
CUTE: Measuring LLMs’ Understanding of Their Tokens

Anonymous ACL submission

Abstract

Large Language Models (LLMs) show remark-001
able performance on a wide variety of tasks.002
Most LLMs split text into multi-character to-003
kens and process them as atomic units with-004
out direct access to individual characters. This005
raises the question: To what extent can LLMs006
learn orthographic information? To answer this,007
we propose a new benchmark, CUTE, which008
features a collection of tasks designed to test009
the orthographic knowledge of LLMs. We eval-010
uate popular LLMs on CUTE, finding that most011
of them seem to know the spelling of their to-012
kens, yet fail to use this information effectively013
to manipulate text, calling into question how014
much of this knowledge is generalizable.015

1 Introduction016

Large Language Models (LLMs) attract a lot of017

interest due to their strong performance on many018

NLP tasks. They have demonstrated a level of019

fluency rivaling humans. However, it is often over-020

looked that LLMs lack direct access to the charac-021

ters composing their tokens. They can only infer022

knowledge about the characters from the context023

during pretraining or instruction tuning. While024

there are models that use characters as input units,025

none of them have been instruction-tuned (to our026

knowledge).027

Our work examines how well LLMs understand028

the composition of their tokens. This knowledge en-029

ables LLMs to better generalize to new languages030

and to perform well on tasks involving character-031

level understanding (e.g. code, crosswords, poetry,032

etc.), or any task requiring arbitrary string opera-033

tions.034

We introduce Character-level Understanding of035

Tokens Evaluation (CUTE)1, a benchmark consist-036

ing of several tasks designed to be easy for humans037

1We release our benchmark open-source at: [link to be
added in camera-ready].

to complete, given our ability to process characters 038

individually. We evaluate several LLMs ranging 039

from 7B to 132B parameters in size on CUTE to 040

answer the following questions: 041

1. Do LLMs know which characters make up 042

their tokens? 043

2. Do LLMs understand the difference between 044

semantic and orthographic similarity? 045

3. Can LLMs manipulate text at the character 046

level? 047

We address these questions with a set of tasks pri- 048

marily on the character level, and additionally on 049

the word level to see the difference in performance 050

on the two granularities, thereby separating the un- 051

derstanding of the task from the understanding of 052

what makes up a token. 053

2 Related Work 054

Itzhak and Levy (2022) mostly analyze encoder- 055

only models and test if they understand how to spell 056

words after fine-tuning on 32k examples. They 057

conclude that models learn to spell their tokens “to 058

some extent.” They also experiment with GPT-2 059

(Radford et al., 2019) which performed similarly to 060

the other models, and also used training examples. 061

Kaushal and Mahowald (2022) probe models with 062

a task asking if a letter is in a word (similar to 063

our character contains task, see §3). Similar 064

to Itzhak and Levy (2022), their probe requires 065

training, as they use models of similar size. By 066

contrast, we examine models with 10 to 200 times 067

as many parameters and apply few-shot prompting 068

without fine-tuning. 069

Huang et al. (2023) experiment with spelling cor- 070

rection, unscrambling words, and finding words in 071

a string of characters. Most of their experiments 072

concern a training method they propose, but they 073

also include results of GPT-3 (Brown et al., 2020) 074

with few-shot prompting, finding that it performs 075

well on spelling correction, but poorly on other 076

1



tasks compared to their trained character-based077

models. Most of their tasks require semantic knowl-078

edge, which we wish to ablate in our benchmark.079

Other benchmarks testing orthographic knowl-080

edge often focus on morphology, such as the SIG-081

MORPHON inflection tasks (e.g. Goldman et al.082

(2023)). Inflection is fairly regular for most lan-083

guages, and could be memorized by a language084

model. Given that many developers of LLMs do085

not disclose the sources of their pretraining data,086

it is possible that LLMs memorize these inflection087

patterns. Therefore, from this we cannot conclude088

that LLMs can inflect a new word given a new089

set of rules, and furthermore we cannot conclude090

that LLMs can apply an arbitrary manipulation to091

a sequence. Most LLMs are trained with perfor-092

mance on English in mind, and English being less093

morphological in nature makes inflection a non-094

ideal measure for a model’s understanding of the095

composition of tokens.096

There is an extensive body of research on097

character-level models, where each character forms098

a token (Lee et al., 2017; Xue et al., 2022; Tay et al.,099

2022, inter alia). Several works compared these100

models to subword models (Libovický et al., 2022;101

Edman et al., 2022, 2024, inter alia), but they eval-102

uated on tasks requiring additional training. We103

assume that character-based models would perform104

well on our benchmark, but we cannot test it since105

none of these models have been instruction-tuned.106

3 Benchmark107

We split our tasks into 3 categories: understanding108

composition, understanding orthographic similar-109

ity, and ability to manipulate sequences. Figure 1110

shows an example for each task.2 Data gathering111

and processing details can be found in Appendix B.112

Our tasks are synthetically generated from exist-113

ing corpora. There are non-synthetically gener-114

ated datasets which partially test our research ques-115

tions, but these datasets have external factors (e.g.116

domain and/or language in a translation dataset)117

that would likely obscure our findings. Some of118

these datasets also might have been leaked into119

the LLM’s pretraining data and been memorized,120

resulting in an unrealistically good performance.121

Composition We start with a straightforward122

benchmark: spelling. Similar to Itzhak and Levy123

(2022), we include a task where the input is a word124

2The prompts shown here are not the full prompts. See
Appendix A for more details.

given as a single token3, and the output is the same 125

word with spaces in between, so that each char- 126

acter becomes a separate token. This is the most 127

straightforward probe to see whether a model has 128

knowledge of the characters forming the tokens. 129

We also add the inverted task (“inverse spelling”) 130

to check if characters can also be mapped to tokens. 131

Another method for assessing a model’s under- 132

standing of composition is to ask if a token contains 133

a certain character. If a model managed the previ- 134

ous tasks, we would expect it to succeed here as 135

well. However, a model might not understand the 136

relationship between spelling and membership of 137

characters to a word, so we test this as well. We 138

also test whether the LLMs are able to solve the 139

corresponding word-level task (i.e. is a word in 140

a sentence) to separate the model’s general under- 141

standing of the task from its ability to solve the task 142

at the character level. 143

Similarity Since the introduction of word2vec 144

(Mikolov et al., 2013), language models have typi- 145

cally been trained to predict words from their con- 146

text. The resulting token embeddings mainly re- 147

flect the semantic and syntactic similarity of tokens. 148

Our next tasks examine whether LLMs also com- 149

prehend orthographic similarity. We ask which 150

one of two candidate words is orthographically (or 151

semantically) more similar to a given word. Our 152

candidate words are chosen to be relatively easy 153

to distinguish for a human without explicit knowl- 154

edge of how to measure orthographic or semantic 155

similarity. For more details, see Appendix B. 156

Manipulation Our previous tasks focus on the 157

understanding of the model. Now, we turn our fo- 158

cus to acting on that understanding. The next tasks 159

involve 4 types of manipulation of the input at the 160

character or word level: Insertion, Deletion, Sub- 161

stitution, and Swapping. We consider these tasks 162

as elementary tasks for modifying a text sequence. 163

Insertion First we test how well the model can 164

insert an element X after every instance of some 165

element Y in the sequence. Similar modifications 166

occur when we replicate letters to emphasize a 167

word (e.g. “Yay!” vs. “Yaaaaay!”), or when we 168

add an adjective next to a noun. 169

Deletion Deletion requires the model to recog- 170

nize an element and remove all instances of it. This 171

3This is in the ideal case. We cannot guarantee every LLM
tested uses only a single token for each input, but we minimize
the chance of splitting by using frequent words in our task.

2



Spell out the word: there

Write the word that is spelled out (no spaces): t h e r e

Contains Character

Inverse Spelling

Spelling

No

there

t h e r e

Task Input Output

Is there a 'c' in 'there'?

Is there a 'the' in 'the sky is blue'?

Which is closer in Levenshtein distance to 'happy'? glad or apply

Which is more semantically related to 'happy'? glad or apply

Add 'b' after every 'e' in 'there'

Contains Word

Orthographic Similarity

Semantic Similarity

Character Insertion

Word Insertion

Character Deletion

Word Deletion

Character Substitution

Word Substitution

Character Swapping

Word Swapping

thebreb

Add 'is' after every 'the' in 'the sky is blue' the is sky is blue

Yes

apply

glad

Delete every 'e' in 'there' thr

Delete every 'the' in 'the sky is blue' sky is blue

Replace every 'e' with 'a' in 'there thara

Replace every 'the' with 'is' in 'the sky is blue' the is sky is blue

Swap 't' and 'r' in 'there' rhete

Swap 'the' and 'is' in 'the sky is blue' is sky the blue

Similarity

Composition

Manipulation

Figure 1: All of the tasks in CUTE.

can occur in natural language at the character level172

with inflection in languages (e.g. turning an En-173

glish plural noun into singular), or removing adjec-174

tives from a sentence.175

Substitution Substitution replaces all instances176

of an element in a sequence with another element.177

This can occur with spelling or vocabulary varia-178

tions across dialects or related languages (e.g. “de-179

fense” vs. ”defence”, or “elevator” vs. “lift”).180

Swapping Swapping is a simplified case of re-181

ordering acting on two elements.4 Though reorder-182

ing is not very common in English, it features183

heavily in languages with free word order, such184

as Greek, where stressed words can be moved to185

the front of the sentence.186

Llama Mistral Gemma Cmd-R(+) DBRX

Params (B) 7,13,70 7,47 7 35,104 132
Tokens (k) 32 32 256 256 100
Language EN EN Hybrid Multil. EN

Table 1: Models evaluated on our benchmark. We con-
sider Gemma as “hybrid” since it has a multilingual
tokenization, but English-centric training.

4 Experimental Setup187

Models We use the models shown in Table 1188

(Touvron et al., 2023; Jiang et al., 2023, 2024;189

Team et al., 2024).567 We choose freely-available8190

4Due to the poor performance on swapping, we leave out
more complex forms of reordering, but these could be easily
added in the future.

5https://hf.co/CohereForAI/c4ai-command-r-v01
6https://hf.co/CohereForAI/

c4ai-command-r-plus
7https://hf.co/databricks/dbrx-instruct
8We define “freely available” as those not requiring pay-

ment for use, and with available information on the training
process.

LLMs largely based on their popularity, as we are 191

unaware of LLMs that specifically address the prob- 192

lems raised. While there are many differences be- 193

tween the models, we highlight 3 that could possi- 194

bly affect performance: parameter count, vocabu- 195

lary size, and multilingual versus English-centric 196

or English-only training. 197

Prompts We use a template inspired by Bsharat 198

et al. (2023)’s few-shot template to prompt our 199

models with 4 examples. Further details and a 200

sample prompt can be found in Appendix A. 201

5 Results 202

Table 2 shows the results for each model. The 203

random baseline is 50% for the contains and 204

similarity tasks, and 0% for all other tasks. 205

Composition The models perform very well 206

on the tasks spelling and inverse spelling, 207

though inverse spelling appears slightly more 208

difficult. Although we are not aware of any spelling 209

tasks in instruction tuning or pretraining datasets, 210

we suspect that the similarity of this task with data 211

seen during training allows the models to perform 212

very well, in contrast to the following tasks. 213

On the contains tasks, the performance at the 214

word level is quite good, showing that the models 215

understand the task, but the performance breaks 216

down at the character level. This indicates the 217

models do not fully understand the relationship 218

between spelling and membership of a character to 219

a word. 220

Orthography and Semantic Similarity In the 221

semantic similarity task, the models correctly 222

choose the more semantically related word 76- 223

93% of the time, and the performance generally 224

3

https://hf.co/CohereForAI/c4ai-command-r-v01
https://hf.co/CohereForAI/c4ai-command-r-plus
https://hf.co/CohereForAI/c4ai-command-r-plus
https://hf.co/databricks/dbrx-instruct


Llama Mistral Gemma Command-R(+) DBRX

Task 7B 13B 70B 7B 47B 7B 35B 104B 132B

Spelling 93.4 99.6 99.9 87.0 98.4 82.2 98.9 100 99.9
Inverse Spelling 84.5 92.9 92.7 91.1 95.7 73.0 97.8 100 99.9
Contains Character 67.0 69.8 70.1 61.5 68.1 64.0 68.9 79.7 47.8
Contains Word 78.0 84.8 94.6 94.2 90.8 84.8 87.4 99.7 97.2

Orthographic Similarity 32.1 46.3 42.6 55.3 50.8 54.5 43.4 86.5 47.6
Semantic Similarity 76.8 76.3 82.6 84.7 81.8 82.0 81.7 92.6 90.3

Insert Character 8.1 11.5 7.3 4.8 15.9 10.7 7.3 8.9 9.9
Delete Character 13.0 30.5 26.4 34.2 47.8 30.4 37.7 72.0 64.0
Substitute Character 11.1 14.2 19.6 21.0 34.6 15.1 28.7 55.5 47.7
Swap Character 3.5 2.5 5.6 2.8 6.4 2.5 5.3 10.0 7.5

Insert Word 20.1 36.7 31.6 11.3 40.8 36.5 42.2 81.7 53.2
Delete Word 34.8 56.7 46.8 53.8 56.5 56.7 55.8 65.7 86.3
Substitute Word 72.9 70.7 86.6 70.0 90.7 70.7 75.8 95.1 93.6
Swap Word 10.9 17.2 36.9 15.9 37.8 17.2 28.3 81.4 60.3

Table 2: Accuracy (%) on all of the tasks for each model. Best in bold.

increases with model size. For orthographic225

similarity, the performance is below or near ran-226

dom for all models except Mistral-7B, Gemma, and227

Command-R+. It is not yet clear why Command-228

R+ performs so well on this task, but apparently it229

is not solely a scaling effect since DBRX fails to230

perform above random chance. It may be due to the231

combination of scaling and multilingual pretrain-232

ing, encouraging orthographically similar words to233

have similar embeddings.234

Manipulation In our manipulation tasks, the235

models struggle more at the character level than236

at the word level. The difference is quite pro-237

found, with performance gaps of up to 72.8% on238

Command-R+ for insertion. Larger models such239

as Command-R+ perform well on deleting charac-240

ters, with 72% accuracy, though it should be noted241

that we are only testing on the 1000 most frequent242

words, making the evaluation fairly generous.243

Like the contains task and orthographic244

similarity task, the manipulation tasks show that245

LLMs lack a complete understanding of their to-246

kens, although they can literally spell them out.247

The higher word-level performance indicates that248

it is not due to a lack of understanding of the task249

itself.250

Vocabulary Size and Multilinguality To see the251

effects of vocabulary size and multilingual versus252

English tokenization, we compare Llama and Mis-253

tral with Gemma, as they all have 7B variants. The254

results are mixed: Mistral and Gemma perform255

similarly, with Mistral performing slightly better256

on most tasks, whereas Gemma performed remark-257

ably well on the insertion tasks. We see no obvi-258

ous connection between the insertion tasks and259

multilinguality or vocabulary size. Neither vocab- 260

ulary size nor multilinguality seem to play a huge 261

role. However, we expect a larger effect of the 262

vocabulary size when it approaches the number of 263

characters. We leave this for future research. 264

Model Size Larger models clearly tend to per- 265

form better. This aligns well with the myriad of 266

works showing the benefits of scaling up models 267

and raises the question: Is scaling all we need 268

for good performance on character-level tasks? 269

Looking at the manipulation tasks, it seems that 270

deletion and substitution could become man- 271

ageable in the near future, but for insertion and 272

swapping, the performance gap between word and 273

character level tasks is large. Many real-world text 274

manipulation tasks are a combination of the tested 275

tasks, so we will likely need more than just scaling. 276

6 Conclusion 277

While current LLMs with BPE vocabularies lack 278

direct access to a token’s characters, they perform 279

well on some tasks requiring this information, but 280

perform poorly on others. The models seem to 281

understand the composition of their tokens in di- 282

rect probing, but mostly fail to understand the con- 283

cept of orthographic similarity. Their performance 284

on text manipulation tasks at the character level 285

lags far behind their performance at the word level. 286

LLM developers currently apply no methods which 287

specifically address these issues (to our knowl- 288

edge), and so we recommend more research to 289

better master orthography. Character-level models 290

are a promising direction. With instruction tun- 291

ing, they might provide a solution to many of the 292

shortcomings exposed by our CUTE benchmark. 293

4



7 Limitations294

We prompt instruction-tuned LLMs without any295

fine-tuning on benchmark data. While this can be296

seen as a limitation, we note that it is not feasible to297

add more training data whenever we discover a new298

issue with LLMs. We expect that the performance299

of all models would increase after fine-tuning.300

We do not evaluate any character-level models301

since there are no instruction-tuned versions (to our302

knowledge).303

Our benchmark does not control whether LLM304

tokenizers split words into multiple tokens. We305

minimize that chance by choosing frequent words,306

which are likely to be tokenized as single tokens,307

but there is no guarantee that splits do not occur.308

We only test on English, mainly due to the309

abundance of English-centric LLMs. We expect310

the results to vary widely with language. Given311

a vocabulary of frequent words, we could easily312

create spelling, inverse spelling, character313

contains, and character-level manipulation tasks314

for other languages. For the similarity tasks, we315

would need a word embedding model, and for the316

word contains and word-level manipulation tasks,317

we would need a small corpus of simple sentences318

containing mostly frequent words, or we could gen-319

erate such sentences with an LLM for that language,320

following TinyStories (Eldan and Li, 2023).321

Lastly, we do not control for generations that322

do not match the pattern of the examples given323

in the prompt. Therefore, we cannot guarantee324

that all generations considered correct by humans325

are evaluated as such. Hence the performance of326

some models may be lower than expected. We will327

provide the outputs of all models in our repository328

for further analysis.329

References330

Piotr Bojanowski, Edouard Grave, Armand Joulin, and331
Tomas Mikolov. 2017. Enriching word vectors with332
subword information. Transactions of the Associa-333
tion for Computational Linguistics, 5:135–146.334

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie335
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind336
Neelakantan, Pranav Shyam, Girish Sastry, Amanda337
Askell, Sandhini Agarwal, Ariel Herbert-Voss,338
Gretchen Krueger, Tom Henighan, Rewon Child,339
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,340
Clemens Winter, Christopher Hesse, Mark Chen,341
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin342
Chess, Jack Clark, Christopher Berner, Sam Mc-343
Candlish, Alec Radford, Ilya Sutskever, and Dario344

Amodei. 2020. Language models are few-shot learn- 345
ers. Preprint, arXiv:2005.14165. 346

Sondos Mahmoud Bsharat, Aidar Myrzakhan, and 347
Zhiqiang Shen. 2023. Principled instructions are all 348
you need for questioning llama-1/2, gpt-3.5/4. arXiv 349
preprint arXiv:2312.16171. 350

Lukas Edman, Gabriele Sarti, Antonio Toral, Gert- 351
jan van Noord, and Arianna Bisazza. 2024. Are 352
character-level translations worth the wait? compar- 353
ing byt5 and mt5 for machine translation. Preprint, 354
arXiv:2302.14220. 355

Lukas Edman, Antonio Toral, and Gertjan van Noord. 356
2022. Subword-delimited downsampling for better 357
character-level translation. In Findings of the Associ- 358
ation for Computational Linguistics: EMNLP 2022, 359
pages 981–992, Abu Dhabi, United Arab Emirates. 360
Association for Computational Linguistics. 361

Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How 362
small can language models be and still speak coherent 363
english? Preprint, arXiv:2305.07759. 364

Omer Goldman, Khuyagbaatar Batsuren, Salam Khal- 365
ifa, Aryaman Arora, Garrett Nicolai, Reut Tsarfaty, 366
and Ekaterina Vylomova. 2023. SIGMORPHON– 367
UniMorph 2023 shared task 0: Typologically di- 368
verse morphological inflection. In Proceedings of the 369
20th SIGMORPHON workshop on Computational 370
Research in Phonetics, Phonology, and Morphology, 371
pages 117–125, Toronto, Canada. Association for 372
Computational Linguistics. 373

Jing Huang, Zhengxuan Wu, Kyle Mahowald, and 374
Christopher Potts. 2023. Inducing character-level 375
structure in subword-based language models with 376
type-level interchange intervention training. In Find- 377
ings of the Association for Computational Linguistics: 378
ACL 2023, pages 12163–12180, Toronto, Canada. As- 379
sociation for Computational Linguistics. 380

Itay Itzhak and Omer Levy. 2022. Models in a spelling 381
bee: Language models implicitly learn the character 382
composition of tokens. In Proceedings of the 2022 383
Conference of the North American Chapter of the 384
Association for Computational Linguistics: Human 385
Language Technologies, pages 5061–5068, Seattle, 386
United States. Association for Computational Lin- 387
guistics. 388

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 389
sch, Chris Bamford, Devendra Singh Chaplot, Diego 390
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 391
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 392
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 393
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 394
and William El Sayed. 2023. Mistral 7b. Preprint, 395
arXiv:2310.06825. 396

Albert Q. Jiang, Alexandre Sablayrolles, Antoine 397
Roux, Arthur Mensch, Blanche Savary, Chris 398
Bamford, Devendra Singh Chaplot, Diego de las 399

5

https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2302.14220
https://arxiv.org/abs/2302.14220
https://arxiv.org/abs/2302.14220
https://arxiv.org/abs/2302.14220
https://arxiv.org/abs/2302.14220
https://doi.org/10.18653/v1/2022.findings-emnlp.69
https://doi.org/10.18653/v1/2022.findings-emnlp.69
https://doi.org/10.18653/v1/2022.findings-emnlp.69
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://doi.org/10.18653/v1/2023.sigmorphon-1.13
https://doi.org/10.18653/v1/2023.sigmorphon-1.13
https://doi.org/10.18653/v1/2023.sigmorphon-1.13
https://doi.org/10.18653/v1/2023.sigmorphon-1.13
https://doi.org/10.18653/v1/2023.sigmorphon-1.13
https://doi.org/10.18653/v1/2023.findings-acl.770
https://doi.org/10.18653/v1/2023.findings-acl.770
https://doi.org/10.18653/v1/2023.findings-acl.770
https://doi.org/10.18653/v1/2023.findings-acl.770
https://doi.org/10.18653/v1/2023.findings-acl.770
https://doi.org/10.18653/v1/2022.naacl-main.373
https://doi.org/10.18653/v1/2022.naacl-main.373
https://doi.org/10.18653/v1/2022.naacl-main.373
https://doi.org/10.18653/v1/2022.naacl-main.373
https://doi.org/10.18653/v1/2022.naacl-main.373
https://arxiv.org/abs/2310.06825


Casas, Emma Bou Hanna, Florian Bressand, Gi-400
anna Lengyel, Guillaume Bour, Guillaume Lam-401
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-402
Anne Lachaux, Pierre Stock, Sandeep Subramanian,403
Sophia Yang, Szymon Antoniak, Teven Le Scao,404
Théophile Gervet, Thibaut Lavril, Thomas Wang,405
Timothée Lacroix, and William El Sayed. 2024. Mix-406
tral of experts. Preprint, arXiv:2401.04088.407

Ayush Kaushal and Kyle Mahowald. 2022. What do408
tokens know about their characters and how do they409
know it? In Proceedings of the 2022 Conference of410
the North American Chapter of the Association for411
Computational Linguistics: Human Language Tech-412
nologies, pages 2487–2507, Seattle, United States.413
Association for Computational Linguistics.414

Jason Lee, Kyunghyun Cho, and Thomas Hofmann.415
2017. Fully character-level neural machine transla-416
tion without explicit segmentation. Transactions of417
the Association for Computational Linguistics, 5:365–418
378.419

Jindřich Libovický, Helmut Schmid, and Alexander420
Fraser. 2022. Why don’t people use character-level421
machine translation? In Findings of the Associa-422
tion for Computational Linguistics: ACL 2022, pages423
2470–2485, Dublin, Ireland. Association for Compu-424
tational Linguistics.425

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-426
frey Dean. 2013. Efficient estimation of word427
representations in vector space. arXiv preprint428
arXiv:1301.3781.429

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,430
Dario Amodei, Ilya Sutskever, et al. 2019. Language431
models are unsupervised multitask learners. OpenAI432
blog, 1(8):9.433

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,434
Hyung Won Chung, Dara Bahri, Zhen Qin, Si-435
mon Baumgartner, Cong Yu, and Donald Metzler.436
2022. Charformer: Fast character transformers437
via gradient-based subword tokenization. Preprint,438
arXiv:2106.12672.439

Gemma Team, Thomas Mesnard, Cassidy Hardin,440
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,441
Laurent Sifre, Morgane Rivière, Mihir Sanjay442
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,443
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam444
Roberts, Aditya Barua, Alex Botev, Alex Castro-445
Ros, Ambrose Slone, Amélie Héliou, Andrea Tac-446
chetti, Anna Bulanova, Antonia Paterson, Beth447
Tsai, Bobak Shahriari, Charline Le Lan, Christo-448
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,449
Daphne Ippolito, David Reid, Elena Buchatskaya,450
Eric Ni, Eric Noland, Geng Yan, George Tucker,451
George-Christian Muraru, Grigory Rozhdestvenskiy,452
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,453
Jacob Austin, James Keeling, Jane Labanowski,454
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Bren-455
nan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin456
Mao-Jones, Katherine Lee, Kathy Yu, Katie Milli-457
can, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon,458

Machel Reid, Maciej Mikuła, Mateo Wirth, Michael 459
Sharman, Nikolai Chinaev, Nithum Thain, Olivier 460
Bachem, Oscar Chang, Oscar Wahltinez, Paige Bai- 461
ley, Paul Michel, Petko Yotov, Rahma Chaabouni, 462
Ramona Comanescu, Reena Jana, Rohan Anil, Ross 463
McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith, 464
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, 465
Shree Pandya, Siamak Shakeri, Soham De, Ted Kli- 466
menko, Tom Hennigan, Vlad Feinberg, Wojciech 467
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao 468
Gong, Tris Warkentin, Ludovic Peran, Minh Giang, 469
Clément Farabet, Oriol Vinyals, Jeff Dean, Koray 470
Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, 471
Douglas Eck, Joelle Barral, Fernando Pereira, Eli 472
Collins, Armand Joulin, Noah Fiedel, Evan Senter, 473
Alek Andreev, and Kathleen Kenealy. 2024. Gemma: 474
Open models based on gemini research and technol- 475
ogy. Preprint, arXiv:2403.08295. 476

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 477
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 478
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 479
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 480
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 481
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 482
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 483
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 484
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 485
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 486
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 487
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 488
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 489
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 490
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 491
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 492
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 493
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 494
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 495
Melanie Kambadur, Sharan Narang, Aurelien Ro- 496
driguez, Robert Stojnic, Sergey Edunov, and Thomas 497
Scialom. 2023. Llama 2: Open foundation and fine- 498
tuned chat models. Preprint, arXiv:2307.09288. 499

Linting Xue, Aditya Barua, Noah Constant, Rami Al- 500
Rfou, Sharan Narang, Mihir Kale, Adam Roberts, 501
and Colin Raffel. 2022. ByT5: Towards a token-free 502
future with pre-trained byte-to-byte models. Transac- 503
tions of the Association for Computational Linguis- 504
tics, 10:291–306. 505

A Prompting Details 506

We show an example of a full prompt in Figure 2. 507

All of our prompts are available with the release 508

of our benchmark. For generation, we use greedy 509

search. 510

For evaluation of the generation, we rely on the 511

given start-quote to denote the start of the answer, 512

and we filter out anything after the end quote (e.g. 513

“I hope this answer helped!”). Some models also 514

were prone to starting generation with a generic 515

response such as “Sure I can do that for you.”. For 516

6

https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://doi.org/10.18653/v1/2022.naacl-main.179
https://doi.org/10.18653/v1/2022.naacl-main.179
https://doi.org/10.18653/v1/2022.naacl-main.179
https://doi.org/10.18653/v1/2022.naacl-main.179
https://doi.org/10.18653/v1/2022.naacl-main.179
https://doi.org/10.1162/tacl_a_00067
https://doi.org/10.1162/tacl_a_00067
https://doi.org/10.1162/tacl_a_00067
https://doi.org/10.18653/v1/2022.findings-acl.194
https://doi.org/10.18653/v1/2022.findings-acl.194
https://doi.org/10.18653/v1/2022.findings-acl.194
https://arxiv.org/abs/2106.12672
https://arxiv.org/abs/2106.12672
https://arxiv.org/abs/2106.12672
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461


[INST] Spell out the word, putting
spaces between each letter, based
on the following examples:

1. Spell out the word “alphabet".
Answer: “a l p h a b e t"
2. Spell out the word “hello".
Answer: “h e l l o"
3. Spell out the word “zebra".
Answer: “z e b r a"
4. Spell out the word “tongue".
Answer: “t o n g u e"

Question: Spell out the word “cow".
[/INST]
Answer: “

Figure 2: An example of a full prompt to spell the word
“cow”, with examples, for the task spelling.

these generations, we observe that it would repeat517

“Answer: ”, so we filter out all generations before518

this point. Of the remaining generations, some519

could be considered correct though did not match520

the desired pattern (e.g. “H-E-L-L-O” rather than521

“h e l l o” for the spelling task). These we ultimately522

consider incorrect so as not to unfairly elevate any523

model’s performance.524

Concerning the wording of the orthographic sim-525

ilarity task, it could be argued that models do not526

understand the concept of Levenshtein distance,527

and thus it is not comparable to the semantic sim-528

ilarity task. We also tested using “closer in edit529

distance” and “closer in spelling” in the prompt,530

and the results were very similar, so we opted for531

Levenshtein distance as it is more well-defined.532

Similarly, we used “closer in meaning” rather than533

“more semantically related” and achieved similar534

results, though it is debatable whether an antonym535

should be considered close in meaning, so we opted536

for the latter.537

B Data Processing538

Here we detail our exact method for gathering and539

processing the data into our tasks. The scripts for540

processing the data and the resulting data can be541

found at our Github repository.9542

9Will add link here.

Data Sources For almost all tasks, we require a 543

set of frequent English words that were most likely 544

to be tokenized into a single token. For this, we 545

use a dataset derived from the Google Web Trillion 546

Word Corpus.10 547

For the word-based tasks, we use the TinyStories 548

(Eldan and Li, 2023) dataset, which consists of 549

stories written by an LLM in a style appropriate 550

for a 3-4 year old reader. This has the benefit of 551

using simple sentences with a limited vocabulary, 552

maximizing the chances of words being tokenized 553

into a single token in the models we test, while also 554

ensuring that the complexity of the sentence is not 555

a confounding factor in a model’s performance on 556

the tasks. 557

Filtering For character-based tasks, we select 558

the 1000 most frequent words that are at least 3 559

characters long. For word-based tasks, we similarly 560

filter for 1000 sentences of length 3-10 words, in 561

order to make the length similar to the number of 562

characters in a word seen in the character-level 563

tasks. 564

For addition, deletion, and substitution, we apply 565

the modification to those 1000 words, resulting in 566

our dataset. 567

For swapping, we need to sure that the word 568

or sentence has 2 items that are unique, so as to 569

avoid an ambiguous prompt (e.g. swap the ‘e’ and 570

‘g’ in ‘engineering’). As such, we select the 1000 571

most frequent words or the first 1000 sentences that 572

satisfy this criteria, as well as satisfying our length 573

constraints. 574

Similarity Data For our similarity data, we re- 575

quire our candidate pairs to be sufficiently easy for 576

a human to distinguish which is closer orthographi- 577

cally and which is closer semantically. 578

To accomplish this, our candidate words must 579

satisfy two thresholds, one based on normalized 580

Levenshtein distance (for othographic similarity), 581

and one based on cosine similarity to other fastText 582

(Bojanowski et al., 2017) embeddings (for seman- 583

tic similarity). That is to say, the word must be 584

sufficiently similar in one metric (0.7+ and 0.5+ 585

for Levenshtein and cosine, respectively) and suffi- 586

ciently dissimilar in the other (0.3- and 0.2-, respec- 587

tively). These thresholds are decided empirically. 588

We note that this process occasionally ends up with 589

semantic pairs that are antonyms (e.g. “good” and 590

10https://www.kaggle.com/datasets/rtatman/
english-word-frequency/data

7

https://www.kaggle.com/datasets/rtatman/english-word-frequency/data
https://www.kaggle.com/datasets/rtatman/english-word-frequency/data


“bad”), and thus we refrain from stating that the591

pairs are similar in meaning.592

8


	Introduction
	Related Work
	Benchmark
	Experimental Setup
	Results
	Conclusion
	Limitations
	Prompting Details
	Data Processing

