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Abstract

Generating sports game reports from structured001
table data is a challenging table-to-text gen-002
eration task that requires balancing structured003
data comprehension with narrative storytelling.004
While model-based approaches demand large005
training datasets, prompt-based methods with006
large language models (LLMs) often suffer007
from hallucination issues due to poor table com-008
prehension. To address these challenges, we009
propose Tree-of-Report, a novel framework010
inspired by the "divide and conquer" concept011
of merge sort, which divides the task into three012
stages: Content Planning, Operation Execution,013
and Content Generating. Our method decom-014
poses large tables into smaller sub-tables us-015
ing a hierarchical tree structure, enabling more016
effective table comprehension. Additionally,017
it merges and rewrites texts to produce more018
detailed and coherent long-form outputs. Ex-019
perimental results on the RotoWire, MLB, and020
ShuttleSet+ datasets show that Tree-of-Report021
outperforms existing prompt-based baselines022
with relatively lower time and cost, demonstrat-023
ing its advantage in both effectiveness and effi-024
ciency. In summary, this work sets a new prece-025
dent for prompt-based table-to-text generation026
in sports game reports.027

1 Introduction028

Writing sports game reports requires journalists029

to analyze match data and craft engaging reports030

under tight deadlines. Beyond conveying scores031

and player performance, they must construct com-032

pelling narratives that highlight key moments. Au-033

tomating this process could greatly improve the034

efficiency and accessibility of sports journalism.035

However, converting structured match data into036

natural language remains challenging. Sports re-037

porting also demands adherence to journalistic con-038

ventions, integrating game flow, player dynamics,039

and contextual insights, which require reasoning040

and advanced text organization skills.041

Thus, sports game report generation is a com- 042

plex table-to-text generation task involving not only 043

data transformation but also discourse structuring, 044

content selection, and information organization. Ef- 045

fectively generating sports articles requires balanc- 046

ing structured data processing with the storytelling 047

aspects of journalism to ensure accuracy and read- 048

ability. In this study, we focus specifically on the 049

sports domain, utilizing datasets such as RotoWire 050

(Wiseman et al., 2017), MLB (Puduppully et al., 051

2019b), and ShuttleSet+. These datasets are char- 052

acterized by high data fidelity and longer textual 053

outputs, making the task more challenging. Fig- 054

ure 1 presents an example from ShuttleSet+. The 055

text contained in the tables is highlighted in bold, 056

with different colors used to distinguish informa- 057

tion from different tables. This figure also show- 058

cases the high data fidelity and long-form text char- 059

acteristic of sports game reports. 060

For this task, numerous model-based methods 061

have been proposed, such as NCP (Puduppully 062

et al., 2019a), NDP (Chen et al., 2021), DUV 063

(Gong et al., 2020), Macro (Puduppully and La- 064

pata, 2021), and SeqPlan (Puduppully et al., 2022). 065

However, these approaches require large amounts 066

of training data, making them impractical when 067

datasets are scarce and costly to collect. With 068

advancements in large language models (LLMs), 069

prompt-based methods have become increasingly 070

popular, including Zero-shot, One-shot, and Few- 071

shot learning (Brown et al., 2020), as well as tech- 072

niques like Chain-of-Thought (Wei et al., 2022), 073

Tree-of-Thought (Yao et al., 2023), and Chain-of- 074

Table (Wang et al., 2024). Although these methods 075

are widely used, in the task of generating sports 076

game reports, LLMs fail to effectively analyze and 077

comprehend information within tables, resulting 078

in the generation of text that is inaccurate or not 079

present in the tables, commonly known as the hal- 080

lucination issue. 081

To address these challenges, we propose a novel 082
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Figure 1: An example from ShuttleSet+, which includes multiple structured tables containing match data along with
a corresponding human-written report for the game.

approach, Tree-of-Report, which divides the task083

into three stages: Content Planning, Operation Ex-084

ecution, and Content Generating. First, in the Con-085

tent Planning stage, the LLM plans the operations086

for child nodes based on the table structure. Second,087

in the Operation Execution stage, these selected op-088

erations are executed respectively to update the089

table, which is then passed to the child nodes. Fi-090

nally, in the Content Generating stage, the LLM091

generates text based on the table and returns it to092

the parent node, which then utilizes the LLM to093

merge and rewrite these texts into a new text.094

Tree-of-Report effectively leverages a hierarchi-095

cal tree structure to decompose large tables into096

smaller sub-tables, enhancing the LLM’s ability097

to comprehend tabular information. Additionally,098

we employ a merge-and-rewrite approach to gen-099

erate longer and more comprehensive reports. Ex-100

perimental results demonstrate that Tree-of-Report101

outperforms other prompt-based baselines on the102

RotoWire, MLB, and ShuttleSet+ datasets. Fur-103

thermore, with optimizations, our method achieves104

lower time and cost compared to Tree-of-Thought105

and Chain-of-Table, highlighting its advantages in106

both effectiveness and efficiency.107

We summarize the three main contributions of108

this paper:109

• In the task of table-to-text generation for110

sports game reports, we introduce Tree-of-111

Report, a novel framework that recursively de-112

composes tables into smaller sub-tables, gen- 113

erates short textual descriptions for each sub- 114

table, and merges these short texts into a com- 115

plete report. 116

• We introduce a new sports report dataset, Shut- 117

tleSet+, containing rally-level data from 58 118

badminton matches along with the correspond- 119

ing human-written reports. 120

• Tree-of-Report outperforms other prompt- 121

based baselines on the RotoWire, MLB, and 122

ShuttleSet+ datasets while maintaining rel- 123

atively lower time and cost, demonstrating 124

its superiority in both effectiveness and effi- 125

ciency. 126

2 Related Work 127

2.1 Table-to-Text Generation 128

The goal of the table-to-text generation task is to 129

convert structured tables into unstructured text, typ- 130

ically following a two-stage process: Content Plan- 131

ning and Content Generating (Lin et al., 2024). 132

Content Planning, or “What to say,” involves ana- 133

lyzing and filtering the given structured data, select- 134

ing relevant information for abstraction and associa- 135

tion. Content Generating, or “How to say,” focuses 136

on accurately and fluently describing the selected 137

data using natural language. Tree-of-Report fol- 138

lows this principle in its architectural design. 139

There are numerous datasets available for table- 140

to-text generation, such as WikiBio (Lebret et al., 141
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2016), ToTTo (Parikh et al., 2020), and Tab-142

Fact (Chen et al., 2020). Nevertheless, this pa-143

per focuses on domain-specific datasets, particu-144

larly for sports game reports. For instance, Ro-145

toWire (Wiseman et al., 2017) is a dataset consist-146

ing of human-written summaries of NBA basket-147

ball games paired with their corresponding box148

and line scores. MLB (Puduppully et al., 2019b)149

provides baseball statistics accompanied by human-150

authored summaries from the ESPN website. Shut-151

tleSet+, derived from ShuttleSet22 (Wang et al.,152

2023), contains rally-level data from 58 badminton153

matches along with corresponding human-written154

reports. These datasets share two common charac-155

teristics: high data fidelity and long textual outputs.156

High data fidelity ensures accurate and important157

information, enabling readers to gain a deeper un-158

derstanding of the sports matches. Long textual159

outputs, on the other hand, provide rich and vivid160

descriptions, enhancing reader engagement and in-161

terest in the sports games.162

2.2 Model-based Methods163

Several previous studies have introduced model-164

based approaches for table-to-text generation.165

NCP (Puduppully et al., 2019a) employs a two-166

stage framework, first generating a content plan167

that specifies what information to include and in168

what order before passing it to the text generation169

stage. NDP (Chen et al., 2021) dynamically selects170

relevant information from the input data during text171

generation. DUV (Gong et al., 2020) enhances neu-172

ral content planning by incorporating contextual173

numerical value representations for improved value174

comparison, and applying policy gradient to ver-175

ify the importance and order of selected records.176

Macro (Puduppully and Lapata, 2021) introduces177

a macro planning stage prior to text generation,178

where macro plans structure key entities, events,179

and their interactions. SeqPlan (Puduppully et al.,180

2022) employs a structured variational model to in-181

fer latent plans sequentially, interleaving planning182

and generation steps.183

However, under our experimental setup, the184

dataset size is limited (e.g., ShuttleSet+ contains185

only 58 instances), making it infeasible to train a186

model. Therefore, we explore prompt-based meth-187

ods as an alternative approach.188

2.3 Prompt-based Methods189

With the rise of LLMs, prompt-based methods190

have gained increasing attention. Brown et al.191

(2020) first introduced the Zero-shot, One-shot, 192

and Few-shot approaches, demonstrating that pro- 193

viding some reference examples enables LLMs to 194

achieve strong performance across various tasks. 195

Chain-of-Thought (Wei et al., 2022) enhances LLM 196

reasoning by incorporating a series of intermedi- 197

ate reasoning steps within the prompt. Tree-of- 198

Thought (Yao et al., 2023) enables LLMs to make 199

deliberate decisions by exploring multiple reason- 200

ing paths, self-evaluating choices, and backtrack- 201

ing when necessary to optimize global decision- 202

making. Chain-of-Table (Wang et al., 2024) guides 203

LLMs to iteratively generate operations, updating 204

the table to form a tabular reasoning chain, allow- 205

ing for dynamic operation planning based on previ- 206

ous results. 207

However, previous methods directly input the 208

entire table into the LLM, making it difficult for 209

the model to fully understand the table structure, 210

thereby resulting in hallucination and failing to en- 211

sure high data fidelity. Similarly, these methods 212

directly output the final text in a single step, limit- 213

ing the model’s ability to process comprehensive 214

information, thus failing to produce sufficiently 215

long and detailed textual outputs. Therefore, we 216

propose Tree-of-Text to address these challenges. 217

3 Tree-of-Report 218

3.1 Overview 219

In the task of table-to-text generation, the input 220

consists of multiple tables T , and the output is a 221

textual description t of these tables. We propose 222

a method called Tree-of-Report, inspired by the 223

"divide and conquer" concept of merge sort (Bron, 224

1972), which constructs a tree structure and divides 225

the task into three stages: Content Planning, Oper- 226

ation Execution, and Content Generating. 227

In the Content Planning stage, the LLM deter- 228

mines the operations and arguments OA for the 229

child nodes based on the input tables T , the op- 230

eration history OH , the operation pool OP , and 231

the level L. The number of child nodes must not 232

exceed the maximum degree MAX_DEGREE. 233

In the Operation Execution stage, the opera- 234

tions are executed sequentially to update T , OH , 235

OP , and L, which are then passed to the child 236

nodes, respectively. This process continues recur- 237

sively until either a write() operation is encoun- 238

tered, or the level L reaches the maximum depth 239

MAX_DEPTH . 240

In the Content Generating stage, a short text t′ 241
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Figure 2: The overall workflow diagram of Tree-of-Report, which divides the Table-to-Text Generation task into
three stages: Content Planning, Operation Execution, and Content Generating. To simplify the illustration, we use a
simple tree structure as an example; in practice, the tree structure is more complex.

is first generated based on the updated tables T ′242

and returned to the parent node. The LLM then243

merges and rewrites these texts into a new text t,244

continuing this process until returning back to the245

root node.246

The overall workflow of Tree-of-Report is illus-247

trated in Figure 2, and the algorithm is presented248

in Algorithm 1.249

3.2 Content Planning250

Starting from the root node, the inputs consist of the251

initial tables T ← (T j | j = 1, 2, . . . , n), the op-252

eration history OH ← (op | op = root()), the op-253

eration pool OP ← (op | op ∈ operations, op ̸=254

root()), and the level L← 0. Based on these inputs,255

the LLM determines the operations and arguments256

for the child nodes, denoted as OA ← (Oi(Ai) |257

Oi ∈ OP, i = 1, 2, . . . , d), where d represents the258

degree of this node and must not exceed the maxi-259

mum degree MAX_DEGREE. The prompt for260

Content Planning is provided in Appendix A.1.261

3.3 Operation Execution262

To execute operations that split large tables into263

smaller ones or generate textual descriptions, we264

define a total of eight operations as follows:265

• root(): Does nothing; represents the root266

node of the tree.267

• select_table(): Selects a table by its table268

name. 269

• select_row(): Selects rows based on their 270

row indices. 271

• select_col(): Selects columns based on 272

their column names. 273

• count(): Counts the number of unique values 274

in the specified columns of the tables. 275

• sort(): Sorts rows based on the specified 276

column names and sorting orders. 277

• filter(): Filters rows based on column 278

names, comparison symbols, and values. 279

• write(): Generates text based on the tables 280

using the LLM; represents the leaf node of the 281

tree. The prompt for the write() operation is 282

provided in Appendix A.2. 283

The operations in OA are then executed re- 284

spectively to update T , OH , OP , and L, where 285

Ti ← Oi(T,Ai), OHi ← OH + Oi(Ai), OPi ← 286

OP − Oi(), Li ← L + 1. The updated Ti, OHi, 287

OPi, and Li are then passed to the child nodes, 288

and the process continues recursively until either 289

a write() operation is encountered or the level L 290

reaches the maximum depth MAX_DEPTH . 291

When the level L reaches the maximum 292

depth MAX_DEPTH , we directly call write(), 293

where the LLM generates a short text t describing 294

the current input table T and returns t to the parent 295

node. Similarly, when encountering a write() op- 296

eration, the LLM is invoked to generate a short text 297
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t′i describing the current input table T . Since child298

nodes also return texts t′i, we collect them into a299

sequence t′ = (t′i | i = 1, 2, . . . , d).300

3.4 Content Generating301

The LLM then merges and rewrites t′ into a new302

text t, which is passed to the parent node. This re-303

cursive process continues until it returns to the root304

node. The text t returned from the root node is the305

final output. The prompt for Content Generating is306

provided in Appendix A.3.307

For efficiency considerations, we implemented308

additional optimizations. First, unlike Chain-of-309

Table, which generates operations first and then310

arguments, our method generates operations and311

arguments in one step. Second, if a node has a312

degree of one, there is no need to use the LLM for313

merging; the single text can be directly returned.314

Finally, we experimented with an approach where315

the LLM is used for merging only at the root node,316

while other nodes simply concatenate texts. With317

these optimizations, Tree-of-Report significantly318

reduces both time and cost.319

4 Experiment320

4.1 Dataset321

4.1.1 RotoWire322

The RotoWire (Wiseman et al., 2017) dataset com-323

prises human-written NBA basketball game sum-324

maries in English paired with their corresponding325

box and line scores. These summaries, sourced326

from rotowire.com, are relatively general compared327

to other datasets, providing more high-level infor-328

mation. The dataset includes 4,853 unique sum-329

maries covering NBA games played between Jan-330

uary 1, 2014, and March 29, 2017, with some331

games featuring multiple summaries. The dataset is332

randomly divided into training, validation, and test333

sets, containing 3,398, 727, and 728 summaries,334

respectively. Data preprocessing for RotoWire is335

provided in Appendix B.1 for further details.336

4.1.2 MLB337

The MLB (Puduppully et al., 2019b) dataset con-338

tains baseball statistics paired with human-written339

summaries in English sourced from the ESPN web-340

site. Compared to RotoWire, it is approximately341

five times larger, featuring a broader vocabulary342

and longer summaries. The dataset is divided into343

22,821 training, 1,739 validation, and 1,744 testing344

instances. Data preprocessing for MLB is delivered 345

in Appendix B.2 for further details. 346

4.1.3 ShuttleSet+ 347

We introduce a new dataset, ShuttleSet+, derived 348

from ShuttleSet22 (Wang et al., 2023). Shuttle- 349

Set22 is a human-annotated, stroke-level singles 350

dataset for badminton tactical analysis, comprising 351

140 sets, 3,992 rallies, and 33,612 strokes from 352

58 matches played between 2018 and 2022. The 353

dataset features 35 top-ranking men’s and women’s 354

singles players. Since ShuttleSet22 does not in- 355

clude corresponding textual reports for each match, 356

we collected human-written reports in English for 357

each game from online sources such as the BWF 358

and Olympics websites, and renamed the dataset 359

as ShuttleSet+. Compared to RotoWire and MLB, 360

ShuttleSet+ has fewer data samples, representing a 361

low-resource scenario. In addition, ShuttleSet+ re- 362

ports contain more detailed information, including 363

rally-level data and tactical analysis. Finally, we 364

randomly split the dataset into training, validation, 365

and test sets using a 40:9:9 ratio. Data preprocess- 366

ing for ShuttleSet+ is given in Appendix B.3 for 367

further details. 368

4.2 Evaluation Metric 369

To quantify the similarity of information between 370

two texts, we use the Information Extraction (IE) 371

metrics introduced by Wiseman et al. (2017). 372

These metrics are based on the output of an IE 373

model, which extracts relation pairs, formatted as 374

(table|column|value), from the generated sum- 375

mary. 376

Due to the lack of sufficient data to train a new IE 377

model for ShuttleSet+, we propose an alternative 378

approach that leverages the LLM as a substitute for 379

the IE model. To validate its reliability, we manu- 380

ally annotated a set of relations and compared them 381

with those extracted by the LLM, finding that it 382

achieved over 60% on all evaluation metrics. Based 383

on this experiment, we consider that using an LLM 384

as an IE model is a reliable alternative. The full 385

experimental results are provided in Appendix C. 386

In the experiment, let t̂ denote the model output 387

and t symbolize the gold text. Relation Generation 388

(RG) evaluates the count (#) and precision (P%) 389

of relations extracted from t̂ that are present in the 390

input table T , representing the amount and accu- 391

racy of information in the generated text. Content 392

Selection (CS) assesses the precision (P%), recall 393

(R%), and F1 score (F%) of relations extracted 394
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RotoWire RG # RG P% CS P% CS R% CS F% CO DLD% Avg. Time Cost

Zero-shot 29.69 97.54 56.70 55.77 50.85 30.77 58.33 7.93 0.63
One-shot 31.17 95.72 57.86 56.26 51.12 29.53 58.10 5.07 0.90
Few-shot 28.27 95.37 57.67 54.45 51.07 30.60 57.83 5.38 1.48

Chain-of-Thought 28.46 96.52 58.33 55.57 52.20 32.83 59.09 7.76 0.61
Tree-of-Thought 34.97 95.26 54.43 60.17 52.41 33.66 59.19 54.62 8.18
Chain-of-Table 41.96 92.47 53.47 61.53 50.70 32.63 58.16 63.75 12.54

Tree-of-Report 32.89 96.81 56.98 63.33 54.92 36.37 61.68 21.07 2.43

MLB RG # RG P% CS P% CS R% CS F% CO DLD% Avg. Time Cost

Zero-shot 53.17 84.22 60.45 60.65 49.03 39.25 58.72 7.08 1.62
One-shot 41.15 90.91 70.94 61.95 56.67 47.32 65.56 8.72 1.77
Few-shot 44.16 89.69 71.64 61.91 56.68 46.80 65.34 10.36 1.78

Chain-of-Thought 39.88 94.11 73.72 63.40 56.79 46.46 66.90 9.34 1.73
Tree-of-Thought 33.78 95.83 73.28 64.00 59.34 48.50 68.19 50.96 7.25
Chain-of-Table 28.13 95.37 80.20 60.33 59.60 50.21 69.15 55.60 10.80

Tree-of-Report 30.78 97.54 84.19 63.48 62.99 53.78 72.40 29.18 6.77

ShuttleSet+ RG # RG P% CS P% CS R% CS F% CO DLD% Avg. Time Cost

Zero-shot 13.67 85.19 86.01 86.01 86.01 86.01 85.85 7.53 0.86
One-shot 12.22 84.02 83.26 74.42 78.38 56.99 75.42 6.59 1.12
Few-shot 14.33 90.22 87.72 86.58 86.99 82.31 86.76 6.00 2.20

Chain-of-Thought 13.67 85.53 84.97 84.62 84.70 83.49 84.66 6.68 0.81
Tree-of-Thought 13.33 81.92 81.35 82.48 81.88 81.35 81.80 63.11 9.62
Chain-of-Table 15.00 93.46 89.37 89.37 89.37 89.37 90.19 73.67 14.44

Tree-of-Report 15.78 98.04 93.94 93.94 93.94 93.94 94.76 29.04 5.71

Table 1: The quantitative results for RotoWire, MLB, and ShuttleSet+, respectively, where the highest scores are
highlighted in bold, the second-highest scores are underlined, and our method is marked with a yellow background.

from t̂ that also appear in t, indicating the informa-395

tion similarity between the generated text and the396

reference text. Content Ordering (CO) quantifies397

the complement of the Damerau-Levenshtein Dis-398

tance (DLD%) (Damerau, 1964) between relations399

extracted from t̂ and t, meaning the ordering simi-400

larity between the generated text and the reference401

text. We also compute the average (Avg.) of RG402

P%, CS P%, CS R%, CS F%, and CO DLD% to403

represent overall performance. Higher values of404

RG, CS, CO, and Avg. indicate better effective-405

ness.406

Additionally, to evaluate the efficiency of each407

method, we compute the average time (in seconds)408

and cost (in $0.001 USD) required to generate a409

text. The cost is estimated based on the API Pricing410

published by OpenAI (OpenAI, 2025). Lower time411

and cost values mean better efficiency.412

4.3 Implementation Detail413

For all datasets, Tree-of-Report employs414

gpt-4o-mini (OpenAI, 2024) as the backbone415

LLM. Zero-shot prompting is used, with CSV416

as the table format, max degree set to 5, and the417

operation pool containing all available operations.418

However, since the texts in RotoWire and MLB 419

are more general, we set the max depth to 3 420

for RotoWire and MLB. In contrast, because 421

ShuttleSet+ contains more detailed texts, we set 422

the max depth to 5 for ShuttleSet+. Additionally, 423

we adjusted the prompts for Content Planning, 424

write(), and Content Generating according to the 425

requirements of each dataset. 426

4.4 Quantitative Result 427

We compared Tree-of-Report with other prompt- 428

based methods on the RotoWire, MLB, and Shut- 429

tleSet+ datasets. The quantitative results are shown 430

in Table 1. 431

From the quantitative results, we observe that 432

Tree-of-Report achieves the best overall perfor- 433

mance across all datasets, outperforming other 434

baselines by 2.49% on RotoWire, 3.25% on MLB, 435

and 4.57% on ShuttleSet+, demonstrating its su- 436

periority in effectiveness. This improvement is 437

attributed to the tree-structured design of Tree-of- 438

Report, which divides tables into smaller sub-tables 439

and merges generated text into longer reports, facil- 440

itating high data fidelity and long-text generation. 441

Although Tree-of-Report does not achieve the 442
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Prompt RG # RG P% CS P% CS R% CS F% CO DLD% Time Cost

Zero-shot 15.78 98.04 93.94 93.94 93.94 93.94 29.04 5.71
One-shot 15.67 97.04 93.77 93.77 93.77 93.77 45.10 15.03
Few-shot 14.78 95.99 93.86 89.41 91.08 87.93 42.88 19.43

Table 2: The experimental results for comparing differ-
ent prompts on ShuttleSet+, where the highest scores
are highlighted in bold, the second-highest scores are
underlined, and the best configuration is marked with a
yellow background.

highest RG # on RotoWire and MLB, this is be-443

cause the reports in these two datasets are more444

general. Compared to Zero-shot, which includes445

too little information, and Chain-of-Table, which446

includes too much information, Tree-of-Report se-447

lects an appropriate amount of information while448

maintaining a relatively high RG P%. This demon-449

strates the significance of Content Planning, which450

selects operations to extract relevant information.451

Except for CS P% on RotoWire and CS R%452

on MLB, Tree-of-Report achieves the best perfor-453

mance in all CS metrics. The reason is that Tree-454

of-Report produces more detailed text, leading to455

higher scores on the detailed ShuttleSet+ dataset,456

but lower scores on the general RotoWire and MLB457

datasets. This reveals the significance of Operation458

Execution, which extracts more detailed informa-459

tion by executing operations to decompose the ta-460

bles.461

As for CO, Tree-of-Report achieves the highest462

score across all datasets. This shows the signifi-463

cance of Content Generating, which merges and464

rewrites texts to maintain the original structure and465

order of the tables.466

Furthermore, while Tree-of-Report does not467

have the lowest time and cost, it is still lower than468

Tree-of-Thought and Chain-of-Table. For example,469

on ShuttleSet+, Tree-of-Report achieves only 39%470

of Chain-of-Table’s time and 40% of its cost, show-471

ing its advantage in efficiency. This improvement472

is attributed to the optimizations that significantly473

reduce the time and cost of the Tree-of-Report.474

The qualitative result is provided in Appendix D.475

4.5 Ablation Study476

4.5.1 The Effects of Prompt Templates477

To analyze the impact of different prompts on Tree-478

of-Report, we design three types of prompts: Zero-479

shot, One-shot, and Few-shot. In the Zero-shot set-480

ting, the prompts for Content Planning, write(),481

and Content Generating do not include any human-482

annotated reference examples. The One-shot set-483

Table Format RG # RG P% CS P% CS R% CS F% CO DLD% Time Cost

CSV 15.78 98.04 93.94 93.94 93.94 93.94 29.04 5.71
PIPE 15.78 98.04 93.29 93.29 93.29 93.29 78.53 9.63

HTML 15.67 97.39 92.64 92.64 92.64 92.64 104.99 19.26
Markdown 14.67 92.31 87.56 86.75 87.10 84.14 62.65 9.80

Table 3: The experimental results for comparing dif-
ferent table formats on ShuttleSet+, where the highest
scores are highlighted in bold, the second-highest scores
are underlined, and the best configuration is marked
with a yellow background.

ting includes a single reference example in these 484

prompts, while the Few-shot setting incorporates 485

three reference examples. The experimental results 486

on ShuttleSet+ are presented in Table 2. 487

The experimental results indicate that increasing 488

the number of reference examples leads to worse 489

performance while also increasing time and cost. 490

Our assumption is that manually defined exam- 491

ples may constrain the LLM’s inherent capabilities 492

rather than enhance them. Additionally, the longer 493

input context may make it more challenging for 494

the LLM to identify the most relevant informa- 495

tion. Consequently, we chose to use the Zero-shot 496

prompt for all subsequent experiments. 497

4.5.2 The Impacts of Table Formats 498

We also analyzed the impact of different table for- 499

mats on Tree-of-Report’s performance by compar- 500

ing four commonly used formats: CSV (Comma- 501

Separated Values), PIPE, Markdown, and HTML 502

(HyperText Markup Language). CSV separates val- 503

ues with commas, making it ideal for spreadsheets, 504

while PIPE uses the | symbol as a delimiter, com- 505

monly found in command-line outputs. Markdown 506

tables employ pipes (|) to define columns and hy- 507

phens (-) for headers, frequently used in documen- 508

tation. HTML tables utilize <table>, <tr>, and 509

<td> tags to structure tabular data for the website. 510

The experimental results on ShuttleSet+ in Ta- 511

ble 3 show that CSV achieves the best performance. 512

While PIPE and HTML perform similarly, they 513

have significantly higher time and cost due to re- 514

quiring more symbols to represent the table, re- 515

sulting in a longer input context. Markdown per- 516

forms the worst, likely because LLMs have been 517

pre-trained on fewer examples of this format, lead- 518

ing to weaker table comprehension. Based on these 519

findings, we adopted CSV as the table format for 520

all following experiments. 521
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Max Depth Max Degree RG # RG P% CS P% CS R% CS F% CO DLD% Time Cost

5 5 15.78 98.04 93.94 93.94 93.94 93.94 29.04 5.71
3 5 15.67 95.99 91.42 92.72 92.03 91.42 16.60 2.37
5 3 15.67 97.21 92.46 92.46 92.46 92.46 29.48 4.90
3 3 13.89 88.18 83.43 82.00 82.56 82.00 11.79 1.82

Table 4: The experimental results for comparing differ-
ent max depth and max degree on ShuttleSet+, where
the highest scores are highlighted in bold, the second-
highest scores are underlined, and the best configuration
is marked with a yellow background.

4.5.3 The Analysis of Max Depth & Max522

Degree523

To determine the optimal maximum depth and max-524

imum degree for Tree-of-Report, we conducted the525

following experiments. The baseline setting uses a526

max depth and max degree of 5. In one experiment,527

we reduced the max depth to 3 while keeping the528

max degree at 5. In another, we set the max degree529

to 3 while maintaining the max depth at 5. Finally,530

we tested a configuration where both the max depth531

and max degree were set to 3. The experimental532

results on ShuttleSet+ are presented in Table 4.533

From the experimental results, we observe that534

setting both max depth and max degree to 5 yields535

the best performance; however, it also results in536

higher time and cost. When reducing the max537

depth to 3 while keeping the max degree at 5, the538

performance drops more significantly compared to539

reducing the max degree to 3 while keeping the540

max depth at 5. This suggests that max depth has541

a greater impact on the generated text than max542

degree. This finding is intuitive, as max depth con-543

trols the level of detail in the text, whereas max544

degree influences its richness.545

Finally, setting both max depth and max degree546

to 3 yields the worst performance, as expected.547

However, it is worth noting that this setting also re-548

sults in the lowest time and cost. This suggests that549

max depth and max degree can be adjusted based550

on the desired level of detail in the generated text.551

If more detailed text is required, increasing max552

depth and max degree improves performance at the553

expense of higher computational cost. Conversely,554

for more general text, reducing the max depth and555

max degree lowers both the level of detail and the556

cost.557

4.5.4 The Influences of Operation Pool558

To demonstrate the significance of each operation,559

we performed the following experiments. The base-560

line configuration includes all operations in the op-561

eration pool. Then, in each experiment, we system-562

Operation Pool RG # RG P% CS P% CS R% CS F% CO DLD% Time Cost

All operations 15.78 98.04 93.94 93.94 93.94 93.94 29.04 5.71
w/o select_table() 15.44 98.69 82.57 92.94 85.57 82.57 44.45 6.11

w/o select_row() 15.33 98.04 84.53 94.90 87.53 84.53 48.00 6.80
w/o select_col() 15.11 98.69 85.19 93.33 86.95 82.96 49.80 7.49

w/o count() 15.44 98.69 82.57 92.94 85.57 82.57 25.30 4.20
w/o sort() 15.44 98.69 85.19 95.56 88.18 85.19 36.64 5.64

w/o filter() 15.44 98.69 82.57 92.94 85.57 82.57 33.34 5.53

Table 5: The experimental results for comparing differ-
ent operation pools on ShuttleSet+, where the highest
scores are highlighted in bold, the second-highest scores
are underlined, and the best configuration is marked
with a yellow background.

atically removed one operation from the operation 563

pool and evaluated the impact on performance. 564

The experimental results on ShuttleSet+ in 565

Table 5 show that removing select_table(), 566

select_row(), and select_col() leads to a sig- 567

nificant performance drop, highlighting their im- 568

portance. Without these operations, the LLM pro- 569

cesses the entire table to generate text, leading to 570

increased time and cost. In contrast, removing 571

count(), sort(), and filter() has a less pro- 572

nounced effect, suggesting that they are relatively 573

less critical. However, without these operations, 574

it becomes impossible to compute more detailed 575

information, resulting in a lower RG # but a higher 576

RG P%. Overall, maintaining all operations pro- 577

vides the most balanced performance, demonstrat- 578

ing greater robustness. 579

5 Conclusion 580

In this paper, we propose Tree-of-Report, a novel 581

framework for table-to-text generation in sports 582

game reports. Inspired by the "divide and conquer" 583

concept of merge sort (Bron, 1972), our method 584

divides the generation process into three stages: 585

Content Planning, Operation Execution, and Con- 586

tent Generating. By recursively decomposing large 587

tables into smaller sub-tables and merging short 588

texts into a long text, our approach effectively en- 589

hances data fidelity and generates coherent long- 590

form outputs. Experimental results demonstrate 591

that Tree-of-Report achieves the best overall perfor- 592

mance across all datasets, surpassing other prompt- 593

based baselines by 2.49% on RotoWire, 3.25% 594

on MLB, and 4.57% on ShuttleSet+, highlight- 595

ing its superiority in effectiveness. Furthermore, 596

our method achieves only 39% of Chain-of-Table’s 597

time and 40% of its cost, showing its advantage 598

in efficiency. In summary, Tree-of-Report opens a 599

new path for prompt-based table-to-text generation 600

in sports game reports. 601
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Limitations602

While Tree-of-Report demonstrates strong perfor-603

mance, our approach requires manually tuning604

configurations and prompts for the corresponding605

dataset. Therefore, one of the interesting research606

directions could be to explore automatic selection607

for configurations and prompts. On the other hand,608

Tree-of-Report achieves more efficient time and609

cost compared to Tree-of-Thought and Chain-of-610

Table, yet we leave the efficiency direction as the611

future work as our proposed approach still requires612

higher time and cost than Few-shot and Chain-of-613

Thought.614

Ethical Considerations615

First, although Tree-of-Report does not require616

large training datasets compared to model-based617

baselines, using external LLMs raises concerns618

about data privacy, especially for sensitive informa-619

tion. Second, while Tree-of-Report achieves higher620

data fidelity compared to other prompt-based base-621

lines, hallucination issues may still occur, poten-622

tially generating incorrect or non-existent informa-623

tion that could mislead readers.624
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A Example Prompt726

A.1 Example Prompt for Content Planning727

Figure 3 shows an example prompt for Con-728

tent Planning on the ShuttleSet+ dataset. In729

this prompt, {TABLE_DESCRIPTION} provides730

descriptions for each column in the table,731

{OPERATION_DESCRIPTION} explains each avail-732

able operation, {TABLES} represents the input733

tables, {OPERATION_HISTORY} lists the opera-734

tions previously used by the parent node, and735

{OPERATION_POOL} indicates the remaining un-736

used operations. Then, the LLM outputs the737

Operations & Arguments based on the input738

prompt.739

A.2 Example Prompt for write() operation740

Figure 4 shows an example prompt for the write()741

operation on the ShuttleSet+ dataset. In this742

prompt, {TABLE_DESCRIPTION} provides descrip-743

tions for each column in the table, and {TABLES}744

represents the input tables. Then, the LLM gener-745

ates the Report based on the input prompt.746

A.3 Example Prompt for Content Generating747

Figure 5 shows an example prompt for Content748

Generating on the ShuttleSet+ dataset. In this749

prompt, {REPORTS} represents multiple reports.750

Then, the LLM merges and rewrites the reports751

into a New Report based on the input prompt.752

A.4 Example Prompt for the LLM-based IE 753

model 754

Figure 6 shows an example prompt for the LLM- 755

based IE model on the ShuttleSet+ dataset. In this 756

prompt, {TABLE_DESCRIPTION} provides descrip- 757

tions for each column in the table, {REPORT} is a 758

report of a match, and {TABLE_RELATION} lists all 759

relations from the match’s tables. The LLM then 760

extracts relations from the report based on the input 761

prompt. 762

B Data Preprocessing 763

B.1 Data Preprocessing for RotoWire 764

To ensure the input aligns with the Tree-of-Report 765

format, we first preprocess the RotoWire dataset. 766

Initially, we convert the original data from JSON 767

format into multiple CSV tables: game, home_line, 768

vis_line, and box_score. Specifically, game con- 769

tains overall game information, home_line repre- 770

sents the line score of the home team, vis_line 771

represents the line score of the visiting team, and 772

box_score records individual player statistics. Fi- 773

nally, we reorder the table columns according to 774

the sequence specified in the table description of 775

RotoWire. 776

B.2 Data Preprocessing for MLB 777

To ensure the input conforms to the Tree-of-Report 778

format, we also preprocess the MLB dataset. Sim- 779

ilar to RotoWire, we first convert the original 780

data from JSON format into multiple CSV tables: 781

game, home_line, vis_line, box_score, and 782

play_by_play. Specifically, game contains overall 783

game information, home_line represents the line 784

score of the home team, vis_line represents the 785

line score of the visiting team, box_score records 786

individual player statistics, and play_by_play de- 787

tails the scoring of each at-bat. Next, since the 788

box_score table contains many rows with N/A val- 789

ues, we remove these redundant rows to stream- 790

line the dataset. Eventually, we reorder the table 791

columns according to the sequence specified in the 792

table description of MLB. 793

B.3 Data Preprocessing for ShuttleSet+ 794

ShuttleSet22 is a stroke-level dataset; however, gen- 795

erating textual descriptions does not require such 796

detailed information. Therefore, we retain only the 797

final stroke of each rally. To streamline the dataset, 798

we selected the nine most essential columns, re- 799

naming and reordering to improve clarity while 800
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Prompt RG # RG P% CS P% CS R% CS F% CO DLD%

Zero-shot 15.00 100.00 73.33 64.71 68.75 17.65
One-shot 11.00 100.00 100.00 64.71 78.57 64.71

Table 6: The evaluation results of the LLM-based IE
model with different prompts. The highest scores are
highlighted in bold, and the best configuration is marked
with a yellow background.

removing unrelated fields. Additionally, the values801

in the ball_type, win_reason, and lose_reason802

columns were originally in Chinese, so we trans-803

lated them into English. Lastly, we reorder the804

table columns according to the order specified in805

the table description of ShuttleSet+.806

C LLM-based IE model807

Since no existing IE model is available for Shuttle-808

Set+ and the training data are insufficient, we use809

an LLM as the IE model to extract relations from810

the text. To validate the reliability of the LLM-811

based IE model, we manually annotated a set of812

relations and compared them with those extracted813

by the LLM. The evaluation results are presented814

in Table 6.815

We compared two prompting methods for the816

LLM-based IE model: Zero-shot and One-shot. Ex-817

perimental results show that One-shot performs bet-818

ter, achieving over 60% across all metrics. There-819

fore, we used One-shot prompting for all subse-820

quent experiments. We hypothesize that providing821

an additional example allows the LLM to reference822

it, leading to relation extraction that more closely823

aligns with human annotations. The prompt for the824

LLM-based IE model is provided in Appendix A.4.825

D Qualitative Result826

Figure 7 showcases the qualitative results of human-827

written, Chain-of-Table, and Tree-of-Report out-828

puts. For ease of comparison, we mark the infor-829

mation in the text with bold: green indicates infor-830

mation included in the tables, while red indicates831

errors or information not found in the tables.832

From the qualitative results, we observe that833

compared to Chain-of-Table, Tree-of-Report gener-834

ates more comprehensive and detailed information835

(e.g., shot type frequencies) and produces more836

accurate outputs, with only one error compared to837

seven errors from Chain-of-Table. This further val-838

idates that Tree-of-Report can generate text that839

meets the characteristics of high data fidelity and840

long-form output for sports game reports.841
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Algorithm 1 Tree-of-Report

Require: Tables T , Operation History OH , Operation Pool OP , Level L, Max Depth MAX_DEPTH ,
Max Degree MAX_DEGREE

Ensure: Text t
1: function TREE-OF-REPORT(T,OH,OP,L)
2: if L ≥MAX_DEPTH then
3: t← WRITE(T )
4: return t
5: end if

▷ Content Planning
6: OA← CONTENT_PLANNING(T,OH,OP )

▷ Operation Execution
7: t′ ← ()
8: for each (Oi, Ai) in OA[0 : MAX_DEGREE] do
9: if Oi = write() then

10: t′i ← WRITE(T )
11: else
12: Ti ← Oi(T,Ai)
13: OHi ← OH +Oi(Ai)
14: OPi ← OP −Oi()
15: Li ← L+ 1
16: t′i ← TREE-OF-REPORT(Ti, OHi, OPi, Li)
17: end if
18: t′ ← t′ + t′i
19: end for

▷ Content Generating
20: t← CONTENT_GENERATING(t′)
21: return t
22: end function

23: Main Program
24: T ← (T j | j = 1, 2, . . . , n)
25: OH ← (op | op = root())
26: OP ← (op | op ∈ operations, op ̸= root())
27: L← 0
28: t← TREE-OF-REPORT(T,OH,OP,L)
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System:

You are a content planner for the badminton game report.

Please select candidate Operations and corresponding Arguments from the Operation
Pool based on the input Tables and Operation History. These candidate Operations
will be the next Operation in the Operation History.

# Requirements

1. Strictly adhere to the requirements.
2. The output must be in English.
3. The output must be based on the input data; do not hallucinate.
4. The table format is {TABLE_FORMAT }.
5. The length of Operation History must be less than or equal to {MAX_DEPTH }.
6. The number of Operations must be less than or equal to {MAX_DEGREE }.
7. Only select Operations from the Operation Pool.
8. Arguments must match the format required by the corresponding Operations.
9. Operations & Arguments must follow this format: [operation_1(argument_1 , ...),

operation_2(argument_2 , ...), operation_3(argument_3 , ...), ...]
10. Only output Operations & Arguments!
11. The number of tokens in the Operations & Arguments must be within {

PLANNING_TOKENS }.

# Table Description

{TABLE_DESCRIPTION}

# Operation Description

{OPERATION_DESCRIPTION}

User:

# Test

## Tables

{TABLES}

## Operation History

{OPERATION_HISTORY}

## Operation Pool

{OPERATION_POOL}

## Operations & Arguments

Figure 3: Prompt for Content Planning
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System:

You are a content writer for the badminton game report.

Please write the Report based on the input Table.

# Requirements

1. Strictly adhere to the requirements.
2. The output must be in English.
3. The output must be based on the input data; do not hallucinate.
4. The Table format is {TABLE_FORMAT }.
5. The Report can only describe the content included in the Tables and cannot

describe anything not included in the Tables.
6. The Report must consist of only one paragraph.
7. The number of tokens in the Report must be within {WRITE_TOKENS }.

# Table Description

{TABLE_DESCRIPTION}

User:

# Test

## Tables

{TABLES}

## Report

Figure 4: Prompt for write() operation

System:

You are a content generator for the badminton game report.

Please merge and rewrite a New Report based on the input Reports.

# Requirements

1. Strictly adhere to the requirements.
2. The output must be in English.
3. The output must be based on the input data; do not hallucinate.
4. The New Report must include all the content from the input Reports; do not omit

any information.
5. The New Report must follow the order of the input Reports.
6. The number of tokens in the New Report must be within {GENERATING_TOKENS }.

User:

# Test

## Reports

{REPORTS}

## New Report

Figure 5: Prompt for Content Generating
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System:

You are a relation extractor for the badminton game report.

Please extract the Report Relation contained in the Report from the Table Relation.

There is an Example that you can refer to.

# Requirements

1. Strictly adhere to the requirements.
2. The output must be in English.
3. The output must be based on the input data; do not hallucinate.
4. Please do not output any Report Relation that is not included in the Report.
5. Please do not output any Report Relation that is not included in the Table

Relation.
6. The Report Relation must contain all the relations from the input Report; do not

omit any relation.
7. The Report Relation must follow the order in the input Report.
8. The Report Relation must follow the format: [(table|column|value), (table|column|

value), ...]

# Table Description

{TABLE_DESCRIPTION}

User:

# Test

## Report

{REPORT}

## Table Relation

{TABLE_RELATION}

## Report Relation

Figure 6: Prompt for LLM-based IE model
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Figure 7: The qualitative results of human-written, Chain-of-Table, and Tree-of-Report outputs.
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