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Abstract

3D shapes have complementary abstractions from low-level geometry to part-based hierarchies
to languages, which convey different levels of information. This paper presents a unified
framework to translate between pairs of shape abstractions: Text ⇐⇒ Point Cloud ⇐⇒
Program. We propose Neural Shape Compiler to model the abstraction transformation
as a conditional generation process. It converts 3D shapes of three abstract types into
discrete shape code, transforms each shape code into code of other abstract types through the
proposed ShapeCode Transformer, and decodes them to output the target shape abstraction.
Point Cloud code is obtained in a class-agnostic way by the proposed PointVQVAE. On
Text2Shape, ShapeGlot, ABO, Genre, and Program Synthetic datasets, Neural Shape
Compiler shows strengths in Text =⇒ Point Cloud, Point Cloud =⇒ Text, Point Cloud =⇒
Program, and Point Cloud Completion tasks. Additionally, Neural Shape Compiler benefits
from jointly training on all heterogeneous data and tasks.

1 Introduction

Figure 1: Example: Neural Shape Compiler helps obtain
hierarchical information for the reconstruction result of a
single image (Zhang et al., 2018), including its structural
descriptions, regularities, and how to assemble it.

Humans understand 3D shapes from different
perspectives: we perceive geometries, under-
stand their composing parts and regularities,
and describe them with natural language. Sim-
ilarly, vision researchers designed different ab-
stractions for 3D shapes, including (1) low-level
geometric structures that plot detailed geome-
try such as point clouds (Gruen & Akca, 2005;
Qi et al., 2017a); (2) structure-aware represen-
tations that can tell shape parts and their rela-
tions, like shape programs (Tian et al., 2019); (3)
natural language to describe compositionality
and functionality (Çağdaş, 1996; Chang et al.,
2014). Different shape abstractions convey com-
plementary information and encode different
characteristics allowing researchers to design
specialized models for various tasks (Mitra &
Nguyen, 2003; Chaudhuri et al., 2020). This paper studies how to translate between Text ⇐⇒ Point Cloud
⇐⇒ Program. Such transformation mechanism can provide multi-level information about shape (Figure 1) to
support various downstream tasks. Additionally, we demonstrate that combining the learning of different
transformation branches within a unified framework leads to stronger representation learning and improved
performance on each individual task.

†Equal Advising.
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Figure 2: Overview, and three transformations conducted by Neural Shape Compiler, including Text ⇒ Point
Cloud, Point Cloud ⇒ Program, and Program ⇒ Text2. Red shapes are the rendered results by executing the
corresponding program. ShapeCode Transformer is shared across different transformations. Neural Shape
Compiler is not limited to performing the transformations shown above, and benefits from joint training with
all heterogeneous data and tasks.

Modern program compilers (Lattner & Adve, 2004; Zakai, 2011) turn source codes into intermediate represen-
tations (IRs), transform IRs, and decode them into other types of high-level programming languages. We take
inspiration here and propose a unified architecture, Neural Shape Compiler1, to perform transformation
between the three shape abstractions with neural networks. It converts all shape abstractions into discrete
shape codes (i.e., IR) via their respective encoders. Then, ShapeCode Transformer, implemented as the
standard Transformer (Vaswani et al., 2017) for generality, transforms shape codes of one type to another in
an autoregressive and probabilistic manner (Ramesh et al., 2021). The probabilistic way helps us overcome
the issue of ambiguity that different shape geometries can correspond to very similar program or text. Finally,
the compiled shape code is decoded to the target shape abstraction through the corresponding decoder2.
Figure 2 shows the entire process and three example transformations.

To turn point clouds with continuous coordinates into discrete shape code, we propose PointVQVAE
inspired by (Van Den Oord et al., 2017). Unlike traditional point cloud process models (Qi et al., 2017a),
our encoder has restricted receptive fields (Coates & Ng, 2011; Luo et al., 2019) for learning shape part
embeddings. Those part embeddings let the codebook (Van Den Oord et al., 2017) encode the parts of the
input 3D shape rather than the entire shape. The decoder then combines all the 3D part codes to reconstruct
whole point clouds in a permutation equivariant manner.

This paper focuses on modeling 3D shape structures. Our text data contains detailed structural descriptions
and is devoid of color and texture, where we adjusted and annotated data from Text2Shape (Chen et al.,
2018), ShapeGlot (Achlioptas et al., 2019), and ABO (Collins et al., 2021) datasets, resulting in 107,371
(Point Cloud, Structure-Related Text) pairs. We synthesized 120,000 (Point Cloud, Program) pairs (Tian
et al., 2019) for understanding shape parts and regularities with programs. Our experiments show that Neural
Shape Compiler has the ability to generate point clouds from input text with geometric details, generate
text descriptions of the structure of input point clouds, and generate programs for composing point clouds.
Additionally, our experiments suggest the image-text pretraining model, CLIP (Radford et al., 2021), used by
recent Text =⇒ 3D methods (Jain et al., 2021; Sanghi et al., 2022; Nichol et al., 2022) is NOT suitable for
generating 3D shapes with structural details.

Furthermore, we train a model using all the data from tasks Text =⇒ Point Cloud, Point Cloud =⇒ Text, and
Point Cloud =⇒ Program, and train a separate limited version of the model for each task. Our experiments
show that the jointly trained model consistently outperforms each limited version model on the corresponding
tasks and beats existing baselines on all aforementioned tasks.

1It is important to note that Neural Shape Compiler has fundamental differences from program compilers, as described in
Section 2.

2Text ⇐⇒ Program is achieved in two-step generation Text ⇐⇒ Point Cloud ⇐⇒ Program. Program ⇒ Point Cloud is
deterministic via executing the programs
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Neural Shape Compiler is extensible. We show a case where our framework is extended to perform Point
Cloud completion by transforming partial Point Cloud code into complete Point Cloud code. Limitations
and future work are discussed in Section 5. Our code, dataset, and pre-trained models will be released to
facilitate future research in 3D multimodal learning.

2 Related Work
Compiler: Our proposed framework is inspired by the concept of computer program compiler (Calingaert,
1979; Appel, 2004; Aho et al., 2007; Aho & Ullman, 2022). Classical compilers translate high-level program
language (e.g., Pascal, C) into executable machine code with the help of assemblers and linkers (Wirth et al.,
1996; Appel, 2004). Compared to classical compilers, our framework is more similar to modern program
compilers (e.g., LLVM (Lattner & Adve, 2004) and Emscripten (Zakai, 2011)) where the target code is not
limited to machine code and can be high-level programming languages. Our framework (Figure 2) shares
similar architectures with LLVM: LLVM uses front-ends (encoders) to turn the corresponding source codes
into intermediate representations (ShapeCode) and decode them via back-ends (decoders). A major difference
between our framework and modern program compilers is that our IR transformation process is probabilistic,
whereas the process in a program compiler is a deterministic process with potential performance optimizations.

Multimodal Learning: With web-scale image-text data, our community achieved remarkable progress in
multi-modal learning of 2D-text (Li et al., 2019; Ramesh et al., 2021; Radford et al., 2021; Patashnik et al.,
2021; Alayrac et al., 2022; Ramesh et al., 2022). However, due to the lack of large-scale 3D-text pairs and
baseline systems (He et al., 2017), there is slow progress in 3D-text modeling. Some recent works tried to
leverage the progress in 2D-text multimodal learning (e.g., CLIP, Imagen (Saharia et al., 2022) (Radford
et al., 2021)) for 3D-text modeling (Jain et al., 2021; Zhang et al., 2021; Sanghi et al., 2022; Liu et al.,
2022a; Poole et al., 2022; Lin et al., 2022; Nichol et al., 2022). However, our experiments suggest CLIP is
NOT suitable for text-guided 3D generations once text contains structural details. Compared to them, this
work studies the connections between 3D and text directly (Chen et al., 2018; Fu et al., 2022), as there are
significant compositional connections between shape parts and words. Our work is closer to Text-to-Voxel
works (Chen et al., 2018; Liu et al., 2022b), while none of them can generate desirable shapes corresponding
to text prompt with levels of geometric details. Mittal et al. (2022) concurrently studied language-guided
shape generation with learned autoregressive shape prior. Besides, the proposed framework is related to
many-to-many deep learning frameworks (Ngiam et al., 2011; Jaegle et al., 2021; Reed et al., 2022).

Generative Model: PointVQVAE is inspired from VQVAE (Van Den Oord et al., 2017) studying variational
auto-encoder (Kingma & Welling, 2013) with discrete latent variables (Salakhutdinov & Larochelle, 2010).
We leverage its most basic concept, vector quantization (Theis et al., 2017; Agustsson et al., 2017; Oord et al.,
2016), and use the discrete codes as our IRs in Neural Shape Compiler. We did not exhaust the complex
variants or techniques for generality, such as Gumbel-softmax (Jang et al., 2016; Ramesh et al., 2021), the
exponential moving average in codebook updating, and multi-scale structures (Razavi et al., 2019; Vahdat &
Kautz, 2020). Prior works studied learning 3D shape probabilistic spaces with GANs for shape synthesis (Wu
et al., 2016; Nguyen-Phuoc et al., 2019); (Achlioptas et al., 2018; Yang et al., 2019; Cai et al., 2020) learn the
continuous distribution of point clouds and sample thereon to generate shapes; (Mittal et al., 2022; Cheng
et al., 2022; Yan et al., 2022) concurrently developed ways to quantize point clouds and voxels; diffusion
models are also exploited in 3D shapes (Luo & Hu, 2021; Zhou et al., 2021).

3D Shape Understanding: Our approach is related to research on 3D shape understanding about geometry
processing and structural relationship discovery. Recent learning systems for shape processing usually perform
over some low-level geometry representations, such as point clouds (Bronstein & Kokkinos, 2010; Qi et al.,
2017b; Liu et al., 2019; Luo et al., 2020), volumetric grids (Wu et al., 2015; Maturana & Scherer, 2015; Wu
et al., 2016; Wang et al., 2019), multi-view images (Bai et al., 2016; Feng et al., 2018; Han et al., 2019),
meshes (Groueix et al., 1802; Lahav & Tal, 2020; Hu et al., 2022), and implicit functions (Mescheder et al.,
2019; Park et al., 2019; Genova et al., 2020). Some represent shapes in a more structured way, including
hierarchies, trees, and graphs (Wang et al., 2011; Li et al., 2017; Sharma et al., 2018; Mo et al., 2019). Neural
Shape Compiler adopts point cloud as one of its shape abstractions because point cloud can describe shape
structures and can be easily acquired by real sensors. Regarding the types of shape regularities (Mitra et al.,
2006; Pauly et al., 2008; Mitra et al., 2007; Wang et al., 2011; Xu et al., 2012), this paper mainly considers
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extrinsic part-level symmetries, including transformational, reflectional, and rotational symmetries, which
relate to part pairs and multiple parts. Our framework adopts shape program (Tian et al., 2019; Jones et al.,
2020; 2021; Cascaval et al., 2022), which is one of the recent advances in relationship discovery. It designed a
shape domain-specific language to encode shape relationships implicitly in programs.

3 Method
This paper presents a unified framework that transforms between different shape abstractions and benefits
from joint multimodal learning across multiple heterogeneous tasks. The key is tuning different shape
abstractions into a unified discrete space, which enables our model to handle multiple tasks simultaneously.
Specifically, we turn each type of input shape (Point Cloud, Text, or Program) into discrete shape code
([c1, ..., cn], {ci} ∈ Z+) through their corresponding encoders. ShapeCode Transformer then transforms each
shape code into the code that can be decoded into target shape abstraction via the corresponding decoder.
Each encoder and decoder is designated to consume the specific type of shape abstraction, while ShapeCode
Transformer communicates with all encoders and decoders via discrete code for all heterogeneous tasks.

3.1 Encoders & Decoders

To turn point clouds P = {p1, · · · , pm} (pi = (xi, yi, zi)) into codes Cpoint = ([cp
1, cp

2, ..., cp
Npoint

], {cp
i } ∈ Z+)

while accommodating complex variations of shape structures. We draw inspiration from VQVAE (Van
Den Oord et al., 2017) and propose a new model called PointVQVAE to address this task in a class-agnostic
manner. Our approach involves designing a novel encoder and decoder architecture that enables PointVQVAE
to reconstruct point clouds from shape codes, the same discrete space into which we convert Text and Program.

Figure 3: PointVQVAE consists of three parts: (1) a hierarchical encoder that has restricted receptive fields
and outputs multiple part embeddings; (2) a shared codebook for vector quantization (Van Den Oord et al.,
2017) (e.g., looking up the closest yellow embedding in the codebook for the yellow output of the encoder);
(3) a decoder with multiple residual building blocks consisting of 1x1 convolutional layers, a max-pooling
layer, and MLP layers at the end to output 2,048 points.

Point Cloud Encoder: The key point of PointVQVAE encoder is to constrain its receptive fields (Luo et al.,
2016) of the last layer neurons to very local regions (Luo et al., 2019), so that the codebook behind can learn
how to encode part of the 3D shape instead of entire 3D shapes (Luo et al., 2020). Specifically, we propose a
hierarchical encoder with multiple down-sampling processes Ti (currently implemented as a PointNet++-like
structure (Qi et al., 2017b)). In each round Ti, we first do farthest point sampling over input point clouds to
sample a set of points noted as center points. Around each center point, we draw a ball with radius RTi

to
gather information from all points inside the query ball. After this, the input point cloud is downsampled
into smaller point clouds with updated embeddings at each point. Since the radius RTi of our query ball is
usually smaller than the scale of the whole point clouds, the receptive field of points in downsampled point
clouds can be gradually increased as we repeatedly the downsampling process (i.e., increase #T ). In our
experiments, we set the number of rounds #T = 2 and RTi

to be small values (RT1 = 0.1, RT2 = 0.4) for
letting the final neurons (e.g., colorful points of the encoder’s last layer in Figure 3) only receive local part
information regarding the input shapes. Our experiments in Appendix C demonstrate that ensuring that the
final neuron receives local information is critical for reconstruction.

Point Cloud Decoder: For each embedding in the last layer of the encoder, we look up its closest embedding
in our codebook (Van Den Oord et al., 2017). We concatenate all the obtained embedding together as
the input to our decoder. The concatenated embedding encodes the full information of the input shape

4



Published in Transactions on Machine Learning Research (03/2023)

by collecting the information encoded by different local parts of the input shape. Compared to common
point clouds auto-encoders (Qi et al., 2017b), we discard the coordinate information of the final points of the
encoder. Not using coordinate information may degrade auto-encoding performance but allow us to translate
between codes successfully because we do not have any coordinate information if we translate from other
shape abstractions (i.e., text and program). To compensate for this point, we designed a residual-network-like
block (He et al., 2016) and made our decoder with great depth to exploit the information from the concatenate
embedding fully, as shown in the right of Figure 3. A max-pool layer is added to the decoder’s output
to ensure the final embedding is invariant to the concatenation order of the embedding from the encoder.
In our experiments, we adopt Chamfer distance (Fan et al., 2017) and Earth Mover’s distance (Rubner
et al., 2000) as our reconstruction loss and the straight-through gradient estimator (Bengio et al., 2013) for
backpropagating gradients to the encoder by copying the gradients from the inputs of the decoder to the
encoder output. More details are included in Appendix B.1.

Program Encoder & Decoder: For program, due to the domain-specific language of shape program
(Tian et al., 2019) has limited discrete types of statements {A, B, C, · · · } and ranges of parameters for each
statement {a1, a2, · · · , b1 · · · }, We convert the shape program into code in the order of first the statement
type, then its parameters, i.e., [A, a1, a2, a3, B, b1, b2, b3]. For example, we encode the statement draw(‘Top’,
‘Square’, P=(-1,0,0), G=(2,5)) in Figure 2 as [3, −1, 0, 0, 2, 5, 0, 0] where 3 represents the command of drawing
square top, and the remains are its specific parameters. This way provides perfect precision to encode and
decode shape programs while it cannot handle continuous parameters. Therefore, we proposed an extra
ProgramVQVAE in Appendix B.3 to handle the case of the continuous parameters.

Text Encoder & Decoder: We adopt the simplest way to encode and decode text without external
pre-trained parameters: leverage BPE (Sennrich et al., 2015) to encode and decode lowercase text.

3.2 ShapeCode Transformer

After developing all the encoders and decoders, we turn Point Clouds, Text, and Programs into the unified
discrete space Cpoint, Ctext, and Cprogram, respectively. ShapeCode Transformer performs over a pair of
discrete codes and transforms from one type of code to another type. Similar to (Ramesh et al., 2021),
we model the pair of discrete codes as a single data stream. For example, if transforming to Point Cloud
code from Text code, we model data like [ct

1, · · · , ct
Ntext

, cp
1, · · · , cp

Npoint
]. In training, we pad 0 at the

left of data3 (e.g., [0, ct
1, · · · , ct

Ntext
, · · · , cp

Npoint
]) and use full attention masks (Child et al., 2019) to force

ShapeCode Transformer autoregressively predicts the next token based on all the seen ones, i.e., predict ck

with the context of [0, · · · , ck−1]. Assume {cgt
k } is the corresponding ground-truth token, our loss for this

transformation is arg minθ

∑Ntext+Npoint

k=1 L(Tθ(0, c1, · · · , ck−1), cgt
k ), where L is cross-entropy loss and T is

ShapeCode Transformer parameterized by θ to predict ck by feeding [0, · · · , ck−1].

As modeled above, the second type of code gets full attention to the first type of code in predictions. This
modeling can be viewed as maximizing the evidence lower bound on the joint likelihood of the distribution
over the input two types of code pθ(Ctypei , Ctypej ), type ∈ {point, text, program}, where pθ is our ShapeCode
Transformer. However, one of the challenges in our modeling is that we can generate either texts or programs
conditional on the same input point clouds. How do we let the ShapeCode Transformer know which type of
object code we need? Our solution is to encode our pairs of tokens with different positional embedding, i.e.,
we have two different positional encoding Pϕtext

point
([Cpoint, Ctext]) and Pϕprogram

point
([Cpoint, Cprogram]). Using a

different positional encoding helps guide the ShapeCode Transformer to generate the specified target code.

arg min
θ,ϕ,ω

∑
k

L(Tθ([Pϕ(0), Eω(0)], [Pϕ(c1), Eω(c1)], · · · , [Pϕ(ck−1), Eω(ck−1)]), cgt
k ) (1)

ShapeCode Transformer communicates only the shape code with all the encoders and decoders. It maintains
Eω(c) = [#tokens, #dim] embedding for each type of code {Cpoint, Ctext, Cprogram} that will be optimized
during training. In each optimization, once the code is received from the encoder, ShapeCode Transformer

3Padding with 0 on the leftmost enables our framework to sample data unconditionally.
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indexes the self-maintained embedding through the received code. It transforms shape code based on the
indexed self-maintained embedding, enabling optimization without interference from encoder and decoder
parameters. Our total training losses are the summation of equation 1 over multiple shape code pairs ci, cj

from (Ctext, Cpoint), (Cpoint, Ctext), and (Cpoint, Cprogram). For each input shape code, we concatenate its
positional encoding Pϕ(c) and the embedding maintained by ShapeCode Transformer Eϕ(c) and feed into the
ShapeCode Transfromer to predict the next token. In inference, we leverage Gumble noise (Jang et al., 2016)
to generate a set of plausible results for a given input. Please refer to B.2 for all the detailed parameters.

4 Experiments
We conduct Text =⇒ Point Cloud, Point Cloud =⇒ Text and Point Cloud =⇒ Program tasks to verify
our performance, and Partial Point Cloud =⇒ Complete Point Cloud (Shape completion) task to show
the extensibility of our framework (Appendix 4.4). For each task, we have two versions of our method:
Shape Compiler Limited and Shape Compiler. Shape Compiler Limited means that we restrict both
PointVQVAE and ShapeCode Transformer to train on the same data and task as the baselines for fair
comparisons. Shape Compiler is our full model trained on all tasks and data to check if joint training on
heterogeneous data and tasks leads to improvement. Our used data are briefly described below. More data
collection details are listed in Appendix A.

Shape-Text Pairs: To investigate the structural connections between text and shape, we collect a total
of 107,371 (Point Cloud, Structure-Related Text) pairs from a total of 20,355 shapes with 9.47 words per
description on average and 26,776 unique words. We use 85% shapes for training and the remaining 15% for
testing. Data collection details are listed in Appendix A.

3D Shape Assets: To achieve a general framework, we collect various 3D shapes and obtain a total of
140,419 shapes of 144 categories from ShapeNet (Chang et al., 2015), ABO (Collins et al., 2021), and Program
Synthetic (Tian et al., 2019) datasets. For each shape, we sample 10,000 points as inputs and remove all
artificial colors and textures to focus on shape geometry and compositionality.

Shape-Program Pairs: We followed (Tian et al., 2019) and synthesized 120,000 (Point Cloud, Program)
pairs. For testing, Tian et al. (2019) sampled shapes from ShapeNet, and we use the same sets to evaluate in
our experiments for fair comparisons.

4.1 Text =⇒ Point Cloud

Figure 4: Text =⇒ Point Cloud by Neural Shape Compiler.
A text prompt may translate to multiple shapes.

Neural Shape Compiler can generate point
clouds corresponding to text prompt (Figure
4). We compare methods (Jain et al., 2021;
Sanghi et al., 2022) that rely primarily on CLIP
Radford et al. (2021) to generate 3D shapes and
methods that require 3D-text pairs (Chen et al.,
2018; Liu et al., 2022b). We use our shape-text
training pairs to train CWGAN (Chen et al.,
2018) and Shape IMLE diversified model (Liu
et al., 2022b), and our Shape Compiler Lim-
ited for fair comparisons. Since this paper fo-
cuses on geometry, we only compare with (Chen
et al., 2018; Liu et al., 2022b) in geometrical as-
pects, which is the same comparison way used in
(Mittal et al., 2022). We compare CLIP-Forge
(Sanghi et al., 2022) and DreamField (Jain et al.,
2021) to show the gap between exploiting the
2D-text model and training over 3D-text pairs. Since DreamField learns a neural radiance field over a single
text with a lot of sampling, its training time is too long to test in the scale of our test set (details in Appendix
B.4). We only compare its qualitative results. In order to benchmark Text =⇒ Point Cloud task, we turn
models which output 3D voxels into point clouds by sampling 2,048 points on their output voxels. Shape
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.
Figure 5: Text =⇒ Point Cloud. Neural Shape Compiler can generate corresponding point clouds to the text
prompt with structural details, while the baselines generate inaccurate structures or fewer alignments with
the text prompt. We visualize Point Clouds via Misuba (Jakob et al., 2022)

Compiler is trained with all heterogeneous data and tasks described in Section 4 to show the benefits from
jointly training over all tasks.

Evaluation Protocol: To benchmark Text =⇒ Point Cloud task, we measure generative performance from
multiple angles: quality, fidelity, and diversity. (1) For measuring quality, we use Minimal Matching Distance
(MMD) (Achlioptas et al., 2018) to check if the generated shape distributions are close to ground-truth shape
distributions by computing the distance between the set of all our generated point clouds and the set of all
ground-truth point clouds. We use Chamfer distance for each pair of point clouds in computing MMD. (2)
For measuring fidelity, we compute the minimal Chamfer distance between all generated point clouds and
the corresponding ground truth shape of the input text. We report the Average Minimal Distance (AMD)
over all the test texts. (3) For measuring diversity, we adopt Total Mutual Difference (TMD) (Wu et al.,
2020), which computes the difference between all the generated point clouds of the same text inputs. For
each generated point cloud Pi, we compute its average Chamfer distance CDPi

to other k − 1 generated point
clouds Pjj ̸=i and compute the average: TMD = Avgk

i=1CDPi
. Given an input text, every model finalizes 48

normalized point clouds of 2,048 points.

Dataset Method MMD ↓ AMD ↓ TMD ↑

ShapeGlot

CWGAN 22.46 27.32 0.67
Shape IMLE 12.37 14.92 1.83
CLIP-Forge 36.43 64.5 2.45

Shape Compiler Limited 6.19 11.27 1.85
Shape Compiler 5.7 7.31 2.8

Text2shape

CWGAN 10.42 18.21 0.79
Shape IMLE 6.73 15.34 2.34
CLIP-Forge 5.16 19.69 1.34

Shape Compiler Limited 6.21 14.21 1.53
Shape Compiler 4.53 11.66 3.07

ABO

CWGAN 12.74 22.31 0.52
Shape IMLE 6.43 13.67 1.42
CLIP-Forge 7.89 23.35 1.23

Shape Compiler Limited 4.93 8.33 0.67
Shape Compiler 4.76 7.77 1.34

Table 1: Text =⇒ Point Cloud. MMD (qual-
ity), AMD (fidelity), and TMD (diversity) are
multiplied by 103, 103 and 102, respectively.

Results: According to Table 1, Shape Compiler variants gen-
erally outperform CLIP-Forge (Sanghi et al., 2022), CWGAN
(Chen et al., 2018), and Shape IMLE Diversified (Liu et al.,
2022b), especially in AMD (fidelity), which demonstrates
our proposed method can generate shapes that more closely
match the input texts which contain levels of geometrical
details. This is consistent with the qualitative results in
Figure 5, where all compared baselines cannot handle the
text prompt containing many structural details well. One
potential drawback in (Chen et al., 2018; Liu et al., 2022b)
is the use of 3D convolutional layers, which make their mod-
els tend to overfit training data distribution. This is also
shown in Figure 5, where their results are less correlated
with the input texts. Shape IMLE outperforms CWGAN,
consistent with the discovery in (Liu et al., 2022b). However,
its inference is much slower than Shape Compiler due to the
use of 3D convolutional layers and implementations, whereas
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our method infers low-dimensional codes and decodes them
through a 1D residual decoder. In our same single GPU, Shape IMLE takes 1003.23 seconds to generate 48
shapes, while Shape Compiler takes only 14.69 seconds. Shape Compiler consistently outperforms Shape
Compiler Limited indicating the proposed framework benefits from the joint training on all heterogeneous
data and tasks. However, due to the use of point cloud representation, the inherent difficulty of 3D shape
generation with structure details, and the introduction of Gumbel noise, our framework produces rough
boundaries, uneven surfaces, and irrelevant shapes. There is a lot of room for research in the proposed
framework and Text =⇒ Point Cloud task.

Text1 Text2 Similarity
a chair with armrests a chair with no armrests 0.983
a chair with armrests a chair without armrests 0.988

a swivel chair with armrests a swivel chair with no armrests 0.979
a swivel chair with armrests a swivel chair without armrests 0.986

a chair with armrests a chair with armrests and curved back 0.962
a chair with armrests a chair with no armrests and curved back 0.965

a swivel chair with armrests a swivel chair with armrests and curved back 0.981
a swivel chair with armrests a swivel chair with no armrests and curved back 0.982

a table with circular top a table with square top 0.932
a table with circular top a table with rectangular top 0.938

a stool chair with two legs a stool chair with three legs 0.992
a couch with two seats a couch with three seats 0.986

Table 2: The rightmost column is the cosine similarity
between the CLIP text embeddings (Radford et al., 2021)
of the left two texts. Cosine Similarity = f1·f2

max(∥f1∥2·∥f2∥2,ϵ) ,
where f1 and f2 are the CLIP embedding of Text1 and
Text2, respectively. ϵ is 1e-6 to avoid division by zero.

Despite the success of using CLIP in 3D shape
generation with text prompt containing sim-
ple structure descriptions (Sanghi et al., 2022;
Jain et al., 2021), CLIP-Forge shows undesirable
AMD and MMD scores in both ShapeGlot and
ABO datasets, and DreamField fails to gener-
ate structures corresponding to the text prompt,
although they are perceptually fine. Addition-
ally, our experimental results suggest that the
text embedding of CLIP models (Radford
et al., 2021) is Not able to reflect differ-
ences in small changes in the text, which
may lead to large changes in structure. Ta-
ble 2 shows several examples. The texts in the
second column are similar to those in the first
but will lead to significant structural changes.
However, they have very high similarity scores
in CLIP text embeddings, almost 1, which is
an upper bound for cosine similarity. This may illustrate why CLIP-Forge (Sanghi et al., 2022) achieved
low AMD scores (Table 1), where our 3D-text datasets contain complex structural descriptions as shown in
Appendix A. CLIP text embeddings cannot distinguish text with structural details well, which hurts the
performance of text-guided 3D shape generation. The clip model we used here is ViT-B/32, and other CLIP
models show similar trends.

Also, we found the cosine similarity between the CLIP embedding of rendered 3D shape images
and the CLIP embedding of text cannot accurately measure the degree of alignment between
the text prompt and 3D geometry when the text prompt and 3D geometry contain structural
details.

Figure 6: Render the shape with six different camera positions and two different point lights by Pytorch3D Ravi
et al. (2020). The texts shown at the top left are the shape-associated texts provided in our datasets, which
only contain Round or Circular. We modified them into Rectangle or Rectangular as shown in the top right.
The number above each image is the average cosine similarity between each CLIP image embedding and all
corresponding CLIP text embedding.
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We render 3D shapes into images with six camera positions and two different point lights with PyTorch3D
(Ravi et al., 2020), as shown in Figure 6. Then, we obtain each image embedding by using the CLIP image
branch encoder. Each shape has several text descriptions. We tokenize those texts with the tokenizer provided
by CLIP and obtain our text embedding by feeding them into the CLIP text encoder. In Figure 6, the score
above each shape is the average cosine similarity between the image and each text shown at the top. We
select shapes with text containing Round or Circular and not including Rectangle and Rectangular. We
compute the cosine similarity between the embedding of the rendered images and two different sets of text
embedding: (1) the original ground-truth texts which contain Round or Circular; (2) we replace Round
or Circular into Rectangle and Rectangular. An example of replacement is shown in Figure 6 where the
right figure top texts are the replaced ones. We compute the similarity scores over 1,358 shapes with a
total of 6,697 texts. As described above, we have six images for each shape, resulting in 40,182 scores. We
calculate the mean and standard deviation of all scores for the two sets of text: (1) 0.2925 ± 0.02173 and (2)
0.2917 ± 0.02211. Although there are huge differences between the two sets of texts, their average cosine
similarity with the CLIP image embedding is very close. This experiment further supports CLIP is NOT
suitable to deal with text containing geometric details.
4.2 Point Cloud =⇒ Text

Figure 7: Point Cloud =⇒ Text. One description per sentence. The shown shapes are from test sets, and
Neural Shape Compiler tell their structures well.

Neural Shape Compiler performs Point Cloud =⇒ Text tasks that describe given shape point clouds as shown
in Figure 7. To compare, we followed (Chen et al., 2021) and implemented a 3DEncoder-LSTM model as our
baseline by replacing the image encoder of Show-Attend-Tell(Vinyals et al., 2015) with a 3D encoder. We
adopt a similar encoder structure as PointVQVAE and set the output feature to be 512 dimension, the same
value as our intermediate representations. An LSTM model will then be trained over the 512 output features
to predict words gradually, and an end word will be the last token. For each shape, all methods will generate
48 descriptions to compare.

Dataset Method BLEU-4 ↑ CIDER ↑ ROUGE ↑ Dist-1 ↑ Dist-2 ↑

ShapeGlot

3DEncoder-LSTM 2.78 2.93 18.61 0.016 0.017
Shape Compiler Limited 2.96 2.15 21.87 1.174 14.146

Shape Compiler 3.19 2.35 22.21 1.193 14.784
Ground-Truth - - - 6.908 37.92

Text2Shape

3DEncoder-LSTM 1.01 0.84 21.18 0.027 0.042
Shape Compiler Limited 2.96 2.21 25.97 0.792 9.984

Shape Compiler 4.25 2.96 27.61 0.921 11.343
Ground-Truth - - - 5.906 34.05

ABO

3DEncoder-LSTM 0.01 1.39 2.98 0.031 0.047
Shape Compiler Limited 8.95 106.31 25.42 3.605 23.165

Shape Compiler 7.98 111.22 26.47 1.27 13.43
Ground-Truth - - - 18.294 49.097

Table 3: Point Cloud =⇒ Text. BLEU, CIDER, and ROUGE
measure quality. Dist-1 and Dist-2 measure diversity.

Evaluation Protocol: We measure the qual-
ity of the generated shape descriptions with our
annotations in validation sets. Here we adopt
the common metrics used in text generations
tasks (Vinyals et al., 2015; Koncel-Kedziorski
et al., 2019) including BLEU (4-gram) (Pap-
ineni et al., 2002), CIDER (Vedantam et al.,
2015), and ROUGE (Lin, 2004). We also adopt
Dist-1 and Dist-2 in (Li et al., 2015) to measure
the diversity of the generated results: Dist-1
and Dist-2 are the results of distinct unigrams
and bigrams divided by the total number of
tokens (maximum 100 in our table).

Results: According to Dist-1 and Dist-2 in
Table 3, Shape Compiler generates much more
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Figure 8: Point Cloud =⇒ Program. Neural Shape Compiler can well infer programs for the shown shapes of
unseen categories and reconstruct shapes in a creative manner (e.g., represent the semicircle leg with bars).

diverse captions than 3DEncoder-LSTM (Vinyals et al., 2015; Chen et al., 2021) due to the help of involving
Gumbel noise over the learned priors in the inference. This is also shown in Figure 7 where Shape Compiler
can describe given shapes in multi-angles. Also, our framework achieves generally higher BLEU, CIDER, and
ROUGE scores than 3DEncoder-LSTM. By inspecting the predictions, we found that 3DEncoder-LSTM tends
to predict the frequent words in datasets (e.g., back and legs), and the output descriptions are less meaningful
in semantics. However, those repetitive words can help them achieve higher BLEU, CIDER and ROUGE
scores in Text2Shape and ShapeGlot. Therefore, evaluating Point Cloud =⇒ Text performance with both
quality and diversity metrics is essential. Furthermore, the ground-truth descriptions differ significantly from
our predictions on diversity metrics, suggesting that the proposed method still has huge gaps in achieving
human-level shape captioning.

4.3 Point Cloud =⇒ Program

Shape Compiler performs transformation: Point Clouds ⇒ Program, which can help us understand how the
point clouds are assembled by parts and regularities. For example, in Figure 8, we can tell how to decompose
the point clouds into primitives via the symbolic words in the program and also find the mapping between
points and the corresponding primitive via executing the program. Furthermore, the symmetry relationship
between those racks of the cabinet is implicitly encoded in the FOR statements. The discovery of parts and
relationships can help us design robots better interacting with 3D objects.

Neural Program Generator (Tian et al., 2019) is our most direct baseline. They used a two-layered LSTM
to gradually generate program blocks and programs inside each block to form the final shape of programs.
We will not adopt the guided adaptation used in (Tian et al., 2019) in our experiments because it needs
extra training loops and prevents the practical use of program generation (further discussion is included in
Appendix D). We also compare with CSGNet (Sharma et al., 2018), which applies boolean operations on
shape primitives and assemble shape recursively.

Metric Method Chair Table Bed Sofa Cabinet Bench Avg

IoU ↑

CSGNet (Sharma et al., 2018) 0.365 0.406 - - - - -
Program Generator (Tian et al., 2019) 0.438 0.517 0.254 0.324 0.304 0.216 0.342

Shape Compiler Limited 0.429 0.539 0.27 0.31 0.504 0.314 0.394
Shape Compiler 0.492 0.634 0.252 0.432 0.51 0.451 0.462

CD ↓

CSGNet (Sharma et al., 2018) 7.73 7.24 - - - - -
Program Generator (Tian et al., 2019) 1.64 1.97 4.78 3.14 2.95 2.71 2.87

Shape Compiler Limited 1.53 1.21 4.51 2.84 1.58 1.57 2.21
Shape Compiler 1.17 0.83 4.39 2.52 1.49 1.38 1.96

Table 4: Point Cloud =⇒ Program. CD is multiplied by 102. Avg denotes average number among categories.
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Evaluation Protocol: Shape Program (Tian et al., 2019), CSGNet (Sharma et al., 2018), and our models
will predict programs under specific domain languages. By executing the output programs, we can obtain
volumetric representation shapes; then, we can compute IoU based on the output voxels. Also, we sample
points over the surface of output voxels for computing Chamfer distance. Due to the benefits of being a
probabilistic method, our framework can predict many programs given a single point cloud. We here generate
48 programs for comparisons, the same number we used in our text tasks. Ablation studies of the generated
program numbers are included in Appendix D.

Result: According to Table 4, Shape Compiler outperforms all the methods due to the benefits of multimodal
learning on all tasks and data. It also suggests our framework can effectively take advantage of task-unrelated
heterogeneous data. Figure 8 shows two positive examples of our framework that better handles novel data
than the baseline. Both cases show that the compared baseline mainly relies on memorizing the training table
data, while Shape Compiler successfully predicts the rough structure and the regularities. Regarding the
scores, Shape Compiler Limited achieved comparable performance with Shape Generator, while the significant
performance gap in cabinet and bench categories shows our framework has stronger generalizability. Due to
the limitation of the current program grammar, our method cannot handle complex structures for now. We
raise attention to the next-level shape program, and some further discussion is included in Appendix D.

4.4 Partial Point Cloud =⇒ Complete Point Cloud

Figure 9: The success of shape completion boosts shape structural
understandings. We use Neural Shape Compiler to do Point Cloud =⇒
Text for both the partial chair and the complete chair. The ground-truth
shape is on the top right.

Method Chair Airplane Car
PointFlow (Yang et al., 2019) 6.93 1.07 3.97

PVD (Zhou et al., 2021) 7.34 1.19 3.83
Shape Compiler Limited 7.57 1.62 4.82

Shape Compiler 6.9 1.56 3.81

Table 5: Partial Point Cloud =⇒
Complete Point Cloud. Numbers
are Chamfer distance ↓ with mul-
tiplying 102.

In this section, we extend Neural Shape Compiler to conduct Partial Point Cloud =⇒ Complete Point Cloud
(shape completion) task by projecting both partial and full point clouds into discrete codes and performing
conditional generation thereon. We followed the benchmark provided in (Zhang et al., 2018; Zhou et al.,
2021) and the detailed data preparation is listed in Appendix A.3. Different from the way used in Zhou
et al. (2021), we train models on all training shapes in a class-agnostic way. Results in Table 5 show Shape
Compiler achieved great performance compared with the previous method. Also, PVD (Zhou et al., 2021) is
slower than Shape Compiler because they involve very long steps (1,000) in the diffusion process.

Additionally, with the help of Neural Shape Compiler, we may better share the progress across different tasks.
In Figure 9, we individually perform Point Cloud =⇒ Text over the partial chair and the complete chair.
The ground-truth chair is on the right. For the partial chair, the captioning results include hallucinated
descriptions, like hole in the back and circle back, and also accurate descriptions of the partial chair but not
precisely related to the ground-truth one, like pointy legs. Compared to it, the descriptions for the completion
result are more related to our ground-truth point cloud.
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5 Limitations and Future Works

This paper proposed Neural Shape Compiler, a unified framework to perform multimodal inference and
achieved great performance on Text =⇒ Point Cloud, Point Cloud =⇒ Text, Point Cloud =⇒ Program, and
Point Cloud Completion tasks. However, there are still a lot of things to be considered:

1. Similar to (Chen et al., 2018; Liu et al., 2022b; Mittal et al., 2022), our method requires large-scale paired
data, where the 3D-text pairs are hard to obtain. This situation could be alleviated by the development of
large-scale 3D-text datasets and recovery of 3D data from 2D images (Gkioxari et al., 2022) and videos (Qian
et al., 2022) that contain paired text information.

2. Our framework is extensible, where we showed a case in shape completion task (Table 5). Similarly, we
can project images (Van Den Oord et al., 2017), tactile information (Gao et al., 2022), and other modalities
into the discrete representation and learn over them via a unified framework for various downstream tasks,
such as single image 3D reconstruction (Zhang et al., 2018), multiview reconstruction (Ji et al., 2017) and
multi-modal grasping (Calandra et al., 2018). On the other hand, it would be interesting to study extending
diffusion-based frameworks to handle various types of generative modeling, since the current diffusion models
usually focus on one type of transformation Rombach et al. (2022); Gong et al. (2022).

Figure 10: Point Cloud =⇒ Text and Point Cloud =⇒ Program
results over the input Hilbert cube point clouds by Shape Compiler.
One description per sentence.

3. The proposed framework currently
cannot well handle out-of-distribution
geometry, such as the dragon in (Mor-
reale et al., 2022) and the Hilbert cube
in (Liu et al., 2020a). Figure 10 shows
the results of Point Cloud =⇒ Text
and Point Cloud =⇒ Program over
the Hilbert cube by Shape Compiler.
The current programs can only tell
the coarse geometry, and captions are
about similar objects in our training
data, such as cubes and cabinets.

4. Our approach currently adopts the
domain-specific language (DSL) pro-
posed in (Tian et al., 2019) as one of the input and target shape abstractions. However, the DSL’s grammar
and syntax are not powerful enough to handle various complex shapes. For example, it fails to perform accu-
rate reconstruction or completion for 3D shapes with geometrical details (Chaudhuri et al., 2020) and detect
self-symmetries possessed by individual parts (Mitra et al., 2006). Since the progress of shape programs is
orthogonal to the proposed framework, the development of shape programs can further benefit our framework.
Therefore, this paper also raises attention to developing the next level of shape programs.

5. Neural Shape Compiler still generates outputs that are mismatched to the input conditions. For example,
it may generate shapes unsatisfied with the input text in Text =⇒ Point Cloud task and captions wrongly
describe input point clouds in Point Cloud =⇒ Text task.

6. Our current framework and data focus on correctly modeling connections between 3D geometry and text.
However, less attention has been paid to color, texture, and material, which will be investigated in the future
with the support of appropriate data.

7. DALL-E (Ramesh et al., 2021) ranks their outputs of (Text, Image) based on the CLIP embedding
similarity scores (Radford et al., 2021). However, as the experiments conducted in Section 4.1, the CLIP
similarity score cannot properly reflect the alignment between 3D shape and text if the text contains geometric
details. How to align 3D objects and text is a fundamental problem we should study in the future.

8. Neural Shape Compiler currently compiles different shape abstractions. Compared to this, a further
direction is to compile operations on one shape abstraction into practical steps in other abstractions and
change it accordingly. For example, we add "armless" into a text description of a chair with two arms. This
change can be effectively compiled into operations "remove two arm parts and their symmetry relationship" in
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the shape hierarchy and "delete all points belonging to the two arms" in point clouds. We leave the shape
editing direction to future study.

6 Conclusion
We proposed Neural Shape Compiler to transform between three shape abstractions: Text, Point Cloud, and
Program. With the help of PointVQVAE, it achieved great performance in Text =⇒ Point Cloud, Point Cloud
=⇒ Text, Point Cloud =⇒ Program, and PointCloud Completion tasks via a unified and extendable framework.
Our experiments show that Neural Shape Compiler benefits from joint training on all heterogeneous data
and tasks. Despite showing promises, Shape Compiler has limitations and draws attention to several related
directions for future research (Section 5). Furthermore, we study CLIP embeddings in text-guided shape
generation and find that it is unsuitable for use once the text contains geometric details. We hope that
Neural Shape Compiler can serve as an effective framework for connecting different shape abstractions, and
the studies in this paper can facilitate the progress in 3D multimodal learning research.
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A Data Collection
A.1 3D Shape Assets

As mentioned in Section 4, we collect a total of 140,419 shapes from ShapeNet (Chang et al., 2015), ABO
dataset (Collins et al., 2021), and Shape Program (Tian et al., 2019). For ShapeNet, we use the most recent
release version (ShapeNetCore.v2), which contains 52,472 shapes from 55 categories. ABO dataset contains
7,947 shapes from 98 categories and has nine overlapped shape categories with ShapeNet. We adopt the
4 Chair and 10 Table templates in Shape Program (Tian et al., 2019) to synthesize 40,000 shapes in each
category. We do not distinguish shape categories during training for both PointVQVAE and ShapeCode
Transformer. We will normalize the input point clouds into a unit ball for addressing dataset gaps.

A.2 Shape-Text Pairs

We collect 107,371 (Point Cloud, Structure-Related Text) pairs by adjusting and annotate the current datasets,
including Text2Shape (Chen et al., 2018), ShapeGlot (Achlioptas et al., 2019), and ABO (Collins et al., 2021)
datasets. We take tables from Text2Shape, chairs from ShapeGlot, and all shapes from the ABO dataset.
Therefore, our dataset consists of furniture, most of which are tables and chairs. We list our considerations
and data collection details below.

Text2Shape: (Chen et al., 2018) provides descriptions for both chairs and tables. Through careful inspection,
we found there are a large number of descriptions regarding artificial colors (e.g., red, blue), textures (e.g.,
green grids on the top), and materials (e.g., wooden, steel). Since this work aims to focus on the 3D geometry
and will not predict any colors for output point clouds, we delete those artificial texture contents but remain
the geometrical ones. Also, compared to Text2Shape, ShapeGlot (Achlioptas et al., 2019) provides much
more geometrical descriptions for chairs, where the chairs have a very high overlap with chairs in Text2Shape.
We thus discard the chair descriptions and only adopt the table descriptions of Text2Shape in our data. For a
few data which lack structural descriptions, we will annotate them manually. Some examples are in Figure 11.
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Figure 11: Random examples in adjusted Text2Shape dataset. One description per sentence.

ShapeGlot: (Achlioptas et al., 2019) provides many meaningful structural descriptions for chairs. However,
the descriptions are about triple relationships. It provided users with two shapes and a comparative description
and asked users to choose which shape most satisfied the description, i.e. (Shape A, Shape B, Text). We
transfer the triples into doubles by assigning the text to the target shape according to annotations. However,
some texts lose their meanings if they do not have the control shape. Furthermore, we found single text in
ShapeGlot is usually not very informative that can plot the target shape accurately. In the end, we filter out
the less-meaningful texts and concatenate several shapes’ texts together as one description. Also, we remove
superlative words, like longest, because they usually cannot hold across the entire dataset. For a few data
which lack structural descriptions, we will annotate them manually. Some examples are in Figure 12.

Figure 12: Random examples in adjusted ShapeGlot dataset. One description per sentence.
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ABO: (Collins et al., 2021) provides high-quality CAD models and descriptions in different languages for
amazon products. We only use the description of the ’item_name’ under the language tag ’en_US’. To add
structure-related texts to ABO shapes, we collect more descriptions by manually annotating. Also, since ABO
consists of amazon products, some original descriptions contain brand names, such as "amazon basics" and
"ravenna", which are not connected to shape geometry. Also, some descriptions contain product dimensions
like 16.0 × 8.2 × 7.4. Since we normalize all point clouds into a unit ball, those dimensions are not connected
to its scale. Therefore, we deleted the descriptions related to brand names and dimensions in the descriptions.
Some examples are in Figure 13.

Figure 13: Random examples in adjusted ABO dataset. One description per sentence.

A.3 ParitalShape-CompleteShape Pairs

We used the data from GenRe (Zhang et al., 2018) which has 20 random view renderings of airplanes, cars,
and chairs from ShapeNet, for a total of 20 × 9,646 training (point-clouds, point-clouds) pairs and 20 × 1,382
test (point-clouds, point-clouds) pairs. We sample 200 points from the above depth images as inputs, sample
2048 points from the corresponding 3D shapes as targets, and evaluate over all the provided 20 views. Unlike
previous benchmarks (Zhou et al., 2021), which train a model for a single shape category, we train every
completion model with all training data.

B Training & Model Details

This section provides the training and model details for our PointVQVAE and ShapeCode Transformer used
in our main paper, and the ProgramVQVAE we mentioned in Section 3.1. We implement and train our
models with PyTorch (Paszke et al., 2019) and 8 A40 GPUs.

B.1 PointVQVAE

For PointVQVAE, we adopt the cosine annealing strategy of SGDR (Loshchilov & Hutter, 2016) (w/o
restarts) as our optimization scheduler and set the initial learning rate 0.002 with 8 × 32 batch size and 200
epochs.

PointVQVAE encoder has two hierarchical layers (#T = 2). In the first layer, we sample 512 center points.
Then, we gather information from 64 points within RT1 = 0.1 ball around each center point with two fully
connected layers [64, 512] and [512, 512]. After the first layer, our point cloud size will be reduced to 512 from
10,000 (original input size). Similarly, in the second layer, we sample 128 center points, and do RT2 = 0.4
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ball query with 512 points. We also adopt two fully connected layers here with shapes [512, 512]. After the
encoding phase, we will have 128 embeddings and look for the closest embedding in the codebook that has
the size of [512, 512]. We concatenated the indexed embedding to form a [128, 512] embedding and sent it to
the decoder. The structure of PointVQVAE decoder is shown in Figure 2, we have batch norm 1D (Ioffe &
Szegedy, 2015) and ReLU (He et al., 2015) following each convolutional layer. The output of the residual-like
structure (Figure 2) has the shape [#Batch Size, 512, 128]. We then applied a max-pool layer to the last dim
of the output to obtain an embedding with shape [#Batch Size, 512, 1]. The max-pool layer can eliminate
the effect caused by the concatenation order of the codebook embedding, similar to the use of max-pool layers
in PointNet (Qi et al., 2017a). After the max-pool layer, we finally have two Convolutional 1D layers with
[512, 1024] and [1024, 2048 * 3] to predict 2,048 points. Batch norm 1D and ReLU are also used between the
last two layers.

We use Chamfer Distance (CD) and Earth Mover’s Distance (EMD) as the reconstruction loss to serve as
one of the objectives of PointVQVAE. Specifically, we adopt the implementation of CD in Pytorch3D (Ravi
et al., 2020) and implemented an EMD approximation via auction algorithm (Bertsekas & Castanon, 1989)
with the help of codes provided in (Fan et al., 2017; Liu et al., 2020b). The EMD codes will be released with
a detailed report.

DEMD(P1, P2) = min
ϕ:P1→P2

∑
x∈P1

∥x − ϕ(x)∥2, ϕ is a bijection (2)

DCD(P1, P2) =
∑

x∈P1

min
y∈P2

∥x − y∥2
2 +

∑
y∈P2

min
x∈P1

∥x − y∥2
2 (3)

(4)

The overall objective for optimizing PointVQVAE adopted the one used in (Van Den Oord et al., 2017) and is
shown below, where sg represents stop gradient operations, Ze(p) refers to the output of our encoder, e is the
nearest embedding in our codebook with the encoder output. The first two terms are the reconstruction loss
to push the final output of PointVQVAE closer to input point clouds. The third term is L2 loss to move the
embedding in our codebook closer to the corresponding encoder output. The fourth one is the commitment
loss to constrain those embedding growing.

Ltotal = DEMD + DCD + ∥sg[Ze(p)] − e∥2
2 + ∥Ze(p) − sg[e]∥2

2

B.2 ShapeCode Transformer

We also adopt the cosine annealing strategy as our optimization scheduler and set the initial learning rate
0.001 with 8 × 24 batch size and 100 epochs. For generality, we adopt the simplest Transformer (Vaswani
et al., 2017) with depth 5, wide 64, and 8 attention heads. We integrate full attention masks (Child et al.,
2019) to force it to do autoregressively predictions (Van den Oord et al., 2016).

As mentioned in Section 3.2, we have different positional embedding for each type of data pair (i.e., task),
which will be optimized during the training. Since we pad 0 at the leftmost of our data, the positional
embedding for the conditional code will have an extra token. For example, if we conduct (Text, Point Cloud)
transformation, we will have Ptext = 256 + 1 = 257 positional tokens for Text and Ppoint = 128 for Point
Cloud. Therefore, we have a total of 257 + 128 = 385 positional tokens for (Text, Point Cloud). For each
positional embedding, we have the embedding dimensional 512. As a result, we have embedding size [385, 512]
for the task (Text, Point Cloud). For each task, Neural Shape Compiler has different positional embeddings
but the same process described above.

Also, ShapeCode Transformer has a self-maintained embedding matrix for each type of code, as illustrated in
Section 3.2. We also use (Text, Point Cloud) transformation as example, where Text code has Ntext = 256
tokens and Point Cloud code has Npoint = 128. The embedding dimension is 512. Therefore, we have
embedding matrix with size [Ntext, 512], [Npoint, 512], and [Nprogram, 512] for Text, Point Cloud, and
Program, respectively. Regarding token length and vocabulary size for each shape abstraction, Cpoint has
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Npoint = 128 tokens with a vocabulary size of 512 via argmaxing from the PointVQVAE encoder output;
Ctext has Ntext = 256 tokens of vocabulary size 49, 408, we pad between the last valid text token and the
beginning of another token with a value between [49408, 49408 + 256]; Cprogram has Nprogram = 240 tokens
and a vocabulary size of 78.

The overall objective of ShapeCode Transformer is the summation of loss computing over each pair of data:
(1) (Text, Point Cloud); (2) (Point Cloud, Text); (3) (Point Cloud, ShapeProgram); (4) (Partial PointCloud,
Complete PointCloud). For each pair, we define the loss over every token with Cross-Entropy loss as shown
below, where L indicates cross-entropy. Noting that, for program codes Cprogram, we will turn negative
integers into positive integers, like mapping [-20, 20] to [0, 40].

∑
k

L(ck, cgt
k |[0, · · · , ck−1])

B.3 ProgramVQVAE

Currently, Shape Programs (Tian et al., 2019) only has limited discrete parameters, and thus, we adopted the
way of discretizing parameters into codes in our main paper. For example, we will map integers in [-20, 20] to
[0, 40] to assign unique positive integers for each parameter. Although the current shape program can already
cover a lot of 3D shapes, it may be upgraded to encode more detailed structures of 3D shapes that need to
involve continuous parameters. For example, the statement draw(’Top’, ’Square’, P=(-1,0,0), G=(2,5)) in
Figure 1 may have decimal parameters draw(’Top’, ’Square’, P=(-1.2,0,0.3), G=(2,5.7)). Furthermore, the
primitive basis used in the shape program may be replaced with a functional basis (Mescheder et al., 2019;
Genova et al., 2020). As mentioned in Section 3.1, we also designed ProgramVQVAE to transform shape
programs into codes to fill the gap in handling continuous parameters.

The design of ProgramVQVAE is pretty similar to our PointVQVAE, where we leverage the most basic
concepts of vector quantization and adopt the straight-through gradient estimator and the vanilla codebook
objective used in (Van Den Oord et al., 2017) for optimizing. Given a statement, we will turn its statement
type into a one-hot vector and concatenate it with its parameters as the input to ProgramVQVAE. For
example, we will turn draw(‘Top’, ‘Square’, P=(-1,0,0), G=(2,5)) into [3, −1, 0, 0, 2, 5, 0, 0] where the value
3 is the represents the statement type ’draw’. The encoder and decoder will be two vanilla Transformer
(Vaswani et al., 2017) with depth 3 and MLP dimension 32, and the codebook is [512, 512], the same size as
we used in PointVQVAE. We use cross-entropy to compute the loss for predicting statement types and L2
loss for regressing statement parameters.

We synthesize 200,000 (Point Cloud, Program) pairs for training the ProgramVQVAE. On 10,000 validation
data, it achieved 100% accuracy in predicting statement types and < 0.01 L2 distance in parameter regression.
The results show the proposed ProgramVQVAE can well learn the distribution of our synthesized shape
programs.

B.4 Baselines Implementation Details

This paper compared various baselines across different tasks to examine the performance of the proposed
framework. We generally follow their provided codes and default configurations for each baseline, including
training epochs, learning rates, and other hyper-parameters. We only modify the code when changes are
needed to use our dataset. Some modifications are listed in this section.

• Shape IMLE (Liu et al., 2022b) preprocesses all texts with Bert (Devlin et al., 2018) in its framework.
We adopted the same way and used BertTokenizer of the pre-trained flag "bert-base-uncased" to
process all the texts in our dataset.

• We adopted clip.tokenize and clip.encode_text to encode all test texts and input them into CLIP-Forge
(Sanghi et al., 2022) for quantitative comparisons. We input the text prompt to DreamField (Jain
et al., 2021) by the provided command line in Gihub of Jain et al. (2021) for qualitative comparisons.
In our environment, we need 4 GPUs of 2048 Gb memory to run a single text input with DreamField
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(Jain et al., 2021). It takes more than eight days to finish the default 10,000 iterations for single
text input. Therefore, it is impractical to test DreamField in our test set, which consists of 15,000
text-shape pairs.

• CWGAN (Chen et al., 2018) provided processed data as templates. We follow their data formats
to process our data and update each entry, including caption_tuples, caption_matches, vocab_size,
max_caption_length, and dataset_size. We adopted spaCy (Honnibal et al., 2020) to tokenize texts
as mentioned in Chen et al. (2018). (Chen et al., 2018) simply set the token number in a linear
increase rule based on their data order, while we set our token number based on our data order. We
also disregarded descriptions with more than 96 tokens as (Chen et al., 2018) did.

• For AutoSDF (Mittal et al., 2022), their current codebase did not support training generation models
conditioned in texts; we do not compare it for now. We will try to add their results once the code is
updated.

• For the point cloud completion baseline PVD (Zhou et al., 2021), we jointly train their models with
three data classes. This differs from their original paper, which trains separate models for each shape
class.

C PointVQVAE Discussions

C.1 Analysis of Learned Codebook

This section provides some preliminary analysis of the learned codebook of PointVQVAE. The codebook is
the interface to connect the output of PointVQVAE encoder and the input of PointVQVAE decoder. In our
experiments, the codebook size is [512, 512], and we have 128 embedding for a single input point cloud.

Figure 14: The right three shapes are reconstruction results of random codes and the left two shapes are
reconstruction results of indexed codes illustrated in the text.

For each input point cloud, we will have 128 codes to index the embedding and feed it into the decoder
later. We look at how many different embeddings of the codebook will be used for a single input point cloud.
We compute the number with whole ShapeNet (Chang et al., 2015) shapes, where we auto-encode shape
and compute the average ratio of unique codes. The result is 44.28, which indicates point cloud code Cpoint

will have multiple replicate code numbers. Does this indicate that the codebook learns the basic primitives
(Deprelle et al., 2019), selects the suitable ones for a specific point cloud, then fuses them for reconstruction?
If so, will those primitives be perceptually understandable to our humans? To study this, we design indexed
codes with all one number [x, x, · · · , x], like [1, 1, · · · , 1], length = 128. Those codes visualize the codebook’s
#x embedding. We feed the special codes into our decoder to reconstruct the corresponding embedding and
show two examples at the left of Figure 14. Results show the embedding is pretty random to humans and may
exist in certain symmetry structures. Since the reconstruction results are highly correlated to the decoder
weights, the way we adopted above may not be the ideal solution. We will try to develop other methods to
understand how the 3D codebook works in the future. Besides, we also tried to randomly generate the codes
and reconstruct them to see if the random samples from the latent discrete space are meaningful. Results
are shown in the right of Figure 14, where they are somewhat reasonable in the structure. We also show an
example in Figure 15 where we interpolate two different shape codes and reconstruct the intermediate results.
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Figure 15: A random example of interpolating latent codes between two resource shapes of our proposed
PointVQVAE.

C.2 Empirical Studies

In this section, we conduct empirical studies about PointVQVAE, including ablation studies and comparisons.
We changed the number of points in the last layer of the encoder (the color points in Figure 3) from 1 to 128.
When the point number equals 1, our encoder equals the standard encoder of PointNet++ (Qi et al., 2017b)
which uses a global pooling layer. Table 6 left shows such a design brings a catastrophic performance drop
due to it being significantly difficult for the codebook to encode holistic point clouds instead of parts of the
point clouds.

Variants CD ↓
PointVQVAE globalpool 16.63

PointVQVAE final-16 10.26
PointVQVAE final-32 8.57
PointVQVAE final-64 7.34
PointVQVAE final-128 6.93
PointVQVAE final-256 6.78

Variants CD ↓
[RT1 = 0.1, RT2 = 0.2] 13.356
[RT1 = 0.1, RT2 = 0.4] 6.877
[RT1 = 0.1, RT2 = 0.6] 8.283

[RT1 = 0.05, RT2 = 0.1, RT3 = 0.6] 6.513
[RT1 = 0.05, RT2 = 0.2, RT3 = 0.6] 7.808

Table 6: Ablation studies over PointVQVAE. CD is multiplied by 103. Left: X in PointVQVAE final-X
means how many points we sampled in the last layer of the encoder. “globalpool" indicates only having one
point with the global receptive field. Right: studies the choices of RTi and the number of downsampling
processes in PointVQVAE (Section 3.1).

We also perform some ablation studies over the number of downsampling processes and choices of RTi
in

Section 3.1. We’ve tested several ablations about RTi as shown in the right of Table 6, including both two
and three times downsampling processes. In our experiments, we chose [RT0 = 0.1, RT1 = 0.4] due to its
good performance and light weight.

Methods CD ↓
l-GAN (Achlioptas et al., 2018) 9.23
Point Flow (Yang et al., 2019) 7.76

ShapeGF (Cai et al., 2020) 5.97
DiffGen (Luo & Hu, 2021) 5.62

PointVQVAE Limited 6.93
PointVQVAE 5.98

Oracle 3.09

Table 7: Autoencoding performance.
CD is multiplied by 103.

Besides, we compare with some point clouds based auto-encoders
(Achlioptas et al., 2018; Yang et al., 2019; Luo & Hu, 2021; Cheng
et al., 2022). For each shape, we sample 2048 points thereon and
use Chamfer Distance (CD) to measure the difference between
inputs and reconstruction results. We will report Chamfer Distance
DCD(P1, P2) as the summation of both two-direction P1− > P2 and
P2− > P1. EMD is not reported, because each method adopted the
EMD implementation proposed in (Fan et al., 2017), which cannot
guarantee an approximation of Earth mover’s distance. In contrast,
all the used CD implementations are correct. The results are shown
in Table 6. The numbers under "Oracle" mean the lower bound of
reconstruction, obtained by computing the distance between two
different samplings from the same shape meshes. Compared to PointVQVAE Limited, PointVQVAE achieved
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higher scores which mean training over more 3D data can help PointVQVAE model the 3D shape distribution
and also not reduce its performance on the part of the training data.

Figure 16: Random reconstruction examples of PointVQVAE.

D Point Cloud =⇒ Program Discussions

In this section, we mainly discuss two points around Point Cloud =⇒ Program: (1) the generated sample
numbers used in our shape program experiments; (2) the guided adaptation used in (Tian et al., 2019).

Figure 17: Point Cloud =⇒ Program performance versus the shape generated sample numbers.

We adopt 48 as the sample number in Point Cloud =⇒ Program experiments because all other tasks adopt
batch size 48. Here, we provide a more thorough study of the sample numbers. We test Shape Compiler
performance in all six shape categories with sample numbers [1, 2, 4, 8, 16, 48, 96, 128, 256]. The results are
shown in Figure 17. The results show that the proposed method achieved higher performance by increasing
the generated sample numbers. This is also one of the benefits of the generation framework we adopted in
our approach.

Shape Program (Tian et al., 2019) used guided adaptation in finetuning their models to new test data.
They achieved higher performance by using guided adaptation. However, in our experiments, we intended
not to follow (Tian et al., 2019) to perform guided adaptation. We choose this way because we aim to
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take a step further in shaping program generation for practical uses. In real-world applications, we usually
cannot afford the extra training time for conducting "guided adaptation"; sometimes, we even do not have
enough computation to run adaptation (e.g., edge computing). Also, generating shape programs without
"guided adaptation" can enable us to use one class-agnostic model to process shapes from different categories
instead of having class-specific models for each class. The proposed framework, Shape Compiler, only has one
class-agnostic model for processing six different shape categories. However, Tian et al. (2019) will need to
train six different models to process the test shape if they use guided adaptation. Combining the advantages
of time-saving and class-agnostic, PointCloud-to-Program could take a step toward achieving real-world
impact.

E More Results

In this section, we provide more generated samples by the proposed Neural Shape Compiler. Extra results
are contained in the supplementary.

Figure 18: Generated shapes by Neural Shape Compiler given different text prompts. Shape Compiler can
generate multiple shapes given a text query.

Figure 19: Generated shapes by Neural Shape Compiler given different text prompts. Shape Compiler can
generate multiple shapes given a text query.
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Figure 20: Point Cloud =⇒ Text results by Neural Shape Compiler given different point clouds. Shape
Compiler can generate multiple captions given a point cloud query. One description per sentence.

Figure 21: Directly comparing the performance of Neural Shape Compiler with CLIP-Forge (Sanghi et al.,
2022) results on a simple text prompt.

Figure 22: Directly comparing the performance of Neural Shape Compiler with CLIP-Forge (Sanghi et al.,
2022) results on a simple text prompt.
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Figure 23: Point Cloud =⇒ Text and Point Cloud =⇒ Program results by Neural Shape Compiler given the
input point clouds. One description per sentence.
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