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Abstract—Accurate identification of complex terrain charac-
teristics, such as soil composition and coefficient of friction, is
essential for model-based planning and control of mobile robots
in off-road environments. Spectral signatures leverage distinct
patterns of light absorption and reflection to identify various
materials, enabling precise characterization of their inherent
properties. Recent research in robotics has explored the adoption
of spectroscopy to enhance perception and interaction with
environments. However, the significant cost and elaborate setup
required for mounting these sensors present formidable barriers
to widespread adoption. In this study, we introduce RS-Net
(RGB to Spectral Network), a deep neural network architecture
designed to map RGB images to corresponding spectral signa-
tures. We illustrate how RS-Net can be synergistically combined
with Co-Learning techniques for terrain property estimation.
Initial results demonstrate the effectiveness of this approach in
characterizing spectral signatures across an extensive off-road
real-world dataset. These findings highlight the feasibility of
terrain property estimation using only RGB cameras.

I. INTRODUCTION

Understanding terrain properties is vital in off-road robotics,
as they directly shape the robot’s performance and abilities [1].
These properties encompass factors such as soil composition,
friction coefficients, obstacle density, among other variables,
all significantly influencing navigation, stability, and obstacle
interaction. By comprehensively understanding and adapting
to these terrain properties, robots can ensure safe and efficient
traversal through diverse and challenging outdoor environ-
ments [2], [3].

Recent trends in off-road autonomy involve estimating
terrain properties and incorporating this information into a
motion planning algorithm [1], [4]–[6]. In a basic approach,
terrain classification is first conducted using an off-the-shelf
classifier, followed by using a lookup table to estimate the
properties associated with each class [7]. However, this method
loses generality when it comes to distinguishing between
similar-looking materials or dealing with previously unseen
objects. Another trend involves the use of specialized sensors
such as haptics [8], lidars [9] and thermal sensors [10], where
physical interaction with materials is utilized to estimate their
properties. While these approaches provide valuable insights,
they require dedicated sensors and involve physically touching
objects to estimate their properties.
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Fig. 1: Proposed RS-Net takes in RGB image and accurately
predicts spectral value of a material patch.

Spectroscopy is a scientific technique for examining how
light interacts with materials [11]. It measures the spectrum
of light that materials emit, absorb, or scatter. This approach
enables learning about the material’s composition, structure,
and chemical properties. Each type of material has a unique
pattern of wavelengths, known as a spectral signature, which is
revealed when light interacts with it. By studying these signa-
tures, spectroscopy provides a powerful tool for understanding
the properties of different substances [12], [13]. Additionally,
spectroscopy enables the observation of temporal changes in
object properties, with alterations in electromagnetic radiation
absorption or emission serving as indicators of ongoing com-
positional or physical transformations.

In our work, we propose utilizing spectroscopy to detect
terrain properties based on their unique spectral signatures.
These sensors, specifically designed for estimating physi-
cal properties, offer high accuracy. We demonstrate how a
supervised deep neural network architecture can accurately
predict spectral signatures from RGB data. Additionally, we
illustrate how these spectral signatures can be leveraged to
estimate various terrain properties, such as surface friction.
This will eliminate the requirement for custom sensor assem-
blies currently needed in robotics spectroscopy applications
[3], [14]. Our approach aims to establish a framework where
offline-collected spectral data and a trained network can be
used to estimate any terrain physical property, offering a
more generalized solution compared to the custom solutions
commonly employed in current terrain property estimation
algorithms.
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Fig. 2: RS-Net: End-to-End model for mapping RGB images to spectral profile. The input RGB image is passed through
DenseNet’s first and second dense block, output from first transitional layer is concatenated with output of second dense block,
the feature maps are concatenated, passed through convolution and fully-connected layers for spectral mapping.

II. NETWORK ARCHITECTURES

In this section, we introduce RS-Net, a deep neural network
architecture to convert RGB images into a spectral profile.
Furthermore, we put forward a potential methodology for
expanding this architecture to facilitate the estimation of
terrain properties.

A. RS-Net Architecture

Figure 2 illustrates the RS-Net architecture. Figure 4 shows
a typical spectral profile that indicates how the intensity of
light varies across the spectrum, providing information about
the wavelengths of light that are present and their relative
intensities. RS-Net takes an input RGB image x and predicts
a spectral profile x′

s. In the following sections, we break down
the various components integral to our neural network design.

DenseNet: To extract high-level global features, the input
RGB image undergoes multi-stage processing. We utilize
a pretrained DenseNet169 [15] for this purpose, with the
flexibility to substitute other DenseNet models, as the initial
two blocks remain consistent across variants. In DenseNet, the
image is initially processed through a convolution and pooling
layer. We represent this as a composition of operations G(·).

x1 = G(x) (1)

The input image is then processed through dense block 1
and 2 of the DenseNet. This sequential passage enables the
network to learn fine-grained details in dense block 1 and
high-level abstract representations in dense block 2. Features
extracted from these layers contribute to capturing the texture
of the surface, thereby enhancing our ability to achieve better
spectral correspondence and differentiating between materials
of similar appearance. The first dense block has 6 layers
of convolution while the second has 12 layers of convolu-
tions. After first dense block, we get x7, which is passed
through transition layer that performs operation G(·). Finally
this output from transitional layer is passed through second

dense block, outputting x21. As per DenseNet, the general
representation of a dense block for l convolutions is:

xl = Hl([x0, x1, ..., xl−1]) (2)

Which for our network cam be written as:

x7 = H7([x1, x2, ..., x6]) (3)
x8 = G(x7) (4)
x21 = H21([x8, x9, ..., x20]) (5)

Fused Representation: Features from max-pooling of first
transition layer and second dense block are concatenated for
creating a fused representation of the global features. This
operation outputs xf which is the concatenation of x8 and
x21 and represented as:

xf = x8 ⊕ x21 (6)

CNN Layers: The fused representation is then fed through
the first CNN layer, reducing input channels from 160 to 64,
which in-turn helps in reducing the spatial dimension.

Subsequently, the output from the first CNN layer is pro-
cessed by a second CNN layer, with 64 input channels and
9 output channels. This step is done for regularization, and
reducing the dimensionality such that when the network is
passed through fully-connected layers, it is more memory
efficient and learns the spectral representation efficiently.

Fully Connected Layers: The output from the second CNN
layer is flattened and passed through a fully connected layer
with input channels as 1944 and output channels as 1550.

This is followed by another fully connected layer, main-
taining input and output channels at 1550. The above can be
represented as a series composite function, S(·), and written
as:

x′
s = S(xf ) (7)

This is how our network maps RGB images x to their
corresponding spectral profile x

′

s. We evaluate the performance



of this network on a real-world off-road terrain dataset in
section III.

B. Spectral Profiles to Terrain Property Estimation

We propose an extension of the network to predict vari-
ous physical properties associated with the terrain based on
the given spectral profile x

′

s. Traditional linking of physical
properties with RGB images faces challenges due to the
under-constrained nature of the problem [16], [17]. Research,
such as that by Hanson et al. [18], highlights the benefits
of utilizing different modalities for estimating diverse phys-
ical properties crucial for off-road terrain analysis. Instead
of treating the task as a straightforward pattern-matching
problem, we employ the concept of Collaborative-Learning
(Co-Learning) [19]. This approach enables learning represen-
tations from multiple modalities, whether they have strong
or weak relations, facilitating knowledge transfer between
them. By efficiently using RGB to predict spectral data and
leveraging the learned parameters to infer a third modality,
such as friction, our Co-Learning architecture facilitates the
estimation of various physical properties of different off-road
materials. Typically, Co-Learning architectures incorporate a
split between modalities to predict different representations,
facilitating seamless knowledge transfer and enhancing the
understanding of underlying physical properties. Figure 3
shows a sample Co-learning architecture for terrain property
analysis. The image x is passed through DenseNet, SF and
SG are composite functions, they can be convolution, max-
pooling, batch normalization and even fully-connected layers.
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Fig. 3: Example of Co-Learning for simultaneous spectral
profile and terrain property estimation

III. EXPERIMENTS

A. Evaluating RS-Net on trained labels and untrained labels

For evaluating our method, we utilize the open sourced
dataset from [18] which includes high-resolution macro im-
ages of surface texture, spectral reflectance curves, RGB
images, and localization data from a 9-DOF IMU, obtained
across 11 varied terrains and different lighting conditions. We
trained RS-Net on 6 out of the 11 classes in the VAST dataset.
These classes include asphalt, brick, grass, ice, sand, and
tile. However, the model was not trained on carpet, concrete,
gravel, mulch and turf. The model was trained for 50 epochs,
on an Adam optimizer [20] with a learning rate of 1e−3. Upon
evaluation on the testing data, it achieved an MSE loss of
0.0015 Normalized Photon Count. Figure 4 displays the output

Fig. 4: Performance of RS-Net on seen class

of RS-Net on grass, which constitutes one of the classes the
network was trained for. The model demonstrates a remarkable
ability to predict the spectral profile with high fidelity.

Furthermore, we assess RS-Net’s performance using data
featuring unfamiliar labels to evaluate its capacity for general-
ization to novel materials. Illustrated in Figure 5, the spectral
profile of turf, resembling that of grass, produces an output
similar to grass, while gravel, akin to sand, and concrete,
somewhat akin to asphalt, yield corresponding outputs. This
suggests the network’s potential to classify diverse objects
based on their materials or physical properties, even with
limited training. Additional outputs from the network, for both
familiar and unfamiliar labels, are elaborated in the Appendix
section.

B. Testing material classification

We conduct basic material classification tests using the
output of RS-Net. Rather than employing Co-Learning or the
concept of perceptual loss, we simply pass the spectral data
through a 4-layer fully connected network and trained it for ten
epochs. The confusion matrix on the test data is illustrated in
Figure 6. The overall F-Score for the testing data was 0.79 with
class accuracy of 0.79, 0.99, 0.99, 0.62, 0.57, 0.75 for asphalt,
grass, ice, sand, brick and tile respectively.

Overall, the network demonstrates an ability to discern pat-
terns even in the case of unseen classes, indicating promising
potential for generalization.

IV. DISCUSSION AND FUTURE WORK

In robotics, a key challenge lies in generalizing models for
dynamic environments, where existing datasets often fail to
capture the variability. For instance, spectral profiles and sur-
face friction can vary based on factors like weather conditions,
such as ”dry asphalt,” ”ice on asphalt,” and ”water on asphalt.”
Figure 7 shows how grass’s spectral profile shifts in the y-axis
with changes in environmental conditions, reflecting corre-
sponding changes in predictions and the network’s adaptability
to RGB data variations. To enhance model generalization, we



Fig. 5: Predicted spectral profile v/s ground truth data for
classes not in training set

Fig. 6: Confusion matrix for terrain classification

Fig. 7: Spectral profile of grass in different environment
conditions

intend to enrich the VAST dataset with such nuanced data
points.

Our future work involves exploring the relationship between
spectral profile shifts and material properties, and developing
a Co-Learning network capable of predicting various physical
properties like friction and traversability. We also aim to
investigate how material deposition affects spectral profiles
and, consequently, physical properties. This research direction
promises to deepen our understanding of material interactions
in dynamic environments and enhance robotic system capabil-
ities.

The existing RS-Net faces deployment challenges as it relies
on forwarding material patches to the network, which limits
its effectiveness. This dependency on image segmentation or
passing patches beneath the robot affects the network’s accu-
racy in long-range forecasting. To overcome this limitation,
we suggest incorporating hyperspectral data [21] by either
transfer learning of spectral data through learning or adapting
the network to directly learn features from hyperspectral data.

V. CONCLUSION

This study underscores the importance of integrating differ-
ent modalities in material recognition and friction estimation
tasks to advance robotic applications. The introduction of
RS-Net, a novel architecture mapping RGB images to spec-
tral profiles, presents a promising solution to this challenge.
Through experimentation, we have demonstrated the network’s
ability to generalize to unseen classes, indicating its potential
to improve terrain property estimation tasks. Furthermore, we
discuss the limitations of current datasets and propose how an
augmented data set can enhance the network’s ability to learn
detailed physical information about a material from just an
RGB image.
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APPENDIX

A. Results

Figure 8 and 9 depict the predicted versus ground truth
spectral profiles generated by RS-Net. It is evident that certain
materials may exhibit similar profiles at specific wavelengths,
suggesting the potential use of this approach to categorize on
unknown materials into known categories. A shift in the y-axis
can be seen in Figure 8 compared to Figure 4 suggesting that
the data was collected under different environment condition.
Figure 9 demonstrate RS-Net’s ability to generalize on out-
of-class data. Notably, as the features of asphalt and concrete
somewhat overlap, the model produces somewhat noisy and/or
shifted profiles for concrete as observed in Figure 9.

Fig. 8: Predicted spectral profile v/s ground truth data for grass

Fig. 9: Predicted spectral profile v/s ground truth data for
concrete


