
Coordination Failure in Cooperative Offline MARL

Callum Rhys Tilbury1∗ Claude Formanek1,2∗† Louise Beyers1

Jonathan Shock2,3 Arnu Pretorius1

1InstaDeep
2University of Cape Town

3The INRS, Montreal

Abstract

Offline multi-agent reinforcement learning (MARL) leverages static datasets of
experience to learn optimal multi-agent control. However, learning from static
data presents several unique challenges to overcome. In this paper, we focus on
coordination failure and investigate the role of joint actions in multi-agent policy
gradients with offline data, focusing on a common setting we refer to as the ‘Best
Response Under Data’ (BRUD) approach. By using two-player polynomial games
as an analytical tool, we demonstrate a simple yet overlooked failure mode of
BRUD-based algorithms, which can lead to catastrophic coordination failure in the
offline setting. Building on these insights, we propose an approach to mitigate such
failure, by prioritising samples from the dataset based on joint-action similarity
during policy learning and demonstrate its effectiveness in detailed experiments.
More generally, however, we argue that prioritised dataset sampling is a promising
area for innovation in offline MARL that can be combined with other effective
approaches such as critic and policy regularisation. Importantly, our work shows
how insights drawn from simplified, tractable games can lead to useful, theoretically
grounded insights that transfer to more complex contexts. A core dimension of
offering is an interactive notebook, from which almost all of our results can be
reproduced, in a browser.‡

1 Introduction

Offline reinforcement learning (RL) is a promising paradigm for making real-world applications
of RL possible. While some compelling progress is being made, particularly in the single-agent
setting (Prudencio et al., 2023), large obstacles remain. In this paper, we focus on a problem unique
to the multi-agent setting: learning coordination from static data (Barde et al., 2024). Whereas in
online multi-agent learning, a speculated failure in coordination can be tested and corrected, such
feedback does not exist in the offline case. Instead, the agents are constrained to solely using static
data to learn how to best act together. Typically, agents optimise their own actions towards a best
response to the actions taken by other agents in the dataset, we refer to this common approach as ‘Best
Response Under Data’ (BRUD). This approach has various benefits in the offline setting, but is highly
susceptible to miscoordination. This is clearly illustrated in Figure 1, using a simple two-player game
where agents choose a continuous real number, and the collective reward is the product of the two
actions chosen.
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Figure 1: Illustration of catastrophic miscoordination when agents each learn based on a best response
to the data of other agent actions (BRUD). We consider using a datapoint a(t), in a simple game where
the reward is given by the product of each agent’s action, R(ax, ay) = axay. The best response of
agent x, in response to the other agent’s negative data point, ay(t) < 0, is to make its own policy
µ(θx) more negative. Similarly, agent y updates µ(θy) to be more positive, in response to the other
agent’s positive data point, ax(t) > 0. Alas, the BRUD step moves the joint policy in the opposite
direction of optimal increase.

In this work, we use simple two-player polynomial games as an analytical tool for better understanding
offline coordination, in an interpretable and accessible way. In doing so, we isolate the problem with
a BRUD-style update in offline MARL, demonstrating clear modes of coordination failure. Then,
building on our insights, we propose a class of offline sampling methods, broadly called Proximal
Joint Action Prioritisation (PJAP) that help alleviate problems in coordination that stem from offline
learning. We demonstrate the effectiveness of PJAP in detailed experiments. However, we see this
work more as exploratory in nature, more generally highlighting prioritised sampling methods as a
fruitful area of future investigation alongside approaches such as critic and policy regularisation for
offline learning.

2 Foundations

2.1 Multi-Agent Reinforcement Learning

We consider the canonical Dec-POMDP setting for MARL where the goal is to find a joint pol-
icy (π1, . . . , πn) ≡ π such that the return of each agent i, following πi, is maximised with
respect to the other agents’ policies, π−i ≡ (π\πi). That is, we aim to find π such that
∀i : πi ∈ argmaxπ̂i

E [G | π̂i, π−i], where G is the return. We assume that each policy is parame-
terised by θi. A popular approach to learning such policies is Centralised Training with Decentralised
Execution (CTDE), where training leverages privileged information from all agents, yet the policies
are only conditioned on their local observations, πi(oi; θi), enabling decentralisation at inference
time.

Because of our focus on the offline setting, we narrow our scope to off-policy algorithms, where
we learn using batches of data taken from a replay buffer, B. Specifically, we study multi-agent
actor-critic approaches which have a policy objective of the form,

J(π) = Ea∼π [Q(o,a) + αR] (1)

where Q(o,a) is the joint critic, and R is some policy regularisation term, controlled by α ∈ R. This
policy objective is a key component of many popular CTDE algorithms in MARL. For example, by
using stochastic policies and entropy regularisation, R = H(π), we recover the policy objective
of multi-agent soft-actor critic (Pu et al., 2021). With deterministic policies, πi(ai|oi) = µi(oi),
and setting α = 0, we recover the policy objective of MADDPG (Lowe et al., 2017), and so on.
Importantly, this policy update forms part of several leading offline MARL algorithms, such as
CFCQL (Shao et al., 2023) and the CTDE form of OMAR (Pan et al., 2022).

2.2 Joint Action Formulation

In the policy objective in Equation 1, the training is centralised by conditioning the critic on the joint
observation, o, and the joint action, a. The joint observation can be formed as a simple concatenation
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of agent observations in the sampled data, o = (o1, ..., on). However, forming the joint action is more
complex. For the policy learning of agent i, we consider ai ∼ π(·|oi; θi), but we have several choices
for the other agent actions, a−i, in the update. For example, we could simply use the other agents’
policies directly, a−i ∼ π(·|o−i; θ−i). However, this approach has been shown to work poorly in
offline settings (Shao et al., 2023), likely because we are decoupling policy learning from the dataset.
Instead, the prevailing approach to forming the joint action in CTDE methods, both online and offline,
is to simply use the samples taken from the buffer or dataset for the other agent actions. That is,

ai = (ai ∼ π(·|oi; θi), a−i ∼ B) (2)

We call this the Best Response Under Data (BRUD) approach to policy learning. Though it benefits
from staying directly coupled to the dataset in an offline context, it leads to coordination problems,
which we will demonstrate shortly.

2.3 Polynomial Games

For our exposition, we study two-player polynomial games (Dresher et al., 1950; Zhong et al., 2024),
as a differentiable, continuous generalisation of discrete matrix games—which have been a common
tool for understanding multi-agent algorithms (Rashid et al., 2020; Papoudakis et al., 2021). These
games are atemporal and stateless, comprising two agents, x and y, each able to take continuous
actions. We denote the respective actions taken as ax, ay ∈ R. The shared reward given to the agents
is defined by some polynomial function, R(ax, ay) =

∑m
i=0

∑n
j=0 cija

i
xa

j
y . Because there is no

state, and thus no observations, the notion of maximising the joint Q-function, Q(o,a = {ax, ay}) is
equivalent to maximising the reward function R(ax, ay) directly. We assume perfect knowledge of
the reward function in the game.

3 Coordination Failure in Offline MARL

We now study coordination failure in offline MARL due to the BRUD approach in policy learning,
using tractable and informative polynomial games. We use MADDPG (Lowe et al., 2017), which has
a BRUD-style policy update for agent i,

∇θiJ = E(o,a)∼B
[
∇θiµ(oi; θi) · ∇ãi

Q(o, ãi,a−i)|ãi=µ(oi;θi)

]
(3)

where µ(oi; θi) is a deterministic policy, and B is a replay buffer or dataset.

Recall that the polynomial game setting is stateless, and comprises just two agents, taking actions
ax and ay. For simplicity, let the policy for each agent be a single linear unit, µ(θx) = θx and
µ(θy) = θy (i.e. the policy parameter directly defines the action). We can thus simplify the policy
update such that for agent x,

∇θxJ = Ea∼B
[
∇θxµ(θx) · ∇ãxR(ãx, ay)|ãx=µ(θx)

]
= Eay∼B [∇ãx

R(ãx, ay)|ãx=θx ] (4)

and similarly for agent y, we have ∇θyJ = Eax∼B
[
∇ãy

R(ax, ãy)|ãy=θy

]
. Therefore, each compo-

nent in the gradient of the objective is simply the partial derivative of the agent’s reward with respect
to the agent’s chosen action, in expectation over the actions of the other agent from the replay buffer
or the dataset. This equation captures the essence of the policy update of BRUD methods.

To understand the ramifications of forming the joint action in this way, we first study the simple
polynomial R(ax, ay) = axay, which we call the sign-agreement game. The true gradient field
of this surface is ∇R = (ay, ax), whereas the objective in the MADDPG update becomes ∇J =
(Eay∼B[ay],Eax∼B[ax]) = (āy, āx), where āx and āy are the sample means of the respective actions
in the data taken from B. We consider the impact of the difference between ∇R and ∇J for this
game. Whereas the former is a function of the current policy, always correctly pointing to the optimal
direction of policy improvement, the latter is a unidirectional vector field defined solely by the
sampled data. As a result, it becomes possible for catastrophic miscoordination in the joint-policy
update, as illustrated in Figure 1. In this example, the best way to update θx, in response to a negative
data point, ay(t) < 0, is to make θx more negative. Simultaneously, the best way to update θy, in
response to a positive data point, ax(t) > 0, is to make θy more positive. Alas, this joint update step
actually moves the joint policy into the −+ region (top left), yielding a lower reward—the exact
opposite of our intention.
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3.1 Connections to Off-Policy Learning

Importantly, the possibility of miscoordination as demonstrated here is present under any BRUD-style
update—regardless of whether we are learning online from a dynamic buffer, or offline from a static
dataset. Consider, though, how the impact of the policy gradient update from Equation 4 changes
as we move from learning online to offline. We can illustrate this shift by studying the size of the
replay buffer, B. Recall that introducing a replay buffer improves sample efficiency and stabilises
training in deep reinforcement learning (Mnih et al., 2013). A useful way to understand the buffer
is the relationship between its size and the degree to which learning is off-policy. Suppose data of
size b is sampled from the buffer to update the agents; then with a buffer size of b, agents are using
experience immediately after witnessing it—which is exactly on-policy, akin to an approach like
REINFORCE (Williams, 1992). Naturally, then, as the buffer size increases—where data is replaced
less and less frequently—the algorithm becomes increasingly off-policy. In the limit, where the buffer
size is infinite and data is never replaced, the setting becomes akin to offline learning, albeit with
fresh data still being added.

Figure 2 shows the impact of increasing the buffer size in the sign-agreement game when training
online with MADDPG. With the smallest buffer size, the policy moves along the optimal trajectory,
first towards the saddle at (0, 0) and then towards the high-reward region of ++. The BRUD approach
works well here, since the sampled joint action is likely to be relatively close to the current policy,
mitigating challenges of miscoordination. Yet as the max buffer size grows (i.e. the algorithm
becomes more off-policy), the typical sampled joint-action is further away from the current policy, as
visualised in the plots of the buffer state at the end of training. As a result, we see how the learnt
policy becomes increasingly sub-optimal, due to miscoordination problems discussed previously.
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Figure 2: Demonstrating the impact of replay buffer size, as a proxy for off-policyness, on the policy
learning with online MADDPG. We show the learning trajectory in policy space (top), the learning as
the reward over time (middle), and the state of the replay buffer in the final training update (bottom).
We see that increasing the buffer size leads to less optimal trajectories being learnt, due to the presence
of the stale data in the replay buffer. With the BRUD update, we can see that it is important for the
sampled joint action to remain fairly close to the current joint policy, to avoid miscoordination.

There is thus a tension between the efficiency and stability introduced by a replay buffer, and the
degree to which it is prone to miscoordination. However, we notice that with online MADDPG, in
each case, we still find the optimal, high-reward regions eventually. That is, some miscoordination
remains possible during training, but through exploration and adding fresh data to the buffer, online
learning can nonetheless recover good performance.

Offline learning does not experience the same success. Consider Figure 3, which shows an example
of learning from a static dataset, sampled uniformly as B ∼ U(−1, 1). The data itself, depicted in
Figure 3a, has a small bias, (āx, āy) = (−0.02, 0.04). Recall that in this sign-agreement game, the
BRUD update induces a unidirectional vector field ∇J = (āy, āx), in contrast to the true vector field
∇R = (ax, ay). These two fields are visualised in Figure 3b, with all vectors in ∇J pointing to the
bottom right, since āy > 0 and āx < 0. The resulting trajectories of offline learning with MADDPG,
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starting from three separate policy initialisations, are shown in Figure 3c. Notice how the nature of
the static dataset used for training completely determines the direction of policy update—which, in
this case, is in a completely incorrect direction, towards a low-reward region.
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(a) Dataset, ā = (−0.02, 0.04)
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Figure 3: The results of using a uniform dataset B for offline MADDPG policy learning, in the sign-
agreement game, R(ax, ay) = axay . We see that the net direction of policy learning is predetermined
by the mean of the dataset, due to the BRUD approach, regardless of the policy initialisation.

3.2 Growing Risk of Miscoordination with Increased Agent Interaction

Though miscoordination can indeed be demonstrated in the game R(ax, ay) = axay , the problem can
be mitigated through the choice of dataset. For example, by biasing the dataset to have sample means
āx > 0 and āy > 0, something close to the optimal trajectory can be found, since the agents will move
towards a high-reward region, ++. To truly understand the severity of BRUD in offline contexts, we
must look to more complex games. We present four games of increasing complexity below, showing
how a higher degree of agent interaction leads to higher degrees of potential miscoordination.

Decoupled Rewards: R = ax + ay. For completeness, consider a trivial case where the shared
reward yielded to agents is simply the sum of their actions. Here, ∇R = ∇J = (1, 1). Agents
must simply make their actions bigger to yield higher rewards. The components of the rewards are
completely decoupled, and no miscoordination occurs, regardless of the dataset used for learning.

Sign Agreement: R = axay. As discussed before, the update in this game moves the agents
in the direction of their teammate’s average action in the batch, ∇J = (āy, āx). If the dataset
actions happened to be biased such that sign(āx) = sign(āy), then the policies will move towards
a high-reward region. However, if the signs differ, the policies will move towards the low-reward
region. Because there is only a single, simple interaction term, there is only a minor requirement of
the dataset for successful offline learning.

Action Agreement: R = −(ax − ay)
2. This game requires agents to take identical actions

for optimal coordination, with anything else yielding R < 0. The true gradient field, ∇R =
(2ay − 2ax, 2ax − 2ay), implies a line of optima, ∇R = 0 ⇐⇒ ax = ay. In contrast, under the
dataset, the field is ∇J = (2āy − 2ax, 2āx − 2ay), resulting in a single optimum, ∇J = 0 at the
point (āy, āx). Note it is no longer the agents moving in the direction of the means of the dataset
actions, but instead that the learning will converge to this point. The requirement for optimal learning
is thus no longer solely based on the signs of the mean actions, but that x̄ = ȳ in the dataset, which is
a strong requirement.

Twin Peaks: R = −A(a2x + a2y)−B(axay)
2 + Caxay, {A > 0, B > 0, C > 2A}. Finally, we

study a set of polynomial games of a higher degree, allowing for more interaction terms. For brevity,
our treatment is presented for agent x, but all statements apply symmetrically to agent y, as the
function itself is symmetric in the agent’s actions. The surface has two peaks, with true maxima
at a†x = ±

√
(C − 2A)/2B. Most interesting in this polynomial is the bivariate quartic interaction,

(axay)
2, since it is optimised with BRUD as Eay∼B[∇ax

a2xa
2
y] = 2ax(ā

2
y + σ2

y), where σ2
y is the

sample variance of the y actions in B. Thus, we see that the outcome of offline learning depends
not only on the data’s sample mean but also on its spread. Indeed, we can derive two interesting
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relationships when learning offline in this game. Firstly, for learning to converge to the true optimum,
we have

a∗
x = a†

x ⇐⇒ σy(āy) =

√√√√−ā 2
y ±

(
C√

2B(C − 2A)

)
āy − A

B
, (5)

which says the dataset’s standard deviation must be a function of its mean. Notice then if we centred
the dataset around the origin, such that āy = 0, then σy =

√
−A/B, which is imaginary. Hence,

there exists no distribution of data that enables learning the true optimum in this game, using offline
BRUD, if the dataset is centred around (0, 0)—even if the dataset is infinitely large. We validate this
result empirically in Figure 4a, showing that increasing the variance of the data does not help the
learning succeed, for the converged policy is always simply (0, 0).

Secondly, the expression for the converged learnt policy is,

∇J = 0 ⇐⇒ a∗
x =

Cāy

2A+ 2B(ā 2
y + σ2

y)
.

This expression corroborates the previous result, showing that an origin-centred dataset will always
converge to the policy a∗x = 0. Suppose we now centre the data exactly around the true optimum
instead, āy = a†y. Under such conditions, learning will converge to the optimal policy only when
σ2
y = 0 (that is, we must solely have optimal data in the dataset, with no spread); but as σ2

y → ∞, then
a∗x → 0, which is increasingly far away from the true optimum. This result is validated empirically in
Figure 4b. Perhaps counter-intuitively, we thus see that increasing diversity in the dataset actions can
lead to worsening performance when learning offline in this game.
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1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

start
end

1.0 0.5 0.0 0.5 1.0

start

end

1.0 0.5 0.0 0.5 1.0

start

end

1.0 0.5 0.0 0.5 1.0
= 0

1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
= 0.3

1.0 0.5 0.0 0.5 1.0
= 1

Action x

Ac
tio

n 
y

Learning trajectory

Dataset

(b) Optimum-centred dataset, ā = a†

Figure 4: Visualisations from the Twin Peaks game (with A = 1, B = 4, C = 5). We see that with an
origin-centred dataset (4a), offline BRUD learning cannot find the true policy optimum, regardless
of the dataset variance, always simply converging to the origin. With an optimum-centred dataset
(4b), optimality in the learnt policy is only found if the variance is zero. As the variance increases,
the learnt policy moves away from the true optimum and towards the origin. These empirical results
validate the analytical solutions.

Remark These polynomial games indicate a clear relationship: as the degree of agent interaction
increases, the requirements of the dataset become more stringent for learning to converge to the true
optimum with BRUD. As a result, the possibility of miscoordination increases.

4 Proximal Joint-Action Prioritisation for Offline Learning

We have seen that the BRUD approach to policy learning is highly susceptible to coordination failure
in the offline setting. Nonetheless, BRUD remains useful for offline learning, since it allows us to
stay tightly coupled to the dataset, which is the only signal available. However, simply updating each
agent’s policy in response to the current joint policy learned from the data has been shown empirically
to work poorly in offline MARL (Shao et al., 2023).

Our analysis in Section 3 highlights that which data is sampled when could make a critical difference
in the utility of best response updates. For instance, the key difference between the successful learning
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in Figure 2, and the coordination failure in Figure 3, relates to the similarity between the current joint
policy, θ, and the joint action used for the policy update, a ∼ B. In fact, the problem illustrated in
Figure 1 would not have occurred if the data point, a(t), was in the same quadrant as the current
policy.

Therefore, in this work, we advocate for prioritised dataset sampling methods as a promising area
for innovation to improve learning in offline MARL. Furthermore, we consider sampling methods
as an “orthogonal” axis to other effective approaches for offline learning such as critic and policy
regularisation, where it can easily be combined with these methods to potentially great effect.
As a way of demonstrating a preliminary instantiation of this idea, we propose Proximal Joint-
Action Prioritisation (PJAP) as a class of offline sampling methods. In PJAP, prioritised experience
replay (Schaul et al., 2016) is used to increase the probability of sampling actions that were generated
by policies resembling the current joint policy, with priorities defined proportional to some similarity
metric.

Conceptually, for each trajectory, τ , in a dataset, B, we model an underlying joint dataset-generating
policy, βτ . Note that a given dataset may comprise various distinct dataset-generating policies—e.g.
when the dataset has trajectories with both low and high returns, recorded over an online training
procedure. We denote the current learnt joint policy after k updates as µ(k). In PJAP, we set the
priority, ρk+1, for each of the trajectories τ ∼ B, to be inversely proportional to some function of the
distance between the current joint policy and the dataset-generating policy, d(µ(k),βτ ).

As a specific instance of PJAP, we propose transforming the distance on a Gaussian, e−αd2

, where α
controls how rapidly the priorities decrease with respect to the distance. Under this transformation,
we ensure small distances yield similar, large priorities, whereas larger distances yield exponentially
smaller priorities. We also clip the minimum priority to some small value ϵ > 0, which avoids making
certain samples so unlikely that they are effectively never seen again. This parameter, ϵ, is thus akin
to controlling “exploration” of the dataset, where very occasionally we want to sample data that is, in
fact, quite different to our current joint policy. In summary, our instance of PJAP takes the following
prioritisation procedure,

PJAPN (ϵ) : ρk+1(τ) = max
[
e−αd(µk,βτ )

2

, ϵ
]
, (6)

We note that in practice, there are three key challenges when implementing PJAP. Firstly, we typically
do not have access to the dataset-generating policy itself, βτ . Thus in this work, we use the sampled
actions as a proxy for the policy that generated them, and compare them to the actions taken by the
agents under the sampled observations. Secondly, it is computationally unrealistic to recompute the
priorities for all trajectories in the dataset at each update step. Therefore, we fix this by bootstrapping
the priority updates—updating only a subset of samples at a time. Thirdly, we concede that coming up
with a good distance measure for a particular problem can be tricky, especially in higher-dimensional
action spaces.

We now demonstrate our approach in the case of deterministic policies (e.g. MADDPG), and present
different implementations of PJAPN (ϵ) using context-specific distance measures. First in the context
of polynomial games, and then in the following section, a more complex MARL setting from
MAMuJoCo (Peng et al., 2021). We note that developing generally performant “context-agnostic”
distance measures exists as a fruitful area for future work.

4.1 PJAP in Polynomial Games

Although the datasets generated for the polynomial game are quite small, we use the L1 norm as a
distance metric since ideally our chosen metric should be able to prioritise few samples from very
large datasets. Another advantage of the L1 norm is that is it computationally inexpensive when
compared to other distance and similarity metrics such as the L2 norm and cosine similarity. At step k,
with current policy parameters, θ(k), we update the priorities for each sample â = (âx, ây) ∼ B
using the PJAP formulation from Equation 6, and the distance measure,

d(µk, βτ ) ≜ ∥â,θ(k)∥1. (7)

Figure 5 illustrates how the failure mode seen in Figure 4b can be addressed by our use of PJAP.
Whereas offline MADDPG using BRUD fails to converge upon the correct solution (unless σ = 0),
MADDPG with PJAP finds the solution consistently across the various datasets.
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Figure 5: Results of using PJAP with MADDPG in the Twin Peaks game, fixing the problem
previously seen in Figure 4b. Each row uses a specific dataset: all centred on the true optimum,
but with increasing variances, shown in the first column. The corresponding trajectories of using
MADDPG with and without PJAP are shown in the second column. The third column shows how
using PJAP lowers the mean distance between sampled data and the current policy, which enables
convergence to higher performance, seen in the fourth column.

4.2 PJAP in MAMuJoCo

Next, we consider how to implement PJAP in a higher-dimensional setting, namely 2-Agent HalfChee-
tah from MAMuJoCo (Peng et al., 2021). Here, the environment is no longer stateless and policies
are conditioned on observations that change during an episode. Therefore, it is not immediately clear
what a suitable distance metric can be to measure the proximity between the current learnt determinis-
tic policy and the behaviour policies for each agent. In our experiments, we explore with using the L1
distance between the actions from the current learnt policy µk and the sequence of actions in a given
trajectory. That is, for a given trajectory τ ∼ D, we consider the sequence of observations and actions
which make up the trajectory τ = {((o1t , . . . , ont ), (a1t , . . . , ant )), . . . , ((o1T , . . . , onT ), (a1T , . . . , anT ))}.
Each ait in the trajectory τ comes from the unknown behaviour policy βτ . Thus, the average L1
distance between action ait and µi

k(o
i
k) can be seen as an approximate distance metric for PJAP.

d(µk, βτ ) ≜
1

N · T

N∑
i

T∑
t

∥µ(oi(t)), ai(t)∥1. (8)

We use the MADDPG+CQL implementation from OG-MARL (Formanek et al., 2023) as our
baseline and then compare it to a version of MADDPG+CQL where we incorporate PJAP using the
distance metric in Equation 8 and the prioritisation function in Equation 6. We evaluate our method
against the baseline on two different datasets from the 2-Agent HalfCheetah environment. The
results from the experiments are given in Figure 6. The average distance between actions sampled
from the dataset and the current learnt policy is also given to highlight that PJAP reduces this distance
as compared to the baseline, which corroborates the findings from the polynomial game experiment.
All hyperparameters between the baseline and our variant with PJAP are kept constant and have been
included in the attached code.

5 Related Work

Notable progress has been made in the field of offline MARL in recent years. Jiang and Lu (2021)
highlighted that in offline MARL the transition dynamics in the dataset can significantly differ from
those of the learned policies, leading to coordination failures. They address this by normalising the
transition probabilities in the dataset. Yang et al. (2021) highlight and address the rapid accumulation
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dataset experiment.
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(d) Mean distance plot for the
Good-Medium dataset experiment.

Figure 6: We compare the performance of MADDPG+CQL on 2-Agent HalfCheetah with and
without PJAP. We experiment on the Good and GoodMedium datasets from OG-MARL (Formanek
et al., 2023), showing the final performance plots (Figures 6a and 6c) after 500k training steps, with
bootstrap confidence intervals over 10 independent random seeds (Agarwal et al., 2022; Gorsane
et al., 2022). We also show the average distance (as defined in Section 4.2) between actions sampled
from the dataset and the current learnt policy (Figures 6b and 6d).

of extrapolation error due to Out-of-Distribution actions in Offline MARL. Pan et al. (2022) show that
MADDPG and Independent DDPG policy gradients struggle to optimise conservative Q-functions
(Kumar et al., 2020), and propose using a zeroth-order optimisation to learn more coordinated
behaviour. Shao et al. (2023) also highlight the limitations of MADDPG+CQL and propose a per-
agent CQL regularisation that scales better in the number of agents. Wang et al. (2023) also explored
a novel approach to regularising the value function in Offline MARL. Tian et al. (2023) consider an
imbalance of agent expertise in a dataset, which can contaminate the offline learning of all agents.
They address this problem by learning decomposed rewards, and then reconstructing the dataset
while favouring high-return individual trajectories. Finally, work by Cui and Du (2022) addresses the
additional fundamental difficulties of solving multi-agent learning problems using a static dataset.
The authors show that the dataset requirements for the solvability of a two-player zero-sum Markov
game are stricter than for a single-strategy setting.

6 Discussion

In this paper, we use simple two-player polynomial games to highlight and study the fundamental
problem of miscoordination in offline MARL, when using a Best Response Under Data (BRUD)
approach to policy learning. Building on our analyses, we propose Proximal Joint Action Prioritisation
(PJAP), where sampled experience data is prioritised as a function of the current joint policy being
learnt. We instantiate an instance of PJAP, and demonstrate how it can solve miscoordination problems
in both the simplified polynomial game case, and in the more complex MARL setting of MAMuJoco.

Importantly, though, our work primarily aims to be a catalyst for further development of dataset
sampling prioritisation methods, as one tool in our offline MARL toolkit. This tool exists alongside
other offline MARL remedies, such as critic and policy regularisation, all helping mitigate the
difficulties of offline learning, together. We believe that PJAP paves the way for interesting research
ideas in offline MARL.

Limitations This paper primarily focuses on theoretical contributions and insights in simplified
settings, using polynomial games as a backbone. Though useful as an interpretable and accessible
tool, the context is admittedly limited in several ways—it is stateless, comprises just two agents and
assumes perfect knowledge of the reward surface. We acknowledge that these limitations constrain the
generality of our conclusions, even when supported with more complex empirical results. However,
remain confident that our approach takes an important step to improving our understanding of
coordination in offline MARL.
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