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Abstract

Recently, vision transformer (ViT) has started to outpace the conventional CNN in
computer vision tasks. Considering privacy-preserving distributed learning with
ViT, federated learning (FL) communicates models, which becomes ill-suited due
to ViT’s large model size and computing costs. Split learning (SL) detours this by
communicating smashed data at a cut-layer, yet suffers from data privacy leakage
and large communication costs caused by high similarity between ViT’s smashed
data and input data. Motivated by this problem, we propose DP-CutMixSL, a
differentially private (DP) SL framework by developing DP patch-level random-
ized CutMix (DP-CutMix), a novel privacy-preserving inter-client interpolation
scheme that replaces randomly selected patches in smashed data. By experiment,
we show that DP-CutMixSL not only boosts privacy guarantees and communica-
tion efficiency, but also achieves higher accuracy than its Vanilla SL counterpart.
Theoretically, we analyze that DP-CutMix amplifies Rényi DP (RDP), which is
upper-bounded by its Vanilla Mixup counterpart.

1 Introduction

Motivation: Privacy-Preserving Distributed ML for ViT Edge devices such as phones, cameras,
and e-health wearables generate the sheer amount of fresh data [1]. To exploit these user data for
machine learning (ML) without violating data privacy, federated learning (FL) is gaining increasing
attention, which keeps raw data locally stored while only exchanging and averaging model parameters
across devices [2, 3]. In particular, FL has been notably successful in computer vision tasks with
the de facto standard convolutional neural network (CNN) architectures [4, 5]. However, recently
vision transformer (ViT) has been aggressively taking over the throne of CNN [6], questioning the
effectiveness of FL. In fact, ViT is often larger than CNN, and this bodes ill for FL by imposing
excessive energy and communication burdens on devices [7, 8]. Alternatively, split learning (SL)
can cope with large models via model partitioning [9, 10]. In SL, each device locally stores only
a tiny fraction of the entire model, and offloads the rest to a parameter server, between which
devices exchange their cut-layer forward activations with the server, referred to as smashed data.
Notwithstanding, ViT commonly lacks pooling and convolutional layers [6, 11, 12], making smashed
data similar to their raw data as visualized in Fig. 4 of Appendix A. This may entail huge costs and
privacy leakage as opposed to its counterpart SL with CNN [13, 14, 15].
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Figure 1: A schematic illustration of DP-CutMixSL operations.

Contributions: DP-CutMixSL To address the aforementioned issues, inspired from the patchfied
smashed data in ViT [6] and the CutMix technique [16], we propose DP-CutMixSL 2, a differentially
private (DP) SL framework with ViT via patch-level randomized CutMix. As Fig. 1 demonstrates,
following the Gaussian DP mechanism [17, 18, 19], each device in DP-CutMixSL first injects random
Gaussian noise into smashed data, followed by punching randomly selected patches, yielding Cutout
smashed data as analogous to those of Cutout [20]. These Cutout smashed data are uploaded to
and put together by the server, resulting in DP-CutMix smashed data that continue feed-forward
propagation. Compared to SL with the Gaussian DP mechanism (DP-SL), we theoretically prove
that the proposed randomized CutMix operation in DP-CutMixSL amplifies the DP guarantee of
smashed data, by up to its upper-bound baseline DP-MixSL obtained by replacing CutMix with
Mixup [21] that simply superimposes the entire patches from each of different smashed data. By
experiment, we show that DP-CutMixSL achieves the highest accuracy, followed by DP-MixSL and
DP-SL. It is worth noting that while most of the existing works apply Cutout and CutMix at pixel
levels for intra-dataset interpolations [22, 23], we utilize them at patch levels for privacy-preserving
inter-dataset interpolations across different devices, i.e., privacy-preserving distributed ML.

2 DP-CutMixSL: Patch-Level Randomized CutMix Operations for ViT

The major difference between ViT and CNN can be summarized as follows: i) As shown in Fig. 4
of Appendix A, ViT has less feature distortion for the input data of the hidden representation (i.e.
smashed data) due to the absence of a pooling layer, ii) Due to its own self-attention mechanism
driven by embedding process, ViT captures global spatial information whereas CNN focuses on local
spatial information, iii) The above operations of ViT run at patch-level.

At first, i) implies that regularization of the hidden representation in ViT is as efficient as in the input
data. Conversely, the mutual information about the input data of the hidden representation is high,
leading to data privacy leakage. Next, due to the property of ViT to learn global spatial information
mentioned in ii), ViT has more robustness to large-scale noise applied to the fraction of the image [25],
thereby it is suitable for Cutout [20] or CutMix regularization. Finally, iii) suggests the possibility of
a patch-scale regularizer. Integrating the above yields a common solution, patch-level randomized
CutMix of hidden representations, short for patch CutMix.

Let i and C be a subscript for a client and a set of clients, respectively. As observed in Fig. 1, a
mixer, which may be a third-party entity, first generates random sequences Mi with the mixing
ratio λi ∈ [0, 1] ∀i ∈ C following a Dirichlet multinomial distribution [26], where

∑
i λi = 1. For

instance, if a smashed data si consists of N patches, Mi is a random binary sequence of length N to
control the on-off of each patch, and its non-zero element is ⌈λi ·N⌉.
Then, the i-th client acquires the Cutout smashed data s̄i by masking the smashed data (s̄i = Mi⊙si),
obtained by passing the input data through the lower model segment, via the random sequence
downloaded from the mixer. When the Cutout smashed data and its label are uploaded to the server,

2An early version of this work was presented at FL-IJCAI 2022 [24]. Compared to [24] proposing CutMixSL
and focusing its communication efficiency, this work proposes DP-CutMixSL while studying its DP analysis and
the privacy-accuracy trade-off.
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Algorithm 1 DP-CutMixSL

requirements: w = [wc,i, ws]
T (wc,i: lower model segment, ws: upper model segment)

η: learning rate
while w not converged do

/*Runs on mixer*/
samples {a1, .., an} ∼ Dir(ᾱ)
generates pseudo random sequences Mi for all i ▷ Pseudorandom binary mask generation
unicasts Mi to i-th client for all i

/*Runs on client i ∈ C*/
generates smashed data si by passing input data xi through wc,i

produces s̄i by masking si via Mi ▷ Cutout smashed data
produces s̄′i by applying Gaussian mechanism ▷ DP-Cutout smashed data
uploads s̄′i to the server

/*Runs on server*/
produces s̃′i via s̄′i aggregation for all i ▷ DP-CutMix smashed data
generates loss

∑
i Li by passing s̃′i through ws in parallel

updates ws via ws ← ws − η · ∇ws
(
∑

i Li) ▷ Upper model segment update
unicasts i-th cut-layer gradient to i-th client for all i

/*Runs on client i ∈ C*/
updates wc,i via wc,i ← wc,i − η · ∇wc,i(

∑
i Li) ▷ Lower model segment update

end while

(a) Raw images. (b) Smashed data.

Figure 2: Examples of data obtained by performing various interpolation schemes on (a) raw image
and (b) smashed data.

we assume that a gaussian mechanism is applied to them, generating the following DP-Cutout
smashed data and label containing white gaussian noise of Ns and Ny , respectively:

s̄′i = s̄i +Ns = Mi ⊙ si +Ns, (1)

ȳ′i = ȳi +Ny. (2)

The server aggregates DP-Cutout smashed data from all clients and generates DP-CutMix smashed
data in the following way:

s̃′i,j = s̄′i + s̄′j , ỹ′i,j = λi · ȳ′i + λj · ȳ′j , for j ̸= i. (3)

Next, the rest of DP-CutMixSL’s operation, equal to that of Vanilla SL, performing FP & BP on the
server-side model follows. The said operation of DP-CutMixSL is detailed by the pseudo code of
Algorithm 1. Fig. 2 also provides image samples of smashed data as well as input data to which the
proposed patch CutMix is applied compared to those of Mixup and Vanilla CutMix.

As a result, DP-CutMixSL can benefit both in terms of privacy leakage and communication cost, in a
way that only fraction of the smashed data is shared to the server, even ejected with gaussian noise.
Note that random sequences used for smashed data masking are mutually exclusive and collectively
exhaustive at the patch-level, so that there are no blank patches in DP-CutMix smashed data.
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3 DP-CutMixSL: Differential Privacy Analysis

LetD = {(s1, y1), .., (sn, yn)} be a set consisting of n clients’ pairs of smashed data si ∈ RN×P 2×C

and the corresponding label y ∈ RL is a one-hot encoding vector, where P denotes the size of patch,
respectively. We assume that the each element of the smashed data and ground-truth label is upper
bounded as follows: si ∈ [0,∆]Ds and yi ∈ [0, 1]Dy , where Ds = NP 2C and Dy = L. In addition,
λi is the mixing ratio of the i-th client, and Ns and Ny are white gaussian noise with dimensions Ds

and Dy, respectively, i.e., Ns ∼ N(0, σ2
sIDs

) and Ny ∼ N(0, σ2
yIDy

) for some (σs, σy). Then, we
derive the Rényi differential privacy (RDP) [19] of the proposed DP-CutMixSL, which is compared
with those of DP-SL and DP-MixSL as follows.
Theorem 1. For a given order α, the RDP privacy budgets ϵo(α), ϵMix(α), and ϵCutMix(α) of
DP-SL, DP-MixSL and DP-CutMixSL satisfy ϵMix(α) ≤ ϵCutMix(α) ≤ ϵo(α) where:

ϵo(α) =
α

2

(
∆2Ds

σ2
s

+
Dy

σ2
y

)
, (4)

ϵMix(α) =
α (maxi∈C λi)

2

2

(
∆2Ds

σ2
s

+
Dy

σ2
y

)
, (5)

ϵCutMix(α) =
α (maxi∈C λi)

2

(
∆2Ds

σ2
s

+
Dy (maxi∈C λi)

σ2
y

)
. (6)

Sketch of Proof. For each technique, we derive its output representation, followed by calculating
the RDP bound using the output via the Rényi divergence formula for a multivariate Gaussian
distribution [18]. Applying this to both the smashed data and the label and combining them via the
sequential composition rule completes the proof. The details are deferred to Appendix B. ■

Since λi ∈ [0, 1], DP-MixSL achieves the highest RDP guarantee (i.e., tightest RDP bound) compared
to DP-CutMixSL and DP-SL, with the help of the inherent distortion property of interpolations [27,
28, 29]. It is worth noting that the case only when maxi∈C λi = 1, i.e., a single client scenario with
|C| = 1, the equality conditions ϵMix(α) = ϵCutMix(α) = ϵo(α) hold. In other words, none of
equality does not hold for multi clients. Note here that we focus only on the RDP guarantees of
smashed data. Smashed data are vulnerable to reconstruction attacks [30], threatening the privacy of
raw data, which is discussed in Appendix C. In addition, while we focus on the label privacy in the
FP, the label privacy can also be leaked from gradients in the BP via white-box attacks. To prevent
this, BP label privacy guaranteeing method such as GradPerturb [31] can additionally be integrated,
which is deferred to future research.

4 Numerical Evaluation
In this section, we measure the accuracy, RDP bound (ϵ), and scalability of DP-CutMixSL compared
to those of SplitFed [14], DP-SL, DP-MixSL, and etc. In Table 1, both the CIFAR-10 dataset [32] and
the Fashion-MNIST dataset [33] are utilized under three types of models: ViT-tiny [34], PiT-tiny [35],
and VGG-16 [36]. Here, PiT is a transformer structure equipped with a pooling layer and is a
model between ViT and CNN. For all SL algorithms, we assume that the cut-layer is located after
embedding process. Other parameters especially for RDP calculation are as follows: patch size
N = 64, Ds = 20, Dy = 10, ∆ = 0.2, λi = 1/n ∀i (uniform), and RDP parameter α = 2.
Table 1 shows the top-1 accuracy for several SL methods including the proposed CutMixSL in
a noiseless environment. As seen at Table 1, except for one case, where SL w. Mixup is used
with CIFAR-10 dataset and VGG-16 model, the CutMixSL outperforms other state-of-the-art SL
algorithms in terms of top-1 accuracy. This is rooted in the difference between ViT and CNN
mentioned in Sec. 2. When learning spatial information, ViT focuses on globality due to the self-
attention mechanism, whereas CNN focuses on locality. Hence, a patch CutMix in which certain
patches are replaced by patches of other smashed data may cause significant information loss in CNN.
On the other hand, interpolation such as mixup is less likely to yield large information loss, thereby
CNN and ViT are suitable for mixup and patch CutMix, respectively. Comparing CutMixSL and
SL w. Vanilla CutMix in Table 1 proves that patch-level random punching is more efficient than
bounding box-based process. This is because the random punching method is a regularizer well suited
to ViT, where all operations operate at patch-level, unlike Vanilla CutMix’s bounding box where the
size is regardless of patch size. From a dropout [37] perspective, the random punching method of
CutMixSL is more similar to dropout than mixup or Vanilla CutMix, leading to accuracy gains.
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Table 1: Top-1 accuracy of SL-based techniques w.r.t various model types and datasets.

Method (|C = 10|) Models w/ CIFAR-10 Models w/ Fashion-MNIST

ViT-Tiny PiT-Tiny VGG-16 ViT-Tiny PiT-Tiny VGG-16

Standalone 48.84 47.77 54.97 77.65 78.21 80.12
SL [10] 57.21 52.28 62.62 85.68 82.35 84.39
SplitFed [14] 67.88 55.63 63.98 89.17 84.27 87.34

Standalone w. Cutout [20] 53.86 50.28 56.65 88.46 86.48 88.17
SL w. Mixup 69.23 64.89 68.20 88.21 87.62 88.53
SL w. Vanilla CutMix 71.78 58.21 33.50 87.86 86.31 89.01
CutMixSL (proposed) 73.77 71.26 67.53 89.75 89.25 89.45

(a) Acc-ϵ per noise variance. (b) Acc-ϵ of mixing methods. (c) Scalability.

Figure 3: Accuracy and ϵ under the CIFAR-10 dataset: (a) accuracy and ϵ of DP-SL, DP-MixSL, and
DP-CutMixSL w.r.t noise variance; (b) accuracy and ϵ of DP-MixSL and DP-CutMixSL w.r.t the
mixing group size; (c) accuracy of various SL-based techniques according to number of clients.

Fig. 3a shows the effect of noise variance on accuracy and ϵ. In terms of accuracy, DP-CutMixSL
is the best, except when the noise variance is 16/255. Compared to DP-MixSL, DP-CutMixSL has
superior performance in all cases. Looking at ϵ, however, DP-CutMixSL has a tighter RDP bound
compared to DP-SL, but has a larger ϵ in comparison with DP-MixSL, showing the accuracy-privacy
trade-off. In Fig. 3b, the size of a mixing group, a set of clients taking a mixup or CutMix, varies both
in DP-CutMixSL and DP-MixSL. In both DP-CutMixSL and DP-MixSL, the accuracy and ϵ decrease
as the mixing group size increases, also resulting in the accuracy-privacy trade-off. The decrease in ϵ
according to the mixing group size can be explained by the "Hiding in the crowd" effect [38], and the
decrease in accuracy is also explained in connection with the information loss mentioned above. Fig.
3c shows the curve of scalability, in terms of accuracy increase according to the number of clients. In
Fig. 3c, all SL techniques including CutMixSL guarantee scalability when the client increases from 2
to 10, and the accuracy of CutMixSFL, which introduced SplitFed’s weight averaging of lower model
segment to CutMixSL, is further improved.

5 Concluding Remarks
In this work, we proposed DP-CutMixSL for privacy-preserving distributed ML for ViT by exploiting
CutMix for inter-dataset interpolations. We theoretically analyzed its DP guarantee, and numerically
showed its achieving the highest accuracy compared to two baselines, DP-SL and DP-MixSL. While
we focus only on generating a single CutMix output for two or more inputs, it is possible to generate
multiple outputs by changing the mixing ratio for interpolations with finer resolution as done in [39],
which could be an interesting topic for future study. Furthermore, based on the simulation results
showing the effectiveness of the proposed method even in the presence of several pooling and
convolutional layers, it is worth investigating other patchified architectures in different domains for
future research.
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A Image Visualization in CNN and ViT

Figure 4: Comparison between raw image and smashed data of ViT and CNN.

B RDP Analysis

Before going further, the definition of RDP is as follows:
Definition B.1 ((α, ϵ)-RDP [19]). A randomized mechanism f : D → R is said to have ϵ-Rényi
differential privacy of order α, or (α, ϵ)-RDP for short, if for any adjacent D,D′ ∈ D it holds that

Dα(f(D)||f(D′)) ≤ ϵ (7)

A strong privacy guarantee implies that one cannot distinguish whether D or D′ was used to produce
an outcome of mechanism.

B.1 DP-SL

Here, our baseline DP mechanism is Gaussian mechanism. Then, the output of DP-SL, which are the
smashed data and its label to which gaussian noise is applied, respectively, is as follows:

s′i = si +Ns, (8)

y′i = yi +Ny, (9)

where Ns ∼ N(0, σ2
sIDs

) and Ny ∼ N(0, σ2
yIDy

) for some (σs, σy).

By using the Definition B.1 and Rényi divergence formula from [18], the RDP bound of gaussian
mechanismM for DP-SL, ϵo(α) can be expressed as:

ϵo(α) = sup
D,D′

Dα(M(D)||M(D′)) = sup
D,D′

α

2σ2
||µD

X − µD′

X ||
2
, (10)

whereM(D) ∼ N(µD
X , σ2

X) andM(D′) ∼ N(µD′

X , σ2
X).

Let sD(i,k) denote the k-th element of smashed data sDi in dataset D, where sDi = [sD(i,1), ..., s
D
(i,Ds)

].
Then, s′Di obtained by passing sDi through (8) follows a gaussian distribution with mean sDi and
variance σ2

s (In element perspective, s′D(i,k) ∼ N(sD(i,k), σ
2
s) for k ∈ [Ds]).

For two sets of smashed data D and D′ where only the i′-th smashed data is different, (10) becomes:

sup
D,D′

α

2σ2
s

∥µD
X − µD′

X ∥
2
=

α

2σ2
s

Ds∑
k=1

(sD(i′,k) − sD
′

(i′,k))
2
. (11)

Considering the element-wise upper bound of DP-SL’s smashed data yields the following formula:
Ds∑
k=1

(sD(i′,k) − sD
′

(i′,k))
2
≤ ∆2 ·Ds. (12)
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Therefore, gaussian mechanism for smashed data in DP-SL is (α, ϵo)-RDP, where

ϵo(α) = α
∆2 ·Ds

2σ2
s

. (13)

Likewise, RDP bound of groud-truth label in DP-SL can be calculated, yielding ϵo(α) as below:

ϵo(α) =
α

2

(
∆2Ds

σ2
s

+
Dy

σ2
y

)
. (14)

B.2 DP-MixSL

The output of DP-MixSL can be expressed as ŝ =
∑n

i=1 λis
′
i, where {λ1, ..., λn} is a set of mixing

ratio of each client’s smashed data. Also, DP-MixSL executes mixup operation similar to its
corresponding label.

Then, for two adjacent datasets D and D′, (10) becomes:

sup
D,D′

α

2σ2
s

∥µD
X − µD′

X ∥
2
=

α

2σ2
s

Ds∑
k=1

(λi′(s
D
(i′,k) − sD

′

(i′,k)))
2
. (15)

This bound can be maximized when the i′-th mixing ratio is the largest value of λi for all i ∈ C. In
this case, from 15, we have

Ds∑
k=1

(λi′(s
D
(i′,k) − sD

′

(i′,k)))
2
≤ (max

i∈C
λi)

2∆2Ds. (16)

By applying the same process above to the label, we have

ϵMix(α) = ϵo(α) ·
(
max
i∈C

λi

)2

(17)

=
α (maxi∈C λi)

2

2

(
∆2Ds

σ2
s

+
Dy

σ2
y

)
. (18)

B.3 DP-CutMixSL

The output of DP-CutMixSL can be represented by s̃ =
∑n

i=1 Mi ⊙ s′i, whereas its operation on
label is the same as in DP-MixSL. For two adjacent datasets with only one smashed data different,
DP-CutMixSL only needs to calculate bounds only for the element in which the smashed data is
masked, in contrast to DP-MixSL, where the smashed data is melted in the whole element.

That is, assuming that the number of 1 elements included in the i′-th mask is Ni′ , the following
inequality is derived from (10):

sup
D,D′

α

2σ2
s

∥µD
X − µD′

X ∥
2
≤ α

2σ2
s

Ni′∆
2 =

α

2σ2
s

λi′Ds∆
2. (19)

(19) has an upper bound as shown below when λi′ is the maximum among λi ∀i:
α

2σ2
s

λi′Ds∆
2 ≤ (max

i∈C
λi)∆

2Ds. (20)

Then, we have ϵCutMix(α) for DP-CutMixSL mechanism as follows:

ϵCutMix(α) =
α(maxi∈C λi)

2

(
∆2Ds

σ2
s

+
(maxi∈C λi)Dy

σ2
y

)
. (21)
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Table 2: Privacy leakage measured by the reconstruction loss (MSE).

Type Train Dataset (10%) Train Dataset (100%)

Smashed data 0.0091 0.0056
Cutout 0.0920 0.0829
Mixup 0.0402 0.0351
Patch CutMix 0.0458 0.0434

C Robustness to Reconstruction Attack

Table 2 shows loss between raw data and reconstructed data generated from different types of mixing
methods or datasets. To restore raw data from reconstructed data, we utilize a decoder model,
comprised of two convolutional layers with additional interpolation methods to adaptively match the
dimension to the aimed data size. For comparison, we train the decoder model with training datasets
of two different sizes.

As a result, regardless of the training dataset size, the reconstruction loss was large in the following
order: Cutout, patch CutMix, Mixup, and smashed data. In other words, it has robustness against
reconstruction attacks in that order. Except for smashed data, Mixup is most vulnerable to reconstruc-
tion attack, because information leakage occurs over the entire area even though linear interpolation
is taken. The proposed patch CutMix has relatively robustness since it can inject large-size noise
into the local information necessary for reconstruction, thanks to its inherent masking, but is upper
bounded on the Cutout, which discards a part of the image corresponding to the mask. Finally, the
larger the training dataset size, the better the decoder model is trained, which reduces the overall
reconstruction loss.
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