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ABSTRACT

On-Device deployment of large and small language models (LLMs / SLMs) faces
critical challenges in balancing performance, energy consumption, and carbon
footprint on various mobile and wearable devices. We introduce a hierarchical
multi-objective reinforcement learning approach for dynamic Low-Rank Adap-
tation (LoRA) scaling that optimizes carbon efficiency as the primary objective
while maintaining acceptable performance and energy consumption. Our method
employs Proximal Policy Optimization (PPO) with a carbon-first reward function
that prioritizes carbon efficiency (inferences per mg CO3) and then energy effi-
ciency (inferences per Joule). Across smartwatches, AR glasses, VR headsets
and tablets running DistilGPT2, OPT-125M, DialoGPT-Small, and GPT-2, our
approach achieves an average of 20.5 inf/J (smartwatch) and up to a peak of 35.1
inf/J in optimal configurations, as well as up to 0.412 perf/mg CO,. These results
demonstrate the effectiveness of carbon-aware optimization for sustainable edge
AL

1 INTRODUCTION

The proliferation of on-device large and small language model (LLM/SLM) applications has created
an urgent need for deployment strategies that balance computational performance with environmental
sustainability. Although prior work emphasizes energy efficiency or model compression [Strubell
et al.[(2019); Schwartz et al.| (2020), the carbon footprint of edge inference, including operational and
embodied emissions, remains underexplored [Henderson et al.| (2020).

Low-Rank Adaptation (LoRA) Hu et al.| (2021) enables efficient adaptation, but choosing where
and how to adapt (which layers) across heterogeneous devices/tasks is nontrivial. We introduce
hierarchical RL for dynamic LoRA scaling, where the agent adaptively selects the number of
transformer layers equipped with related LoRA adapters and hyper-parameters, instead of using a
fixed configuration.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

We pose dynamic LoRA scaling as multi-objective optimization: the agent selects a subset/number of
LoRA layers I € [limin, lmax] for device p, model m, and task ¢ to maximize

7" (s) = argmax E, [Rhier(s, a)]7 )
Rhier = chc + weRe . ]I(Rc Z T) + wap - Z wiPia (2)
where R, R., R, are carbon, energy, and performance rewards; I(-) enforces a carbon threshold

T; P; penalize constraint violations of system metrics including temperature, latency, memory and
power.
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Figure 1: System overview. The PPO agent selects LoORA configs under carbon-first reward while the
simulator provides device-aware feedback (power/thermal/memory/carbon).

2.2 CARBON-FIRST HIERARCHICAL REWARD

: . 1 inf/ :
Primary (carbon): 7. = mEgCOL/mt = m;“c%2 with

1
R, =

= —————  Caret = 0.35 mg CO,,. 3)
1 + Cactual / Ctarget areet g 2

Secondary (energy): R. = tanh(i24) . a(R,), where a(R.) = 1if R. > 0.55 else 0.25. And

tertiary (task): R, = clip(summary_score, 0, 1).

2.3 EDGE HARDWARE SIMULATION

We model the carbon contribution of four device profiles (Watch/AR/VR/Tablet) with:

C1device - 1000

N, ) Ctotal = CVoperational + C'manufacturing (4)
lifetime

C'operational = Ein - [, grid, C'manufacturing =

where 1,,;4 is grid carbon intensity (mg/Wh), Cgeyice is device manufacturing carbon (g), and
Niifetime 18 expected lifetime inferences. Other system metrics can be modeled based on the
emprical formulas, for example, the temperature can be modelled as:

Tsurface = Tamb + o F consumed * Rthermab (5)

with safety limits: watch/AR < 42°C; VR < 40°C|Henderson et al.|(2020).

2.4 IMPLEMENTATION DETAILS: LORA CONFIGURATION AND DYNAMIC SELECTION

Configuration. We implement LoRA via PEFT Mangrulkar et al.[(2022). Global hyperparameters
that can be tuned are defined in config.py (e.g., rank r = 8, a = 16, dropout = 0.05; device-
specific [lmin, lmax] Tanges). In edge_training.py, we construct:

LoraConfig(r, «, dropout, target modules={q proj,v.proj}),

and wrap the base LM with get _peft_model on the selected LoRA configs.

Dynamic layer selection. In r1_environment . py, the PPO agent outputs an action that maps to
either (i) a count of layers to adapt (respecting the device’s [liin, Imax])), and/or (ii) a specific subset
of layer indices. The environment applies LoORA on those layers, executes the task, and computes
rewards (carbon—energy—performance). This closes the loop between policy, LoRA placement,
and device-aware feedback.
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Algorithm 1 Hierarchical Carbon-First PPO Training

1: Initialize policy 7y, value Vi

2: Initialize environment (devices, models, tasks)

3: fori =1to N do

4:  Collect trajectories 7={(s¢, as, 1)} with 7

5:  Map a; to LoRA layer count/subset; apply PEFT to those layers
6 Compute R, R., R, and Ry;er; record constraint penalties

7

8

9

Update policy/value with PPO |Schulman et al.|(2017) (we use SB3 Raffin et al.| (2021))

: end for
: Evaluate across device-model-task grid
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Figure 2: PPO learning curves for energy/carbon efficiency and learned LoRA-layer strategy. The
agent converges to ~3-4 adapted layers on average, balancing performance and carbon.

3 RESULTS

3.1 RL LEARNING AND CONVERGENCE

Figure [ shows PPO learning curves: episode rewards increase from 39.1 to 43.3 (500 episodes),
meanwhile, carbon and energy efficiency trend has both positive slope but with variance especially
carbon slope is smaller, reflecting competing objectives, and more tuning on the reward function and
training episodes are needed. The learned policy reaches up to 35.1 inf/J and 0.412 perf/mg CO2 on
tablet-like configurations.

3.2 DEVICE-SPECIFIC EFFICIENCY AND LAYER PATTERNS
Table [T] and Figure [3] summarize device-level outcomes. Watches peak in energy efficiency (20.5

inf/J) with 1 adapted layer; tablets peak in carbon efficiency (0.412 perf/mg CO2) with 2 layers.
Figure ] details the learned frontier across devices.

4 DISCUSSION AND LIMITATIONS

This work initially study carbon-first hierarchical RL framework that learns where to place LoRA
adapters on-device. Some limitations need to be resolved as follows. Scope: Evaluation spans 4
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Table 1: Mean performance by device. Values are averages across models/tasks. Peak efficiencies
(e.g., smartwatch = 35.1 inf/J) exceed these means and are reported separately in Appendix.

Device Energy Eff. (inf/J) Carbon Eff. (perf/mg CO2) Optimal Layers
Smartwatch 20.5 0.142 1
AR Glasses 9.9 0.340 2
Tablet 6.4 0.412 2
VR Headset 9.9 0.384 3
Energy Efficiency by Device Carbon Efficiency by Device

0.4 ]’
24.5 2 0.340
0.3 l

Inferences per Joule
G
Inferences per mg CO.

Ar Glasses Smartwatch Tablet Vr Headset Ar Glasses Smartwatch Tablet Vr Headset

Figure 3: (a) Carbon and (b) energy efficiency by device. The learned policies favor few-layer
adaptation (1-3) with device-specific optima, yielding strong carbon gains on tablets and energy
gains on watches. Error bars: + one standard deviation (std) of the distribution of metrics across all
runs (models x tasks x configs) for that device.

models and 3 tasks; broader coverage and seed sweeps are future work. Modeling: Carbon/thermal
models are simplified; real devices will refine intensities and transfer coefficients
(2020). Validation: Hardware-in-the-loop measurements are needed to verify LoRA—carbon causality.
Training: Variance in learning suggests sensitivity to PPO and simulator settings; multi-objective RL
or evolutionary strategies could further stabilize [Van Moffaert & Nowé| (2014); [Parisi et al.| (2014).
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Figure 4: Layer-scaling frontiers. Carbon/energy gains saturate beyond 3—4 layers, motivating
dynamic (few-layer) selection instead of uniform deep adaptation.

5 CONCLUSION

We introduced a hierarchical reinforcement learning approach for dynamic LoRA scaling that
prioritizes carbon and energy efficiency in on-device LLM deployment. Our method achieves
significant environmental benefits while maintaining competitive energy efficiency (up to 35.1 inf/J)
and high constraint satisfaction rates. The learned policies demonstrate intelligent adaptation to
diverse device capabilities, providing a foundation for environmentally conscious edge Al systems.
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A TECHNICAL APPENDICES

A.1 EXPERIMENTAL SETUP

Models:

DistilGPT?2 (82M parameters)
OPT-125M (125M parameters)
DialoGPT-Small (117M parameters)
GPT-2 (124M parameters)

Tasks:

* Question Answering (SQuAD dataset)
* Text Summarization (CNN/DailyMail dataset)
* Dialogue Generation

Devices and LoRA Layer Ranges:

* Smartwatch: 1-5 layers (limited by power/thermal constraints)
* AR Glasses: 2—7 layers (moderate computational capacity)
* VR Headset: 3-6 layers (balanced power/performance profile)
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* Tablet: 2-8 layers (highest computational capacity)

The numbers indicate the range of transformer layers that can be equipped with LoRA adapters on
each device type, constrained by device-specific power budgets, thermal limits, and memory capacity.

A.2 TRAINING CONVERGENCE

Training Curves shows good convergence with representative configs: LORA r=8, a=16, dropout
0.05.

Training Loss Convergence Across Models and Tasks

—— distilgpt2 on qa_squad
—— distilgpt2 on summarization_cnn
—— distilgpt2 on dialogue_generation

10*

—— opt-125m on qa_squad

—— opt-125m on summarization_cnn

~— opt-125m on dialogue_generation
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Figure 5: Representative LoRA training-loss traces across models/tasks.

A.3 CARBON FOOTPRINT DISTRIBUTION

The carbon footprint analysis reveals significant variability across device-model-task configurations,
as shown in Figure[6] The distribution exhibits a mean of 46.6 mg CO, per inference with substantial
variance, indicating that optimal LoRA layer selection critically depends on the specific deployment
context. The left panel shows the frequency distribution of carbon emissions, with most configura-
tions clustering around 35-50 mg COs/inf. The right panel demonstrates the performance-carbon
trade-off across devices, where the Pareto frontier clearly separates efficient configurations from
suboptimal ones. Notably, tablets and VR headsets show wider carbon footprint ranges due to their
higher computational capacity, while smartwatches cluster toward lower emissions but also lower
performance scores.
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Figure 6: Carbon distribution (mean 46.6 mg COs/inf) with substantial cross-configuration variance.
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A.4 CONSTRAINT SATISFACTION

Device-specific constraint analysis demonstrates the effectiveness of our hierarchical reward structure
in respecting hardware limitations, as illustrated in Figure [7]] The left panel shows constraint
satisfaction rates across four categories: memory, power, latency, and temperature. Simpler devices
(smartwatch, AR glasses) achieve near-perfect constraint satisfaction due to their conservative
LoRA layer limits and lower computational demands. However, more capable devices (tablets, VR
headsets) experience constraint violations, particularly in temperature and power domains when
the RL agent pushes toward higher performance configurations. The right panel quantifies total
constraint violations, showing 24 violations for tablets and 33 for VR headsets, primarily occurring
during aggressive few-layer LoRA adaptation that maximizes carbon efficiency at the cost of thermal
stability. This validates our carbon-first reward design but highlights the need for stricter constraint
penalties in future work.
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Figure 7: Constraint satisfaction: perfect for simpler devices; more violations on tablet/VR under
heavy loads.

A.5 CARBON-EFFICIENCY SCALING LAWS

Across profiles, optimal adapted-layer counts cluster at 1-2 (wearables) and 2-3 (mobile). Returns
diminish beyond 4 layers due to overhead, supporting dynamic few-layer selection.
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