 83.86 71.01

Table 7: The evaluation results of the LLM-based IE
model with different prompts, where the best scores
are highlighted in bold, the second-best scores are
underlined, and the best configuration is marked with a
yellow background.

final stroke of each rally. To streamline the dataset,
we selected the nine most essential columns, re-
naming and reordering to improve clarity while
removing unrelated fields. Additionally, the values
in the ball_type, win_reason, and lose_reason
columns were originally in Chinese, so we trans-
lated them into English. Lastly, we reorder the
table columns according to the order specified in
the table description of ShuttleSet+.

Since no existing IE model is available for Shut-
tleSet+ and the training data is insufficient, we use
an LLM as the IE model to extract information
from the text. To validate the reliability of the
LLM-based IE model, we manually annotated a set
of information and compared it with that extracted
by the LLM. The evaluation results are presented
in Table 7.

C LLM-based IE model

We compared three prompting methods for the
LLM-based IE model: Zero-shot, One-shot, and
Few-shot. Experimental results show that Few-shot
performs better, achieving over 70% across all met-
rics. Therefore, we used Few-shot prompting for
all subsequent experiments. We hypothesize that
providing more examples allows the LLM to refer-
ence them, leading to information extraction that
more closely aligns with human annotations. The
prompt for the LLM-based IE model is provided in
Appendix A.4.

D Qualitative Result

Figure 7 showcases the qualitative results of human-
written, Chain-of-Table, and Tree-of-Report out-
puts. For ease of comparison, we mark the infor-
mation in the text with bold: green indicates infor-
mation included in the tables, while red indicates
errors or information not found in the tables.
From the qualitative results, we observe that
compared to Chain-of-Table, Tree-of-Report gener-
ates more comprehensive and detailed information

(e.g., shot type frequencies) and produces more
accurate outputs, with only one error compared to
seven errors from Chain-of-Table. This further val-
idates that Tree-of-Report can generate text that
meets the characteristics of high data fidelity and
long-form output for sports game reports.

Algorithm 1 Tree-of-Report

Require: Tables 7', Operation History O H, Operation Pool O P, Level L, Max Depth MAX_DFEPTH,
Max Degree MAX_DEGREFE
Ensure: Textt
1: function TREE-OF-REPORT(T, OH,OP, L)
2: if L > MAX_DEPTH then

3: t < WRITE(T)
4: return ¢
5: end if
> Content Planning
6: OA < CONTENT_PLANNING(T,OH,OP)
> Operation Execution
7: t ()
8: for each (O;, A;) in OA[0: MAX_DEGREE] do
9: if O; = write() then
10: t < WRITE(T)
11: else
12: T; OZ(T, Az)
13: OH; + OH + Oz(Az)
14: OPF; + OP — Ol()
15: L+~ L+1
16: t! < TREE-OF-REPORT(T;, OH;,OPF;, L;)
17: end if
18: t <t +t
19: end for
> Content Generating
20: t < CONTENT_GENERATING(t')
21: return ¢

22: end function

23: Main Program

24: T+ (T7]j=1,2,...,n)

25: OH < (op | op = root())

26: OP < (op | op € operations, op # root())
27: L+ 0

28: t <— TREE-OF-REPORT(T,OH,OP, L)

System:

You are a content planner for the badminton game report.

Please select candidate Operations and corresponding Arguments from the Operation

Pool based on the input Tables and Operation History.
will be the next Operation in the Operation History.

H+

Requirements

These candidate Operations

1. Strictly adhere to the requirements.

2. The output must be in English.

3. The output must be based on the input data; do not hallucinate.

4. The table format is {TABLE_FORMAT}.

5. The length of Operation History must be less than or equal to {MAX_DEPTH}.

6. The number of Operations must be less than or equal to {MAX_DEGREE}.

7. Only select Operations from the Operation Pool.

8. Arguments must match the format required by the corresponding Operations.

9. Operations & Arguments must follow this format: [operation_1(argument_1, ...),
operation_2(argument_2, ...), operation_3(argument_3,), L]

10. Only output Operations & Arguments!

11. The number of tokens in the Operations & Arguments must be within {

PLANNING_TOKENS}.
Table Description
{TABLE_DESCRIPTION}
Operation Description
{OPERATION_DESCRIPTION}
User:
Test
Tables
{TABLES?}
Operation History
{OPERATION_HISTORY}
Operation Pool
{OPERATION_POOL}

Operations & Arguments

Figure 3: Prompt for Content Planning

System:

You are
Please
Requi
1. Stri
2. The
3. The
4. The
5. The

a content writer for the badminton game report.
write the Report based on the input Table.
rements

ctly adhere to the requirements.

output must be in English.

output must be based on the input data; do not hallucinate.

Table format is {TABLE_FORMAT3}.

Report can only describe the content included in the Tables and cannot

describe anything not included in the Tables.

(o))

The
7. The

Table

{TABLE_

User:
Test
Tabl

{TABLES

Report must consist of only one paragraph.
number of tokens in the Report must be within {WRITE_TOKENS3}.

Description

DESCRIPTION}

es

3

Report

Figure 4: Prompt for write() operation

System:

You are a content generator for the badminton game report.

Please

merge and rewrite a New Report based on the input Reports.

Requirements

1. Strictly adhere to the requirements.

2. The output must be in English.

3. The output must be based on the input data; do not hallucinate.

4. The New Report must include all the content from the input Reports; do not omit
any information.

5. The New Report must follow the order of the input Reports.

6. The number of tokens in the New Report must be within {GENERATING_TOKENS3}.

User:

Test

Reports

{REPORTS}

New Report

Figure 5: Prompt for Content Generating

System:

You are a relation extractor for the badminton game report.

Please extract the Report Relation contained in the Report from the Table Relation.
There is an Example that you can refer to.

Requirements

1. Strictly adhere to the requirements.

2. The output must be in English.

3. The output must be based on the input data; do not hallucinate.

4. Please do not output any Report Relation that is not included in the Report.

5. Please do not output any Report Relation that is not included in the Table
Relation.

6. The Report Relation must contain all the relations from the input Report; do not

omit any relation.

7. The Report Relation must follow the order in the input Report.

8. The Report Relation must follow the format: [(table|column|value), (table|column|
value), ...]

Table Description

{TABLE_DESCRIPTION}

User:

Test

Report

{REPORT}

Table Relation

{TABLE_RELATION}

Report Relation

Figure 6: Prompt for LLM-based IE model

Human

Yamaguchi Akane defeats Chen Yufei in the women's singles semi-final

Yamaguchi Akane has beaten Chen Yufei 21-11, 21-13 in the women's All England semi-final, setting up a final with An Seyoung
tomorrow, Sunday 20 March.

Billed as a battle between the world champ and the Olympic champ, Yamaguchi came out on top and put on a clinic after a slow start.

She came from 1-5 down to clinch the first game 21-11 and never looked back, Chen simply had no answer to Yamaguchi's all-action
style as she returned absolutely everything and took her chances clinically.

11-4 ahead at the interval of game two there was no coming back for Chen and Yamaguchi put it away with some breathtaking
badminton.

She'll face South Korean An tomorrow who also had a straight games victory over Tai Tzu Ying in her semi-final.

Chain-of-Table

In an exhilarating badminton match, Akane Yamaguchi faced off against Chen Yufei in a thrilling contest that showcased remarkable skill
and determination from both players. The match unfolded over two sets, with each player demonstrating their prowess on the court.

In the first set, Yamaguchi started strong, winning the first rally with a lob that went out of bounds for her opponent. However, Chen
quickly responded, taking the next rally with a net shot that also went out of bounds. The set saw a series of intense rallies, with
Yamaguchi employing a mix of net shots and smashes, while Chen countered with strategic clears and lobs. The first set concluded
with Yamaguchi edging out Chen, winning 12 points to Chen's 8.

The second set continued the fierce competition, with both players exchanging points in rapid succession. Yamaguchi's agility and
tactical play were on full display as she executed a series of successful smashes and defensive returns. Chen, not to be outdone,
showcased her own skills with powerful wrist smashes and precise clears. The set was marked by several long rallies, with both players
refusing to give an inch.

Ultimately, Yamaguchi emerged victorious, winning the match with a final score of 21-17 in the second set. The match highlighted the
exceptional talent of both players, with Yamaguchi's ability to adapt her strategy and Chen's relentless fighting spirit making for an
unforgettable encounter. Fans were treated to a display of top-tier badminton, leaving them eagerly anticipating their next showdown.

Tree-of-Report

In the semi-finals of the YONEX All England Open Badminton Championships 2022, Akane Yamaguchi faced off against CHEN Yufei
in a thrilling match that lasted 41 minutes. Yamaguchi emerged victorious, winning in two sets with scores of 21-11 and 21-13.

In the first set, both players showcased their skills, with CHEN Yufei initially taking the lead. CHEN displayed impressive shots, including a
successful lob that forced Akane out of bounds and a decisive smash. However, Akane Yamaguchi demonstrated her dominance by
winning a total of 16 rallies, showcasing her exceptional skills and strategic play. She capitalized on CHEN's errors, including landing
judgment mistakes and hitting the net, effectively turning the tide in her favor. The set concluded with Yamaguchi scoring 21 points to
CHEN's 11.

The first set featured a diverse range of shot types, with "return net" being the most frequent at 7 occurrences, followed by "lob" at 6 and
"clear" at 4. Other notable shots included "drop" with 3, "smash" with 2, and single instances of "cross-court net shot," "net shot," and
"rush."” This variety contributed to the dynamics of the set.

In the second set, Akane Yamaguchi continued her strong performance, winning 21 rallies compared to CHEN Yufei's 13. Yamaguchi
utilized a series of effective shots, including a lob and a back-court drive, while CHEN managed to respond with a smash and a wrist
smash, winning some points. The second set was marked by strategic plays and errors from both players, but Yamaguchi maintained her
dominance, ultimately winning the set 21-13.

The second set showcased a different shot distribution, with the smash being the most frequent, occurring 7 times. The wrist smash
followed closely with 4 instances, while both the return net and lob were executed 4 and 3 times, respectively. Other notable shots
included the lob and net shot, each appearing 3 times, along with 2 defensive return lobs and a back-court drive, highlighting the
diverse range of techniques employed by both players.

Overall, Akane Yamaguchi's performance in the semi-finals of the YONEX All England Open Badminton Championships was a
testament to her skill and strategic gameplay, leading her to a well-deserved victory against CHEN Yufei.

Figure 7: The qualitative results of human-written, Chain-of-Table, and Tree-of-Report outputs.

	Introduction
	Related Work
	Table-to-Text Generation
	Model-based Methods
	Prompt-based Methods

	Tree-of-Report
	Overview
	Content Planning
	Operation Execution
	Content Generating

	Experiment
	Dataset
	RotoWire
	MLB
	ShuttleSet+

	Evaluation Metric
	Automatic Evaluation
	Human Evaluation

	Implementation Detail
	Quantitative Result
	Automatic Evaluation
	Human Evaluation

	Ablation Study
	The Effects of Large Language Models
	The Analysis of Max Depth & Max Degree
	The Influences of Operation Pool
	The Impacts of Table Formats

	Conclusion
	Example Prompt
	Example Prompt for Content Planning
	Example Prompt for write() operation
	Example Prompt for Content Generating
	Example Prompt for the LLM-based IE model

	Data Preprocessing
	Data Preprocessing for RotoWire
	Data Preprocessing for MLB
	Data Preprocessing for ShuttleSet+

	LLM-based IE model
	Qualitative Result

