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Abstract

White matter tractography is an advanced neuroimaging technique that reconstructs
the 3D white matter pathways of the brain from diffusion MRI data. It can be
framed as a pathfinding problem aiming to infer neural fiber trajectories from noisy
and ambiguous measurements, facing challenges such as crossing, merging, and
fanning white-matter configurations. In this paper, we propose a novel tractography
method that leverages Transformers to model the sequential nature of white matter
streamlines, enabling the prediction of fiber directions by integrating both the
trajectory context and current diffusion MRI measurements. To incorporate spatial
information, we utilize CNNs that extract microstructural features from local
neighborhoods around each voxel. By combining these complementary sources
of information, our approach improves the precision and completeness of neural
pathway mapping compared to traditional tractography models. We evaluate our
method with the Tractometer toolkit, achieving competitive performance against
state-of-the-art approaches, and present qualitative results on the TractoInferno
dataset, demonstrating strong generalization to real-world data. Our code is publicly
available at https://github.com/ItzikWaizman/TractoTransformer.

1 Introduction

Tractography is a key technique for analyzing diffusion-weighted imaging (DWI) data, aiming to
reconstruct the complex 3D trajectories of white matter fibers—a fundamental step in understanding
brain connectivity, development and neurological disorders [1, 2]. It exploits the principle that
water molecules preferentially diffuse along axonal fibers, enabling the indirect estimation of fiber
orientations from diffusion-weighted measurements acquired via diffusion magnetic resonance
imaging (dMRI). Conceptually, tractography can be framed as a pathfinding problem: inferring
plausible neural fiber pathways from noisy and ambiguous data while addressing challenges such as
crossing, merging, and fanning fiber bundles. Traditional tractography methods rely on mathematical
models that fit an estimated fiber orientation distribution function (fODF) to the measured DWI at
each voxel, such as diffusion tensor imaging (DTI) [3], multi-tensor models [4], ball-and-sticks [5],
Q-ball imaging (QBI) [6], and spherical deconvolution [7]. These orientation functions serve as
local directional priors that guide the reconstruction of white matter pathways using deterministic,
probabilistic, or combinatorial tracking strategies.

While classical tractography methods have significantly advanced our understanding of white matter
architecture, they remain constrained by model-based assumptions—such as simplified representa-
tions of diffusion and voxel-wise independence [8]. These limitations have spurred the development
of data-driven alternatives that learn directly from dMRI data [9]. Machine learning approaches offer
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greater flexibility in capturing complex white matter configurations, including fiber crossings and
branchings, without imposing explicit assumptions about tissue properties or the dMRI signal.

Although recent learning-based strategies have shown encouraging results, many still fall short of
fully exploiting the underlying structure of the diffusion measurements, as they predict each voxel’s
orientation in isolation—disregarding either spatial dependencies [10, 11, 12, 13, 14] or the sequential
structure of white matter tracts [15, 16, 17, 18, 19, 20]. Consequently, fiber orientation predictions
tend to degrade in anatomically intricate or ambiguous regions.

In this work, we effectively leverage both the spatial and contextual information inherent in the
data by proposing a spatio-sequential formulation of the fODF estimation task. Specifically, local
features are first extracted from the dMRI volume using a 3D CNN, then passed to a decoder-only
Transformer that predicts the fODF at each point along a streamline, conditioned on the preceding
trajectory—offering a principled integration of fiber orientation features. Our contributions include:

• An algorithmic formulation of tractography as a pathfinding task, inspired by attention-based
auto-regressive language models and spatially aware encoding.

• A tractography model that achieves state-of-the-art performance on a widely used benchmark,
outperforming existing methods in key metrics.

• Open-source code infrastructure for training tractography models on multi-subject datasets, with
support for in vivo diffusion MRI scans.

2 Related Work

In recent years, machine learning has emerged as a powerful tool for advancing tractography, moving
beyond the limitations of traditional model-based approaches [21]. Early work by Neher et al. (2015,
2017) [10, 11] introduced a pioneering machine learning-based tractography method that uses a
random forest (RF) classifier to guide streamline progression based on raw diffusion MRI data. This
method demonstrated improved performance, particularly in complex fiber configurations, by taking
advantage of data-driven decision-making to predict fiber directions and terminations.

Building on the idea of sequential data processing, Poulin et al. (2017) proposed LearnToTrack
[12] and Benou et al. (2019) proposed DeepTract [13]. Both frameworks utilize recurrent neural
networks (RNNs) for tractography, but differ in the way they frame the task. The former addressed
streamline tractography as a regression problem by predicting continuous (deterministic) tracking
directions, while the latter takes a classification approach by outputting a distribution over discrete
directions on the unit sphere, thus allowing probabilistic tractography as well as deterministic. By
treating streamlines as sequences of DWI data, RNN models capture the sequential dependencies
of the data as context for inferring local fiber orientations. While RNNs enable sequential data
processing, they are now often outperformed by Transformers, which offer better parallelization and
long-range dependency handling.

Wegmayr et al. (2021) introduced Entrack [14], a probabilistic spherical regression approach that
incorporates entropy regularization to manage uncertainty in fiber orientation estimation. Entrack uses
the Fisher-von-Mises distribution to model the posterior distribution of local streamline directions,
enhancing the robustness of the tractography in noisy conditions. This probabilistic approach is
particularly well-suited for complex fiber architectures where multiple crossing fibers are present.

The exploration of reinforcement learning for tractography was advanced by Théberge et al. (2021)
with the introduction of TrackToLearn [22]. This framework frames tractography as a reinforcement
learning problem, where an agent learns to navigate white matter pathways by optimizing a reward
function based on alignment with principal diffusion directions. This method does not require
ground-truth tractograms for training, making it versatile across different datasets.

Hosseini et al. (2022) proposed CTtrack [23], a method combining CNNs and Transformers for fODF
estimation. In CTtrack, a CNN projects diffusion MRI data to a lower-dimensional space, which
is then processed by a Transformer to estimate fODFs as spherical harmonic coefficients. While
both CTtrack and our proposed TractoTransformer combine CNNs and Transformers, their modeling
paradigms differ fundamentally. CTtrack processes DWI data in a non-sequential manner, while
our proposed TractoTransformer treats tractography as an auto-regressive sequence modeling task,
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offering a more structured and context-aware framework tailored to the intrinsic sequential nature of
tractography.

3 Methodology

The main goal of the proposed TractoTransformer method is to extract streamlines—sequences of
(x, y, z) coordinates representing fiber pathways—from volumetric DWI data. The core concepts are
illustrated in Figure 1. A detailed formulation and description of the data are provided in Section 3.1.
The network architecture and its key components are presented in Section 3.2, while Section 3.3
outlines the training process for conditional fODFs prediction and the optimization strategies used to
enhance model performance. Finally, Section 3.4 describes the inference procedure for streamline
tracking on unseen data using the trained model.

3.1 Model Formulation

Streamline tractography aims to reconstruct white matter pathways by inferring plausible fiber
trajectories from diffusion MRI data. We frame this problem as a sequential prediction task, where
the likelihood of fiber orientations at a given point along a streamline is predicted based on the
history of all previous DWI measurements along that path. Our dataset consists of DWI scans and
the corresponding tractography data of N subjects. For each subject, we have:

1. A 4D DWI volume X ∈ RH×W×D×G, where H ,W , and D are spacial dimensions, and G
corresponds to the number of magnetic field gradient directions applied during the dMRI scan.
Axial views extracted from a volumetric DWI dataset of a single subject, acquired at six (out of
65) different gradient directions are shown in Figure 3.

2. A set of reference streamlines S =
{
s(1), . . . , s(M)

}
, representing a whole-brain tractogra-

phy corresponding to X , where each streamline s(m) = (sm1 , sm2 , . . . , smNm
) is a sequence of

3D points in RAS (Right-Anterior-Superior) coordinates, commonly used in to standardize
anatomical positions.

We feed our model with sequences of DWI values sampled along the coordinate path of a stream-
line. That is, given a streamline s = (s1, . . . , sn), the input to the model is the sequence
{X(s1), . . . ,X(sn)}.

At each point along a streamline, the model is trained to predict a conditional fODF, represented as a
discrete probability distribution over a fixed set of K + 1 classes. Here, K denotes a set of directions
uniformly distributed on the unit sphere. Specifically, given a prefix trajectory (s1, . . . , si), the output
at point si is:

P(f | X(s1), . . . ,X(si)), (1)

where f = (f1, . . . , fK) is a discrete probability distribution over the direction classes defined by
the spherical tessellation of K = 724 directions, along with an additional class representing end
of fiber (EoF). This conditional formulation reflects the core assumption of our model: the fiber
orientation at a given point depends not only on the local microstructural context (captured by the
DWI signal), but also on the trajectory taken to reach that point.

3.2 Model Architecture

The proposed TractoTransformer leverages the strengths of both Transformers and convolutional
neural networks (CNNs) to predict conditional fODFs from DWI data. Its architecture is illustrated
in Figure 1.

3D Input Embedding. To embed the input sequence for the Transformer, we first enhance each voxel
representation along a streamline by incorporating local spatial context using a 3D convolutional
neural network (3D-CNN). For each point in the sequence, the 3D-CNN processes a surrounding
voxel cube to extract microstructural features from the local diffusion signal. This step improves
the voxel-wise representation and expands the effective receptive field, providing the model with
spatial context. To reduce computational cost, the 3D-CNN is applied only to the batch of voxels
corresponding to the current set of streamlines, rather than the entire brain volume.
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Figure 1: Overview of the TractoTransformer model framework. Streamlines are represented as
sequences of DWI feature vectors, where each vector is derived from the raw dMRI data of a specific
voxel, sampled using spherical harmonics. The TractoTransformer model consists of a 3D-CNN
layer, positional encoder, and Transformer layers. The CNN is applied to each streamline voxel
(represented by a diffusion measurement vector) and its nearby spatial neighbors. The entire encoded
streamline is fed into the transformer. The model outputs predicted fODFs at each voxel, which are
used to guide subsequent tractography.

The resulting spatially enhanced feature vectors serve as input tokens to the Transformer. To preserve
the sequential order of streamline points, we apply standard sinusoidal positional encodings, as
introduced by Vaswani et al. [24]. This enables the model to account for trajectory history, ensuring
that each orientation prediction is informed not only by local voxel features but also by the path taken
to reach that point—an important consideration for anatomically plausible tractography.

Decoder-Only Transformer. We use a standard decoder-only Transformer architecture to process
sequences of streamline data. Each decoder block includes masked multi-head self-attention and a
position-wise feed-forward network, both followed by residual connections and layer normalization.
A causal attention mask enforces autoregressive prediction by preventing access to future positions,
while a padding mask blocks attention to invalid inputs. This design allows the model to capture
long-range dependencies and contextual patterns along the streamline. The final output is mapped to
the target space via fully connected layers, followed by a softmax function that yields a probability
distribution over possible directions and an end-of-fiber (EoF) class. Further architectural and
implementation details, including specific hyperparameters and training configurations, are provided
in Section 4.

3.3 Model Optimization and Loss Function

We use the reference streamlines provided in the dataset to construct labels for supervised learning,
training the model to predict conditional fODFs during sequence processing. For each reference
streamline, direction vectors are computed between consecutive points and normalized to unit vectors.
Since the output classes correspond to directions on the unit sphere and possess a geometric structure
with well-defined angular distances, it is appropriate to weigh classification errors accordingly [13].

To this end, we construct a soft label distribution by smoothing each unit direction over the sphere
using a Gaussian kernel. Formally, given a unit direction θ (i.e., the direction between two consecutive
streamline points) and a set of unit directions {αi}Ki=1 defining the discrete class space, we compute
the angular distance di between θ and each αi, and assign weights as:

wi = exp

(
− d2i
2σ2

)
, (2)

where σ is the standard deviation of the Gaussian kernel. The resulting soft label is a normalized
probability distribution over directions:

ysmooth[i] =
wi∑K
j=1 wj

. (3)
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Figure 2: Visualization of the smoothed label
distribution on the unit sphere. The gener-
ated distribution decays as the distance on
the unit sphere increases, providing a proba-
bilistic framework for supervising the model’s
fODF predictions.

Probability

This distribution decays smoothly with increasing angular distance on the unit sphere, as illustrated
in Figure 2, and is used to supervise the model’s predictions.

To train our TractoTransformer model, we employ the Kullback-Leibler divergence (KL-Div) loss to
measure the divergence between the predicted discrete distribution and the corresponding smooth
target label. Given a point si, a target label distribution ysmooth associated with si, and a model
prediction ypred = P(f | X(s1), . . . ,X(si)), the KL-Div is formally defined as:

LKL(ysmooth, ypred) =

K∑
j=1

ysmooth[j] log

(
ysmooth[j]

P (fj | X(s1), . . . ,X(si))

)
, (4)

The mean loss is computed at each prediction step along the streamline. The KL-Div loss quantifies
the information loss incurred when ypred is used to approximate ytrue, making it well-suited for
evaluating the accuracy of probabilistic predictions against the ground truth distribution of fiber
orientations. This loss function is particularly appropriate in scenarios where both the predicted
outputs and the target labels are probability distributions, as it encourages the model to produce
outputs that closely align with the empirical data.

3.4 Streamline Tractography Inference

Once the model is trained, tractography is initiated by sampling random seed points from the provided
white matter mask, each defining the starting location of a fiber trajectory. Tractography proceeds
iteratively: at each step, the model receives the current point along with the accumulated tracking
history and predicts a conditional fODF, auto-regressively conditioned on previously generated
points in the streamline. This design ensures that each orientation prediction incorporates both local
features and the full trajectory context, capturing the sequential dependencies inherent in white matter
pathways.

The tracking direction is selected as the one with the highest probability in the predicted fODF,
resulting in a deterministic propagation scheme. However, unlike classical deterministic methods,
our predictions are context-aware—conditioned on the entire streamline history—enabling robust
direction selection even in anatomically challenging regions such as fiber crossings or areas of high
uncertainty.

After selecting a direction, the streamline is advanced by a fixed step in RAS space, the new point is
appended to the trajectory, and the process is repeated until a stopping criterion is met:

1. The class chosen from the prediction of the model is EoF class.

2. The next step is outside of the bounds of the MRI image.

3. The next step is outside of the white matter mask.

4. The angle between two consecutive steps exceeds a predefined threshold.

5. The fractional anisotropy (FA) values in the next step are less than a predefined threshold.

The collection of generated trajectories constitutes a set of approximate streamlines which together
form the final tractogram. This process is detailed in the pseudocode provided in Algorithm 1.
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Algorithm 1 Streamline Tractography Algorithm

Require: Trained model, white matter mask, seed points, stopping criteria
Ensure: Tractogram of streamlines

1: for each seed point do
2: Initialize streamline with seed point
3: while stopping criteria are not met do
4: Feed the current streamline into the model
5: Get conditional fODFs from the model
6: Select direction as argmax of conditional fODF
7: Compute next point by stepping in the selected direction
8: if next point satisfies stopping criteria then
9: Terminate streamline

10: else
11: Add next point to the streamline
12: end if
13: end while
14: Store the completed streamline in tractogram
15: end for

4 Experiments

4.1 Datasets

For this study, we used two publicly available tractography datasets. The first is the ISMRM
2015 Tractography Challenge phantom dataset [25], which has been one of the most widely used
benchmarks in the field over the past decade. It contains a high-quality 4D DWI volume with
dimensions 90× 108× 90× 100 after resampling, along with a comprehensive set of 270,000 ground
truth white matter streamlines.

The second dataset is TractoInferno [26], the largest open-source, multi-site tractography dataset to
date, comprising diffusion data from 286 subjects. The dataset is partitioned into 198 subjects for
training, 60 for validation, and 28 for testing. Each subject includes a 4D diffusion-weighted imaging
(DWI) volume with higher spatial resolution than the ISMRM dataset. Although the exact dimensions
vary between subjects (for example, the test subject whose tractography is shown in Figure 5 has
a spatial volume of 141× 184× 120), the number of gradient directions also varies, ranging from
22 to 132, and is resampled to 100 directions for consistency. In addition, the dataset provides rich
ground-truth tractography, averaging over 1 million streamlines per subject. These streamlines are
generally shorter than those in the ISMRM dataset and, after resampling to a constant step size of
3mm, can contain up to 100 3D points.

Figure 3: Axial slices from a volumetric DWI dataset of a single subject where each scan was
acquired at a different diffusion gradient direction. Data source: sub-1024 DWI from TractoInferno
dataset [26]

.

4.2 Preprocessing.

To ensure consistency across subjects and reduce variability arising from acquisition protocols,
we apply several preprocessing steps. First, we represent the DWI signal using spherical harmonic
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coefficients sampled over a fixed set of gradient directions. This step addresses inter-subject variability
in gradient schemes and provides a standardized input format for the model. Next, we resample
the reference streamlines to maintain a consistent step size between consecutive points in the right-
anterior-superior (RAS) space, ensuring uniform spatial resolution across all samples and supporting
reliable modeling and downstream analysis. Finally, we augment the dataset by reversing streamline
orientations, increasing data diversity, and enabling the model to learn more robust features.

4.3 Implementation Details

Architecture. The model configurations are as follows. For the 3D-CNN component, we use a
single 3D convolutional layer with a kernel size of 3× 3× 3. We evaluated two input variants: (i)
the original diffusion-weighted imaging (DWI) signals, resampled to 100 fixed gradient directions,
and (ii) spherical harmonic (SH) coefficients of order 12, representing the diffusion signal in the
frequency domain. To mitigate overfitting, dropout with a probability of p = 0.1 was applied to all
layers. The Transformer-based network consists of 8 decoder layers, each with 10 attention heads.
Every decoder block includes a feed-forward network (FFN) with a hidden dimension of 512. The
final Transformer output is passed through an additional FFN, projecting it to a 725-dimensional
vector representing 724 candidate directions on the unit sphere and one end-of-fiber (EoF) class used
to signal streamline termination.

Training. All models were trained using the Adam optimizer [27] with an initial learning rate of
0.005. Learning rate decay was applied by multiplying the rate by 0.7 if the accuracy did not improve
by at least 0.3 over two consecutive epochs. For label smoothing, we employed a Gaussian kernel with
a standard deviation of σ = 0.1. Target labels were represented as discrete probability distributions
over 725 classes (K = 724), corresponding to an angular resolution of approximately 3.5◦. Training
was conducted for 30 epochs with a batch size of 20, using up to four NVIDIA V100 GPUs with
32GB of memory each.

Inference. We used an angular threshold of 70 degrees and an FA threshold of 0.05. The step size
was set to 1 mm for the ISMRM dataset and 3 mm for TractoInferno, matching each dataset’s native
spatial resolution. Streamline generation was performed using approximately 200,000 seed points for
ISMRM and about one million for TractoInferno, processed in batches of 100 and distributed evenly
across four GPUs to leverage data-parallel tractography. To further optimize inference, we employ
key–value (KV) caching in the Transformer decoder to reuse attention states from previous steps,
substantially reducing inference time and memory overhead. On average, full-brain tractography for
a single subject required approximately 43 minutes on four NVIDIA V100 GPUs.

4.4 Evaluation on the Synthetic ISMRM Dataset

4.4.1 Whole-Brain Tractography Evaluation

To evaluate our model, we trained it on the ISMRM dataset using an 80/20 split of reference
streamlines for training and validation. Training took 12 hours. Whole-brain tractography was
then performed by seeding from random points within the white matter mask. For comprehensive
benchmarking and to facilitate future comparisons, we report our results using both the classic Trac-
tometer [28] (2015 edition) and the updated Tractometer [29] (2023 edition), the latter incorporating
ROI-based segmentation to improve reliability and reproducibility.

We report four key metrics: valid connection (VC) (valid connection rate), overlap (OL) (overlap
with ground truth), overreach (OR) (overreach beyond anatomical boundaries), and the F1 score,
which balances precision and recall. Results in Table 1 demonstrate that TractoTransformer outper-
forms state-of-the-art tractography methods. The spherical harmonics input configuration achieves
the highest overall performance, with a VC of 84%, an overlap of 79%, and the best F1 score (75%).
These results indicate accurate and specific reconstruction of white matter connections, with high
sensitivity and relatively low overreach (27%).

4.4.2 Complex Fiber Bundles Reconstruction

To further demonstrate the advantages of our history-aware streamline propagation, we compare
the bundle-specific reconstruction of TractoTransformer (with DWI-input configuration) with the
deterministic tractography algorithm implemented in the MITK Diffusion toolbox. The MITK method
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Table 1: Comparison of the proposed TractoTransformer performance with that of state-of-the-art
methods on the TractoInferno dataset. For each metric, the best results are shown in bold and the
second-best are underlined. Our method achieves the top performance in VC, OL, and F1. Entries
marked with an asterisk (*) correspond to results obtained using the 2023 Tractometer edition.

Model VC (%)↑ OL (%)↑ OR (%)↓ F1 (%)↑
ISMRM Mean 54 31 23 44
RF [10, 11] 67 75 31 -
LearnToTrack [12] 42 64 35 64
DeepTract [13] 71 69 23 70
Entrack [14] 65 60 36 58
Track-to-learn [22] 68 62 - -
CTtrack [23] 57 50 16 60
TractoTransformer 82 82 35 71
TractoTransformer SH input 84 79 27 75
TractoTransformer* 82 84 31 75
TractoTransformer SH input* 82 81 26 78

reconstructs streamlines by following local diffusion maxima, without accounting for trajectory
history or incorporating global contextual information. We focus on complex white matter bundles
characterized by extensive fiber crossings and branchings, such as the Right Brainstem Pontine tract
and the Left Cingulum bundle. As shown in Table 2, TractoTransformer achieves markedly higher
valid connection counts, overlap, and F1 scores in these challenging bundles. Figure 4 illustrates
qualitative differences between the two methods, highlighting the enhanced anatomical plausibility
achieved by TractoTransformer reconstructions.

TractoTransformer ISMRM GT MITK

Figure 4: Visual comparison of tractography results in regions with complex fiber architecture from
the ISMRM dataset. Top: Right Brainstem Pontine tract. Bottom: Left Cingulum bundle. Each
column shows reconstructions obtained with the proposed TractoTransformer, the ISMRM ground
truth, and the MITK deterministic approach.

4.5 Ablation Study

Table 3 summarizes ablation results, highlighting the contribution of each component in our frame-
work. Whole-brain tractography was evaluated on the ISMRM dataset after removing the 3D-CNN
module, reverse streamline augmentation, or label smoothing. All experiments used the TractoTrans-
former variant with raw DWI input and were quantitatively assessed using the 2023 Tractometer
toolkit [29].
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Table 2: Quantitative comparison between MITK and TractoTransformer on complex bundles. VC
denotes the number of valid connections.

Bundle VC↑ OL (%)↑ OR (%)↓ F1 (%)↑

Right Brainstem Pontine Tract
MITK 11103 39.48 18.37 53.22
TractoTransformer 31996 88.31 27.36 79.71

Left Cingulum Bundle
MITK 7619 46.97 31.71 55.66
TractoTransformer 16792 89.62 39.09 72.52

Table 3: Ablation study of the TractoTransformer framework evaluated for the ISMRM data with the
Tractometer toolkit (2023 edition).

Model VC (%)↑ OL (%)↑ OR (%)↓ F1 (%)↑
TractoTransformer 81.51 83.72 30.83 74.78

-3D-CNN 69.86(-11.65) 80.70(-3.02) 32.84(+2.01) 72.66(-2.12)

-Reverse Streamlines 79.81(-1.70) 82.94(-0.78) 33.08(+2.25) 73.76(-1.02)

-Smooth Labels 79.77(-1.74) 82.81(-0.91) 30.86(+0.03) 74.85(+0.07)

The largest performance drop is observed when excluding the 3D-CNN module, which reduces VC
by 11.65% and slightly lowers the F1 score, underscoring the importance of local spatial context
for accurate trajectory estimation. Removing reverse streamline augmentation leads to a smaller
decline, indicating that directional diversity supports regularization but is less critical. Omitting
label smoothing has minimal effect on F1, with only slight decreases in VC and OL. Overall,
while all components contribute, the 3D-CNN module remains essential for anatomically plausible
reconstructions.

4.6 Evaluation on the In-vivo TractoInferno Dataset

To evaluate our method on in-vivo dMRI data, we used the TractoInferno dataset [26]. Due to
computational constraints, training was performed on ten subjects, validation on two, and testing
on four. The architecture and training setup matched those used for the ISMRM dataset, except for
multi-subject training. Training took approximately seven days. Figure 5 presents whole-brain and
bundle-level reconstructions for one test subject (sub-1019), showing TractoTransformer’s ability
to generalize across subjects and recover complex fiber pathways. Table 4 reports the average
quantitative results across the four test subjects. All baselines were implemented and evaluated
by the TractoInferno authors using their official pipeline. TractoTransformer achieved the highest
Overlap and Dice (F1) scores, demonstrating a superior balance between anatomical coverage and
precision. The full per-subject results are provided in the Appendix, along with a Pareto visualization
illustrating the overlap-overreach tradeoff of the compared methods. The Pareto analysis indicates
that TractoTransformer lies above the baseline Pareto front, achieving an average overlap gain of
0.027 (∼4.8%) at comparable overreach levels.

Table 4: Average performance across four TractoInferno subjects. Our method achieves the highest
Dice and Overlap, indicating a superior balance between coverage and precision.

Metric Det-
Cosine

Det-SE
(Learn2Track)

Prob-Sphere
(DeepTract)

Prob-Gaussian
(SOTA)

Prob-
Mixture

TractoTransformer
(Ours)

Dice↑ 0.609 0.575 0.596 0.612 0.391 0.628
Overlap↑ 0.549 0.495 0.540 0.578 0.292 0.589
Overreach↓ 0.243 0.191 0.219 0.288 0.058 0.263
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Figure 5: Visual comparison of tractography outputs from TractoInferno (GT) and TractoTransformer
(TT) across four regions. Each row shows a different tract, with matched views from both models.

5 Conclusions, Limitations, and Broader Impact

Conclusions. We presented TractoTransformer, a hybrid CNN–Transformer framework for diffusion
MRI tractography that integrates local microstructural context with sequential trajectory modeling.
By leveraging the prefix trajectory to guide the tracking process, the model produces anatomically
accurate reconstructions and effectively resolves complex fiber configurations such as crossing and
kissing bundles. Comprehensive evaluations on the ISMRM and TractoInferno datasets, including
whole-brain and per-bundle analyses against classical and deep learning baselines, demonstrate the
superior performance of the proposed TractoTransformer across the tested benchmarks.
Limitations. The main bottlenecks are computational, arising from high memory usage and relatively
long inference time, which may limit scalability in large or high-resolution datasets. Efficiency could
be improved through optimized attention mechanisms (e.g., FlashAttention) or model compression to
reduce resource demands and enable broader applicability.
Broader Impact. TractoTransformer provides a high-performing and accessible framework for AI-
driven tractography, with potential applications in both neuroscience research and clinical practice. Its
modular design, together with publicly available code and pretrained models, promotes reproducibility
and ease of adoption, enabling researchers to extend and advance data-driven neuroimaging.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] .
Justification: Computer resources, memory, and training time are specified in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: We have reviewed the reviewed the NeurIPS Code of Ethics and confirm that
the research conducted in the paper conforms with it in every aspect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes] .
Justification: The potential positive societal impacts are discussed in the dedicated broader
impact section.
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• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: The creators and original owners of assets used in the paper, including code,
data and models are properly credited and the license and terms of use are properly respected.
Links to the data sets we’ve used: ISMRM2015 "Basic dataset" (Creative Commons CC0
license) and TractoInferno (Creative Commons Attribution CC BY 4.0 license).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .

Justification: The developed code is thoughtfully documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowd-sourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The paper does not involve crowd-sourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Results

Table 5: Performance comparison across four subjects using Dice, Overlap, and Overreach metrics
for each method. All baseline methods were implemented and evaluated by the TractoInferno authors.
Our method achieves the highest Dice score on three out of four subjects and the second-best on the
remaining one.

Det-Cosine Det-SE (Learn2Track) Prob-Sphere (DeepTract) Prob-Gaussian (SOTA) Prob-Mixture TractoTransformer (Ours)

sub-1006
dice↑ 0.618 0.544 0.570 0.597 0.399 0.626
overlap↑ 0.575 0.470 0.525 0.593 0.284 0.590
overreach↓ 0.281 0.231 0.248 0.381 0.074 0.262

sub-1019
dice↑ 0.614 0.558 0.597 0.606 0.381 0.654
overlap↑ 0.551 0.493 0.540 0.566 0.266 0.625
overreach↓ 0.239 0.198 0.227 0.266 0.051 0.279

sub-1024
dice↑ 0.585 0.593 0.600 0.624 0.354 0.602
overlap↑ 0.511 0.493 0.533 0.579 0.302 0.562
overreach↓ 0.196 0.153 0.192 0.245 0.039 0.267

sub-1061
dice↑ 0.618 0.606 0.616 0.620 0.430 0.629
overlap↑ 0.560 0.523 0.562 0.575 0.314 0.580
overreach↓ 0.256 0.180 0.209 0.259 0.068 0.244

Figure 6: Pareto analysis of the overlap–overreach trade-off between TractoTransformer and baseline
methods. The dashed line represents the Pareto front computed from the baselines, while the red
marker denotes TractoTransformer (ours), which lies 0.027 units above the baseline front, equivalent
to a 4.8% higher overlap at comparable overreach.
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