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Abstract

Automatic evaluations for natural language gen-001
eration (NLG) conventionally rely on token-002
level or embedding-level comparisons with003
the text references. This is different from004
human language processing, for which vi-005
sual imaginations often improve comprehen-006
sion. In this work, we propose IMAGINE, an007
imagination-based automatic evaluation met-008
ric for natural language generation. With the009
help of CLIP (Radford et al., 2021) and DALL-010
E (Ramesh et al., 2021), two cross-modal mod-011
els pre-trained on large-scale image-text pairs,012
we automatically generate an image as the em-013
bodied imagination for the text snippet and014
compute the imagination similarity using con-015
textual embeddings. Experiments spanning016
several text generation tasks demonstrate that017
adding imagination with our IMAGINE displays018
great potential in introducing multi-modal in-019
formation into NLG evaluation, and improves020
existing automatic metrics’ correlations with021
human similarity judgments in many circum-022
stances.023

1 Introduction024

A major challenge for natural language generation025

(NLG) is to design an automatic evaluation met-026

ric that can align well with human judgments. To027

this end, many approaches have been investigated.028

Metrics that base on matching mechanisms such as029

BLEU (Papineni et al., 2002), METEOR (Elliott030

and Keller, 2013), CIDEr (Vedantam et al., 2015),031

have been widely adopted in the field. Edit-distance032

based metrics, such as CharacTER (Wang et al.,033

2016), WMD (Kusner et al., 2015a), SMD (Clark034

et al., 2019a), have also been explored. Recently,035

Zhang et al. (2020) proposed to leverage BERT (De-036

vlin et al., 2019) embeddings for computing text037

similarity, which correlates better with human judg-038

ments than previous methods. These automatic039

evaluation metrics make use of textual information040

from various angles extensively.041

But what happens in our minds when we read, 042

comprehend, and evaluate text? Research (Just 043

et al., 2004; Eviatar and Just, 2006) has found that, 044

unlike commonly designed automatic evaluation 045

methods that compare the generated candidates 046

with the references on the text domain only, hu- 047

mans, in contrast, leverage visual imagination and 048

trigger neural activation in vision-related brain ar- 049

eas when reading text. Cognitive studies show that 050

visual imagery improves comprehension during 051

human language processing (Gambrell and Bales, 052

1986; Joffe et al., 2007; Sadoski and Paivio, 2013). 053

Inspired by this imagination-based multi-modal 054

mechanism in human text comprehension, we ask 055

a critical research question: can machines create 056

a visual picture of any underlying sentence, and 057

leverage their imaginations to improve natural lan- 058

guage understanding? The advances of recent pre- 059

trained vision-language models such as CLIP (Rad- 060

ford et al., 2021) provide an excellent opportunity 061

for us to utilize the learned image-text representa- 062

tions. This enables us to explore the possibility of 063

incorporating multi-modal information into NLG 064

evaluation. 065

In this work, we propose IMAGINE, an 066

imagination-based automatic evaluation metric for 067

text generation. Specifically, IMAGINE first uses 068

the pre-trained discrete variational autoencoder 069

(dVAE) from the vision-language model DALL- 070

E (Ramesh et al., 2021) to visualize imagination 071

from sentences, which is to generate descriptive im- 072

ages for the candidate text and the references. Then 073

it computes the similarity of the two text snippets 074

and the similarity of the two imaginative images 075

with the pre-trained CLIP model (Radford et al., 076

2021) for evaluation. Figure 1 shows an example. 077

To understand the role imagination plays in NLG 078

evaluation, we conduct a series of experiments with 079

IMAGINE on multiple NLG tasks and datasets, in- 080

cluding machine translation, abstractive text sum- 081

marization, and data-to-text generation, aiming to 082
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Reference: 
Basketball: Garnett makes triumphant return as 
Celtics top Pistons


Metric Score

BLEU 2.43

ROUGE-1 12.50

ROUGE-2 0.00

ROUGE-L 10.89

BERTScore -5.28

ImaginEtext 76.86

ImaginEimage 62.30

Human 4.2/5.0

GigaWord, idx=148

Hypothesis: 
Celtics sink Detroit ##-## in NBA semi-final rematch

Text for Summarization:  
Kevin Garnett scored ## points in his return after a one-game suspension and the Boston Celtics ripped Detroit 
##-## here Thursday in a rematch of last season's NBA semi-finals.

ImaginationRef ImaginationHyp

❌

❌

❌

❌

❌

✅

✅

✅

IMAGINEtext

IMAGINEimage

Cosine Similarity

Cosine Similarity

Render 
Imagination

#DALL-E Render 
Imagination

#DALL-E

$CLIP$CLIP

$CLIP $CLIP

Figure 1: An evaluation example on GigaWord for text summarization. IMAGINE visualizes machine imagination
with DALL-E’s pre-trained dVAE and extracts textual and visual representations with CLIP. While traditional
evaluation metrics for natural language generation rely on n-grams matching or textual embeddings comparison,
IMAGINE introduces imagination into the evaluation process and understands the text snippet as a whole with the
help of multi-modal information.

answer the following questions:083

1. How influential is IMAGINE in NLG evalua-084

tion in terms of correlations with human judg-085

ments? Can it provide additional reference086

information on top of existing metrics?087

2. What are the applicable scenarios of introduc-088

ing IMAGINE to NLG evaluation? When and089

why does imagination help?090

3. What are the potentials and limitations of091

introducing imaginations with IMAGINE to092

NLG evaluation?093

Experimental results show that IMAGINE can094

serve as a complementary evaluation metric to text-095

based ones, and adding IMAGINE similarity scores096

to existing metrics surprisingly improves most of097

the popular metrics’ correlations with human per-098

formance on a variety of text generation tasks. We099

further conduct comprehensive quantitative anal-100

yses with case studies to verify its effectiveness.101

Overall, IMAGINE displays great potential in intro-102

ducing multi-modal information into NLG evalua-103

tion.104

2 Related Work105

Automatic Metrics for Natural Language Gen-106

eration Common practices for NLG evaluation107

compare the generated hypothesis text with the108

annotated references. Metric performance is con-109

ventionally evaluated by its correlation with hu-110

man judgments. Existing automatic evaluation met-111

ric calculations are mainly based on three mecha-112

nisms: n-grams overlap, edit distance, and embed-113

ding matching. Some typical n-gram based metrics114

include BLEU (Papineni et al., 2002), ROUGE- 115

n (Lin, 2004), METEOR (Elliott and Keller, 2013) 116

and CIDEr (Vedantam et al., 2015), which are 117

widely used for text generation tasks. Another 118

direction is based on edit distance (Tomás et al., 119

2003; Snover et al., 2006; Panja and Naskar, 2018; 120

Tillmann et al., 1997; Wang et al., 2016) , where 121

they caculate the edit distance between the two text 122

snippets with different optimizations. Embedding- 123

based metrics (Kusner et al., 2015b; Rubner et al., 124

1998; Clark et al., 2019b; kiu Lo, 2017, 2019) 125

evaluate text quality using word and sentence em- 126

beddings, and more recently, with the help of 127

BERT (Zhang et al., 2020; Sellam et al., 2020). 128

Multi-Modal Automatic Metrics Aside from 129

previous text-only metrics, some metrics utilize 130

pre-trained multi-modal models and introduce vi- 131

sual features on top of text references for NLG 132

evaluation. TIGEr (Jiang et al., 2019) computes 133

the text-image grounding scores with pre-trained 134

SCAN (Lee et al., 2018). ViLBERTScore-F (Lee 135

et al., 2020) relies on pre-trained ViLBERT (Lu 136

et al., 2019) to extract image-conditioned embed- 137

dings for the text. The concurrent CLIPScore (Hes- 138

sel et al., 2021) proposes a metric for image cap- 139

tioning by directly comparing images with captions 140

using CLIP (Radford et al., 2021). Our method 141

differs in that we use visual picture generation as 142

embodied imaginations and apply our metric to 143

various text-to-text generation tasks. 144

Mental Imagery The great imagery debate is 145

still an open question in the neuroscience and psy- 146

chology community (Troscianko, 2013). The de- 147

bate between pictorialists and propositionalists is 148
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about how imagery information is stored in the149

human brain. We follow the views from pictorial-150

ists that information can be stored in a depictive151

and pictorial format in addition to language-like152

forms (Kosslyn et al., 2001; Pearson and Kosslyn,153

2015). In pictorialists’ model, mental imagery is154

constructed in the “visual buffer” either from the155

retinal image in seeing or from a long-term memory156

store of “deep representations” in the brain. Our im-157

age generation method is to mimic the generation158

of deep representations in machines, with the help159

of recent powerful text-to-image models. Inspired160

by empirical studies from cognitive science that161

visual imagination improves human text compre-162

hension (Gambrell and Bales, 1986; Sadoski and163

Paivio, 1994; Nippold and Duthie, 2003; Just et al.,164

2004; Joffe et al., 2007; Sadoski and Paivio, 2013),165

we are interested in exploring if one can draw simi-166

lar conclusions from automatic text evaluations by167

machines.168

3 IMAGINE169

3.1 Model Details170

CLIP CLIP (Radford et al., 2021) is a cross-171

modal retrieval model trained on WebImageText,172

which consists of 400M (image, caption) pairs gath-173

ered from the web. WebImageText was constructed174

by searching for 500K queries on a search engine.175

The base query list is all words occurring at least176

100 times in the English version of Wikipedia, aug-177

mented with bi-grams with high pointwise mutual178

information as well as the names of all Wikipedia179

articles above a certain search volume. Each query180

includes 20K (image, text) pairs for class balance.181

In this work, we use the ViT-B/32 version of182

CLIP, in which the Vision Transformer (Dosovit-183

skiy et al., 2020; Vaswani et al., 2017) adopts184

BERT-Base configuration and uses 32 ˆ 32 input185

patch size. The Vision Transformer takes 224ˆ224186

input image and the self-attention maps are calcu-187

lated between 7ˆ7 grid of image patches. The Text188

Transformer has 12-layer, 8-head and uses a hidden189

size of 512, and is trained over a vocab of 49K BPE190

token types (Radford et al., 2019; Sennrich et al.,191

2016). The text representation is the last hidden192

state of the “[EOT]” token being projected by a193

linear layer. The model’s weights are trained to194

maximize the similarity of truly corresponding im-195

age/caption pairs while simultaneously minimizing196

the similarity of mismatched image/caption pairs197

using InfoNCE (van den Oord et al., 2018).198

DALL-E (Ramesh et al., 2021) is a 12-billion 199

parameter version of GPT-3 (Brown et al., 2020) 200

trained to generate images from text descriptions. 201

The model is trained on a dataset of a similar scale 202

to JFT-300M (Sun et al., 2017) by collecting 250 203

million text-image pairs from the internet, which 204

incorporates Conceptual Captions (Sharma et al., 205

2018), the text-image pairs from Wikipedia, and 206

a filtered subset of YFCC100M (Thomee et al., 207

2016). 208

DALL-E trains a discrete variational autoen- 209

coder (dVAE) (Rolfe, 2017) to encode each 256 ˆ 210

256 RGB image into a 32 ˆ 32 grid of image 211

tokens with a vocabulary size of 8192. The im- 212

age tokens are concatenated with a maximum of 213

256 BPE-encoded (Sennrich et al., 2016; Radford 214

et al., 2019) tokens with a vocabulary size of 16384 215

that represents the paired image caption. DALL-E 216

trains an autoregressive transformer to model the 217

joint distribution over the text and image tokens. 218

The pre-trained dVAE has been made public, while 219

the pre-trained transformer is not released. Thus, 220

we use DALL-E’s pre-trained dVAE to render im- 221

ages in this project. 222

3.2 IMAGINE Similarity Score 223

Construct Imagination For each image, we ran- 224

domly initialize a latent matrix H and use the pre- 225

trained dVAE to produce the RGB image I “ 226

dV AE_decoderpHq. We use the ViT-B/32 ver- 227

sion of the CLIP model to encode the generated 228

image I and the input text x. Then we use CLIP to 229

compute the similarity between the received image 230

embedding v “ CLIP pIq and text embedding 231

t “ CLIP pxq as the loss to optimize the hidden 232

matrix while keeping the weights of the network 233

unchanged. We optimize each generation process 234

for 1000 steps, and refer to the generated image as 235

the imagination for further computation. 236

lossgeneration “ ´
vT t

}v}}t}
(1) 237

Similarity Measure For the generated text snip- 238

pet xhyp and all the references txrefiu
n
i“1, we 239

generate corresponding images Ihyp and Irefi for 240

i P r1, ns, where n is the number of parallel 241

references. During evaluation, we pass both the 242

pair of text snippets and the corresponding imag- 243

inations through corresponding CLIP feature ex- 244

tractors to receive the textual representation thyp, 245

trefi , and the imagination representations vhyp, 246

vrefi . Then, we compute three types of similarity 247
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Reference Text xref :  
Beef Kway Teow originates from Singapore 
and is also made in Indonesia. One of the 
ingredients in the dish is oyster sauce.

Metric Score
BLEU 3.91

METEOR 19.14
ROUGE_L 15.21

CIDEr
 5.38
BERTScore 39.04

ImaginE_text 73.63
ImaginE_image 69.04

Human 4/3/2/2/1

Imagination_Ref
Imagination_Hyp

Hypothesis Text xhyp: 
Oyster sauce is a dish from Singapore, where 
Oyster sauce is a dish from Indonesia.

dVAE

CLIP

dVAE

Render  
Imagination

Extract 
Feature

Compute  
Cosine Similarity

text representations

imagination  
representations

IMAGINEimage

IMAGINEtext
Ihyp

Iref
vhyp

vref

thyp

tref

Figure 2: IMAGINE similarity score computation process. Given the reference text xref and the generated hypothesis
xhyp, we visualize the machine imagination Iref and Ihyp with the pre-trained dVAE. We extract features for
the pair of text and corresponding pair of imagination with CLIP. IMAGINEimage is the cosine similarity of the
imagination representations, while IMAGINEtext is the cosine similarity of the text representations.

scores for IMAGINE with the received embeddings:248

IMAGINEtext compares the hypothesis text xhyp249

with the text references xrefi ; IMAGINEimage250

compares the visualized imaginations Ihyp with251

Irefi , generated by the pre-trained dVAE in pre-252

vious steps; IMAGINEtext&image is the average253

of IMAGINEtext and IMAGINEimage, which takes254

both the text and the imagination into considera-255

tion.256

IMAGINEtext “ L

˜

1

n

n
ÿ

i“1

tThyptrefi
}thyp}}trefi}

¸

(2)257

IMAGINEimage “ L

˜

1

n

n
ÿ

i“1

vT
hypvrefi

}vhyp}}vrefi}

¸

(3)258

Here, L is a linear function that stretch the score259

distribution to the range of r0, 1s. More details can260

be found in Section 5.261

3.3 Extension to Existing Metrics262

The IMAGINE similarity scores can be used as in-263

dividual automatic metrics. Apart from this, IMAG-264

INE can also act as an extension to existing metrics,265

as it provides multimodal references that compen-266

sate for current text-only evaluations that compare267

tokens or text-embeddings, which also naturally268

mimics the process of human text comprehension269

where text and visual imagination are both used.270

Our adaptation of IMAGINE to other automatic271

metrics is direct, which is summing up IMAGINE272

similarity score with the other automatic metric273

score for each example:274

metric_score1 `“ IMAGINEsimilarity_score
(4)275

4 Experiments 276

4.1 Setup 277

Tasks, Datasets, and Models We evaluate our 278

approach on three natural language generation 279

tasks: machine translation, abstractive text sum- 280

marization, and data-to-text generation. For ma- 281

chine translation, we use Fairseq (Ott et al., 2019) 282

implementation to generate English translation 283

from German on IWSLT’14 (Bell et al., 2014) 284

and WMT’19 (Barrault et al., 2019) datasets. We 285

choose these two to-English translation tasks be- 286

cause currently, DALL-E and CLIP only support 287

English. For abstractive text summarization, we 288

use the implementation of Li et al. (2017) to gen- 289

erate sentence summarization on DUC20041 and 290

use ProphetNet (Yan et al., 2020) for generation 291

on Gigaword2. We choose abstractive text summa- 292

rization instead of document summarization since 293

CLIP sets a length limit of input text of 77 BPE 294

tokens. For data-to-text generation, we conduct ex- 295

periments on three datasets, namely WebNLG (Gar- 296

dent et al., 2017), E2ENLG (Dusek et al., 2019, 297

2020) and WikiBioNLG (Lebret et al., 2016). We 298

use the text generated by the KGPT (Chen et al., 299

2020) model in our experiments. Table 1 lists out 300

the statistics of the test set used for each dataset. 301

Automatic Metrics For machine translation, we 302

report BLEU-n (Papineni et al., 2002) for n “ 303

1, 2, 3, 4 and BERTScore (Zhang et al., 2020). For 304

abstractive text summarization, we report results on 305

ROUGE-1, ROUGE-2, ROUGE-L (Lin, 2004) and 306

BERTScore. For data-to-text generation, we utilize 307

1https://duc.nist.gov/duc2004/
2https://catalog.ldc.upenn.edu/

LDC2011T07
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Task Dataset #sample #ref #lenref #lenhyp

Machine Translation
WMT’19 2,000 1.0 22.4 22.4

IWSLT’14 6,750 1.0 20.3 19.1

Abstractive Text Summarization
DUC2004 500 4.0 14.0 10.0

GigaWord 1,950 1.0 9.9 11.9

Data-to-Text Generation
WebNLG 1,600 2.6 28.3 26.9

E2ENLG 630 7.4 28.0 11.6

WikiBioNLG 2,000 1.0 34.8 19.0

Table 1: Dataset statistics. #sample is the number of samples in the test set; #ref is the number of parallel references
per visual instance; #len is the average reference length.

(a) IWSLT'14 (b) WMT'19

(a) DUC2004 (b) Gigaword

(a) WebNLG (b) E2ENLG (c) WikiBioNLG

Figure 3: The effectiveness of augmenting BLEU-n (n=1,2,3,4) and BERTScore with IMAGINE similarities and
BERTtext similarity on two machine translation datasets. The y-axis shows the Pearson correlation with human
judgments.

five automatic metrics for NLG, including BLEU,308

ROUGE-L, METEOR (Elliott and Keller, 2013),309

CIDEr (Vedantam et al., 2015) and BERTScore. In310

comparison with IMAGINEtext, we also compute311

BERTtext, the text similarity score with BERT en-312

coder. We use the last hidden state for the “[CLS]”313

token as the representation of the text snippet, and314

compute cosine similarity with the two “[CLS]”315

embeddings for the reference and the generated316

text candidate.317

Human Evaluation We invite MTurk3 annota-318

tors to judge the quality of the generated text. The319

estimated hourly wage is $12. We use the complete320

test set for DUC2004 and E2ENLG, containing321

500 and 630 examples, respectively. For the re-322

maining five datasets, we randomly sample 1k pair323

of test examples for human evaluation due to the324

consideration of expenses. Each example is scored325

by three human judges using a 5-point Likert scale.326

The generated text is evaluated from three aspects,327

namely fluency, grammar correctness, and factual328

consistency with the reference text. We take the329

mean of human scores to compute correlations. In330

the following sections, we report Pearson correla-331

3https://www.mturk.com/

tion (Freedman et al., 2007) to human scores. We 332

also record Kendall correlation (Kendall, 1938) in 333

the Appendix. 334

4.2 Results 335

Machine Translation Figure 3 shows the system- 336

level Pearson correlation to human judges when 337

extending our IMAGINE similarity to existing 338

automatic NLG metrics on the IWSLT’14 and 339

WMT’19 German to English datasets. BERTtext 340

has mixed performance on the two machine trans- 341

lation task. It improves IWSLT’14 while low- 342

ers correlation on WMT’19. On the other hand, 343

our IMAGINEtext&image steadily improves all the 344

listed metrics’ correlations with human scores. 345

IMAGINEimage and IMAGINEtext&image con- 346

tributes the most in IWSLT’14 while IMAGINEtext 347

and IMAGINEtext&image play important roles in 348

WMT’19. 349

Abstractive Text Summarization Figure 4 350

shows the system-level Pearson correlation to hu- 351

man judges when extending our IMAGINE simi- 352

larity to existing automatic NLG metrics on the 353

DUC2004 and Gigaword. Both datasets are built 354

upon news articles. Similar to its impact on the 355

5
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(a) IWSLT'14 (b) WMT'19

(a) DUC2004 (b) Gigaword

(a) WebNLG (b) WikiBioNLG (c) E2ENLG

Figure 4: The effectiveness of augmenting BLEU, BERTScore and ROUGE-related metrics with IMAGINE
similarities and BERTtext similarity on two abstractive text summarization datasets. The y-axis shows the Pearson
correlation with human judgments.

(a) IWSLT'14 (b) WMT'19

(a) DUC2004 (b) Gigaword

(a) WebNLG (b) E2ENLG (c) WikiBioNLG

Figure 5: The effectiveness of augmenting BLEU, METEOR, ROUGE-L, CIDEr, and BERTScore with IMAGINE
similarities and BERTtext similarity on three data-to-text generation datasets. The y-axis shows the Pearson
correlation with human judgments.

machine translations datasets, IMAGINEtext&image356

steadily improves the correlation with human judg-357

ments of BLEU, ROUGE-related metrics, and358

BERTScore on the two summarization datasets.359

The metric that has the most significant impact360

on DUC2004 and GigaWord is IMAGINEtext and361

BERTtext respectively.362

Data-to-Text Generation Figure 5 shows the363

system-level Pearson correlation to human judges364

when extending our IMAGINE similarity to exist-365

ing automatic NLG metrics on the WebNLG, Wik-366

iBioNLG, and E2ENLG datasets.367

On WebNLG, adding IMAGINEtext and368

IMAGINEtext&image can steadily improve all the369

listed metrics’ correlation with human scores.370

IMAGINEimage improves BLEU, ROUGE-L, and371

CIDEr but it only has limited impact on METEOR372

and BERTScore. Among the two metrics that373

compare textual similarity, IMAGINEtext boosts374

correlations more than BERTtext.375

On E2ENLG, textual similarity scores play376

a more influential role in improving correlation377

as it has a positive impact on all listed metrics378

except for METEOR. IMAGINEtext outperforms379

BERTtext in all listed metrics. On the other hand,380

IMAGINEimage has mixed performance, improving 381

BLEU, ROUGE-L and CIDEr while yielding neg- 382

ative effects on METEOR and BERTScore. The 383

E2ENLG dataset is built from the restaurant do- 384

main, where irrelevant high-frequency tokens such 385

as restaurant names can misguide the visualization 386

process of IMAGINE. 387

We witness a drawback in most listed metrics’ 388

correlations after applying our IMAGINE approach 389

on WikiBioNLG. This is because the WikiBioNLG 390

dataset is built upon Wikipedia biography, which 391

contains many abstract concepts that may be hard 392

to visualize. Figure 5(c) shows the lowest Pearson 393

correlation among all three datasets on all metrics, 394

which means this dataset is not only a challenge to 395

our IMAGINE approach but also to other existing 396

metrics as well. 397

5 Discussion 398

Why is ImaginE helpful? As shown in Figures 3 399

to 5, adding certain type of IMAGINE similari- 400

ties improves non-embedding-based metrics’ cor- 401

relations with human scores in most cases. This 402

suggests that it is helpful to extend text-only non- 403

embedding-based metrics with multimodal knowl- 404
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Translation

IWSLT14, idx=772

Metric Score
BLEU-1 69.70
BLEU-2 51.12
BLEU-3 29.35
BLEU-4 20.26

BERTScore 66.62
BERTtext 99.23

ImaginEtext 83.06
ImaginEimage 34.81

Human 3.2/4.0

Src: Also entschied ich mich eines tages den filialleiter zu besuchen, und ich fragte 
den leiter, "funktioniert dieses modell, dass sie den menschen all diese 
möglichkeiten bieten wirklich?" 
Ref:  So I one day decided to pay a visit to the manager, and I asked the 
manager, "is this model of offering people all this choice really working?"

Hyp:  So I decided to visit the filialler one day, and I asked the ladder, "does 
this model work that you really offer to the people all these possibilities?"

ImaginationRef ImaginationHyp

Metric Score

BLEU-1 69.70

BLEU-4 20.26

BERTScore 66.62

ImaginEimage 13.08

Human 3.1/5.0

Src: Diesmal dabei: Der Schauspieler Florian David Fitz bekannt aus 
Filmen wie "Männerherzen", "Terror - Ihr Urteil" oder "Der geilste Tag". 
Ref:  This time: The actor Florian David Fitz known from films like 
"Männerherzen", "Terror - Ihr Urteil" or "Der geilste Tag".

Hyp:  This time around: The actor Florian David Fitz is known from 
films such as "Men's Hearts," "Terror - Your Judgment" and "The 
Horniest Day."

idx=81

Metric Score
BLEU-1 45.83
BLEU-2 37.35
BLEU-3 29.38
BLEU-4 22.17

BERTScore 34.91
BERTtext 98.14

ImaginEtext 87.94
ImaginEimage 58.35

Human 3.8/5.0

ImaginationRef ImaginationHyp

Metric Score

BLEU-1 45.83

BLEU-4 22.17

BERTScore 34.91

ImaginEimage 44.47

(a) IWSLT'14 (b) WMT'19

Src: Ich weiß nicht genau, ob ich noch zeit habe ihnen andere umgebungen 
zu zeigen.

Ref: I'm not sure if I have time to show you any other environments.

Hyp: I don't know if I still have time to show you other environments.

ImaginationRef ImaginationHyp

Metric Score

BLEU-1 73.33

BLEU-4 37.03

BERTScore 81.49

ImaginEimage 88.92

Figure 6: A case study on IWSLT’14 dataset.

Metric Original +IEipdV AEq +IEipBigGANq +IEipV QGANq

ROUGE-1 13.7 15.9 ˘ 0.9 15.7 ˘ 1.0 15.9 ˘ 0.8
ROUGE-2 9.7 14.9 ˘ 1.2 14.6 ˘ 1.3 14.9 ˘ 1.0
ROUGE-L 13.1 16.0 ˘ 1.0 15.8 ˘ 1.1 16.0 ˘ 0.9
BERTScore 19.4 18.8 ˘ 0.9 18.7 ˘ 1.0 18.9 ˘ 0.8
BLEURT 23.6 23.0 ˘ 0.5 22.9 ˘ 0.6 23.1 ˘ 0.4

Table 2: The Pearson correlations with human judges
when using IMAGINEimage (IEi) to augment ROUGE,
BERTScore, and BLEURT on DUC2004. We com-
pute three sets of IMAGINEimage similarity scores
(mean˘std) with three different image generation back-
bones, namely dVAE, BigGAN, and VQGAN.

edge. However, how do these machine imagina-405

tions actually help text understanding and evalua-406

tion? In this section, we explore further on how407

and why IMAGINE works. We first provide a case408

study to show the uniqueness of IMAGINE over409

text-based metrics, then systematically analyze the410

effectiveness of our method from different perspec-411

tives.412

Case Study Figure 6 presents such an example413

in which IMAGINE captures the keyword differ-414

ence between two text snippets. Regardless of the415

similar sentence structure between the reference416

and the hypothesis, the main difference is mention-417

ing “manager” and “ladder”. While other metrics418

score high, the quality of the generated text is ques-419

tionable. IMAGINE renders distinctive images and420

yields a relatively low visual similarity score, which421

aligns with human judgment. More case studies422

can be found in appendix.423

Sensitivity to Different Image Generation Back-424

bones In previous sections, we implement IMAG-425

INE with dVAE as the image generation backbone.426

There also appear other image generation models427

that use BigGAN (Brock et al., 2019) and VQ-428

GAN (Esser et al., 2021) to render images. Here429

we discuss the choice of IMAGINE’s image gen-430

dVAE BigGAN VQGAN

Entity Recall 88.8% 41.2% 87.2%

Table 3: The entity recall rate on the visualizations for
Flickr30k captions. We report the results for images
generated by dVAE, BigGAN and VQGAN.

People sitting at a bench talking to each other by a body of water .

dVAE BigGAN VQGAN

Figure 7: An example caption from Flickr30k Entities
dataset, and images rendered by dVAE, BigGAN and
VQGAN. The bounding boxes point to the visualiza-
tions of the entities marked in the same color.

eration backbone and its effect on evaluation per- 431

formance. We conduct experiments on DUC2004 432

for summarization, and compare dVAE with Big- 433

GAN and VQGAN. For fair comparisons, each gen- 434

erative backbone has a 1000-step learning phase 435

to render a 512x512 image for each piece of in- 436

put text. Examining Table 2, we find comparable 437

IMAGINEimage performances for dVAE and VQ- 438

GAN, both consistently surpass BigGAN on all 439

metrics. The VQGAN leads to smaller variance on 440

average. These models with different architectures 441

and training data provide divergent machine imagi- 442

nations and impact final text evaluation results. 443

Reliability of Imaginations We further ver- 444

ify the reliability of IMAGINE’s visualization on 445

Flickr30k Entities dataset (Plummer et al., 2015). 446

This image captioning dataset contains annotations 447

on the entities mentioned in each caption for evalu- 448

ation. We randomly sample 100 captions and use 449

the three generative backbones to render images 450

with 500-step learning phases. We present the cap- 451

tion and the rendered image to human annotators, 452

and ask them whether the entities mentioned in 453

the caption are visualized. Entity recall rates are 454

reported in Table 3. The dVAE has the highest 455

entity recall rate of around 89%, followed closely 456

by VQGAN. BigGAN has the lowest recall rate of 457

around 41%. Figure 7 shows a group of example 458

of entity recall in visualization. The observations 459

are also consistent with human correlations in Ta- 460

ble 2, that higher quality of imaginations improves 461

text evaluation. 462
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Figure 8: The influence on visualization when masking
tokens of different syntax tags. Upper: The occurrence
frequency of each syntax tag in DUC2004. Lower: The
relative image similarity decrease after masking each
syntax tag. Baseline: The average intra-group pairwise
image similarity. The top-10 syntax tags that have the
most significant impact on visualization are listed here.

Syntax Importance to Imaginations We assess463

the importance of each type of syntax token in the464

image generation process. We use Stanza (Qi et al.,465

2020) part-of-speech (POS) tagger to parse the text466

in DUC2004 test set. For each syntax tag4, we cre-467

ate ablated test examples by masking out a token468

of that tag from the original text. We compare the469

visual similarity of the images rendered from the470

ablated examples to the visualization of the vanilla471

text. Figure 8 reports the influence of masking each472

syntax tag. PROPN and ADJ are two tags that have473

a salient impact on visualization results, and remov-474

ing them leads to a relatively 12% drop in visual475

similarity. Surprisingly, removing NOUN tokens476

has a comparably smaller influence on image ren-477

dering. Table 4 lists out the most frequent NOUN,478

PROPN, and ADJ tokens in DUC2004, a dataset479

built upon news clusters. PROPN and ADJ tokens480

in DUC2004 cover concrete concepts such as na-481

tions, corporations, and celebrities. NOUN tokens482

involve more abstract concepts such as government,483

party, and right. For this particular dataset, our484

IMAGINE approach pays more attention to PROPN485

and ADJ tokens that are easier to visualize by na-486

ture. More analysis for other dataset domains can487

be found in the appendix.488

4We report Universal POS tags in this study: https:
//universaldependencies.org/u/pos/

POS Tag 10 Most Frequent Tokens

NOUN
president, minister, government, space, party, station, budget,
game, right, arrest

PROPN
U.S., Clinton, China, Korea, Gaza, Microsoft, Congo, Israel,
Livingston, Lebanon

ADJ
new, prime, Russian, international, Asian, possible, Cambodian,
first, human, economic

Table 4: The most frequent NOUN, PROPN, and ADJ
tokens in DUC2004.

0.2 0.4 0.6 0.8 1.0
Score

0

500

1000

1500

2000

Co
un

t

metrics
ImaginEtext

ImaginEimage

BERTtext

Figure 9: The score distributions of IMAGINEtext,
IMAGINEimage, and BERTtext before re-scaling.

Score Distributions We visualize the score distri- 489

butions of different metrics in Figure 9. CLIPimage 490

mostly lies between r0.25, 1s and CLIPtext is in 491

r0.5, 1s. Overall, our imagination-based methods 492

lead to smoother distributions. CLIPimage is more 493

diverse than text-based metrics with the same mea- 494

surement (i.e., cosine similarity). Following CLIP- 495

Score (Hessel et al., 2021), we linearly normalize 496

the score distributions to r0, 1s, which is also the 497

score range for most of the automatic metrics cov- 498

ered in this study. More specifically, the similarity 499

score s will be re-scaled by: 500

s1 “
s ´ l

1 ´ l
, l “

$

’

&

’

%

0.50, for IMAGINEtext,

0.25, for IMAGINEimage,

0.90, for BERTtext.
(5) 501

6 Conclusion 502

In this paper, we propose IMAGINE, an 503

imagination-based automatic evaluation metric for 504

NLG. Experiments on seven datasets across three 505

different tasks indicate that adding IMAGINE simi- 506

larity scores as an extension to current automatic 507

NLG metrics can improve their correlations with 508

human judgments in many circumstances. In the 509

future, it is interesting to explore effective ways 510

of visualizing abstract concepts, and how to gen- 511

erate imaginations efficiently. We hope our work 512

can contribute to the construction of multi-modal 513

representations and the discussion of multi-modal 514

studies. 515
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Ethical Statement516

Our study is approved for IRB exempt. The esti-517

mated hourly wage paid to MTurk annotators is $12.518

Speaking of potential ethical concerns, our “imag-519

ination” approach may face an issue of fairness520

if there exists any bias in the training dataset for521

CLIP or DALL-E. In such circumstances, IMAG-522

INE might display a tendency to render specific523

types of images that it has seen in the training data.524

Even though we did not witness such issues in our525

study, we should keep in mind that this unfair be-526

havior would impair IMAGINE’s effectiveness as527

an evaluation tool.528

Reproducibility Statement529

All of the datasets used in our study on machine530

translation, data-to-text generation and abstractive531

text summarization tasks are publicly available. We532

use the public repositories to implement IMAGINE.533

The implementations of CLIP-based image gen-534

erators used in our study are dVAE+CLIP5, Big-535

Sleep(BigGAN+CLIP)6 and VQGAN+CLIP7.536
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A Appendix772

A.1 Random Initialization773

We assess the influence of random initialization by774

repeating the image generation process five times775

on the DUC2004 test set and computing pairwise776

visual similarities within each group of 5 images.777

Notice in Figure 10 that dVAE and VQGAN have778

similar intra-group visual similarity distributions,779

with VQGAN slightly higher on average. There ap-780

pear extremely low values for all three backbones,781

which suggests that random initialization should782

be taken into consideration. In Figure 12, we show783

several groups of images generated by dVAE, Big-784

GAN and VQGAN with random initialization.785

(a) (b)
Figure 10: The intra-group pairwise visual similarity
distributions for images generated by dVAE, BigGAN,
and VQGAN. The plot shows the three quartile values
and the extreme values.

A.2 Syntax Importance to Imaginations786

In Section 5, we discuss the importance of787

DUC2004 POS tags on imaginations. Here we788

display the syntax importance to visualization on789

another dataset domain. Figure 11 shows the syn-790

tax importance on text examples from Flickr30k791

Entities (Plummer et al., 2015), which is an im-792

age captioning dataset. The ranking of the most793

influential POS tags is different from the results on794

DUC2004 in Figure 8. However, the results on795

Flickr30k also display a tendency that the concrete796

concepts are easier to be visualized, thus playing a797

more important role in visualization.798

A.3 Rendering Iterations799

In this paper, we use dVAE to render 512x512 im-800

ages with a 1000-step learning phase. Figure 13801

illustrate a few set of examples of images rendered802

with different iterations. The main contents of the803

figure only have after minor changes after 400 it-804

erations. Future work may apply less iterations to805

reduce computation budget.806

DUC2004 POS Flickr30k POS

Figure 11: The influence on visualization when masking
tokens of different syntax tags. Upper: The occurrence
frequency of each syntax tag in DUC2004. Lower: The
relative image similarity decrease after masking each
syntax tag. Baseline: The average intra-group pairwise
image similarity. The top-10 syntax tags that have the
most significant impact on visualization are listed here.

A.4 Correlation Results 807

We list the numbers on Pearson correlation in Ta- 808

bles 8, 10 and 12 that match Figures 3 to 5 in the 809

main paper. Table 5 lists out each metric’s Pearson 810

correlation with human judgments on each dataset. 811

Tables 6, 7, 9 and 11 display results on Kendall cor- 812

relation for the three NLG tasks used in our study. 813

The Kendall correlations with human judgement 814

show similar trends as those on Pearson correlation. 815

A.5 Case Study 816

We provide more case studies for the three NLG 817

tasks used in our study in Figures 14 to 16. 818

A.6 Computation Expenses 819

We conduct experiments on 8 Titan RTX GPUs. It 820

takes „ 200 hours to generate all the imagination 821

figures used in our study. However, as discussed 822

in Section A.3, future work may greatly cut the 823

computational budget by reducing the rendering 824

iterations. 825

A.7 Limitations and Future Work 826

Currently, the CLIP text encoder has a length con- 827

straint of 77 BPE tokens, [BOS] and [EOS] in- 828

cluded. This limits our attempt on longer text 829

generation tasks, such as story generation, docu- 830

ment summarization, etc. Also, CLIP and DALL-E 831

12



Task Dataset Pearson Correlation

MT
BLEU-1 BLEU-2 BLEU-3 BLEU-4 BERTScore BLEURT BERTtext IEtext IEimage IEtext&image

WMT19 14.19 12.86 11.81 9.15 15.50 16.14 2.54 24.94 3.81 ˘ 2.96 16.89 ˘ 2.70
IWSLT14 21.47 20.82 19.17 17.60 23.95 22.93 18.42 14.11 15.63 ˘ 1.01 17.56 ˘ 0.75

TS
BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore BLEURT BERTtext IEtext IEimage IEtext&image

DUC2004 11.47 13.66 9.74 13.14 19.44 23.59 12.10 19.81 13.90 ˘ 1.65 18.79 ˘ 0.85
GigaWord 7.44 12.90 5.82 12.92 19.23 20.20 16.76 14.73 6.05 ˘ 1.00 14.70 ˘ 0.63

DT

BLEU METEOR ROUGE-L CIDEr BERTScore BLEURT BERTtext IEtext IEimage IEtext&image

WebNLG 25.79 30.78 24.15 23.09 34.53 35.97 22.38 26.81 19.59 ˘ 0.53 25.99 ˘ 0.24
E2ENLG 12.78 25.55 12.22 13.83 22.76 22.75 13.11 18.19 11.23 ˘ 1.70 16.12 ˘ 0.85
WikiBioNLG 8.19 8.31 9.88 5.35 8.98 9.21 6.07 4.14 3.50 ˘ 1.03 4.42 ˘ 0.47

Table 5: The Pearson correlations with human judgement for each individual metric.

Task Dataset Kendall Correlation

MT
BLEU-1 BLEU-2 BLEU-3 BLEU-4 BERTScore BLEURT BERTtext IEtext IEimage IEtext&image

WMT19 11.51 11.19 9.37 7.16 10.68 10.63 3.22 17.35 2.96 ˘ 2.20 11.73 ˘ 2.31
IWSLT14 14.19 14.26 13.68 12.79 16.68 14.64 13.84 12.90 10.75 ˘ 0.71 12.70 ˘ 0.59

TS
BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore BLEURT BERTtext IEtext IEimage IEtext&image

DUC2004 8.96 8.71 7.75 7.22 12.82 16.04 8.31 9.49 7.51 ˘ 1.22 9.04 ˘ 0.73
GigaWord 11.56 11.08 7.77 11.77 13.92 15.27 12.63 11.95 3.67 ˘ 0.78 11.22 ˘ 0.58

DT

BLEU METEOR ROUGE-L CIDEr BERTScore BLEURT BERTtext IEtext IEimage IEtext&image

WebNLG 15.94 21.30 15.24 13.40 23.44 24.31 15.41 19.55 12.73 ˘ 0.38 17.72 ˘ 0.23
E2ENLG 11.53 18.46 8.60 10.29 14.45 14.61 10.86 10.59 6.63 ˘ 1.27 9.24 ˘ 0.51
WikiBioNLG 3.27 3.73 4.00 2.10 5.09 5.32 3.07 2.08 1.45 ˘ 0.79 1.90 ˘ 0.35

Table 6: The Kendall correlations with human judgement for each individual metric.

Dataset
Kendall Correlation

Metrics Original +BERTtext +IMAGINEtext +IMAGINEimage +IMAGINEtext&image

WMT19

BLEU-1 11.51 9.29 15.08 10.53 ˘ 1.29 13.89 ˘ 0.92
BLEU-2 11.19 8.86 14.28 9.89 ˘ 1.22 12.88 ˘ 0.88
BLEU-3 9.37 7.64 12.71 9.00 ˘ 1.21 11.27 ˘ 0.86
BLEU-4 7.16 5.55 10.70 7.28 ˘ 1.17 9.31 ˘ 0.76

BERTScore 10.68 8.10 14.83 9.30 ˘ 1.38 13.36 ˘ 0.92
BLEURT 10.63 9.60 13.60 10.91 ˘ 0.81 12.93 ˘ 0.51

IWSLT14

BLEU-1 14.19 15.43 15.42 14.92 ˘ 0.46 15.75 ˘ 0.29
BLEU-2 14.26 15.32 15.21 15.06 ˘ 0.41 15.64 ˘ 0.27
BLEU-3 13.68 14.66 14.64 14.60 ˘ 0.37 15.00 ˘ 0.26
BLEU-4 12.79 14.09 14.05 14.03 ˘ 0.34 14.28 ˘ 0.22

BERTScore 16.68 16.56 17.70 16.74 ˘ 0.40 17.71 ˘ 0.25
BLEURT 14.64 15.09 15.14 15.35 ˘ 0.20 15.40 ˘ 0.11

Table 7: The Kendall correlations with human judgement on the machine translation task.
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Dataset
Pearson Correlation

Metrics Original +BERTtext +IMAGINEtext +IMAGINEimage +IMAGINEtext&image

WMT19

BLEU-1 14.19 11.23 20.29 13.40 ˘ 1.94 18.67 ˘ 1.11
BLEU-2 12.86 10.63 18.72 12.71 ˘ 1.81 17.18 ˘ 1.01
BLEU-3 11.81 10.06 17.57 11.91 ˘ 1.70 15.97 ˘ 0.94
BLEU-4 9.15 8.19 15.13 9.77 ˘ 1.60 13.41 ˘ 0.88

BERTScore 15.50 11.65 21.21 13.70 ˘ 2.11 19.58 ˘ 1.19
BLEURT 16.14 14.90 19.03 16.72 ˘ 1.03 18.40 ˘ 0.53

IWSLT14

BLEU-1 21.47 22.56 21.56 22.45 ˘ 0.59 23.07 ˘ 0.36
BLEU-2 20.82 22.14 21.44 22.44 ˘ 0.53 22.79 ˘ 0.32
BLEU-3 19.17 21.05 20.44 21.58 ˘ 0.50 21.73 ˘ 0.30
BLEU-4 17.60 19.90 19.38 20.57 ˘ 0.49 20.61 ˘ 0.30

BERTScore 23.95 23.87 23.77 24.62 ˘ 0.52 25.06 ˘ 0.31
BLEURT 22.93 23.37 23.16 24.09 ˘ 0.26 23.81 ˘ 0.14

Table 8: The Pearson correlations with human judgement on the machine translation task.

Dataset
Kendall Correlation

Metrics Original +BERTtext +IMAGINEtext +IMAGINEimage +IMAGINEtext&image

DUC2004

ROUGE-1 8.71 9.69 10.36 9.18 ˘ 0.58 10.06 ˘ 0.28
ROUGE-2 7.75 9.49 9.87 8.55 ˘ 0.83 9.73 ˘ 0.47
ROUGE-L 7.22 9.20 10.21 9.02 ˘ 0.63 10.05 ˘ 0.34

BERTScore 12.82 12.96 12.06 11.36 ˘ 0.50 12.07 ˘ 0.33
BLEURT 16.04 15.45 15.71 15.07 ˘ 0.31 15.55 ˘ 0.18

GigaWord

ROUGE-1 11.08 12.66 11.52 10.34 ˘ 0.40 11.71 ˘ 0.23
ROUGE-2 7.77 12.55 11.49 6.63 ˘ 0.58 10.66 ˘ 0.37
ROUGE-L 11.77 12.87 12.03 10.84 ˘ 0.41 12.43 ˘ 0.24

BERTScore 13.92 14.24 13.88 13.53 ˘ 0.32 14.46 ˘ 0.20
BLEURT 15.27 15.59 14.81 15.28 ˘ 0.19 15.39 ˘ 0.10

Table 9: The Kendall correlations with human judgement on the abstractive text summarization task.

Dataset
Pearson Correlation

Metrics Original +BERTtext +IMAGINEtext +IMAGINEimage +IMAGINEtext&image

DUC2004

ROUGE-1 13.66 14.97 18.70 15.70 ˘ 0.80 17.75 ˘ 0.41
ROUGE-2 9.74 13.54 18.54 14.60 ˘ 1.05 17.42 ˘ 0.52
ROUGE-L 13.14 14.59 19.22 15.83 ˘ 0.93 18.23 ˘ 0.47

BERTScore 19.44 18.19 21.30 18.79 ˘ 0.76 20.62 ˘ 0.39
BLEURT 23.59 22.53 24.52 23.02 ˘ 0.43 24.02 ˘ 0.23

GigaWord

ROUGE-1 12.90 16.88 15.16 13.62 ˘ 0.53 15.31 ˘ 0.26
ROUGE-2 5.82 13.97 12.08 8.06 ˘ 0.61 11.18 ˘ 0.30
ROUGE-L 12.92 16.56 15.18 13.29 ˘ 0.57 15.33 ˘ 0.28

BERTScore 19.23 19.39 18.61 18.73 ˘ 0.45 19.46 ˘ 0.23
BLEURT 20.20 20.86 19.93 20.43 ˘ 0.26 20.45 ˘ 0.14

Table 10: The Pearson correlations with human judgement on the abstractive text summarization task.
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Dataset
Kendall Correlation

Metrics Original +BERTtext +IMAGINEtext +IMAGINEimage +IMAGINEtext&image

WebNLG

BLEU 15.94 18.90 20.18 18.44 ˘ 0.22 20.07 ˘ 0.12
METEOR 21.30 20.12 22.57 19.71 ˘ 0.26 22.22 ˘ 0.14
ROUGE-L 15.24 18.80 19.80 17.80 ˘ 0.23 19.45 ˘ 0.12

CIDEr 13.40 14.93 15.21 14.76 ˘ 0.06 15.07 ˘ 0.03
BERTScore 23.44 22.55 23.95 22.39 ˘ 0.18 23.75 ˘ 0.10

BLEURT 24.31 23.91 25.05 24.43 ˘ 0.10 24.94 ˘ 0.06

E2ENLG

BLEU 11.53 12.41 11.39 8.59 ˘ 1.14 10.76 ˘ 0.49
METEOR 18.46 14.37 12.93 10.55 ˘ 1.18 12.42 ˘ 0.45
ROUGE-L 8.60 12.36 11.52 9.30 ˘ 0.96 10.94 ˘ 0.39

CIDEr 10.29 13.23 11.21 9.30 ˘ 0.93 10.85 ˘ 0.44
BERTScore 14.45 15.04 13.73 12.19 ˘ 0.96 13.31 ˘ 0.37

BLEURT 14.61 15.74 15.27 14.81 ˘ 0.39 15.04 ˘ 0.16

WikiBioNLG

BLEU 3.27 3.34 2.38 1.99 ˘ 0.74 2.31 ˘ 0.31
METEOR 3.73 3.43 2.59 2.29 ˘ 0.68 2.57 ˘ 0.31
ROUGE-L 4.00 3.72 3.35 3.14 ˘ 0.62 3.58 ˘ 0.29

CIDEr 2.10 2.44 2.21 1.48 ˘ 0.62 2.03 ˘ 0.25
BERTScore 5.09 4.57 3.97 4.42 ˘ 0.44 4.33 ˘ 0.21

BLEURT 5.32 5.72 4.23 4.70 ˘ 0.39 4.59 ˘ 0.17

Table 11: The Kendall correlations with human judgement on the data-to-text task.

Dataset
Pearson Correlation

Metrics Original +BERTtext +IMAGINEtext +IMAGINEimage +IMAGINEtext&image

WebNLG

BLEU 25.79 28.71 31.07 28.50 ˘ 0.29 30.75 ˘ 0.12
METEOR 30.78 30.54 32.81 30.02 ˘ 0.36 32.89 ˘ 0.15
ROUGE-L 24.15 28.01 30.12 27.58 ˘ 0.28 29.73 ˘ 0.12

CIDEr 23.09 24.48 24.78 24.28 ˘ 0.05 24.55 ˘ 0.02
BERTScore 34.53 33.41 35.38 33.48 ˘ 0.23 35.25 ˘ 0.11

BLEURT 35.97 35.30 36.99 36.08 ˘ 0.13 36.80 ˘ 0.07

E2ENLG

BLEU 12.78 16.08 19.19 13.84 ˘ 1.45 17.59 ˘ 0.70
METEOR 25.55 19.98 21.59 17.09 ˘ 1.39 20.47 ˘ 0.66
ROUGE-L 12.22 16.36 19.49 14.63 ˘ 1.29 17.93 ˘ 0.62

CIDEr 13.83 17.21 18.00 15.75 ˘ 0.62 17.01 ˘ 0.30
BERTScore 22.76 22.00 22.88 19.60 ˘ 1.04 21.92 ˘ 0.49

BLEURT 22.75 23.89 23.95 22.45 ˘ 0.50 23.34 ˘ 0.25

WikiBioNLG

BLEU 8.19 7.04 4.98 4.77 ˘ 0.97 5.48 ˘ 0.43
METEOR 8.31 7.68 5.43 5.38 ˘ 0.90 5.97 ˘ 0.40
ROUGE-L 9.88 8.80 6.69 6.99 ˘ 0.85 7.45 ˘ 0.38

CIDEr 5.35 7.61 5.85 5.90 ˘ 0.54 6.12 ˘ 0.24
BERTScore 8.98 8.98 7.26 7.53 ˘ 0.61 7.76 ˘ 0.28

BLEURT 9.21 9.66 8.19 8.42 ˘ 0.44 8.54 ˘ 0.20

Table 12: The Pearson correlations with human judgement on the data-to-text task.
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dVAE

BigGAN

VQGAN

InputText: uganda faces rebel forces on west (congo) and north (sudan)

(a)

dVAE

BigGAN

VQGAN

InputText: eu resumes aid for victims of hurricane mitch

(b)

dVAE

BigGAN

VQGAN

InputText: most substantive talks yet fail to break nba deadlock

(c)

Figure 12: Groups of images generated by IMAGINE with different image genrative backbones with random
initializations. The image generative backbones are dVAE, BigGAN and VQGAN.

only support English for now. With a multilingual832

CLIP and DALL-E, we may cross verify the sim-833

ilarity with text and imagination in other source 834

languages. 835
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#Iteration:

#Iteration:

#Iteration:

Figure 13: Three groups of images rendered with different iteration steps. Images are visualized from reference text
snippet in DUC2004.

Translation

IWSLT14, idx=772

Metric Score
BLEU-1 69.70
BLEU-2 51.12
BLEU-3 29.35
BLEU-4 20.26

BERTScore 66.62
BERTtext 99.23

ImaginEtext 83.06
ImaginEimage 34.81

Human 3.2/4.0

Src: Also entschied ich mich eines tages den filialleiter zu besuchen, und ich fragte 
den leiter, "funktioniert dieses modell, dass sie den menschen all diese 
möglichkeiten bieten wirklich?" 
Ref:  So I one day decided to pay a visit to the manager, and I asked the 
manager, "is this model of offering people all this choice really working?"

Hyp:  So I decided to visit the filialler one day, and I asked the ladder, "does 
this model work that you really offer to the people all these possibilities?"

ImaginationRef ImaginationHyp

Metric Score

BLEU-1 69.70

BLEU-4 20.26

BERTScore 66.62

ImaginEimage 13.08

Human 3.1/5.0

Src: Diesmal dabei: Der Schauspieler Florian David Fitz bekannt aus 
Filmen wie "Männerherzen", "Terror - Ihr Urteil" oder "Der geilste Tag". 
Ref:  This time: The actor Florian David Fitz known from films like 
"Männerherzen", "Terror - Ihr Urteil" or "Der geilste Tag".

Hyp:  This time around: The actor Florian David Fitz is known from 
films such as "Men's Hearts," "Terror - Your Judgment" and "The 
Horniest Day."

idx=81

Metric Score
BLEU-1 45.83
BLEU-2 37.35
BLEU-3 29.38
BLEU-4 22.17

BERTScore 34.91
BERTtext 98.14

ImaginEtext 87.94
ImaginEimage 58.35

Human 3.8/5.0

ImaginationRef ImaginationHyp

Metric Score

BLEU-1 45.83

BLEU-4 22.17

BERTScore 34.91

ImaginEimage 44.47

(a) IWSLT'14 (b) WMT'19

Src: Ich weiß nicht genau, ob ich noch zeit habe ihnen andere umgebungen 
zu zeigen.

Ref: I'm not sure if I have time to show you any other environments.

Hyp: I don't know if I still have time to show you other environments.

ImaginationRef ImaginationHyp

Metric Score

BLEU-1 73.33

BLEU-4 37.03

BERTScore 81.49

ImaginEimage 88.92

Figure 14: Case studies for machine translation. Src: the German text to be translated. Ref: the reference translation.
Hyp: the generated translation candidate. We report the metric scores and the human score for the reported pair of
(Ref, Hyp).

(a) DUC2004

Src: As his lawyers in London tried to quash a Spanish arrest warrant for Gen. 
Augusto Pinochet, the former Chilean dictator, efforts began in Geneva and 
Paris to have him extradited. 
Ref: Pinochet arrest contested in British high court. New charges pressed

Hyp: Pinochet extradited from London to Paris to extradite Pinochet

Metric Score

ROUGE-2 0.00

ROUGE-L 10.43

BERTScore 19.09

ImaginEimage 67.38

Human 5.0/5.0ImaginationRef ImaginationHyp

Src: The launch of Shenzhou-#, China's first manned spacecraft, is 
successful and the craft is already in orbit, an official in charge of the 
country's manned spaceflight program announced Wednesday morning. 
Ref:  Bulletin: Shenzhou-# launch successful official

Hyp:  Launch of China's first manned spacecraft successful

Metric Score

ROUGE-2 0.00

ROUGE-L 29.33

BERTScore -7.53

ImaginEimage 65.36

(b) GigaWord

ImaginationRef ImaginationHyp

Summarization

DUC2004, idx=29 GigaWord(old), idx=838

Src: Taking a major step toward statehood, the Palestinians on Tuesday 
inaugurated Gaza international airport, their first gateway to the world, with 
cheers, tears and an outpouring of patriotism . 
Ref: Palestinians celebrate opening of Gaza international airport

Hyp: Palestinians open Gaza international airport

ImaginationRef ImaginationHyp

Metric Score

ROUGE-2 60.00

ROUGE-L 64.72

BERTScore 84.44

ImaginEimage 60.75

Figure 15: Case studies for abstractive text summarization. Src: the text to be summarized. Ref: the reference
summary. Hyp: the generated summary candidate. We report the metric scores and the human score for the reported
pair of (Ref, Hyp).
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Ref:  Julia Morgan was the architect of the grounds of Asilomar 
Conference.

Hyp: Julia Morgan was the architect of the Asilomar Conference 
Grounds.

Metric Score

BLEU 65.25

METEOR 49.17

BERTScore 90.05

ImaginEimage 35.16
ImaginationRef ImaginationHyp

WebNLG, idx=121

E2ENLG, idx=29

Ref:  Sven Leuenberger (born August 25, 1969 in Niederuzwil, 
Switzerland) is a retired Swiss professional ice hockey defender.

Hyp:  25 ft tall, Nieder Niederberger was a member of the club's 
shoots team.

WikiBioNLG, idx=11

Metric Score

BLEU 1.92

METEOR 6.09

BERTScore -16.43

ImaginEimage 15.29ImaginationRef ImaginationHyp

Data2Text
(a) WebNLG (b) WikiBioNLG

E2ENLG, idx=372

Ref:  There is a coffee shop Blue Spice in the riverside area.

Hyp: Blue Spice is a type of coffee shop.

Metric Score

BLEU 18.00

METEOR 29.91

BERTScore 46.41

ImaginEimage 67.24ImaginationRef ImaginationHyp

(d) E2ENLGNLG

Ref:  Giraffe, in the riverside area, near the Rainbow Vegetarian 
Café, there is a pub with fast food, of and it is kid friendly.

Hyp:  Giraffe is a dish that can be served as a dessert.

Metric Score

BLEU 2.43

METEOR 6.03

BERTScore 17.79

ImaginEimage 40.17ImaginationRef ImaginationHyp

(c) E2ENLG 

Figure 16: Case studies for data-to-text generation. Ref: the reference text. Hyp: the generated text candidate. We
report the metric scores and the human score for the reported pair of (Ref, Hyp).

A.8 Human Evaluation836

Figure 17 shows an example of instructions pro-837

vided to MTurk annotators. Our study is approved838

for IRB exempt. The estimated hourly wage paid839

to MTurk annotators is $12.840

18



Figure 17: The instructions for MTurk annotators to evaluate the text generated for the data-to-text generation task.
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