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Abstract

Automatic evaluations for natural language gen-
eration (NLG) conventionally rely on token-
level or embedding-level comparisons with
the text references. This is different from
human language processing, for which vi-
sual imaginations often improve comprehen-
sion. In this work, we propose IMAGINE, an
imagination-based automatic evaluation met-
ric for natural language generation. With the
help of CLIP (Radford et al., 2021) and DALL-
E (Ramesh et al., 2021), two cross-modal mod-
els pre-trained on large-scale image-text pairs,
we automatically generate an image as the em-
bodied imagination for the text snippet and
compute the imagination similarity using con-
textual embeddings. Experiments spanning
several text generation tasks demonstrate that
adding imagination with our IMAGINE displays
great potential in introducing multi-modal in-
formation into NLG evaluation, and improves
existing automatic metrics’ correlations with
human similarity judgments in many circum-
stances.

1 Introduction

A major challenge for natural language generation
(NLG) is to design an automatic evaluation met-
ric that can align well with human judgments. To
this end, many approaches have been investigated.
Metrics that base on matching mechanisms such as
BLEU (Papineni et al., 2002), METEOR (Elliott
and Keller, 2013), CIDEr (Vedantam et al., 2015),
have been widely adopted in the field. Edit-distance
based metrics, such as CharacTER (Wang et al.,
2016), WMD (Kusner et al., 2015a), SMD (Clark
et al., 2019a), have also been explored. Recently,
Zhang et al. (2020) proposed to leverage BERT (De-
vlin et al., 2019) embeddings for computing text
similarity, which correlates better with human judg-
ments than previous methods. These automatic
evaluation metrics make use of textual information
from various angles extensively.

But what happens in our minds when we read,
comprehend, and evaluate text? Research (Just
et al., 2004; Eviatar and Just, 2006) has found that,
unlike commonly designed automatic evaluation
methods that compare the generated candidates
with the references on the text domain only, hu-
mans, in contrast, leverage visual imagination and
trigger neural activation in vision-related brain ar-
eas when reading text. Cognitive studies show that
visual imagery improves comprehension during
human language processing (Gambrell and Bales,
1986; Joffe et al., 2007; Sadoski and Paivio, 2013).
Inspired by this imagination-based multi-modal
mechanism in human text comprehension, we ask
a critical research question: can machines create
a visual picture of any underlying sentence, and
leverage their imaginations to improve natural lan-
guage understanding? The advances of recent pre-
trained vision-language models such as CLIP (Rad-
ford et al., 2021) provide an excellent opportunity
for us to utilize the learned image-text representa-
tions. This enables us to explore the possibility of
incorporating multi-modal information into NLG
evaluation.

In this work, we propose IMAGINE, an
imagination-based automatic evaluation metric for
text generation. Specifically, IMAGINE first uses
the pre-trained discrete variational autoencoder
(dVAE) from the vision-language model DALL-
E (Ramesh et al., 2021) to visualize imagination
from sentences, which is to generate descriptive im-
ages for the candidate text and the references. Then
it computes the similarity of the two text snippets
and the similarity of the two imaginative images
with the pre-trained CLIP model (Radford et al.,
2021) for evaluation. Figure 1 shows an example.

To understand the role imagination plays in NLG
evaluation, we conduct a series of experiments with
IMAGINE on multiple NLG tasks and datasets, in-
cluding machine translation, abstractive text sum-
marization, and data-to-text generation, aiming to
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Figure 1: An evaluation example on GigaWord for text summarization. IMAGINE visualizes machine imagination
with DALL-E’s pre-trained dVAE and extracts textual and visual representations with CLIP. While traditional
evaluation metrics for natural language generation rely on n-grams matching or textual embeddings comparison,
IMAGINE introduces imagination into the evaluation process and understands the text snippet as a whole with the

help of multi-modal information.

answer the following questions:

1. How influential is IMAGINE in NLG evalua-
tion in terms of correlations with human judg-
ments? Can it provide additional reference
information on top of existing metrics?

2. What are the applicable scenarios of introduc-
ing IMAGINE fo NLG evaluation? When and
why does imagination help?

3. What are the potentials and limitations of
introducing imaginations with IMAGINE fo
NLG evaluation?

Experimental results show that IMAGINE can
serve as a complementary evaluation metric to text-
based ones, and adding IMAGINE similarity scores
to existing metrics surprisingly improves most of
the popular metrics’ correlations with human per-
formance on a variety of text generation tasks. We
further conduct comprehensive quantitative anal-
yses with case studies to verify its effectiveness.
Overall, IMAGINE displays great potential in intro-
ducing multi-modal information into NLG evalua-
tion.

2 Related Work

Automatic Metrics for Natural Language Gen-
eration Common practices for NLG evaluation
compare the generated hypothesis text with the
annotated references. Metric performance is con-
ventionally evaluated by its correlation with hu-
man judgments. Existing automatic evaluation met-
ric calculations are mainly based on three mecha-
nisms: n-grams overlap, edit distance, and embed-
ding matching. Some typical n-gram based metrics

include BLEU (Papineni et al., 2002), ROUGE-
n (Lin, 2004), METEOR (Elliott and Keller, 2013)
and CIDEr (Vedantam et al., 2015), which are
widely used for text generation tasks. Another
direction is based on edit distance (Tomas et al.,
2003; Snover et al., 2006; Panja and Naskar, 2018;
Tillmann et al., 1997; Wang et al., 2016) , where
they caculate the edit distance between the two text
snippets with different optimizations. Embedding-
based metrics (Kusner et al., 2015b; Rubner et al.,
1998; Clark et al., 2019b; kiu Lo, 2017, 2019)
evaluate text quality using word and sentence em-
beddings, and more recently, with the help of
BERT (Zhang et al., 2020; Sellam et al., 2020).

Multi-Modal Automatic Metrics Aside from
previous text-only metrics, some metrics utilize
pre-trained multi-modal models and introduce vi-
sual features on top of text references for NLG
evaluation. TIGEr (Jiang et al., 2019) computes
the text-image grounding scores with pre-trained
SCAN (Lee et al., 2018). VILBERTScore-F (Lee
et al., 2020) relies on pre-trained VILBERT (Lu
et al., 2019) to extract image-conditioned embed-
dings for the text. The concurrent CLIPScore (Hes-
sel et al., 2021) proposes a metric for image cap-
tioning by directly comparing images with captions
using CLIP (Radford et al., 2021). Our method
differs in that we use visual picture generation as
embodied imaginations and apply our metric to
various text-to-text generation tasks.

Mental Imagery The great imagery debate is
still an open question in the neuroscience and psy-
chology community (Troscianko, 2013). The de-
bate between pictorialists and propositionalists is



about how imagery information is stored in the
human brain. We follow the views from pictorial-
ists that information can be stored in a depictive
and pictorial format in addition to language-like
forms (Kosslyn et al., 2001; Pearson and Kosslyn,
2015). In pictorialists’ model, mental imagery is
constructed in the “visual buffer” either from the
retinal image in seeing or from a long-term memory
store of “deep representations” in the brain. Our im-
age generation method is to mimic the generation
of deep representations in machines, with the help
of recent powerful text-to-image models. Inspired
by empirical studies from cognitive science that
visual imagination improves human text compre-
hension (Gambrell and Bales, 1986; Sadoski and
Paivio, 1994; Nippold and Duthie, 2003; Just et al.,
2004, Joffe et al., 2007; Sadoski and Paivio, 2013),
we are interested in exploring if one can draw simi-
lar conclusions from automatic text evaluations by
machines.

3 IMAGINE

3.1 Model Details

CLIP CLIP (Radford et al., 2021) is a cross-
modal retrieval model trained on WeblmageText,
which consists of 400M (image, caption) pairs gath-
ered from the web. WeblmageText was constructed
by searching for S00K queries on a search engine.
The base query list is all words occurring at least
100 times in the English version of Wikipedia, aug-
mented with bi-grams with high pointwise mutual
information as well as the names of all Wikipedia
articles above a certain search volume. Each query
includes 20K (image, text) pairs for class balance.

In this work, we use the ViT-B/32 version of
CLIP, in which the Vision Transformer (Dosovit-
skiy et al., 2020; Vaswani et al., 2017) adopts
BERT-Base configuration and uses 32 x 32 input
patch size. The Vision Transformer takes 224 x 224
input image and the self-attention maps are calcu-
lated between 7 x 7 grid of image patches. The Text
Transformer has 12-layer, 8-head and uses a hidden
size of 512, and is trained over a vocab of 49K BPE
token types (Radford et al., 2019; Sennrich et al.,
2016). The text representation is the last hidden
state of the “[EOT]” token being projected by a
linear layer. The model’s weights are trained to
maximize the similarity of truly corresponding im-
age/caption pairs while simultaneously minimizing
the similarity of mismatched image/caption pairs
using InfoNCE (van den Oord et al., 2018).

DALL-E (Ramesh et al., 2021) is a 12-billion
parameter version of GPT-3 (Brown et al., 2020)
trained to generate images from text descriptions.
The model is trained on a dataset of a similar scale
to JFT-300M (Sun et al., 2017) by collecting 250
million text-image pairs from the internet, which
incorporates Conceptual Captions (Sharma et al.,
2018), the text-image pairs from Wikipedia, and
a filtered subset of YFCC100M (Thomee et al.,
2016).

DALL-E trains a discrete variational autoen-
coder (dVAE) (Rolfe, 2017) to encode each 256 x
256 RGB image into a 32 x 32 grid of image
tokens with a vocabulary size of 8192. The im-
age tokens are concatenated with a maximum of
256 BPE-encoded (Sennrich et al., 2016; Radford
et al., 2019) tokens with a vocabulary size of 16384
that represents the paired image caption. DALL-E
trains an autoregressive transformer to model the
joint distribution over the text and image tokens.
The pre-trained dVAE has been made public, while
the pre-trained transformer is not released. Thus,
we use DALL-E’s pre-trained dVAE to render im-
ages in this project.

3.2 IMAGINE Similarity Score

Construct Imagination For each image, we ran-
domly initialize a latent matrix H and use the pre-
trained dVAE to produce the RGB image I =
dV AE_decoder(H). We use the ViT-B/32 ver-
sion of the CLIP model to encode the generated
image I and the input text . Then we use CLIP to
compute the similarity between the received image
embedding v = CLIP(I) and text embedding
t = CLIP(x) as the loss to optimize the hidden
matrix while keeping the weights of the network
unchanged. We optimize each generation process
for 1000 steps, and refer to the generated image as
the imagination for further computation.
vTt
[vll]2]

lossgeneration = (D
Similarity Measure For the generated text snip-
pet xp,, and all the references {x,.f,};",, we
generate corresponding images Iy, and I,..y, for
i € [1,n], where n is the number of parallel
references. During evaluation, we pass both the
pair of text snippets and the corresponding imag-
inations through corresponding CLIP feature ex-
tractors to receive the textual representation ¢y,
t.cf,, and the imagination representations vy,
Vref,. Then, we compute three types of similarity
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Figure 2: IMAGINE similarity score computation process. Given the reference text ...y and the generated hypothesis
Thyp, We visualize the machine imagination I,..; and Iy, with the pre-trained dVAE. We extract features for
the pair of text and corresponding pair of imagination with CLIP. IMAGINE;;, 44 is the cosine similarity of the
imagination representations, while IMAGINE,.; is the cosine similarity of the text representations.

scores for IMAGINE with the received embeddings:
IMAGINE;.;; compares the hypothesis text &,
with the text references ®,.f;; IMAGINEqge
compares the visualized imaginations Ij,, with
I,.y,, generated by the pre-trained dVAE in pre-
vious steps; IMAGINE ;¢ image 15 the average
of IMAGINE¢;+ and IMAGINE;;,44¢, Which takes
both the text and the imagination into considera-
tion.
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Here, L is a linear function that stretch the score
distribution to the range of [0, 1]. More details can
be found in Section 5.

3.3 Extension to Existing Metrics

The IMAGINE similarity scores can be used as in-
dividual automatic metrics. Apart from this, IMAG-
INE can also act as an extension to existing metrics,
as it provides multimodal references that compen-
sate for current text-only evaluations that compare
tokens or text-embeddings, which also naturally
mimics the process of human text comprehension
where text and visual imagination are both used.
Our adaptation of IMAGINE to other automatic
metrics is direct, which is summing up IMAGINE
similarity score with the other automatic metric
score for each example:

metric_score += IMAGINE gimitarity_score

“4)

4 Experiments

4.1 Setup

Tasks, Datasets, and Models We evaluate our
approach on three natural language generation
tasks: machine translation, abstractive text sum-
marization, and data-to-text generation. For ma-
chine translation, we use Fairseq (Ott et al., 2019)
implementation to generate English translation
from German on IWSLT 14 (Bell et al., 2014)
and WMT’ 19 (Barrault et al., 2019) datasets. We
choose these two to-English translation tasks be-
cause currently, DALL-E and CLIP only support
English. For abstractive text summarization, we
use the implementation of Li et al. (2017) to gen-
erate sentence summarization on DUC2004! and
use ProphetNet (Yan et al., 2020) for generation
on Gigaword?. We choose abstractive text summa-
rization instead of document summarization since
CLIP sets a length limit of input text of 77 BPE
tokens. For data-to-text generation, we conduct ex-
periments on three datasets, namely WebNLG (Gar-
dent et al., 2017), E2ENLG (Dusek et al., 2019,
2020) and WikiBioNLG (Lebret et al., 2016). We
use the text generated by the KGPT (Chen et al.,
2020) model in our experiments. Table 1 lists out
the statistics of the test set used for each dataset.

Automatic Metrics For machine translation, we
report BLEU-n (Papineni et al., 2002) for n =
1,2, 3,4 and BERTScore (Zhang et al., 2020). For
abstractive text summarization, we report results on
ROUGE-1, ROUGE-2, ROUGE-L (Lin, 2004) and
BERTScore. For data-to-text generation, we utilize

"https://duc.nist.gov/duc2004/
https://catalog.ldc.upenn.edu/
LDC2011T07
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Task Dataset #sample Ffref Flener Flenpy,
Machine Translation WMT’19 2,000 1.0 22.4 22.4
IWSLT 14 6,750 1.0 20.3 19.1
Abstractive Text Summarization DUC2004 >00 4.0 14.0 10.0
GigaWord 1,950 1.0 9.9 11.9
WebNLG 1,600 2.6 28.3 26.9
Data-to-Text Generation E2ENLG 630 74 28.0 116
WikiBioNLG 2,000 1.0 34.8 19.0

Table 1: Dataset statistics. #sample is the number of samples in the test set; #ref is the number of parallel references

per visual instance; #len is the average reference length.
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Figure 3: The effectiveness of augmenting BLEU-n (n=1,2,3,4) and BERTScore with IMAGINE similarities and
BERT}.,; similarity on two machine translation datasets. The y-axis shows the Pearson correlation with human

judgments.

five automatic metrics for NLG, including BLEU,
ROUGE-L, METEOR (Elliott and Keller, 2013),
CIDEr (Vedantam et al., 2015) and BERTScore. In
comparison with IMAGINE.,;, we also compute
BERT ¢4, the text similarity score with BERT en-
coder. We use the last hidden state for the “[CLS]”
token as the representation of the text snippet, and
compute cosine similarity with the two “[CLS]”
embeddings for the reference and the generated
text candidate.

Human Evaluation We invite MTurk® annota-
tors to judge the quality of the generated text. The
estimated hourly wage is $12. We use the complete
test set for DUC2004 and E2ENLG, containing
500 and 630 examples, respectively. For the re-
maining five datasets, we randomly sample 1k pair
of test examples for human evaluation due to the
consideration of expenses. Each example is scored
by three human judges using a 5-point Likert scale.
The generated text is evaluated from three aspects,
namely fluency, grammar correctness, and factual
consistency with the reference text. We take the
mean of human scores to compute correlations. In
the following sections, we report Pearson correla-

*https://www.mturk.com/

tion (Freedman et al., 2007) to human scores. We
also record Kendall correlation (Kendall, 1938) in
the Appendix.

4.2 Results

Machine Translation Figure 3 shows the system-
level Pearson correlation to human judges when
extending our IMAGINE similarity to existing
automatic NLG metrics on the IWSLT 14 and
WMT’19 German to English datasets. BERT ¢
has mixed performance on the two machine trans-
lation task. It improves IWSLT’14 while low-
ers correlation on WMT’19. On the other hand,
our IMAGINE st image Steadily improves all the
listed metrics’ correlations with human scores.
IMAGINE;49¢ and IMAGINEc;t&image €ON-
tributes the most in IWSLT’ 14 while IMAGINE ;..
and IMAGINEc;t&image Play important roles in
WMT’19.

Abstractive Text Summarization Figure 4
shows the system-level Pearson correlation to hu-
man judges when extending our IMAGINE simi-
larity to existing automatic NLG metrics on the
DUC2004 and Gigaword. Both datasets are built
upon news articles. Similar to its impact on the
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machine translations datasets, IMAGINE cxt&image
steadily improves the correlation with human judg-
ments of BLEU, ROUGE-related metrics, and
BERTScore on the two summarization datasets.
The metric that has the most significant impact
on DUC2004 and GigaWord is IMAGINE;.,; and
BERT,;; respectively.

Data-to-Text Generation Figure 5 shows the
system-level Pearson correlation to human judges
when extending our IMAGINE similarity to exist-
ing automatic NLG metrics on the WebNLG, Wik-
iBioNLG, and E2ENLG datasets.

On WebNLG, adding IMAGINE.,;; and
IMAGINE ¢zt&image can steadily improve all the
listed metrics’ correlation with human scores.
IMAGINE;,4¢e improves BLEU, ROUGE-L, and
CIDETr but it only has limited impact on METEOR
and BERTScore. Among the two metrics that
compare textual similarity, IMAGINE;.,; boosts
correlations more than BERT .

On E2ENLG, textual similarity scores play
a more influential role in improving correlation
as it has a positive impact on all listed metrics
except for METEOR. IMAGINE,,; outperforms
BERT.,: in all listed metrics. On the other hand,

IMAGINE;,44¢ has mixed performance, improving
BLEU, ROUGE-L and CIDEr while yielding neg-
ative effects on METEOR and BERTScore. The
E2ENLG dataset is built from the restaurant do-
main, where irrelevant high-frequency tokens such
as restaurant names can misguide the visualization
process of IMAGINE.

We witness a drawback in most listed metrics’
correlations after applying our IMAGINE approach
on WikiBioNLG. This is because the WikiBioNLG
dataset is built upon Wikipedia biography, which
contains many abstract concepts that may be hard
to visualize. Figure 5(c) shows the lowest Pearson
correlation among all three datasets on all metrics,
which means this dataset is not only a challenge to
our IMAGINE approach but also to other existing
metrics as well.

5 Discussion

Why is ImaginE helpful? As shown in Figures 3
to 5, adding certain type of IMAGINE similari-
ties improves non-embedding-based metrics’ cor-
relations with human scores in most cases. This
suggests that it is helpful to extend text-only non-
embedding-based metrics with multimodal knowl-



Src: Also entschied ich mich eines tages den filialleiter zu besuchen, und ich fragte
den leiter, "funktioniert dieses modell, dass sie den menschen all diese
moglichkeiten bieten wirklich?"

Ref: So | one day decided to pay a visit to the manager, and | asked the
manager, "is this model of offering people all this choice really working?"
Hyp: So | decided to visit the filialler one day, and | asked the ladder, "does

this model work that you really offer to the people all these possibilities?"
Metric; Score
BLEU-1; 69.70
BLEU-4; 20.26
BERTScore; 66.62
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Figure 6: A case study on IWSLT’ 14 dataset.

Metric ‘ Original ‘ +IE'L((1VAE) +lE1’,(B7‘,gGAN) +IE'L(VQGAN)
ROUGE-1 137 | 159 +0.9 157+ 1.0 159+ 0.8
ROUGE-2 97| 149+12 146 +1.3 149+ 1.0
ROUGE-L 13.1 16.0 + 1.0 158 £ 1.1 16.0 + 0.9
BERTScore 194 18.8 + 0.9 18.7 £ 1.0 18.9 £ 0.8
BLEURT 23.6 | 23.0+05 229 +0.6 23.1+04

Table 2: The Pearson correlations with human judges
when using IMAGINE ;.44 (IE;) to augment ROUGE,
BERTScore, and BLEURT on DUC2004. We com-
pute three sets of IMAGINE;,qq4. similarity scores
(mean+std) with three different image generation back-
bones, namely dVAE, BigGAN, and VQGAN.

edge. However, how do these machine imagina-
tions actually help text understanding and evalua-
tion? In this section, we explore further on how
and why IMAGINE works. We first provide a case
study to show the uniqueness of IMAGINE over
text-based metrics, then systematically analyze the
effectiveness of our method from different perspec-
tives.

Case Study  Figure 6 presents such an example
in which IMAGINE captures the keyword differ-
ence between two text snippets. Regardless of the
similar sentence structure between the reference
and the hypothesis, the main difference is mention-
ing “manager” and “ladder”. While other metrics
score high, the quality of the generated text is ques-
tionable. IMAGINE renders distinctive images and
yields a relatively low visual similarity score, which
aligns with human judgment. More case studies
can be found in appendix.

Sensitivity to Different Image Generation Back-
bones In previous sections, we implement IMAG-
INE with dVAE as the image generation backbone.
There also appear other image generation models
that use BigGAN (Brock et al., 2019) and VQ-
GAN (Esser et al., 2021) to render images. Here
we discuss the choice of IMAGINE’s image gen-

| dVAE
Entity Recall | 88.8%

BigGAN VQGAN
412%  87.2%

Table 3: The entity recall rate on the visualizations for
Flickr30k captions. We report the results for images
generated by dVAE, BigGAN and VQGAN.

sitting at a bench talking to each other by a body of water .

dVAE VQGAN

Figure 7: An example caption from Flickr30k Entities
dataset, and images rendered by dVAE, BigGAN and
VQGAN. The bounding boxes point to the visualiza-
tions of the entities marked in the same color.

eration backbone and its effect on evaluation per-
formance. We conduct experiments on DUC2004
for summarization, and compare dVAE with Big-
GAN and VQGAN. For fair comparisons, each gen-
erative backbone has a 1000-step learning phase
to render a 512x512 image for each piece of in-
put text. Examining Table 2, we find comparable
IMAGINE;,44¢ performances for dVAE and VQ-
GAN, both consistently surpass BigGAN on all
metrics. The VQGAN leads to smaller variance on
average. These models with different architectures
and training data provide divergent machine imagi-
nations and impact final text evaluation results.

Reliability of Imaginations We further ver-
ify the reliability of IMAGINE’s visualization on
Flickr30k Entities dataset (Plummer et al., 2015).
This image captioning dataset contains annotations
on the entities mentioned in each caption for evalu-
ation. We randomly sample 100 captions and use
the three generative backbones to render images
with 500-step learning phases. We present the cap-
tion and the rendered image to human annotators,
and ask them whether the entities mentioned in
the caption are visualized. Entity recall rates are
reported in Table 3. The dVAE has the highest
entity recall rate of around 89%, followed closely
by VQGAN. BigGAN has the lowest recall rate of
around 41%. Figure 7 shows a group of example
of entity recall in visualization. The observations
are also consistent with human correlations in Ta-
ble 2, that higher quality of imaginations improves
text evaluation.
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Figure 8: The influence on visualization when masking
tokens of different syntax tags. Upper: The occurrence
frequency of each syntax tag in DUC2004. Lower: The
relative image similarity decrease after masking each
syntax tag. Baseline: The average intra-group pairwise
image similarity. The top-10 syntax tags that have the
most significant impact on visualization are listed here.

Syntax Importance to Imaginations We assess
the importance of each type of syntax token in the
image generation process. We use Stanza (Qi et al.,
2020) part-of-speech (POS) tagger to parse the text
in DUC2004 test set. For each syntax tag*, we cre-
ate ablated test examples by masking out a token
of that tag from the original text. We compare the
visual similarity of the images rendered from the
ablated examples to the visualization of the vanilla
text. Figure 8 reports the influence of masking each
syntax tag. PROPN and ADJ are two tags that have
a salient impact on visualization results, and remov-
ing them leads to a relatively 12% drop in visual
similarity. Surprisingly, removing NOUN tokens
has a comparably smaller influence on image ren-
dering. Table 4 lists out the most frequent NOUN,
PROPN, and AD]J tokens in DUC2004, a dataset
built upon news clusters. PROPN and ADJ tokens
in DUC2004 cover concrete concepts such as na-
tions, corporations, and celebrities. NOUN tokens
involve more abstract concepts such as government,
party, and right. For this particular dataset, our
IMAGINE approach pays more attention to PROPN
and ADJ tokens that are easier to visualize by na-
ture. More analysis for other dataset domains can
be found in the appendix.

*We report Universal POS tags in this study: https:
//universaldependencies.org/u/pos/

POS Tag ‘ 10 Most Frequent Tokens

NOUN president, minister, government, space, party, station, budget,
game, right, arrest

PROPN U‘.S‘., Clinton, China, Korea, Gaza, Microsoft, Congo, Israel,
Livingston, Lebanon

ADJ new, prime, Russian, international, Asian, possible, Cambodian,
first, human, economic

Table 4: The most frequent NOUN, PROPN, and ADJ
tokens in DUC2004.
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Figure 9: The score distributions of IMAGINE;.,;,
IMAGINE;,44¢, and BERT.,; before re-scaling.

Score Distributions We visualize the score distri-
butions of different metrics in Figure 9. CLIP;,4ge
mostly lies between [0.25, 1] and CLIP;¢,; is in
[0.5, 1]. Overall, our imagination-based methods
lead to smoother distributions. CLIP;,44e 18 more
diverse than text-based metrics with the same mea-
surement (i.e., cosine similarity). Following CLIP-
Score (Hessel et al., 2021), we linearly normalize
the score distributions to [0, 1], which is also the
score range for most of the automatic metrics cov-
ered in this study. More specifically, the similarity
score s will be re-scaled by:

0.50, for IMAGINE;cy:,
s = ‘;_ 7 [ =14025 for IMAGINE;;qgec,
0.90, for BERTcy.
)

6 Conclusion

In this paper, we propose IMAGINE, an
imagination-based automatic evaluation metric for
NLG. Experiments on seven datasets across three
different tasks indicate that adding IMAGINE simi-
larity scores as an extension to current automatic
NLG metrics can improve their correlations with
human judgments in many circumstances. In the
future, it is interesting to explore effective ways
of visualizing abstract concepts, and how to gen-
erate imaginations efficiently. We hope our work
can contribute to the construction of multi-modal
representations and the discussion of multi-modal
studies.


https://universaldependencies.org/u/pos/
https://universaldependencies.org/u/pos/

Ethical Statement

Our study is approved for IRB exempt. The esti-
mated hourly wage paid to MTurk annotators is $12.
Speaking of potential ethical concerns, our “imag-
ination” approach may face an issue of fairness
if there exists any bias in the training dataset for
CLIP or DALL-E. In such circumstances, IMAG-
INE might display a tendency to render specific
types of images that it has seen in the training data.
Even though we did not witness such issues in our
study, we should keep in mind that this unfair be-
havior would impair IMAGINE’s effectiveness as
an evaluation tool.

Reproducibility Statement

All of the datasets used in our study on machine
translation, data-to-text generation and abstractive
text summarization tasks are publicly available. We
use the public repositories to implement IMAGINE.
The implementations of CLIP-based image gen-
erators used in our study are dVAE+CLIP?, Big-
Sleep(BigGAN+CLIP)® and VQGAN+CLIP’.
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A Appendix

A.1 Random Initialization

We assess the influence of random initialization by
repeating the image generation process five times
on the DUC2004 test set and computing pairwise
visual similarities within each group of 5 images.
Notice in Figure 10 that dVAE and VQGAN have
similar intra-group visual similarity distributions,
with VQGAN slightly higher on average. There ap-
pear extremely low values for all three backbones,
which suggests that random initialization should
be taken into consideration. In Figure 12, we show
several groups of images generated by dVAE, Big-
GAN and VQGAN with random initialization.

dVAE (X

N e |

BigGAN

[} MNH

. |
toonee o |

VQGAN LR

0.3 0.4 0.5 0.6 0.7 0.8

Intra-Group Pairwise Visual Similarity
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Figure 10: The intra-group pairwise visual similarity
distributions for images generated by dVAE, BigGAN,
and VQGAN. The plot shows the three quartile values
and the extreme values.

A.2 Syntax Importance to Imaginations

In Section 5, we discuss the importance of
DUC2004 POS tags on imaginations. Here we
display the syntax importance to visualization on
another dataset domain. Figure 11 shows the syn-
tax importance on text examples from Flickr30k
Entities (Plummer et al., 2015), which is an im-
age captioning dataset. The ranking of the most
influential POS tags is different from the results on
DUC2004 in Figure 8. However, the results on
Flickr30k also display a tendency that the concrete
concepts are easier to be visualized, thus playing a
more important role in visualization.

A.3 Rendering Iterations

In this paper, we use dVAE to render 512x512 im-
ages with a 1000-step learning phase. Figure 13
illustrate a few set of examples of images rendered
with different iterations. The main contents of the
figure only have after minor changes after 400 it-
erations. Future work may apply less iterations to
reduce computation budget.
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Figure 11: The influence on visualization when masking
tokens of different syntax tags. Upper: The occurrence
frequency of each syntax tag in DUC2004. Lower: The
relative image similarity decrease after masking each
syntax tag. Baseline: The average intra-group pairwise
image similarity. The top-10 syntax tags that have the
most significant impact on visualization are listed here.

A.4 Correlation Results

We list the numbers on Pearson correlation in Ta-
bles 8, 10 and 12 that match Figures 3 to 5 in the
main paper. Table 5 lists out each metric’s Pearson
correlation with human judgments on each dataset.
Tables 6, 7, 9 and 11 display results on Kendall cor-
relation for the three NLG tasks used in our study.
The Kendall correlations with human judgement
show similar trends as those on Pearson correlation.

A.5 Case Study

We provide more case studies for the three NLG
tasks used in our study in Figures 14 to 16.

A.6 Computation Expenses

We conduct experiments on 8 Titan RTX GPUs. It
takes ~ 200 hours to generate all the imagination
figures used in our study. However, as discussed
in Section A.3, future work may greatly cut the
computational budget by reducing the rendering
iterations.

A.7 Limitations and Future Work

Currently, the CLIP text encoder has a length con-
straint of 77 BPE tokens, [BOS] and [EOS] in-
cluded. This limits our attempt on longer text
generation tasks, such as story generation, docu-
ment summarization, etc. Also, CLIP and DALL-E



Task ‘ Dataset ‘ Pearson Correlation

\ | BLEU-I  BLEU-2  BLEU-3  BLEU-4 BERTScore BLEURT BERTiest IEtest Eimage  TBieatimage

MT ) wmT19 14.19 12.86 11.81 9.15 15.50 16.14 254 2494 381 +296 1689 +2.70
IWSLT14 21.47 20.82 19.17 17.60 23.95 22.93 1842 1411 1563 +1.01 17.56 +0.75

\ | BLEU ROUGE-1 ROUGE2 ROUGE-L BERTScore BLEURT BERTiq: IEtea IEimage  Eieatimage

TS | puc2004 11.47 13.66 9.74 13.14 19.44 23.59 12.10 1981 1390+ 1.65 18.79 +0.85
GigaWord 7.44 12.90 5.82 12.92 19.23 20.20 1676 1473  6.05+1.00 14.70 + 0.63

\ | BLEU METEOR ROUGE-L CIDEr BERTScore BLEURT BERTi;: IBEiext IEimage  1Eteatimage

DT | WebNLG 25.79 30.78 24.15 23.09 34.53 35.97 2238 2681 19.59 +0.53 25.99 +0.24
E2ENLG 12.78 25.55 12.22 13.83 22.76 22.75 1311 18.19 1123 +1.70 16.12 + 0.85
WikiBioNLG 8.19 8.31 9.88 535 8.98 9.21 6.07 414 350+1.03 4424047

Table 5: The Pearson correlations with human judgement for each individual metric.

Task ‘ Dataset ‘ Kendall Correlation

| | BLEU-1 ~ BLEU-2  BLEU-3  BLEU-4 BERTScore BLEURT BERTio: [Eicat IEimage  1Eieatbimage
MT | wmri9 11.51 11.19 9.37 7.16 10.68 10.63 322 1735 2964220 1173 £231
TWSLT14 14.19 14.26 13.68 12.79 16.68 14.64 13.84 1290 1075 +0.71 12.70 + 0.59
\ | BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore BLEURT BERTio: IEica IEimage  IEteatbimage
TS | puc2004 8.96 8.71 775 7.22 12.82 16.04 831 949 751+122 9.04+073
GigaWord 11.56 11.08 177 11.77 13.92 15.27 1263 1195 3.67+078 11.22+0.58
| | BLEU METEOR ROUGE-L CIDEr BERTScore BLEURT BERTie;; IEeq IEimage  Bieateimage
DT | WebNLG 15.94 21.30 15.24 13.40 23.44 2431 1541 19.55 1273 +038 17.72+0.23
E2ENLG 11.53 18.46 8.60 10.29 14.45 14.61 1086 1059  6.63+127 924 £0.51
WikiBioNLG 3.27 3.73 4.00 2.10 5.09 5.32 307 208 1454079 1.90+0.35
Table 6: The Kendall correlations with human judgement for each individual metric.
D ‘ Kendall Correlation
ataset
\ Metrics  Original +BERTye;¢ +IMAGINEgeyy +IMAGINE;jnqge +IMAGINE eri&image
BLEU-1 11.51 9.29 15.08 10.53 £ 1.29 13.89 4+ 0.92
BLEU-2 11.19 8.86 14.28 9.89 + 1.22 12.88 £+ 0.88
WMT19 BLEU-3 9.37 7.64 12.71 9.00 + 1.21 11.27 £ 0.86
BLEU-4 7.16 5.55 10.70 7.28 + 1.17 9.31 £0.76
BERTScore 10.68 8.10 14.83 9.30 + 1.38 13.36 + 0.92
BLEURT 10.63 9.60 13.60 10.91 £ 0.81 12.93 £ 0.51
BLEU-1 14.19 15.43 15.42 14.92 £ 0.46 15.75 £ 0.29
BLEU-2 14.26 15.32 15.21 15.06 £+ 0.41 15.64 + 0.27
IWSLT14 BLEU-3 13.68 14.66 14.64 14.60 + 0.37 15.00 + 0.26
BLEU-4 12.79 14.09 14.05 14.03 £ 0.34 14.28 + 0.22
BERTScore 16.68 16.56 17.70 16.74 £ 0.40 17.71 £ 0.25
BLEURT 14.64 15.09 15.14 15.35 £ 0.20 15.40 + 0.11

Table 7: The Kendall correlations with human judgement on the machine translation task.
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Pearson Correlation

Dataset
\ Metrics  Original +BERTye;¢ +IMAGINEe;y +IMAGINE;nqge  +IMAGINE jerigrimage
BLEU-1 14.19 11.23 20.29 13.40 +£ 1.94 18.67 + 1.11
BLEU-2 12.86 10.63 18.72 12.71 + 1.81 17.18 + 1.01
WMTI9 BLEU-3 11.81 10.06 17.57 11.91 + 1.70 15.97 £ 0.94
BLEU-4 9.15 8.19 15.13 9.77 + 1.60 13.41 +£ 0.88
BERTScore 15.50 11.65 21.21 13.70 + 2.11 19.58 + 1.19
BLEURT 16.14 14.90 19.03 16.72 + 1.03 18.40 + 0.53
BLEU-1 21.47 22.56 21.56 22.45 + 0.59 23.07 + 0.36
BLEU-2 20.82 22.14 21.44 22.44 £+ 0.53 22.79 + 0.32
IWSIT14 BLEU-3 19.17 21.05 20.44 21.58 +0.50 21.73 +£ 0.30
BLEU-4 17.60 19.90 19.38 20.57 +0.49 20.61 + 0.30
BERTScore 23.95 23.87 23.77 24.62 + 0.52 25.06 + 0.31
BLEURT 22.93 23.37 23.16 24.09 + 0.26 23.81 £0.14
Table 8: The Pearson correlations with human judgement on the machine translation task.
‘ Kendall Correlation
Dataset
\ Metrics  Original +BERTe;t  +IMAGINE eyt +IMAGINE nqge  +IMAGINEertgimage
ROUGE-1 8.71 9.69 10.36 9.18 £ 0.58 10.06 £ 0.28
ROUGE-2 7.75 9.49 9.87 8.55 +£0.83 9.73 + 0.47
DUC2004 | ROUGE-L 7.22 9.20 10.21 9.02 £+ 0.63 10.05 £ 0.34
BERTScore 12.82 12.96 12.06 11.36 + 0.50 12.07 £ 0.33
BLEURT 16.04 15.45 15.71 15.07 £ 0.31 15.55 £ 0.18
ROUGE-1 11.08 12.66 11.52 10.34 + 0.40 11.71 £ 0.23
ROUGE-2 7.77 12.55 11.49 6.63 + 0.58 10.66 + 0.37
GigaWord | ROUGE-L 11.77 12.87 12.03 10.84 + 0.41 12.43 + 0.24
BERTScore 13.92 14.24 13.88 13.53 + 0.32 14.46 + 0.20
BLEURT 15.27 15.59 14.81 15.28 £ 0.19 15.39 £ 0.10

Table 9: The Kendall correlations with human judgement on the abstractive text summarization task.

Pearson Correlation

Dataset
\ Metrics  Original +BERTe;t +IMAGINE eyt +IMAGINE;nqge  +IMAGINE ertgimage
ROUGE-1 13.66 14.97 18.70 15.70 £ 0.80 17.75 £ 0.41
ROUGE-2 9.74 13.54 18.54 14.60 £+ 1.05 17.42 £ 0.52
DUC2004 | ROUGE-L 13.14 14.59 19.22 15.83 £ 0.93 18.23 +£ 0.47
BERTScore 19.44 18.19 21.30 18.79 + 0.76 20.62 + 0.39
BLEURT 23.59 22.53 24.52 23.02 £ 0.43 24.02 +£0.23
ROUGE-1 12.90 16.88 15.16 13.62 + 0.53 15.31 £ 0.26
ROUGE-2 5.82 13.97 12.08 8.06 + 0.61 11.18 £ 0.30
GigaWord | ROUGE-L 12.92 16.56 15.18 13.29 £+ 0.57 15.33 £0.28
BERTScore 19.23 19.39 18.61 18.73 £ 0.45 19.46 + 0.23
BLEURT 20.20 20.86 19.93 20.43 £ 0.26 20.45 £0.14

Table 10: The Pearson correlations with human judgement on the abstractive text summarization task.
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Kendall Correlation

Dataset
\ Metrics  Original +BERTyc;y +IMAGINE;e;; +IMAGINE;pqge  +IMAGINE st image
BLEU 15.94 18.90 20.18 18.44 + 0.22 20.07 + 0.12
METEOR 21.30 20.12 22.57 19.71 + 0.26 2222 +0.14
WebNLG ROUGE-L 15.24 18.80 19.80 17.80 £ 0.23 19.45 +0.12
¢ CIDEr 13.40 14.93 15.21 14.76 £+ 0.06 15.07 + 0.03
BERTScore 23.44 22.55 23.95 22.39 + 0.18 23.75 + 0.10
BLEURT 24.31 23.91 25.05 24.43 +0.10 24.94 4+ 0.06
BLEU 11.53 12.41 11.39 8.59 +1.14 10.76 + 0.49
METEOR 18.46 14.37 12.93 10.55 + 1.18 12.42 + 0.45
EJENLG ROUGE-L 8.60 12.36 11.52 9.30 + 0.96 10.94 + 0.39
CIDEr 10.29 13.23 11.21 9.30 + 0.93 10.85 + 0.44
BERTScore 14.45 15.04 13.73 12.19 + 0.96 13.31 + 0.37
BLEURT 14.61 15.74 15.27 14.81 + 0.39 15.04 + 0.16
BLEU 3.27 3.34 2.38 1.99 + 0.74 2.31 +0.31
METEOR 3.73 3.43 2.59 2.29 +0.68 2.57 £ 0.31
s ROUGE-L 4.00 3.72 3.35 3.14 + 0.62 3.58 +0.29
WikiBioNLG CIDEr 2.10 2.44 221 1.48 + 0.62 2.03 + 0.25
BERTScore 5.09 4.57 3.97 4.42 +0.44 4.33 +0.21
BLEURT 5.32 5.72 4.23 4.70 + 0.39 4.59 + 0.17
Table 11: The Kendall correlations with human judgement on the data-to-text task.
‘ Pearson Correlation
Dataset
\ Metrics  Original +BERT¢;y +IMAGINEe;y +IMAGINE; nqge  +IMAGINE cri&image
BLEU 25.79 28.71 31.07 28.50 + 0.29 30.75 £ 0.12
METEOR 30.78 30.54 32.81 30.02 + 0.36 32.89 + 0.15
WebNLG ROUGE-L 24.15 28.01 30.12 27.58 +0.28 29.73 + 0.12
¢ CIDEr 23.09 24.48 24.78 24.28 +0.05 24.55 +0.02
BERTScore 34.53 33.41 35.38 33.48 +0.23 3525 +0.11
BLEURT 35.97 35.30 36.99 36.08 + 0.13 36.80 + 0.07
BLEU 12.78 16.08 19.19 13.84 + 1.45 17.59 + 0.70
METEOR 25.55 19.98 21.59 17.09 + 1.39 20.47 + 0.66
E2ENLG ROUGE-L 12.22 16.36 19.49 14.63 + 1.29 17.93 + 0.62
CIDEr 13.83 17.21 18.00 15.75 + 0.62 17.01 +0.30
BERTScore 22.76 22.00 22.88 19.60 + 1.04 21.92 + 0.49
BLEURT 22.75 23.89 23.95 22.45 + 0.50 23.34 + 0.25
BLEU 8.19 7.04 4.98 4.77 £ 0.97 5.48 +0.43
METEOR 8.31 7.68 5.43 5.38 +0.90 5.97 +0.40
. ROUGE-L 9.88 8.80 6.69 6.99 + 0.85 7.45 +0.38
WikiBioNLG CIDEr 535 7.61 5.85 5.90 + 0.54 6.12 +0.24
BERTScore 8.98 8.98 7.26 7.53 +0.61 7.76 + 0.28
BLEURT 9.21 9.66 8.19 8.42 4+ 0.44 8.54 +0.20

Table 12: The Pearson correlations with human judgement on the data-to-text task.
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Input Text: uganda faces rebel forces on west (congo) and north (sudan)

BigGAN

Figure 12: Groups of images generated by IMAGINE with different image genrative backbones with random
initializations. The image generative backbones are dVAE, BigGAN and VQGAN.

only support English for now. With a multilingual  ilarity with text and imagination in other source
CLIP and DALL-E, we may cross verify the sim-  languages.
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Input Text: taliban justice sees no evidence of bin laden's involvement in terrorism

#lIteration:

Input Text: 3-5 people per week hurt by land mines in chechnya; many victims children.

100 200 300 400 500

Input Text: yilmaz pressed to quit; said to interfere in contract, help mob-linked man.

100 200

Figure 13: Three groups of images rendered with different iteration steps. Images are visualized from reference text
snippet in DUC2004.

#lIteration:

#lteration:

500 600

Src: Diesmal dabei: Der Schauspieler Florian David Fitz bekannt aus
Filmen wie "Mannerherzen", "Terror - Ihr Urteil" oder "Der geilste Tag".
Ref: This time: The actor Florian David Fitz known from films like

Src: Ich weiB nicht genau, ob ich noch zeit habe ihnen andere umgebungen "Mannerherzen", "Terror - Ihr Urteil" or "Der geilste Tag".

zu zeigen. Hyp: This time around: The actor Florian David Fitz is known from
Ref: I'm not sure if | have time to show you any other environments. films such as "Men's Hearts," "Terror - Your Judgment" and "The
Hyp: | don't know if | still have time to show you other environments. Horniest Day."

Metric Score

Metric; Score

BERTScore 81.49

—— . ImaginEimage 88.92 <
Imaginationges Imaginationnyp Imaginationges Imaginationnyp

(a) IWSLT'14 (b) WMT'19

ImaginEimage; 44.47

Figure 14: Case studies for machine translation. Sre: the German text to be translated. Ref: the reference translation.
Hyp: the generated translation candidate. We report the metric scores and the human score for the reported pair of
(Ref, Hyp).

Src: Taking a major step toward statehood, the Palestinians on Tuesday Src: The launch of Shenzhou-#, China's first manned spacecraft, is
inaugurated Gaza international airport, their first gateway to the world, with successful and the craft is already in orbit, an official in charge of the
cheers, tears and an outpouring of patriotism . country's manned spaceflight program announced Wednesday morning.
Ref: Palestinians celebrate opening of Gaza international airport Ref: Bulletin: Shenzhou-# launch successful official

Hyp: Palestinians open Gaza international airport Hyp: Launch of China's first manned spacecraft successful

Metric Score

Metric; Score

ROUGE-L{ 29.33

BERTScore{ -7.53

ImaginEimage 60.75

Imaginationges Imaginationget Imaginationuyp ImaginEimage!  65.36

Imaginationuyp

(a) DUC2004 (b) GigaWord

Figure 15: Case studies for abstractive text summarization. Srec: the text to be summarized. Ref: the reference
summary. Hyp: the generated summary candidate. We report the metric scores and the human score for the reported
pair of (Ref, Hyp).
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Ref: Julia Morgan was the architect of the grounds of Asilomar
Conference.

Hyp: Julia Morgan was the architect of the Asilomar Conference
Grounds.

Metric Score
CBLEU 6525
 METEOR 4917
BERTScore 9005

ImaginEimage  35.16

Imaginationges maginationsyp

(a) WebNLG

Ref: Giraffe, in the riverside area, near the Rainbow Vegetarian
Café, there is a pub with fast food, of and it is kid friendly.
Hyp: Giraffe is a dish that can be served as a dessert.

Metric; Score

BleU 24

© METEOR 603

BERTScore 17,79

Imaginationges Imginationuyp —ImaglnE.mage4017
(c) E2ENLG

Ref: Sven Leuenberger (born August 25, 1969 in Niederuzwil,
Switzerland) is a retired Swiss professional ice hockey defender.
Hyp: 25 ft tall, Nieder Niederberger was a member of the club's

shoots team.
Metric; Score
BlEU 1o
| METEOR 609
 BERTScore -16.43
Imaginaionuyp ImaginEimage!  15.29

(b) WikiBioNLG

Ref: There is a coffee shop Blue Spice in the riverside area.
Hyp: Blue Spice is a type of coffee shop.
' Metric Score

BLEU 18.00

METEOR  29.91

BERTScore  46.41

Imaginationger ImaginEimage  67.24

Imaginationpyp

(d) E2ENLGNLG

Figure 16: Case studies for data-to-text generation. Ref: the reference text. Hyp: the generated text candidate. We
report the metric scores and the human score for the reported pair of (Ref, Hyp).

A.8 Human Evaluation

Figure 17 shows an example of instructions pro-
vided to MTurk annotators. Our study is approved
for IRB exempt. The estimated hourly wage paid
to MTurk annotators is $12.
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Instructions

IA high-quality piece of text should be fluent , grammatically correct, and be factually consistent with the
original sentence.

Please use the sliders to indicate how well each piece of generated text align with the reference text in the
following three aspects.

INote: It is not necessary to align with the reference word-by-word, as long as it preserves the factual
lconsistency.

Sample 1

« Reference:

pope michael iii of alexandria ( also known as khail iii ) was the coptic pope of alexandria and patriarch of
the see of st. mark (880 -- 907 ) .

Generated Text:

907 march 1607 was the date of the death of Pope michael of alexandria.

The generated text is fluent:

(1 = Stongly Disagree, 2 = Disagree, 3 = Neither Agree nor Disagree, 4 = Agree, 5 = Strongly Agree)

The generated text is grammartically correct:

(1 = Stongly Disagree, 2 = Disagree, 3 = Neither Agree nor Disagree, 4 = Agree, 5 = Strongly Agree)

The generated text is factually consistent with the original text:

(1 = Stongly Disagree, 2 = Disagree, 3 = Neither Agree nor Disagree, 4 = Agree, 5 = Strongly Agree)

Figure 17: The instructions for MTurk annotators to evaluate the text generated for the data-to-text generation task.
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