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ABSTRACT

For the simulation of spikes in biological neurons, a natural fit is the spiking neu-
ral networks, which produce binary outputs from spiking neurons. SNN receives
arising investigations for its high biological plausibility and efficient inference on
neuromorphic chips. However, it is still a challenge to train SNNs with more than
50 layers due to the gradient vanishing problem caused by the spiking neuron lay-
ers, which greatly prevents SNNs from going deeper to obtain higher performance.
In this paper, we first investigate the variants of spiking residual blocks and find
that deep SNNs with binary outputs can not be constructed by simply replacing
the activation function in the existing residual structure in ANN with the spiking
neuron layer. We thus propose a logic spiking network (LSN) to benefit deep SNN
training. Our LSN contains two functionally distinct branches, a structure inspired
by excitatory and inhibitory pathways followed by a logical operation for binary
spike outputs. We demonstrate both theoretically and experimentally that LSN
can implement identity mapping as well as overcome the vanishing gradient prob-
lem. Our LSN can be expanded by more than 100 layers with binary outputs and
performs favorably against existing spiking ResNet and its variants. Our proposed
LSN achieved 94.68% accuracy on CIFAR10, 71.86% accuracy on ImageNet, and
75.1% accuracy on CIFAR10-DVS.

1 INTRODUCTION

Spiking neural networks (SNNs) are inspired by biological mechanisms and are considered as the
third generation of artificial neural networks (Maass, 1997). Unlike using continuous floating-point
activation values in Artificial Neural Networks (ANNs), the biological neural system transmits infor-
mation through discrete spikes. SNNs employ spiking neurons with a firing threshold to transform
the large activity as spikes, simulating the activity of biological neurons. As they incorporate both
time and spikes, SNNs are more biologically plausible and energy efficient, which have been veri-
fied on neuromorphic chips, including TrueNorth, Loihi, and TianJic (Akopyan et al., 2015; Davies
et al., 2018; Pei et al., 2019).

In parallel, the success of ANNs largely depends on deep learning (LeCun et al., 2015), since deeper
networks can better extract the input features (Simonyan & Zisserman, 2014; Szegedy et al., 2015).
But as the network depth increases, accuracy gets saturated and then degrades rapidly (He & Sun,
2015). Residual connections are used in ANN to solve the problem of network degradation (He
et al., 2016a). In order to build deep SNNs, spiking ResNet simply replace ReLU in the ResNet of
the ANN with spiking neurons (Zheng et al., 2021; Kim et al., 2018; Hwang et al., 2021). However,
owing to the gradient vanishing problem caused by the spiking neuron layers, spiking ResNet is un-
able to address the issue of degradation, and the neurons in the deep layers hardly fire (Cox & Dean,
2014). To solve the dilemma of training deep SNNs, Zheng et al. (2021) extends batch normaliza-
tion to the time dimension and successfully trains 34-layer and 50-layer spiking ResNet. Quite a
few studies adopt the pre-activation residual structure to avoid the vanishing gradient caused by the
spiking neuron layer and successfully expand the network to 100 layers, but make the output of the
network contain positive integers or floating-point values, which loss the event-driven advantage of
SNNs (Fang et al., 2021; Feng et al., 2022).
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In this study, We review the evolution of the residual connections in ANNs and find that a deep
SNN with binary output can not be constructed by simply replacing the activation function in the
existing residual structure in ANNs with the spiking neuron layer. Specifically, we show that one
branch with a skip connection is unable to construct a deep SNN with binary outputs. Inspired
by the fact that the biological neural system contains two kinds of functionally distinct pathways,
i.e., excitatory pathways and inhibitory pathways (Luo, 2021), we propose a logic spiking neural
network (LSN), which contains two functionally distinct branches to mimic excitatory and inhibitory
pathways. Then we explain the reciprocal transformational mechanism between 0 and 1 in the
network and how to implement the required transformational mechanism through logical operations.
Moreover, our theoretical derivation proves that it can both implement identity mapping of discrete
spikes and address the issue of vanishing gradient. The experimental results are consistent with our
analysis, showing that LSN can achieve better performance as its depth increase and outperform
other networks such as spiking ResNet and its variants.

Our contribution can be summarized in the following three points:

• We design a novel structure that contains two branches inspired by excitatory pathways
and inhibitory pathways in biological system. At the end of each block, the logic operation
is used to replace the arithmetic operation commonly used before to obtain binary spikes,
which makes better use of the information contained in whether the spike is fired or not,
rather than only the numerical information contained in 0 and 1.

• To the best of our knowledge, we are the first to train an SNN with binary output and more
than 100 layers, which relieves the degradation and silence problems of deep SNNs.

• The network we proposed is more biology-plausible and gets state-of-the-art (SOTA) accu-
racy, including 94.68% on CIFAR10, 71.86% on ImageNet, and 75.1% on CIFAR10-DVS
with fewer simulation steps T .

2 RELATED WORK

2.1 LEARNING ALGORITHM OF DEEP SNNS

Generally, there are mainly two methods to obtain a high-performance SNN: ANN to SNN conver-
sion method (ANN2SNN) and back-propagation based on surrogate gradient. Local self-supervised
learning methods such as spike timing dependent plasticity (STDP) (Bi & Poo, 1998; Mozafari
et al., 2018; Kheradpisheh et al., 2018) and Hebbian learning (Hebb, 2005) can only train shal-
low networks, usually no more than five layers. And the performance is far below the above two
methods.

ANN2SNN This method first trains a corresponding ANN, and then replaces its activation function
with spiking neurons (Deng & Gu, 2021; Han & Roy, 2020; Han et al., 2020; Kim et al., 2020b;
Sengupta et al., 2019; Woźniak et al., 2020). Generally, scaling operations of network parameters
and neuron firing thresholds are required. This method essentially uses the firing rates of neurons to
approximate the floating-point outputs in ANN. Therefore, a very large number of simulation steps
T is required to obtain high accuracy, which makes the SNN more energy-consuming. In addition,
the converted SNN is restricted to rate-coding, which losses its temporal dynamics.

Surrogate Gradient The SNN obtained by direct training usually uses surrogate gradients during
back-propagation (Deng et al., 2022; Perez-Nieves & Goodman, 2021; Guo et al., 2022; Kim et al.,
2020a). The directly trained SNNs require fewer time steps than ANN2SNN. Although the accuracy
of the directly trained SNN is still lower than ANN2SNN in large datasets like ImageNet, it has been
significantly improved in recent years (Fang et al., 2021; Li et al., 2021). And Sharmin et al. (2019)
have argued that the SNN obtained by ANN2SNN is inferior to the SNN obtained by direct training
in adversarial robustness and biological similarity. The directly trained SNN is more suitable for
application in neuromorphic datasets and is not limited to rate-coding, which makes the SNNs more
brain-like.
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2.2 GOING DEEPER WITH SNNS

Going deeper with residual connections in ANNs Residual connection is the most successful
method to solve the degradation problem in ANNs. ResNet meets two requirements to address the
degradation problem successfully: (i) Residual learning: He et al. (2016a) hypothesizes that it is
easier to optimize the residual mapping than to optimize the original, unreferenced mapping. What
the branch structure has learned ought to be the discrepancy between the required features and the
input features. (ii) Identity mapping: the output should be equal to the input when the branch output
is zero.

Spiking ResNet suffers from vanishing gradient due to spiking neurons layers In SNNs, spiking
ResNet (Zheng et al., 2021; Deng et al., 2022; Li et al., 2021) directly replaced the activation layer
of ResNet in ANN with the spiking neuron layer but still suffers from the degradation problem.
The ReLU function is commonly used in ANN, during the back-propagation process, if the input
is greater than 0, the gradient is always 1, so the problem of gradient disappearance due to the
activation function layer will not occur(shown in Fig. 1). For the spiking ResNet(shown in Fig.
3(a)), there is a neuron layer at the end of each residual block. For example, when the derivative
function of the Sigmoid S(x) = 1

1+e−αx , α = 1 function is utilized as a surrogate gradient, during
the back-propagation, each time the gradient passes through the last neuron layer in the residual
block the gradient will decay to less than one-quarter of the previous thus there is a serious problem
of gradient disappearance,

Gradientafter neuron layer ⩽ 0.25×Gradientbefore neuron layer (1)
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Figure 1: Derivative functions of ReLU
and Sigmoid.

Although the maximum gradient value of the neuron layer
in the back-propagation process can be adjusted by tuning
the parameters of the surrogate gradient function since the
integral of the surrogate function is 1, Fig. 1 shows the ad-
justment of the parameters is only the adjustment of the
gradient distribution and the too sharp surrogate gradient
will lead the network to fail to converge. Consequently,
there is no way to address the issue by adjusting the surro-
gate function. Spiking ResNet also has the problem that
it cannot achieve identity mapping for complex neurons
such as LIF (Fang et al., 2021). At present, when the
number of layers of spiking ResNet is increased from 34 to 50, the accuracy is only improved by
1.16% (Zheng et al., 2021), while networks with more than 50 layers can not converge. Therefore,
most current studies use spiking ResNet18 or ResNet34 as the backbone (Li et al., 2021; Guo et al.,
2022), which greatly limits the performance of directly trained SNNs.

Spiking ResNet variants can not go deeper with binary outputs Some previous work (Zheng
et al., 2021; Fang et al., 2021; Feng et al., 2022) attempts for residual structure in SNNs are based
on the other residual structure in ANN. We firstly review the evolution of the residual connection
in ANN, showing simply using the spiking neuron layer to replace the activation layer in ResNet
or its variants can not obtain a deep SNN with binary output. Fig. 2 illustrates the evolution of
residual structure in ANN. After the original ResNet (shown in Fig. 2(a)) was proposed, He et al.
(2016b) attempted not to change its components but changed its order, resulting in a total of five
kinds of residual connection structures. Fig. 2(b) adopts the structure that BN after ADD, but
this structure destroys the idea of identity mapping. So ReLU before addition, ReLU-only pre-
activation, and full pre-activation are proposed, which adopt the Pre-activation structure and do not
use any extra operations in the shortcut skips. The Pre-activation structure is widely used in most
deep networks and is not restricted to the convolutional network, which was used when the original
residual structure was proposed, and it has also been extensively applied to Transformer (Vaswani
et al., 2017) structures such as BERT (Devlin et al., 2018) and ViT (Dosovitskiy et al., 2020). Quite a
few studies use the pre-activation structure to avoid the disappearance of the gradient disappearance
caused by the neuron layer.

For ReLU before addition, the ReLU layer is placed last. Hence the output of the branch structure
is always non-negative, which limits the fitting ability of the network and makes the output of the
network infinitely increase with the depth increase. Fang et al. (2021) uses this structure, so it
suffers the same question and the network output contains positive integers. For full pre-activation,
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Figure 2: The evolution of residual connection, Activation in ANN refers to ReLU, and Activation
in SNN refers to spiking neuron.

Feng et al. (2022) uses this uses this structure. Since the last layer in the branch structure is the
convolutional layer, the output is the floating-point value and loses the event-driven advantage of
SNN. Therefore, as shown in Table. 1, a deep SNN with binary output can not be constructed by
simply replacing the activation function in the existing residual structure in ANN with the spiking
neuron layer.

Table 1: Five Residual Structures Applied on ANN and SNN.

Case Drawbacks Performance compared
to original structure

Applied on SNN
Gradient disappearse Output

original - - unsolved binary
BN after ADD Unable to implement identity worse unsolved binary
ReLU before ADD branch output is non-negative worse resolved zero and positive integers
ReLU-only pre-activation - worse resolved float-point value
full pre-activation - better resolved float-point value

3 PROPOSED METHOD

3.1 NEURON MODEL

At present, the biggest difference between SNN and ANN lies in the neuron layer of SNN. We utilize
Leaky Integrate-and-Fire (LIF) neurons here. U denotes the membrane potential, the post-synaptic
potential is updated as,

Û t+1 = αU t +W ∗Ot+1, (2)

where Û t+1 denotes the membrane potential before the neuron fire mechanism at time-step t+1 and
U t denotes the membrane potential after the neuron fire mechanism at time-step t, α is a constant
leaky factor of membrane potential between 0 and 1, W means the weight of inputs. Û t+1 depends
on the attenuated value of U t in the time domain and on the spikes of neurons in the previous layer
at the current time-step t + 1 in the space domain, denoted as Ot+1. If Û t+1 exceeds the firing
threshold Vth, the neuron will fire a spike, and the output Y t+1 of neurons at time-step t + 1 is 1,
otherwise it is 0,

Y t+1 = Θ(Û t+1 − Vth), (3)

where U t+1 is the membrane voltage after the spike generation mechanism at time-step t+1. Θ(x)
is the Heaviside step function. The membrane voltage after the neuron fires is reset to zero. The
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Figure 3: The basic block of traditional Spiking ResNet and Logical Spiking Network .

membrane potential after the firing mechanism U t+1 where is defined as below.

U t+1 = (1− Y t+1) ◦ Û t+1. (4)
where ◦ means Hadamard product, i.e, bitwise multiplication. There is a membrane potential atten-
uation mechanism of LIF neurons, reflected in equation 2 as α , which makes the LIF neuron more
biology-plausible than the IF neuron.

3.2 LOGICAL SPIKING NETWORK

By reviewing the spiking ResNet and its variants, we found that the Pre-activation structure can
avoid the problem of vanishing gradient in SNNs, but also introduce non-binary outputs, indicating
one branch with a skip connection is unable to construct a deep SNN with binary outputs. To
overcome the limitations, here we propose the Logical Spiking Network (LSN), a deep SNN with
binary outputs, which contains two functionally different branches, and shows its transformation
mechanism inspired by excitatory pathways and inhibitory pathways can both implement identity
mapping and overcome the vanishing gradient problem caused by the spiking neuron layer.

Network structure inspired by excitatory and inhibitory pathways There are two kinds of path-
ways in the biological neural system. The first one is the excitatory pathway. There is a large number
of this pathway, but their types are only a few. The second one is the inhibitory pathways. There
is a limited number of pathways, but their types are diverse (Luo, 2021). The receptors activated
by excitatory synaptic transmitters such as glutamate released by excitatory pathways can increase
the firing rate of postsynaptic neurons, while receptors activated by inhibitory synaptic transmitters
such as GABA released by inhibitory pathways can reduce the firing rate of postsynaptic neurons.
Inspired by that, we construct the network according to the working principle of neural neurons.
Fig. 3(b) shows the basic block of the network.

The left part corresponds to the excitatory pathways, and the right part corresponds to the inhibitory
pathways. All conditions are shown in the Fig 4, where E and I denote the excitatory pathways
output and the inhibitory pathways output, Xl and Xl+1 denote the input and output of layer l.

Reciprocal transformation of 0 and 1 Excitatory pathways tend to increase output and inhibitory
pathways tend to decrease output. When the neurons in the previous layer do not fire, i.e., the input
is 0, and if the excitatory pathways fire spikes, the neurons that originally do not fire spikes are
stimulated to fire spikes, and the output changes from 0 to 1. When the neurons in the previous
layer fire spikes, i.e., when the input is 1 and the inhibitory pathways fire spikes, the neurons that
originally fire spikes are inhibited and do not fire spikes, and the output changes from 1 to 0.
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Figure 4: Excitatory and inhibitory pathways transform inputs in a
more brain-like manner.

Xl E I Xl+1

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Table 2: Input and output of
logical operation.

Identity mapping Excitatory and inhibitory pathways play opposite roles. When excitatory path-
ways and inhibitory pathways fire spikes simultaneously or stay silent simultaneously, the output
remains unchanged, which is equivalent to identity mapping. For the previous layer, if the input has
already been 0 when the excitatory pathways do not fire and the inhibitory pathways fire, the output
is still 0. The nerve neurons rely on spikes to transmit information. When neurons that do not fire
are received by inhibitory stimulation, they will still keep silent, so the output remains unchanged
and remains 0, and vice versa. In this way, the network can realize the transformation from 0 to 1,
from 1 to 0, and identity mapping.

Logical operation Then we use the logical operation to fulfill the required change process. The
input and output of logical operation are 0 or 1, which can make better use of the characteristics of
SNN and achieve the above transformation relationship. Different from the floating-point numbers
output in ANN, the binary output of SNN makes logical operation possible, and the logical operation
makes the SNN output remain binary. The specific implementation can be seen as the addition of
the minimum term in the truth table where each output Xl+1 is 1. As shown in equation 5, where ◦
means Hadamard product, i.e, bitwise multiplication.

Xl+1 = (1−Xl) ◦ E ◦ (1− I) + Xl ◦ (1− E) ◦ (1− I) + Xl ◦ E ◦ (1− I) + Xl ◦ E ◦ I (5)

After simplification we can get:

Xl+1 = (1−Xl) ◦ E ◦ (1− I) + Xl ◦ (1− E) ◦ (1− I) + Xl ◦ E (6)

And it can be easily deployed on the hardware platform. Only three state gates are needed to achieve
the required logic operations, as shown in equation 7, where ¬, ∧, ∨ denotes logical operators NOT,
AND, OR.

Xl+1 = (¬Xl ∧ E ∧ ¬Xl) ∨ (Xl ∧ E ∧ ¬I) ∨ (Xl ∧ E) (7)

The forward propagation process can also be viewed as the combination of differentiable math op-
erations, which makes the backward can be easily implemented:

Xl+1 = (1− (E + I − 2E ◦ I)) ◦ Xl + (E − E ◦ I) (8)

We use H(Xl) to denote E − E ◦ I and use T(Xl) to denote E + I − 2E ◦ I, then H(Xl) and T(Xl)
are both nonlinear transformations of Xl.

Xl+1 = (1− T(Xl)) ◦ Xl +H(Xl) (9)

The forward propagation process can be regarded as a propagation method using a gating mechanism
(Srivastava et al., 2015). T(Xl) determines how much of the Xl will be carried to the next layer,
and H(Xl) is the transformation of Xl. When T(Xl) is 0, i.e., E = I = 0 or E = I = 1, then
H(Xl) is 0 and 1 − T(Xl) is 1, which means that Xl is completely passed to the next layer, there
is no additional transformation, which is equivalent to identity mapping. When T(Xl) is 1, i.e.,
E = 0, I = 1 or E = 1, I = 0, then 1 − T(Xl) is 0, and the output is completely determined by
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H(Xl). The network can use the gate mechanism to realize identity mapping or transform the input
(specifically, the mutual conversion between 0 and 1) as required.

Xl+1 =

{
Xl, if T(Xl) = 0

H(Xl), if T(Xl) = 1
(10)

The back propagation is as follows:

dXl+1

dXl
=

{
1, if T(Xl) = 0

H′(Xl), if T(Xl) = 1
(11)

The network avoids the problem of gradient vanishing caused by the spiking neuron layer in the
spiking ResNet during the back-propagation process. This means that the network can achieve
higher performance by increasing the depth of the network.

4 EXPERIMENTS

We evaluated our proposed LSN model on the static datasets, including CIFAR10, ImageNet, and
the neuromorphic dataset CIFAR10-DVS (Li et al., 2017) respectively. In order to compare with
the spiking ResNet and its variants, we adopted the network with the same number of layers for
comparison. The LSN includes two branches, so in order to maintain the same parameters as the
spiking ResNet and its variants when the number of layers is the same, we reduced the number of
channels of the LSN so that the number of channels was three-quarters of the number of standard
channels. In this way, the parameters amount of the LSN is basically the same as that of other
networks with the same number of layers. We also evaluate LSN with a standard number of channels
to explore the impact of network depth and width on performance.

4.1 CIFAR10

The CIFAR10 dataset consists of 50000 training pictures and 10000 test pictures. There are a total
of 10 categories. The number of training pictures and test pictures in each category is equal, and
the picture resolution is 32*32. Compared with the previous spiking ResNet19, LSN19 improves
the performance by 1.5% and uses fewer time steps, as illustrated in the Table. 3. We use LSN101
to prove that the proposed network has no degradation problem and achieves higher accuracy on
CIFAR10. The data volume of the CIFAR10 dataset is small, and ResNet19 and LSN19 have already
encountered the phenomenon of overfitting on CIFAR10. Therefore, as the network depth increases,
the accuracy is not significantly improved. Thus we conduct a more comprehensive experiment on
ImageNet.

4.2 IMAGENET

The ImageNet dataset includes 1.2 million training images and 50,000 testing images, with a total
of 1,000 categories. We use standard data processing methods, including random cropping, random
horizontal flipping, normalization, and no additional data augmentation methods are used. We first
tested the performance of the LSN as the number of layers increased:

Going deeper with LSN As illustrated in Fig. 5 and Table. 3, as the depth of the network increases,
the accuracy of the LSN on both the training set and the test set increases accordingly, indicating that
LSN solves the problem of vanishing gradients. By increasing the number of channels in LSN34, the
performance of the LSN34 (standard channel) is improved by 1.7%, and by deepening the network,
the performance of LSN50 is improved by 2.3%. Compared with LSN34 (standard channel), LSN50
has fewer parameters and higher performance, which indicates that the depth of the network instead
of the number of parameters contributes more to the shallow network’s performance. In order to have
the same number of parameters as spiking ResNet and its variants of the same layers, LSN reduces
the number of channels, which makes the network relatively narrower while deepening, limiting the
fitting ability of the network. To seek a balance between the depth and width of the network, we
conduct a 71-layer LSN with a standard number of channels to obtain higher performance.

LSN vs. Spiking ResNet Compared with spiking ResNet, LSN has higher performance on 18-layer,
34-layer, and 50-layer networks with fewer time steps. Spiking ResNet is unable to train networks
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Figure 5: Train Accuracy and Test Accuracy on ImageNet.

Table 3: Comparison with Spiking ResNet and its variants on CIFAR10, ImageNet, and DVS-
CIFAR10.

Datasets Model parameter neuron T Accuracy

CIFAR10
(Zheng et al., 2021) Spiking ResNet19 11.7M IF 4 92.92%

Spiking ResNet19 11.7M IF 6 93.16%

Ours LSN19 13.2M LIF 4 94.47%
LSN101 50.1M LIF 4 94.68%

ImageNet

(Zheng et al., 2021)
Spiking ResNet34 21.8M IF 6 63.18%
Spiking ResNet50 25.6M IF 6 64.88%
Spiking ResNet34(large) 87.2M IF 6 67.05%

(Fang et al., 2021)

SEW18 11.7M IF 4 63.18%
SEW34 21.8M IF 4 67.04%
SEW50 25.6M IF 4 67.78%
SEW101 44.6M IF 4 68.76%
SEW152 60.2M IF 4 69.26%

(Li et al., 2021) Spiking ResNet34+Dspike 21.8M LIF 6 68.19%
(Deng et al., 2022) Spiking ResNet34+TET 21.8M LIF 6 64.79%
(Guo et al., 2022) Spiking ResNet34+MPD 21.8M LIF 6 67.33%

Ours

LSN18 13.2M LIF 4 63.27%
LSN34 24.5M LIF 4 66.02%
LSN50 28.8M LIF 4 68.79%
LSN101 50.1M LIF 4 69.53%
LSN34(standard channel) 49.0M LIF 4 68.09%
LSN71(standard channel) 61.9M LIF 4 71.86%

DVS-CIFAR10 (Zheng et al., 2021) Spiking ResNet19 11.7M IF 10 67.80%
Ours LSN15 8.9M LIF 4 75.10%

with more than 50 layers and suffers severe degradation problems, while LSN can train networks
with more than 100 layers and has higher performance.

LSN vs. spike-element-wise (SEW) ResNet The SEW101 and the SEW152 are the only SNNs with
more than 100 layers to compare, but their outputs contain positive integers. The performance of
the 18-layer, 50-layer, and 101-layer LSNs is also higher than that of SEW. The 71-layer LSN with
a standard number of channels, which has the same number of parameters as SEW152, outperforms
SEW152 with 71.86% accuracy.

LSN vs. Networks with additional training Methods As shown in Table. 3, we compared LSN
with previous training methods. Due to the gradient vanishing problem of spiking ResNet, most
of the previous works are confined to shallow networks. Although these methods highly improve
the performance of shallow networks, deep networks LSN50, LSN100, LSN71 (standard channel),
SEW101, and SEW152 all perform better than applying additional training methods on shallow
spiking ResNet. So this also verifies that limited network depth greatly limits the improvement of
SNN performance.
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Figure 6: Firing rates on the ImageNet test set

Fig. 6 shows the firing rate in LSN101 and LSN50 on the ImageNet test set across blocks. The
firing rate of excitatory pathways and inhibitory pathways in the network is around 0.2, consistent
with the sparsity of the spiking neural network. Due to the unique structural design of LSN, it can
be found that the firing rate of Xl of each block in the network remains basically unchanged with the
increase of depth, indicating there is no silence problem of the deep network. About 60% of the input
of each layer is transmitted to the next layer through identity mapping so that the network avoids
the degradation problem in the process of the forward propagation, and the problem of gradient
vanishing does not occur during the process of back-propagation(shown inequation 11). The deep
network LSN101 has a higher proportion of identity mapping than the shallow network LSN50,
which conforms to the characteristics of the deep network.

4.3 CIFAR10-DVS

The CIFAR10-DVS contains 10,000 event streams which were converted from 10,000 frame-based
images across a dynamic vision sensor (DVS), in total of 10 different classes. Thus we use a smaller
network LSN15 compared to the LSN19 used in the CIFAR10 experiments, and we use fewer time
steps to achieve higher accuracy compared to the spiking ResNet.

5 CONCLUSION

We first explore spiking ResNet and its variants and demonstrate that it is impossible to directly re-
place the activation function layer of residual block in ANN with the spiking neuron layer to address
the gradient vanishing problem in SNNs while keeping binary outputs. Inspired by the biological
nervous system, we propose the LSN based on excitatory pathways and inhibitory pathways, which
adopts logical operation after each branch to obtain binary outputs. It is theoretically proved that
LSN will not suffer from the gradient vanishing/exploding during the back-propagation. Through
experimental verification, for the first time, an SNN with the binary output and more than 100 layers
is trained directly. As a more biology-plausible network, LSN outperforms spiking ResNet as well
as its variants with the same number of layers. Also, we find that both the width and depth con-
tribution to the performance of LSN, thus we optimize both network depth and network width for
superior performance. LSN achieve the SOTA classification accuracy on CIFAR10, ImageNet, and
neuromorphic dataset CIFAR10-DVS. Overall, we expanded the research of SNN to more than 50
layers through brain-inspired networks, which will greatly improve the future research of SNNs in
both simulating the biological neural system and obtaining higher accuracy.

6 REPRODUCIBILITY STATEMENT

Our codes are based on SpikingJelly (Fang et al., 2020), which is an open-source SNN framework.
Our codes are uploaded as supplementary material and will be available on GitHub after review.
And the same random seed was used in the experiments to maximize reproducibility.
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A APPENDIX

A.1 HYPER-PARAMETERS

surrogate gradient

We used the same triangular surrogate gradient in all experiments:

S(x) =

{
1− |x|, if |x| ⩽ 1

0, if |x|>1
(12)

neuron model

We adopt the LIF neuron model, we set α = 0.5 and Vth = 1 for all neurons.

experiment

We adopt Adam as optimizer and Cosine Annealing as learning rate scheduler for all experiments,
other hyper-parameters are set according to specific experiments, as shown in Table. 4:

Table 4: Hyper-parameters for different datasets and different network.

Dataset Model learning rate weight decay epoch warm up epoch

CIFAR10 LSN19 5e-3 5e-3 300 none
LSN101 5e-3 5e-3 300 none

ImageNet

LSN18 1e-3 5e-3 300 10
LSN18 1e-3 5e-3 300 10
LSN34 1e-3 5e-3 300 10
LSN50 1e-3 5e-3 300 10
LSN101 1e-3 5e-3 300 10
LSN34(standard channel) 1e-3 5e-3 300 10
LSN71(standard channel) 1e-3 15e-3 300 10

DVS-CIFAR10 LSN15 5e-3 5e-2 150 none

A.2 GRADIENT VISUALIZATION

We make a further analysis of the gradient.

∂Xl+1

∂Xl
= 1− E − I +

∂E
∂Xl

−Xl ◦
∂E
∂Xl

−Xl ◦
∂I
∂Xl

− I ◦ ∂E
∂Xl

−E ◦ ∂I
∂Xl

+ 2E ◦ I + 2Xl ◦ I ◦ ∂E
∂Xl

+ 2Xl ◦ E ◦ ∂I
∂Xl

(13)
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Figure 7: Gradients of epoch 5 of LSN101 and Spiking ResNet101 on CIFAR10. Deep LSN does
not have the problem of gradient vanishing

∂Xl+1

∂E
= 1−Xl − I + 2Xl ◦ E ◦ ∂I

∂Xl
(14)

∂Xl+1

∂I
= −Xl − 2E + 2Xl ◦ E ◦ ∂I

∂Xl
(15)

Table 5: Gradients in different situations.

Xl E I Xl+1
∂Xl+1

∂Xl

∂Xl+1

∂E
∂Xl+1

∂I

0 0 0 0 1 + ∂E
∂Xl

1 0
0 0 1 0 0 0 0
0 1 0 1 ∂E

∂Xl
− ∂I

∂Xl
1 1

0 1 1 0 1− ∂I
∂Xl

0 1
1 0 0 1 1− ∂I

∂Xl
1 1

1 0 1 0 ∂E
∂Xl

− ∂I
∂Xl

0 1
1 1 0 1 0 0 0
1 1 1 1 1 + ∂E

∂Xl
1 0
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