
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOOLBRIDGE: AN OPEN-SOURCE DATASET TO EQUIP
LLMS WITH EXTERNAL TOOL CAPABILITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Through the integration of external tools, large language models (LLMs) such as
GPT-4o and Llama 3.1 significantly expand their functional capabilities, evolving
from elementary conversational agents to general-purpose assistants. We contend
that the primary drivers of these advancements are the quality and diversity of the
training data. However, the existing LLMs with external tool integration provide
only limited transparency regarding their datasets and data collection approaches,
which has led to the initiation of this study. Specifically, in this work, we endeavor
to present a detailed exposition of the methodology for constructing datasets that
facilitate LLMs in effectively learning how to utilize external tools and make this
process available to the public through the introduction of ToolBridge. ToolBridge
proposes to leverage a collection of general open-access datasets as its raw dataset
pool and incorporates a series of strategies to identify the appropriate data entries
for external tool API insertions. By supervised fine-tuning (SFT) on these curated
data entries, LLMs can invoke external tools in appropriate contexts to boost their
predictive accuracy, particularly for essential functions including factual retrieval,
data processing and numerical computation. Our experiments meticulously isolate
model architectures and training configurations, zeroing in exclusively on the role
of data. The experimental results indicate that LLMs trained on ToolBridge exhibit
consistent performance gains on both standard benchmarks and custom evaluation
datasets. All associated code and data will be released as open source, promoting
transparency and facilitating the broader community to explore methodologies for
equipping LLMs with external tools capabilities.

1 INTRODUCTION

Large language models (LLMs) have revolutionized natural language processing, excelling in tasks
including question answering, summarization, and text generation Jiang et al. (2023); Achiam et al.
(2023); Dubey et al. (2024); Gunter et al. (2024); Team et al. (2024). Despite the impressive achieve-
ments of LLMs, they persistently underperform in fundamental areas, such as arithmetic and factual
lookup, where external tools can effectively provide solutions Schick et al. (2024).

Consequently, there has been a rise in research efforts committed to equipping LLMs with the ability
to utilize external tools. These efforts can be broadly categorized into two distinct areas: (1) function
calling, such as Toolllm Qin et al. (2023) and API-Bank Li et al. (2023), which offer curated datasets
and standardized evaluation protocols to systematically assess and compare the tool-use capabilities
of LLMs, focusing on enabling LLMs to function as agents that call APIs without requiring explicit
training on their usage. (2) tool former, exemplified by GPT-4o and Toolformer Schick et al. (2024),
which seek to empower LLMs with the capability to autonomously invoke and utilize external tools
during inference, emphasizing advanced reasoning by enabling LLMs to discern which external tool
to call, the appropriate timing for the call, and the systematic parsing and integration of the execution
results into the generated text. This study primarily concentrates on the latter area.

Within the latter context, Llama 3.1 Dubey et al. (2024) is trained to utilize Brave Search, Wolfram
Alpha API and Python interpreter by incorporating synthetic data combined with human-annotated
data. Toolformer Schick et al. (2024) adopts a self-supervised training strategy to equip LLMs with
the capability to leverage diverse tools effectively. However, these existing works tend to either only
open-source their trained models and code or restrict access to the models through usage interfaces

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

User: “Calculate the answer to: 5^2.”

Assistant: “The answer to 5^2 is <python>answer = 5**2\nprint(answer)</python><result>25</result> 25.”

User: “Standardize the following date to the ISO 8601 format.\nJuly 26th, 2021.”

Assistant: “The standardized date in ISO 8601 format is: <python>from datetime import datetime\ndate_str = 'July 26th, 2021'\ndate_obj =

datetime.strptime(date_str, '%B %dth, %Y')\niso_date = date_obj.date().isoformat()\nprint(iso_date)</python><result>2021-07-26</result>

2021-07-26.”

User: “Question: What's the answer to that question: what currency do the ukraine use?\nAnswer:”

Assistant: “The currency used in Ukraine is the <python>import requests\n\nresponse =

requests.get('https://restcountries.com/v3.1/name/Ukraine')\ncurrency = response.json()[0]['currencies']\ncurrency_code =

list(currency.keys())[0]\ncurrency_name = currency[currency_code]['name']\nprint(currency_name)</python><result>Ukrainian

hryvnia</result> Ukrainian hryvnia (UAH).”

User: “Solve 5*z - 180 = -165 for z. What is the answer?”

Assistant: “To solve for z in the equation 5*z - 180 = -165, we need to isolate z on one side of the equation. \n\nFirst, we can add 180 to both

sides of the equation to get rid of the constant term on the left side: \n\n5*z - 180 + 180 = -165 + 180 \n\nSimplifying the left side, we get:

\n\n5*z = 15 \n\nNext, we can divide both sides of the equation by 5 to isolate z: \n\n5*z/5 = 15/5 \n\nSimplifying, we get: <python>from

sympy import symbols, Eq, solve\nz = symbols('z')\nequation = Eq(5*z - 180, -165)\nsolution = solve(equation,

z)\nprint(solution[0])</python><result>3</result>\n\nz = 3 \n\nTherefore, the solution to the equation 5*z - 180 = -165 is z = 3.”

Figure 1: Examples of data entries from ToolBridge. The proposed pipeline is capable of gener-
ating a large volume of data entries to facilitate model learning to utilize external tools.

Achiam et al. (2023); Dubey et al. (2024); Gunter et al. (2024). The data underlying the training of
these models is commonly withheld from public disclosure, enveloped in secrecy.

The widespread availability of pre-trained models stands in stark contrast to the limited transparency
surrounding their training datasets, which impedes the community’s progress in advancing discov-
eries in this area. This emphasizes the critical need to explore ways to create high-quality, publicly
available datasets for training LLMs to utilize external tools to facilitate their reasoning process.

In response to the challenges discussed, this paper proposes a pipeline for the large-scale creation of
datasets tailored to equip LLMs with the capability to effectively utilize external tools. Specifically,
we begin by aggregating a substantial collection of open-source datasets used for LLMs supervised
fine-tuning (SFT) from the community, which circumvents proprietary concerns including copyright
issues. Upon establishing the dataset pool, we propose a systematic strategy to assist in identification
of valuable data entries and convert them into a standardized format. Finally, consistency validation
is conducted to further boost the quality of the converted data entries and ToolBridge is constructed.
As demonstrated in Figure 1, we showcase the data entries from ToolBridge, which function to guide
LLMs in understanding how to incorporate external tools in appropriate contexts, thereby improving
the accuracy and reliability of their outputs. For instance, the third case in Figure 1 serves to instruct
LLMs in leveraging the requests module to gather factual information from web sources. Moreover,
LLMs can employ the fourth scenario to understand how sympy library can be applied to solve linear
equation of one variable.

In summary, the contributions of this paper are as follows,

• We propose a pipeline capable of producing large volumes of entries for training LLMs to
incorporate various external tools. The collection of over 178K yielded data entries, named
ToolBridge, will be open-sourced to the community, marking a significant advancement in
the transparency and accessibility of the data for training LLMs to leverage external tools.

• Our experimental results demonstrates that LLMs supervised fine-tuned on ToolBridge can
achieve consistent performance improvements on several standard benchmarks.

• We also propose to curate a set of data entries to examine the abilities of LLMs in numerical
calculation, data processing and factual retrieval before and after supervised fine-tuning on
ToolBridge. Experimental outcomes reaffirm the effectiveness of ToolBridge

This is, to our knowledge, the first work in the domain of enabling LLMs to learn to utilize external
tools that open-sources the training data. We anticipate that ToolBridge will facilitate the community

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Dataset Pool 𝒫

Valuable Data
Entries Selection

~20 M

Valuable Data
Entries Conversion

Valuable Data
Entries Filtering

~1.5 M

Entries 𝒱 Entries 𝒞

~0.36 M

ToolBridge

~0.17 M

(1) Collect SFT datasets and reformat
(2) Estimate 𝑊! and 𝑄!

(3) Obtain top 10 million entries based on 𝑊! and 𝑄!
(4) Select appropriate data entries with LLama3-70B

(5) Insert Python code with GPT-4o-mini
(6) Execute Python code and insert returned results

(7) Consistency Validation
(8) ToolBridge Constructed

Figure 2: Overview of the construction pipeline for ToolBridge. The construction of ToolBridge
follows three main steps: identifying valuable data entries in the dataset pool, converting these data
entries through the integration of external tool calls and finally conducting a thorough cleanup of the
converted data entries by consistency validation.

in further investigating the ability of LLMs to use external tools, thereby advancing LLMs from basic
conversational models to versatile general-purpose assistants.

2 RELATED WORK

Tool Use for LLMs. Enabling LLMs to use external tools like search engines and code interpreters
significantly broadens the range of tasks LLMs can address and strengthens their predictive accuracy.
The methodologies for equipping LLMs with the capability to employ external tools can be broadly
categorized into two paradigms, i.e., function calling and tool former. In particular, function calling
emphasizes allowing LLMs to act as agents that invoke APIs using predefined functions and prompts
without necessitating explicit training on their usage Li et al. (2023); Shen et al. (2024). Conversely,
tool former prioritize empowering LLMs with the ability to autonomously identify appropriate tools,
determine the optimal invocation timings, and incorporate the outputs into their reasoning processes.
For example, Komeili (2021) proposed to enable LLMs to adopt a search engine by learning to yield
an internet search query based on the context, and then condition its generated response on the search
results. Cobbe et al. (2021) facilitated LLMs’ utilization of a calculator during inference by training
the models with calculation annotations injected into the datasets. Thoppilan et al. (2022) proposed
to assist LLMs in invoking external tools from a toolset, comprising an information retrieval system,
a calculator and a translator, by training it to produce a special string TS. Gao et al. (2023) suggested
adopting LLMs to interpret natural language problems and yield programs as intermediate reasoning,
while delegating the solution process to a runtime environment like a Python interpreter. Toolformer
Schick et al. (2024) allowed LLMs to learn how to adopt the external tools through a self-supervised
learning approach. Of late, the works like GPT-4o, Llama 3.1 Dubey et al. (2024) and Apple LLMs
further strengthened LLMs’ ability to leverage external tools through improvements in training data,
model architectures, etc. This study falls into the latter category, namely tool former.

Although previous research in the domain of tool former are highly praiseworthy, they seldom make
the data required for training their models publicly available, which is crucial for the community to
advance research and build upon their contributions. This paper presents a pipeline aimed at yielding
data entries for training models in external tool utilization, along with open-sourcing all data entries
produced using this methodology This open access facilitates the development of more effective and
efficient algorithms for the next generation of LLMs integrated with external tool functionalities.

Training Datasets for Tool Use. Previous datasets designed to train LLMs to utilize external tools
primarily fall within the function calling paradigm. For instance, Qin et al. (2023) collected a high-
quality instruction-tuning dataset ToolBench, which is constructed automatically adopting ChatGPT.
Li et al. (2023) introduced API-Bank, which encompasses 1,888 tool-use dialogues from 2,138 APIs
spanning 1,000 distinct domains. However, to the best of our knowledge, there is a notable absence
of research efforts that have open-sourced training datasets within the tool former domain.

To address this significant gap, this paper presents ToolBridge - a dataset of more than 178,000 data
entries to support LLMs in effectively learning to utilize external tools within tool former paradigm.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 TOOLBRIDGE

Previous LLMs like GPT-4o and Llama 3.1 only provide limited information on how they curate the
data entries to empower themselves to employ external tools. To address the lack of transparency in
training data, we propose a generic pipeline for constructing large-scale datasets from public sources
to enable LLMs to use external tools. As indicated in Figure 1, the whole pipeline follows three main
steps: valuable data entries selection, conversion and filtering.

Source # of Entries Source # of Entries
School Math 0.25M 248,481 LIMA 1,330

code instructions 120k alpaca 121,959 TigerBot 1,199,030
Platypus 24,926 TSI-v0 5,607,620

ShareGPT90K 90,665 LaMini-Instruction 2,585,615
WizardLM Orca 54,974 Bactrian-X 67,017

WizardLM evol instruct 70k 70,000 Baize 210,311
tiny-codes 1,632,309 COIG 178,246

WizardLM evolve instruct V2 143,000 MOSS SFT 1,074,551
No Robots 10,000 AlpacaDataCleaned 51,760

ign clean instruct dataset 500k 508,620 GPT-4all 808,812
GPT-4-LLM 113,003 Alpaca 52,002
ChatAlpaca 20,000 self-instruct 82,439
OpenOrca 4,233,923

Table 1: The composition of our dataset pool P to construct ToolBridge.

3.1 DATASET POOL CONSTRUCTION

Our work starts with a review of the data accessible in the community for the purpose of supervised
fine-tuning (SFT). Table 1 summarizes the results. Owing to the diverse range of teams contributing
the SFT datasets, there is significant heterogeneity in their formats, which introduces difficulties on
effective model training. Hence, we first reformat all candidate datasets into a standardized ChatML
format for further processing:

data entry = [{"role": "user", "content": "..."},
{"role": "assistant", "content": "..."},
...].

After reformatting all datasets, we construct the dataset pool as P = {(Di,Wi, Qi) | i ≥ 0}, where
Di denotes one candidate dataset, Wi measures the proportion of valuable entries for each dataset,
and Qi serves as a metric for assessing the quality of each dataset.

Practically, to obtain Wi, we first perform random sampling onDi to produce a subset Si, containing
1% data entries of Di. Llama3-70B is then applied to judge the appropriateness of each entry in Si
for external tool invocation to enhance reasoning, where the prompt employed is shown in Appendix
A.1. In generally, if an entry is deemed suitable for invoking external tools to help LLMs’ reasoning
process, we label it as a valuable entry. At last, we determine Wi as the ratio between the number of
valuable data entries and the total number of data entries in Si.
Additionally, we observe that some candidate datasets within the dataset poolP are partially sourced
from the Internet via web scraping, resulting in the inclusion of certain meaningless HTML tags and
other irrelevant content. Thus, we incorporate Qi as an additional metric to evaluate the data quality
of each candidate dataset. To compute Qi, we randomly sample N data entries fromDi and conduct
a manual review to identify any presence of irrelevant characters or content, where we configure N
as 100 by default. Qi is then derived as the fraction of data entries devoid of irrelevant contents over
the total number of sampled entries N .

3.2 VALUABLE DATA ENTRIES SELECTION

Upon constructing the dataset pool P , due to the large scale of candidate data entries, we propose to
select 10 million data entries from P for further processing tailored to the dataset attributes Wi and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Qi. Particularly, we first arrange Di in descending order guided by the value of Qi ×Wi. Then, the
data entries are selected from the top-ranked datasets sequentially until the overall volume amounts
to 10 million data entries.

Subsequently, Llama3-70B with the prompt detailed in Appendix A.1 is applied to ascertain whether
each entry within the 10 million samples is appropriate for LLMs to enhance reasoning via utilizing
external tools. And we represent the collection of these appropriate data entries with V , namely, the
valuable data entries. In Table 2, we present the distribution of V across the respective datasets from
which they are derived. It is observed that leveraging the capabilities of Llama3-70B, we can refine
the 10 million data entries down to 1,527,153 valuable entries.

Source # of Entries Source # of Entries
School Math 0.25M 205,996 ChatAlpaca 2,643

Platypus 7,776 ShareGPT90K 24,348
WizardLM Orca 8,659 WizardLM evol instruct 70k 28,293

WizardLM evolve instruct V2 5,399 MOSS SFT 136,603
TigerBot 182,249 GPT-4all 47,627

COIG 15,181 LIMA 309
AlpacaDataCleaned 13,805 GPT-4-LLM 9,978

Bactrian-X 3,313 OpenOrca 834,974

Table 2: The composition of the selected valuable data entries V .

3.3 VALUABLE DATA ENTRIES CONVERSION

Following valuable data entries selection, we further convert the selected entries, allowing LLMs to
learn how to invoke the external tools effectively within the proper context to support their reasoning
process. In particular, we draw on previous methodologies Schick et al. (2024); Dubey et al. (2024);
Thoppilan et al. (2022) by embedding special characters in each selected entry to enable the external
tool invocation, and LLMs are used to pinpoint the appropriate context for calling external tools.

Algorithm 1 Process Special Tokens During Inference
Require: Python interpreter and inputs.
Ensure: Execute the code enclosed by <python> and </python>, and use the captured output

as a condition for the subsequent text generation.
1: Initialize an empty list outputs
2: Initialize condition← None
3: while outputs is empty or outputs[−1] ̸= <|end of text|> do
4: output← LLM(inputs)
5: if output = <python> then
6: start← length of outputs + length of <python>
7: else if output = </python> then
8: Extract substring code← outputs[start :]
9: condition← ExecutePython(code)

10: end if
11: Append output to both inputs and outputs
12: if condition is not None then
13: Append condition to both inputs and outputs
14: Reset condition← None
15: end if
16: end while
17: Post-process and return outputs

As illustrated in the examples in Figure 1, <python> and </python> are represented as a pair of
special tokens. The content enclosed by the special tokens specifies the Python invocation for using
external tools. During the construction of ToolBridge, we predominantly use GPT-4o-mini to insert
the special tokens in the appropriate context within each data entry identified in Section 3.2, as well
as to create the associated code for invoking external tools. To facilitate the return of tool execution

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

results, we examine the code generated by GPT-4o when calling Python API as part of its reasoning
process. It is observed that the final results are always printed at the end of the code. In line with the
strategy of GPT-4o, we include a directive in the prompt for GPT-4o-mini to print the final result of
the tool execution as the concluding line of the code (refer to Appendix A.2).

Following GPT-4o-mini’s processing of V , we retrieve the code segments between <python> and
</python>, execute them, and finally insert the captured output after corresponding </python>,
where the output will be wrapped within another pair of special tokens, denoted as <result> and
</result>. To summarize, the tool invocation in ToolBridge can be formatted as,

<python>generated code</python><result>captured output</result>.

During the reasoning process of the models, it is sufficient to verify the existence of the pre-defined
special tokens <python> and </python>. If identified, the Python interpreter will be adopted to
execute the enclosed code between the special tokens, and the final result is wrapped in <result>
and </result> to condition further text generation. Algorithm 1 describes the primary inference
process of LLMs post-SFT on the ToolBridge dataset.

Table 3 summarizes the composition of the data entries after converting V , denoted as C.

Source # of Entries Source # of Entries
School Math 0.25M 150,104 ChatAlpaca 116

Platypus 82 ShareGPT90K 3
WizardLM Orca 88 WizardLM evol instruct 70k 3,716

WizardLM evolve instruct V2 8 OpenOrca 101,715
TigerBot 66,793 GPT-4all 8,936

COIG 7,877 LIMA 107
AlpacaDataCleaned 4,510 GPT-4-LLM 2,577

Bactrian-X 84

Table 3: The composition of the converted data entries C.

It is worth noting that the data entries in C, totaling 364,605, are significantly fewer than those in V
which amount to 1,527,153. We attribute this to the following factors,

• The returned data entries that lack the Python code inserted by GPT-4o-mini are eliminated.
Approximately 19.2% of the data entries in V fall under this category, which indicates that
GPT-4o-mini regards these entries as not requiring external tools to aid in LLMs’ reasoning.

• The returned data format did not match the expected structure, resulting in parsing failure.
Instances include an unequal count of <python> and </python> tokens, modifications
to the original content alongside Python code insertion, to name a few. Such entries account
for approximately 27.2% of the data entries in V .

• The request to GPT-4o-mini fails. These data entries constitute approximately 2.1% of V .

• With Python’s ast library, we filter out the returned data entries where the inserted code is
only an assignment followed by a print statement. Such entries represent about 4.8% of V .
We provide the detailed algorithm we use to filter such data entries in Appendix A.3.

• We filter around 22.8% data entries of V to remove tool calls that could not be executed or
the execution time of the tool exceeded 30 seconds (refer to Appendix A.4 for details).

In summary, 23.9% of the entries from V remain in the converted data entries C.

3.4 DATA ENTRIES FILTERING BY CONSISTENCY VALIDATION

In practice, we observe that LLMs trained on C do not always base their subsequent contents on the
results produced by the yielded Python code during inference. So, we conduct a reassessment of the
data entries within C and observe that the execution results from the code generated by GPT-4o-mini
also does not always align with the ensuing text, which can explain LLMs’ sporadic inconsistencies
between tool execution results and further contents during inference.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To alleviate the issues above, we propose to filter out the entries in C where the tool execution results
are inconsistent with the following text, which is accomplished by validating if the execution results
are included in the subsequent content in our approach. Upon the conclusion of the filtering process,
the open-source dataset ToolBridge is constructed. In Appendix A.5, we compare the generated text
of Llama3-8B after SFT on C and ToolBridge, which demonstrates the necessity for the data entries
filtering by consistency validation.

The data sources that comprise ToolBridge, totaling 178,023 entries, are outlined in Table 4, which
represents 48.8% of the total data entries in C.

Source # of Entries Source # of Entries
School Math 0.25M 100,836 ChatAlpaca 17

Platypus 35 ShareGPT90K 3
WizardLM Orca 29 WizardLM evol instruct 70k 794

WizardLM evolve instruct V2 1 OpenOrca 46,449
TigerBot 22,306 GPT-4all 2,616

COIG 2,706 LIMA 27
AlpacaDataCleaned 1,129 GPT-4-LLM 1,043

Bactrian-X 32

Table 4: The final composition of our proposed ToolBridge.

4 EXPERIMENTS

In this section, we first present the statistics of ToolBridge and then investigate whether LLMs with
SFT on ToolBridge could leverage external tools to facilitate their reasoning process. The evaluation
consists of two components: (1) by comparing LLMs’ performance on standard benchmarks before
and after SFT on ToolBridge (Section 4.3); (2) by evaluating the accuracy of the models on custom
datasets RandomQA and FACT (Section 4.4).

Source # of Tool Use # of Libraries Source # of Tool Use # of Libraries
School Math 0.25M 104,983 8 ChatAlpaca 73 1

Platypus 36 3 ShareGPT90K 3 0
WizardLM Orca 33 4 WizardLM evol instruct 70k 836 22

WizardLM evolve instruct V2 1 0 OpenOrca 46,832 28
TigerBot 22,507 40 GPT-4all 2,870 42

COIG 2,719 28 LIMA 27 2
AlpacaDataCleaned 1,139 23 GPT-4-LLM 1,052 14

Bactrian-X 36 3

Table 5: Statistics of the usage of external tools in ToolBridge.

4.1 DATASET STATISTICS OF TOOLBRIDGE

In Table 4, we present 15 source datasets involved in the data entries of ToolBridge, along with their
respective composition ratios. To prevent any confusion for the datasets (e.g, other datasets with the
same name and the same datasets with different versions), we also provide download links for these
datasets in Appendix A.6.

Besides, we provide a summary of the frequency of external tool calls in ToolBridge and the variety
of Python packages used for these calls, as presented in Table 5. By comparing Table 4 and Table 5,
we can observe that the majority of the data entries in ToolBridge involve only a single external tool
call. Furthermore, Table 5 also suggests that the data entries in ToolBridge originating from datasets
with narrower topics (e.g., School Math 0.25M) generally leverage fewer kinds of Python packages
compared to those from datasets with broader topics (e.g., TigerBot), which is consistent with logic.
To summarize, there are 183,147 external tool calls in our ToolBridge dataset, utilizing a total of 60
Python packages, including requests, math, datetime, sklearn, to name a few.

In Appendix A.12, we also quantify the usage frequency of the 60 Python packages incorporated in
ToolBridge, and their distribution is illustrated in Table 13.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.2 EXPERIMENTAL SETUP

Baseline Models. Our experiments incorporate four baseline models: the base model of Mistral-7B,
Llama2-7B, Llama3-8B and Llama3-70B. Also, we remove all the external tool invocation sections
in each entry in ToolBridge (denote as ToolBridge§) and report the accuracy of four baseline models
SFT on ToolBridge§ as four additional baseline models.

Benchmark Datasets. The standard benchmark datasets leveraged in our experiments include GSM
8K Cobbe et al. (2021), GSM Plus Li et al. (2024), MathBench Liu et al. (2024), Stanford WebQA
Berant et al. (2013) and TruthfulQA Lin et al. (2021). For GSM 8k and GSM Plus, the performance
is evaluated on their respective test sets under few-shot setting, where we leverage a fixed CoT-n-shot
prompt template, as outlined in Li et al. (2024). For MathBench, we report results on MathBench-A,
where we transform the multiple-choice questions in the College, High and Middle categories into a
question-and-answer format for CoT-n-shot evaluation. To differentiate from standard MathBench,
we refer to this adjusted dataset as MathBench∗.

We also develop two custom datasets, termed RandomQA and FACT, to evaluate the capabilities of
LLMs in data processing, numerical computation and factual retrieval. Section 4.4 elaborates on the
specifics of both datasets.

SFT Settings. All the models in our experiments are trained with the open-source TRL library from
Hugging Face von Werra et al. (2020). The LoRA module Hu et al. (2021) is employed to carry out
SFT on the base model of Mistral-7B, Llama2-7B, Llama3-8B and Llama3-70B using ToolBridge§
or ToolBridge, with a LoRA rank of 16. Model training is conducted on 64 ×MI200 64GB GPUs,
with each processing a batch size of 2 (i.e., total batch size is 128). AdamW is employed to optimize
the parameters of LoRA, with a cosine learning rate scheduler, configuring the initial lr at 3e-5 and
the total training epoch at 3.

Inference Settings. The primary process of model inference is described in Algorithm 1. Moreover,
to handle potential tool call failures during inference, we propose to eliminate failed tool calls from
the current output before conditioning the generation of further text. All trained models are evaluated
on 16 ×MI200 64 GB GPUs, with the max new tokens set to 512 and the temperature set to zero.

Models SFT data GSM 8k GSM Plus MathBench∗
Llama2-7B - 13.6 8.9 18.0

Llama2-7B-Lora ToolBridge§ 16.9 9.9 19.1
Llama2-7B-Lora ToolBridge 18.1 11.0 21.4

Llama3-8B - 52.3 36.9 33.0
Llama3-8B-Lora ToolBridge§ 53.4 37.8 35.2
Llama3-8B-Lora ToolBridge 55.8 40.0 37.4

Mistral-7B - 38.1 25.1 27.8
Mistral-7B-Lora ToolBridge§ 42.8 27.6 28.9
Mistral-7B-Lora ToolBridge 45.0 29.8 31.0

Llama3-70B - 75.3 54.4 42.1
Llama3-70B-Lora ToolBridge§ 78.5 57.6 44.1
Llama3-70B-Lora ToolBridge 80.1 59.8 46.9

Table 6: Ablation studies on GSM 8k, GSM Plus and MathBench∗ with (8 shots, CoT) setting.

4.3 RESULTS ON STANDARD BENCHMARKS

In this section, we conduct ablation studies on standard benchmark datasets, including TruthfulQA,
GSM 8k, GSM Plus, MathBench and Stanford WebQA, where GSM 8k, GSM Plus and MathBench
are primarily responsible for evaluating the capability of LLMs in numerical reasoning and compu-
tation, and TruthfulQA and Stanford WebQA are primarily adopted to assess the ability of LLMs in
factual retrieval. Table 6, 7 and 8 demonstrates the evaluation results.

It is observed that the models SFT on ToolBridge significantly outperform the baseline models. For
example, Llama3-8B SFT on ToolBridge brings 3.1% and 2.2% accuracy improvements to the base
model of Llama3-8B and the Llama3-8B model SFT on ToolBridge§ when evaluating on GSM Plus,
respectively. These results indicate that SFT on ToolBridge can help strengthen LLMs’ capabilities
in handling numerical computations. Furthermore, ToolBridge is able to facilitate abilities of LLMs

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Models SFT data Stanford WebQA
Llama3-8B - 21.2

Llama3-8B-Lora ToolBridge§ 37.7
Llama3-8B-Lora ToolBridge 39.9

Mistral-7B - 34.4
Mistral-7B-Lora ToolBridge§ 35.8
Mistral-7B-Lora ToolBridge 39.1

Table 7: Ablation studies on Stanford WebQA under zero-shot setting.

Models SFT data ROUGE1 BLEURT
Llama3-8B - 41.2 34.6

Llama3-8B-Lora ToolBridge§ 47.0 42.8
Llama3-8B-Lora ToolBridge 48.7 44.4

Mistral-7B - 43.5 39.4
Mistral-7B-Lora ToolBridge§ 44.9 42.3
Mistral-7B-Lora ToolBridge 47.7 44.9

Table 8: Ablation studies on TruthfulQA under zero-shot setting.

in factual retrieval. As shown in Table 7 and 8, SFT on ToolBridge enables Llama3-8B and Mistral-
7B to achieve notable gains on Stanford WebQA and TruthfulQA. Specifically, ToolBridge increases
the accuracy of Llama3-8B on Stanford WebQA from 21.2% to 39.9%, and on TruthfulQA, it boosts
ROUGE1 from 41.2% to 48.7% and BLEURT from 34.6% to 44.4%.

The results above demonstrate that LLMs can effectively learn how to use external tools to enhance
their capabilities in basic functions after SFT on ToolBridge. Moreover, it is worthy noting that there
is considerable room for improvements in these results, as our emphasis is on the training data, with
minimal adjustments made to the model architectures and training strategies, which may help LLMs
better learn how to employ external tools through ToolBridge.

Models SFT data RandomQA-DP-B1 RandomQA-DP-B2 RandomQA-NC-B1 RandomQA-NC-B2
Llama2-7B - 10.0 9.0 3.3 3.2

Llama2-7B-Lora. ToolBridge§ 19.2 16.6 7.7 8.6
Llama2-7B-Lora. ToolBridge 53.2 54.0 63.4 60.7

Llama3-8B - 9.6 9.2 5.8 7.0
Llama3-8B-Lora ToolBridge§ 30.3 29.0 15.8 13.9
Llama3-8B-Lora ToolBridge 62.1 60.0 82.1 80.1

Mistral-7B - 10.8 9.0 13.8 13.6
Mistral-7B-Lora ToolBridge§ 24.7 23.2 16.8 16.5
Mistral-7B-Lora ToolBridge 61.8 60.5 83.3 82.5

Llama3-70B - 20.0 17.1 9.6 8.9
Llama3-70B-Lora ToolBridge§ 32.1 31.7 22.0 20.3
Llama3-70B-Lora ToolBridge 74.2 69.9 89.7 89.1

Table 9: Experimental results on RandomQA under zero-shot setting, where DP denotes data pro-
cessing and NC means numerical computation.

4.4 RESULTS ON CUSTOM BENCHMARKS

To further assess whether SFT on the ToolBridge dataset can equip LLMs with the ability to leverage
external tools for aiding its reasoning process, we propose to design two custom datasets to evaluate
LLMs’ performance before and after SFT on the ToolBridge dataset.

RandomQA. To assess LLMs’ accuracy in data processing and numerical computation capabilities
after SFT on ToolBridge, we propose to design 30 templates capable of generating question-answer
pairs to validate the abilities of LLMs in data processing and numerical computations, respectively.
Here is one example,

1 # Template1: Reverse the order of elements in a list
2 array = [random.randint(1, 10000) for _ in range(random.randint(5, 15))]
3 question = f"Reverse the order of the elements in the list {array} and

then plus 3 for each element."↪→
4 answer = array[::-1]
5 answer = [a + 3 for a in answer]

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The complete list can be found in Appendix A.7. With these pre-defined templates, we first generate
four RandomQA datasets, each consisting of 1,000 data entries, and focusing on data processing or
numerical computation, i.e., RandomQA-DP-B1/2, RandomQA-NC-B1/2, where DP signifies using
template related to data processing to yield the dataset and NC means numerical computation. Then,
we evaluate the accuracy of LLMs on the four datasets before and after SFT on ToolBridge. Table 9
demonstrates the results. It is observed that after SFT on ToolBridge, the models shows a significant
increase in accuracy on RandomQA.

Models SFT data FACT-200-Batch1 FACT-200-Batch2 FACT-200-Batch3
Llama2-7B - 69.5 55.0 49.0

Llama2-7B-Lora ToolBridge§ 86.0 67.5 65.7
Llama2-7B-Lora ToolBridge 88.5 72.5 73.2

Llama3-8B - 79.0 60.5 62.2
Llama3-8B-Lora ToolBridge§ 89.0 73.0 73.7
Llama3-8B-Lora ToolBridge 90.0 73.5 80.2

Mistral-7B - 85.0 67.5 65.9
Mistral-7B-Lora ToolBridge§ 86.5 70.0 66.2
Mistral-7B-Lora ToolBridge 90.5 72.0 77.3

Llama3-70B - 76.0 53.5 54.0
Llama3-70B-Lora ToolBridge§ 88.3 72.4 70.7
Llama3-70B-Lora ToolBridge 91.2 74.6 82.6

Table 10: Experimental results on FACT under zero-shot setting.

FACT. To determine if the factual retrieval skills of LLMs can be improved by SFT on ToolBridge,
we construct the FACT datasets. Specifically, we begin by prompting GPT-4o to produce thousands
of question-answer pairs focused on factual retrieval. One example prompt is as following,

1. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Geography. Return them
as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

Appendix A.8 contains the entire set of the adopted prompts for constructing FACT. Upon obtaining
the candidate question-answer pairs, we continuously draw random entries from them and manually
check their correctness until 200 correct data entries are verified. Through iterating the above process
three times with five different prompts each time, we construct three FACT datasets, each with a size
of 200 entries, termed FACT-200-Batch1/2/3. Table 10 presents a comparison of the performance of
LLMs on the three datasets before and after SFT on the ToolBridge dataset, which shows that LLMs
demonstrates enhanced abilities in retrieving factual content.

Besides, one should be aware that relying on external tools to improve the fact retrieval performance
of LLMs can be inconsistent. During our experiments, we uncover the following deficiencies

• Using external tools like the requests module to obtain information from external websites
can lead to potentially unreliable information and LLMs thus yield incorrect predictions. A
solution to address this issue is to construct a curated list of trustworthy domains, restricting
LLMs from accessing websites beyond this approved whitelist. Besides, we should further
refine the training entries to exclude unreliable access links.

• The content scraped from web pages may be overly lengthy, hindering the ability of LLMs
to efficiently extract useful information from the scraped contents.

• When LLMs access some external websites, they may attempt to download files from those
sites, which poses potential security risks in real-world applications.

Therefore, we recommend that ToolBridge is only used for academic research, with controlled mea-
sures in place when it attempts to access external websites.

5 CONCLUSION

This paper proposes ToolBridge, which is the first open-source dataset for training LLMs in the use
of external tools in the area of tool former. The principal steps to build ToolBridge involves valuable
data entries selection, conversion and filtering. Ablation studies on standard and custom benchmark
datasets demonstrate the effectiveness of ToolBridge.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1533–1544, Seattle, Washington, USA, October 2013. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/D13-1160.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan Zhang, Bowen
Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, et al. Apple intelligence foundation language
models. arXiv preprint arXiv:2407.21075, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

M Komeili. Internet-augmented dialogue generation. arXiv preprint arXiv:2107.07566, 2021.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244, 2023.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. Gsm-plus: A comprehensive
benchmark for evaluating the robustness of llms as mathematical problem solvers. arXiv preprint
arXiv:2402.19255, 2024.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong Duan, Zhiwei Fei, Fengzhe Zhou, Wen-
wei Zhang, Songyang Zhang, Dahua Lin, and Kai Chen. Mathbench: Evaluating the theory
and application proficiency of llms with a hierarchical mathematics benchmark. arXiv preprint
arXiv:2405.12209, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36, 2024.

11

https://www.aclweb.org/anthology/D13-1160

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

12

https://github.com/huggingface/trl

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 LLAMA3-70B PROMPTS

The prompt applied while using Llama3-70B to identify valuable data is as follow,

Your task is to determine whether you can add calls to a Python API to a piece
of text. The calls should help you get information required to complete the
text. You only need to respond with "Yes" or "No", "Yes" means you can and
"No" means you can't. Here are some examples:

↪→
↪→
↪→

Input:

{"messages": [{"role": "user", "content": "Sort the numbers in the list arr =
[1, 10, 2, 5, -2, 11, 12] in descending order."}, {"role": "assistant",
"content": "The sorted list in descending order is: [12, 11, 10, 5, 2, 1,
-2]."}]}

↪→
↪→
↪→

Output:

Yes

Input:

{"messages": [{"role": "user", "content": "Can you tell me a little bit about
what LaTeX is?"}, {"role": "assistant", "content": "LaTeX is a high-quality
typesetting system; it includes features designed for the production of
technical and scientific documentation. LaTeX is the de facto standard for
the communication and publication of scientific documents. It is widely used
by mathematicians, scientists, engineers, philosophers, linguists,
economists, and other scholars in academia and the professional world."}]}

↪→
↪→
↪→
↪→
↪→
↪→

Output:

No

Input:

{"messages": [{"role": "user", "content": "What is the value of sin 40 degrees
plus cos 31 degrees?"}, {"role": "assistant", "content": "The value is
approximately sin 40 + cos 31 = 0.6428 + 0.8572 = 1.500."}]}

↪→
↪→

Output:

Yes

Input:

{"messages": [{"role": "user", "content": "Write a Python script that reads an
image and recognizes the text on it."}, {"role": "assistant", "content": "To
read an image and recognize text on it in Python, you can use the
pytesseract library along with Pillow for image processing. Here's a simple
example: \nimport pytesseract; from PIL import Image;
print(pytesseract.image_to_string(Image.open('path_to_image.jpg'))). \nMake
sure you have Tesseract OCR installed on your machine and the required
libraries (pytesseract and Pillow) installed in your Python environment. You
can install them using: \npip install pytesseract pillow"}]}

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Output:

No

Input:

PLACEHOLDER

Output:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 GPT-4O-MINI PROMPTS

The prompt applied while using GPT-4o-mini to convert data entries is as follow,

Your task is to add calls to a Python API to a piece of text. The calls should help you
get information required to complete the text. You can call the API by writing
"<python>code</python>" where "code" is the code to be executed. The last line of
all code should print the variable that stores the final result. Here are some
examples of API calls:

↪→
↪→
↪→
↪→

Input:

{"messages": [{"role": "user", "content": "Which number is greater, 13.11 or 13.8?"},
{"role": "assistant", "content": "13.8 is greater than 13.11."}]}↪→

Output:

{"messages": [{"role": "user", "content": "Which number is greater, 13.11 or 13.8?"},
{"role": "assistant", "content": "<python>greater_number = max(13.11,
13.8)\nprint(greater_number)</python> 13.8 is greater than 13.11."}]}

↪→
↪→

Input:

{"messages": [{"role": "user", "content": "How many unique words are there in the
sentence 'The quick brown fox jumps over the lazy dog'?"}, {"role": "assistant",
"content": "There are eight unique words in the sentence 'The quick brown fox jumps
over the lazy dog.'"}]}

↪→
↪→
↪→

Output:

{"messages": [{"role": "user", "content": "How many unique words are there in the
sentence 'The quick brown fox jumps over the lazy dog'?"}, {"role": "assistant",
"content": "There are <python>unique_words = len(set('The quick brown fox jumps over
the lazy dog'.lower().split()))\nprint(unique_words)</python> eight unique words in
the sentence 'The quick brown fox jumps over the lazy dog.'"}]}

↪→
↪→
↪→
↪→

Input:

{"messages": [{"role": "user", "content": "What is the area of a circle with a radius of
5?"}, {"role": "assistant", "content": "The area of a circle with radius 5 is
78.54."}]}

↪→
↪→

Output:

{"messages": [{"role": "user", "content": "What is the area of a circle with a radius of
5?"}, {"role": "assistant", "content": "The area of a circle with radius 5 is
<python>import math\narea = math.pi * 5**2\nprint(area)</python> 78.54."}]}

↪→
↪→

Input:

{"messages": [{"role": "user", "content": "Sort the numbers [5, 3, 8, 1, 2] in ascending
order."}, {"role": "assistant", "content": "The sorted list is [1, 2, 3, 5, 8]."}]}↪→

Output:

{"messages": [{"role": "user", "content": "Sort the numbers [5, 3, 8, 1, 2] in ascending
order."}, {"role": "assistant", "content": "The sorted list is <python>lst =
sorted([5, 3, 8, 1, 2])\nprint(lst)</python> [1, 2, 3, 5, 8]."}]}

↪→
↪→

Input:

{"messages": [{"role": "user", "content": "Extract the domain from the email
'example@test.com'."}, {"role": "assistant", "content": "The domain of the email
'example@test.com' is 'test.com'."}]}

↪→
↪→

Output:

{"messages": [{"role": "user", "content": "Extract the domain from the email
'example@test.com'."}, {"role": "assistant", "content": "The domain of the email
'example@test.com' is <python>domain =
'example@test.com'.split('@')[1]\nprint(domain)</python> 'test.com'."}]}

↪→
↪→
↪→

Input:

PLACEHOLDER

Output:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.3 DETECTING SIMPLE CODE STRUCTURES: ASSIGNMENT FOLLOWED BY PRINT
STATEMENT

We use the following code to determine if the inserted code in each entry is simply an assignment
followed by printing the variable.

Algorithm 2 Identifying Code Patterns: Distinguishing Assignments Followed by Print Statements

1 import ast
2

3 '''
4 Function:
5 Identifying Code Patterns: Distinguishing Assignments Followed

by Print Statements
6 Argument:
7 node: node = ast.parse(code)
8 '''
9 def isuselesscode(node):

10 # Check if the node is an AST Module
11 if isinstance(node, ast.Module):
12 # Ensure the module has exactly two statements:
13 # an assignment and an expression.
14 if len(node.body) == 2 and isinstance(node.body[0], ast.

Assign) and isinstance(node.body[1], ast.Expr):
15 assign_node = node.body[0]
16 expr_node = node.body[1]
17 # Check if the assignment targets a variable and
18 # the value is a constant.
19 if isinstance(assign_node.targets[0], ast.Name) and

isinstance(assign_node.value, ast.Constant):
20 # Check if the expression is a function call
21 # to 'print'.
22 if isinstance(expr_node.value, ast.Call) and

isinstance(expr_node.value.func, ast.Name) and
expr_node.value.func.id == 'print':

23 # Ensure 'print' has exactly one argument.
24 if len(expr_node.value.args) == 1:
25 arg = expr_node.value.args[0]
26 # Check if the argument to 'print' is
27 # the same variable assigned earlier.
28 if isinstance(arg, ast.Name) and arg.id ==

assign_node.targets[0].id:
29 return True
30 # Alternatively, check if 'print' uses an
31 # f-string format with the variable.
32 elif isinstance(arg, ast.JoinedStr):
33 for value in arg.values:
34 if isinstance(value, ast.

FormattedValue) and isinstance(
value.value, ast.Name):

35 # Confirm the formatted
36 # variable is the same as
37 # the assigned variable.
38 if value.value.id ==

assign_node.targets[0].id:
39 return True
40 return False

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4 OPTIMIZING DATASET QUALITY BY REMOVING NON-EXECUTABLE AND SLOW TOOL
CALLS

The core code for removing data entries that either fail to execute or exceed the execution time limit
is as follows.

Algorithm 3 Efficient Dataset Curation: Filtering Non-Executable and Time-Consuming Tool Calls

1 import re
2 import io
3 import contextlib
4 import multiprocessing
5

6 # Execute Python code
7 def executecode(code):
8 with io.StringIO() as buf, contextlib.redirect_stdout(buf):
9 try:

10 exec(code)
11 return buf.getvalue().strip()
12 except Exception:
13 return None
14

15 # Execute Python code with timeout = 30 second
16 def safeexecutecode(code, timeout=30):
17 result_queue = multiprocessing.Queue()
18 def target():
19 result = executecode(code)
20 result_queue.put(result)
21 process = multiprocessing.Process(target=target)
22 process.start()
23 process.join(timeout)
24 if process.is_alive():
25 process.terminate()
26 process.join()
27 return None
28 else:
29 return result_queue.get() if not result_queue.empty() else

None
30

31 # Filtering
32 DATASET_FILTERED = []
33 for item in tqdm(DATASET):
34 success_calling = False
35 for message in item['messages']:
36 if message['role'] == 'assistant':
37 code_matches = re.findall(r'<python>(.*?)</python>',

message['content'], re.DOTALL)
38 if code_matches:
39 for code in code_matches:
40 python_str = f'<python>{code}</python>'
41 result = safeexecutecode(code=code)
42 if result is None:
43 message['content'] = message['content'].

replace(python_str, '')
44 else:
45 result_str = f'<result>{result}</result>'
46 message['content'] = message['content'].

replace(python_str, f'{python_str}{
result_str}')

47 success_calling = True
48 if success_calling:
49 DATASET_FILTERED.append(item)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5 COMPARE OUTPUTS FROM LLAMA3 TRAINED ON C AND TOOLBRIDGE

We notice in actual applications that the models train on C may not always use the Python output as
a basis for generating further content. Here are some examples.

Example 1:

User: “Count the number of vowels in the sentence 'This is a simple sentence'.”

Assistant: “There are <python>sentence = 'This is a simple sentence'\nvowels = 'aeiou'\ncount = sum(1 for char in sentence if

char.lower() in vowels)\nprint(count)</python><result>8</result> 5 vowels in the sentence 'This is a simple sentence'.”

Example 2:

User: “What is the date 30 days after January 31, 2022?”

Assistant: “The date 30 days after January 31, 2022 is <python>from datetime import datetime, timedelta\n\ndate =

datetime.strptime('2022-01-31', '%Y-%m-%d')\nnew_date = date + timedelta(days=30)\nresult = new_date.strftime('%B %d,

%Y')\nprint(result)</python><result>March 02, 2022</result> March 1, 2022. Note that February only has 28 days in non-leap years,

so the 30th day would fall on March 1, 2022 in a leap year. ”

Inconsistent outputs from Llama3 trained on 𝓒

Figure 3: Inconsistency between LLMs’ outputs and the returned results from Python interpreter.

By filtering out the entries in C that show inconsistencies between the Python execution results and
the following content, we create the ToolBridge dataset. This refined dataset is then used to train the
Llama3 model, yielding outputs consistent with the Python results. Here are some examples.

Example 1:

User: “Count the number of vowels in the sentence 'This is a simple sentence'.”

Assistant: “There are <python>sentence = 'This is a simple sentence‘\nvowels = ['a', 'e', 'i', 'o', 'u']\ncount = sum(1 for char in

sentence.lower() if char in vowels)\nprint(count)</python><result>8</result> 8 vowels in the sentence 'This is a simple sentence'.”

Example 2:

User: “What is the date 30 days after January 31, 2022?”

Assistant: “The date 30 days after January 31, 2022 is <python>from datetime import datetime, timedelta\n\ndate =

datetime.strptime('2022-01-31', '%Y-%m-%d')\nnew_date = date + timedelta(days=30)\nresult = new_date.strftime('%B %d,

%Y')\nprint(result)</python><result>March 02, 2022</result> February 30, 2022. However, this date is not valid as February only has

28 days in a non-leap year. So, the date would be March 02, 2022.”

Consistent outputs from Llama3 trained on ToolBridge

Figure 4: Consistency between LLMs’ outputs and the returned results from Python interpreter.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.6 LINKS TO DATA SOURCES USED IN THE DATASET POOL

To avoid any confusion regarding the datasets, the download links for each dataset are also provided
in Table 11. Note that, links to all datasets from the dataset pool P are presented in the table, even
those not incorporated into ToolBridge.

Dataset Source Link
School Math 0.25M https://huggingface.co/datasets/BelleGroup/school math 0.25M

ChatAlpaca https://github.com/cascip/ChatAlpaca
Platypus https://huggingface.co/datasets/garage-bAInd/Open-Platypus

ShareGPT90K https://huggingface.co/datasets/liyucheng/ShareGPT90K
WizardLM Orca https://huggingface.co/datasets/pankajmathur/WizardLM Orca

WizardLM evol instruct 70k https://huggingface.co/datasets/WizardLMTeam/WizardLM evol instruct 70k
WizardLM evolve instruct V2 https://huggingface.co/datasets/WizardLMTeam/WizardLM evol instruct V2 196k

OpenOrca https://huggingface.co/datasets/Open-Orca/OpenOrca
TigerBot https://huggingface.co/datasets/TigerResearch/sft en, TigerResearch/sft zh
GPT-4all https://huggingface.co/datasets/nomic-ai/gpt4all-j-prompt-generations

COIG https://huggingface.co/datasets/BAAI/COIG
LIMA https://huggingface.co/datasets/GAIR/lima

AlpacaDataCleaned https://huggingface.co/datasets/yahma/alpaca-cleaned
GPT-4-LLM https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM
Bactrian-X https://huggingface.co/datasets/MBZUAI/Bactrian-X

code instructions 120k alpaca https://huggingface.co/datasets/iamtarun/code instructions 120k alpaca
TSI-v0 https://huggingface.co/datasets/tasksource/tasksource-instruct-v0
Alpaca https://github.com/tatsu-lab/stanford alpaca

No Robots https://huggingface.co/datasets/HuggingFaceH4/no robots
Baize https://github.com/project-baize/baize-chatbot

LaMini-Instruction https://huggingface.co/datasets/MBZUAI/LaMini-instruction
tiny-codes https://huggingface.co/datasets/nampdn-ai/tiny-codes

self-instruct https://github.com/yizhongw/self-instruct
ign clean instruct dataset 500k https://huggingface.co/datasets/ignmilton/ign clean instruct dataset 500k

MOSS SFT https://github.com/OpenMOSS/MOSS

Table 11: Source links for the datasets utilized in the dataset pool.

Here is a brief description of each dataset,

• School Math 0.25M: It includes approximately 250,000 Chinese math problems generated
by the BELLE project, along with their solution processes.

• ChatAlpaca: ChatAlpaca is a comprehensive dataset created to assist researchers in build-
ing models for instruction-following across multi-turn conversations. It expands upon the
Stanford Alpaca dataset by incorporating a broader range of multi-turn instructions and
their corresponding responses.

• Platypus: This dataset is designed to enhance the logical reasoning capabilities of LLMs
and was instrumental in training the Platypus2 models. It combines eleven public datasets,
carefully curated through keyword filtering and further refined using Sentence Transform-
ers to exclude questions with more than 80% similarity.

• ShareGPT90K: A high quality dataset generated by using GPT-4.

• WizardLM Orca: Enhanced WizardLM dataset, generated using the Orca methodology.

• WizardLM evol instruct 70k: This is the training data of WizardLM.

• WizardLM evolve instruct V2: The dataset contains 143K mixed evolved data derived from
Alpaca and ShareGPT. It represents the latest optimized version of Evol-Instruct training
data for the WizardLM model.

• OpenOrca: A collection of augmented FLAN data, generated using the methodology de-
scribed in the Orca paper.

• TigerBot: Datasets used to train TigerBot include pretraining data, STF data, and domain-
specific datasets such as financial research reports.

• GPT-4all: A curated mix of subsets from OIG, P3, and StackOverflow, focusing on topics
such as general question-answering and customized creative queries.

• COIG: A Chinese-focused dataset encompassing domains such as general-purpose QA,
Chinese exams, and coding. Its quality has been verified by human annotators.

• LIMA: High quality SFT dataset used by LIMA.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• AlpacaDataCleaned: An improved and cleaned iteration of the Alpaca, GPT LLM, and
GPTeacher datasets.

• GPT-4-LLM: It is generated using GPT-4 and other LLMs to produce improved pairs and
data for RLHF.

• Bactrian-X: A multilingual adaptation of the Alpaca and Dolly-15K datasets.
• code instructions 120k alpaca: Code instruction data formatted for instruction fine-tuning.
• TSI-v0: A multi-task instruction-tuning dataset derived from 475 Tasksource datasets, de-

signed in a manner similar to the Flan and Natural Instructions datasets.
• Alpaca: It consists of 52K instruction-following examples, specifically designed for fine-

tuning the Alpaca model.
• No Robots: High-quality, human-generated STF data in a single-turn format.
• Baize: A dialogue dataset generated by GPT-4 through self-talking, with questions and

topics sourced from Quora, StackOverflow, and various medical knowledge bases.
• LaMini-Instruction: A dataset distilled from the FLAN collection, P3, and Self-Instruct.
• tiny-codes: This synthetic dataset comprises 1.6 million concise and clear code snippets,

designed to help LLM models develop reasoning skills in both natural and programming
languages. The dataset spans a wide range of programming languages, including Python,
TypeScript, JavaScript, Ruby, Julia, Rust, C++, Bash, Java, C#, and Go.

• self-instruct: This dataset is generated using the methodology outlined in Self-Instruct:
Aligning Language Models with Self-Generated Instructions.

• ign clean instruct dataset 500k: A large-scale SFT dataset synthetically generated from a
subset of Ultrachat prompts.

• MOSS SFT: A conversational dataset curated and developed by the MOSS team, with each
entry annotated with labels for usefulness, loyalty, and harmlessness.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.7 TEMPLATES FOR YIELDING RANDOMQA DATASET

The complete list of templates used to generate the RandomQA dataset is as follows,

1 '''RandomQAGenerator'''
2 class RandomQAGenerator():
3 question_types_data_processing = [
4 "Sort an array in ascending order",
5 "Transpose a 2D matrix",
6 "Reverse the string",
7 "Extract first N elements in a list",
8 "Reverse the order of elements in a list",
9 "Count the frequency of one character in a string",

10 "Find the intersection of two strings",
11 "Find the length of the longest word in a string",
12 "Count the number of vowels in a string",
13 "Convert a list of Celsius temperatures to Fahrenheit",
14 "Calculate time difference between two time zones",
15 "Find the leap year after a year",
16 "Find the most common word in a paragraph",
17 "Find the first recurring word in a string",
18 "Extract all the numbers in a string",
19 "Convert a decimal number to its binary equivalent",
20 "Calculate the difference between two lists",
21 "Find out all the numbers that are not unique",
22 "Flatten a 2D list into a 1D list",
23 "Remove duplicates from a list",
24 "Filter elements in a list based on a condition",
25 "Merge two dictionaries into one",
26 "Extract all words of a specific length from a text",
27 "Extract email addresses from a text",
28 "Sort a list of strings by their length",
29 "Check if two strings are anagrams",
30 "Extract hashtags from a social media post",
31 "Capitalize each word in a string",
32 "Find the index of a substring in a string",
33 "Replace all vowels in a string with a specific character",
34]
35 question_types_numerical_computation = [
36 "Calculate the average of an array",
37 "Find the maximum and minimum values of an array",
38 "Calculate the dot product of two arrays",
39 "Generate a set of random integers and find their sum",
40 "Generate the smallest prime number greater than x",
41 "Calculate the standard deviation of a list of floating-point

numbers",↪→
42 "Generate a random matrix and find its inverse",
43 "Find the median of an array",
44 "Generate Fibonacci sequence up to n-th term",
45 "Find the GCD (Greatest Common Divisor) of two numbers",
46 "Calculate the factorial of a number",
47 "Find the mode of a list of numbers",
48 "Calculate the sum of even numbers in a list",
49 "Calculate the cumulative sum of an array",
50 "Calculate cosine value",
51 "Square every number in a list",
52 "Calculate the sum of squares of numbers in an array",
53 "Find the n-th smallest number in an array",
54 "Calculate the Euclidean distance between two points in a plane",
55 "Calculate the compound interest given principal, rate, and

time",↪→
56 "Calculate the perimeter of a rectangle given its length and

width",↪→
57 "Sum all the digits of a given number",

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

58 "Calculate the area of a triangle given its base and height",
59 "Find the real roots of a quadratic equation",
60 "Calculate the sum of the cubes of a list",
61 "Round all elements in a list to two decimal places",
62 "Calculate the hypotenuse of a right triangle given the other two

sides",↪→
63 "Sum all odd numbers in a list",
64 "Generate the smallest N primes",
65 "Find the sum of all elements above the main diagonal of a

matrix"↪→
66]
67 def __init__(self, num_gen_qa=1000):
68 self.num_gen_qa = num_gen_qa
69 '''generate'''
70 def generate(self):
71 qa_pairs = []
72 for _ in range(self.num_gen_qa):
73

qa_pairs.append(self.randomgenone(self.question_types_data_processing))↪→
74 pickle.dump(qa_pairs,

open(f'random_qa_dp_{int(time.time())}.pkl', 'wb'))↪→
75 time.sleep(1)
76 qa_pairs = []
77 for _ in range(self.num_gen_qa):
78

qa_pairs.append(self.randomgenone(self.question_types_data_processing))↪→
79 pickle.dump(qa_pairs,

open(f'random_qa_dp_{int(time.time())}.pkl', 'wb'))↪→
80 time.sleep(1)
81 qa_pairs = []
82 for _ in range(self.num_gen_qa):
83

qa_pairs.append(self.randomgenone(self.question_types_numerical_computation))↪→
84 pickle.dump(qa_pairs,

open(f'random_qa_nc_{int(time.time())}.pkl', 'wb'))↪→
85 time.sleep(1)
86 qa_pairs = []
87 for _ in range(self.num_gen_qa):
88

qa_pairs.append(self.randomgenone(self.question_types_numerical_computation))↪→
89 pickle.dump(qa_pairs,

open(f'random_qa_nc_{int(time.time())}.pkl', 'wb'))↪→
90 '''randomgenone'''
91 def randomgenone(self, question_types):
92 # randomly choose a question type
93 question_type = random.choice(question_types)
94 # generate question and answer based on type
95 # 1. Calculate the average of an array
96 if question_type == "Calculate the average of an array":
97 array = [round(random.uniform(-10000, 10000)) for _ in

range(random.randint(5, 15))]↪→
98 question = f"Calculate the average of the array {array} and

round the result to two decimal places."↪→
99 answer = round(sum(array) / len(array), 2)

100 # 2. Find the maximum and minimum values of an array
101 elif question_type == "Find the maximum and minimum values of an

array":↪→
102 array = [round(random.uniform(-10000, 10000)) for _ in

range(random.randint(5, 15))]↪→
103 max_or_min = random.choice(['maximum', 'minimum'])
104 question = f"Find the {max_or_min} value of the array

{array}, give the result of multiplying it by 7."↪→
105 answer = max(array) if max_or_min == 'maximum' else

min(array)↪→
106 answer = answer * 7

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

107 # 3. Calculate the dot product of two arrays
108 elif question_type == "Calculate the dot product of two arrays":
109 length = random.randint(5, 15)
110 array1 = [random.randint(20, 1000) for _ in range(length)]
111 array2 = [random.randint(20, 1000) for _ in range(length)]
112 question = f"Calculate the dot product of the arrays {array1}

and {array2}."↪→
113 answer = sum(x * y for x, y in zip(array1, array2))
114 # 4. Sort an array in ascending order
115 elif question_type == "Sort an array in ascending order":
116 array = [random.randint(-10000, 10000) for _ in

range(random.randint(5, 15))]↪→
117 question = f"Sort the array {array} in ascending order."
118 answer = sorted(array)
119 # 5. Generate a set of random integers and find their sum
120 elif question_type == "Generate a set of random integers and find

their sum":↪→
121 array = [random.randint(1000, 100000) for _ in

range(random.randint(5, 15))]↪→
122 question = f"Here is a set of random integers {array}, please

find their sum."↪→
123 answer = sum(array)
124 # 6. Generate the smallest prime number greater than x
125 elif question_type == "Generate the smallest prime number greater

than x":↪→
126 num = random.randint(2000, 100000)
127 question = f"Generate the smallest prime number greater than

{num}."↪→
128 answer = nextprime(num)
129 # 7. Calculate the standard deviation of a list of floating-point

numbers↪→
130 elif question_type == "Calculate the standard deviation of a list

of floating-point numbers":↪→
131 array = [round(random.uniform(10, 1000), 2) for _ in

range(random.randint(5, 15))]↪→
132 mean = sum(array) / len(array)
133 variance = sum((x - mean) ** 2 for x in array) / len(array)
134 question = f"Calculate the standard deviation of the array

{array} and round the result to two decimal places."↪→
135 answer = round(variance ** 0.5, 2)
136 # 8. Generate a random matrix and find its inverse
137 elif question_type == "Generate a random matrix and find its

inverse":↪→
138 matrix_len = random.randint(2, 10)
139 matrix = [[random.randint(1, 1000) for _ in

range(matrix_len)] for _ in range(matrix_len)]↪→
140 question = f"Here is a random matrix {matrix}, please find

its inverse, you can answer with 'not invertible' if its
inverse does not exist."

↪→
↪→

141 det = np.linalg.det(matrix)
142 if int(det) != 0:
143 inv_matrix = np.linalg.inv(matrix).tolist()
144 else:
145 inv_matrix = "not invertible"
146 answer = inv_matrix
147 # 9. Count the frequency of one character in a string
148 elif question_type == "Count the frequency of one character in a

string":↪→
149 char = random.choice('abcdefghijklmnopqrstuvwxyz')
150 string = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(50, 100))) + char * 101↪→
151 question = f"Count the frequency of character {char} in the

string '{string}'."↪→
152 answer = string.count(char)
153 # 10. Square every number in a list

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

154 elif question_type == "Square every number in a list":
155 array = [random.randint(1, 10000) for _ in

range(random.randint(5, 15))]↪→
156 question = f"Square every number in the list {array}."
157 answer = [x ** 2 for x in array]
158 # 11. Find the median of an array
159 elif question_type == "Find the median of an array":
160 array = [random.randint(200000, 10000000) for _ in

range(random.randint(5, 15))]↪→
161 sorted_array = sorted(array)
162 question = f"Find the median of the array {array}, give the

result of multiplying it by 9."↪→
163 answer = sorted_array[len(sorted_array) // 2]
164 answer = answer * 9
165 # 12. Generate Fibonacci sequence up to n-th term
166 elif question_type == "Generate Fibonacci sequence up to n-th

term":↪→
167 n = random.randint(5, 20)
168 question = f"Generate the Fibonacci sequence up to the {n}-th

term."↪→
169 fib = [0, 1]
170 for i in range(2, n):
171 fib.append(fib[-1] + fib[-2])
172 answer = fib
173 # 13. Transpose a 2D matrix
174 elif question_type == "Transpose a 2D matrix":
175 matrix_len = random.randint(2, 10)
176 matrix = [[random.randint(-1000, 1000) for _ in

range(matrix_len)] for _ in range(matrix_len)]↪→
177 question = f"Transpose the matrix {matrix}."
178 answer = [list(row) for row in zip(*matrix)]
179 # 14. Reverse the string
180 elif question_type == "Reverse the string":
181 string = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(10, 20)))↪→
182 question = f"Reverse the string {string}, and splice it

behind the string 'appleiphone'."↪→
183 answer = 'appleiphone' + string[::-1]
184 # 15. Find the GCD (Greatest Common Divisor) of two numbers
185 elif question_type == "Find the GCD (Greatest Common Divisor) of

two numbers":↪→
186 answer = 0
187 while answer <= 100:
188 a, b = random.randint(200, 1000000), random.randint(200,

1000000)↪→
189 question = f"Find the GCD of the numbers {a} and {b}."
190 answer = math.gcd(a, b)
191 # 16. Calculate the factorial of a number
192 elif question_type == "Calculate the factorial of a number":
193 num = random.randint(10, 100)
194 question = f"Calculate the factorial of {num}."
195 answer = math.factorial(num)
196 # 17. Find the mode of a list of numbers
197 elif question_type == "Find the mode of a list of numbers":
198 array = [random.randint(113333, 113343) for _ in range(15)]
199 question = f"Find the mode of the array {array}, give the

result of multiplying it by 3."↪→
200 answer = max(set(array), key=array.count)
201 answer = answer * 3
202 # 18. Calculate the sum of even numbers in a list
203 elif question_type == "Calculate the sum of even numbers in a

list":↪→
204 array = [random.randint(1000, 1000000) for _ in

range(random.randint(10, 25))]↪→

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

205 question = f"Calculate the sum of even numbers in the list
{array}."↪→

206 answer = sum(x for x in array if x % 2 == 0)
207 # 19. Calculate the cumulative sum of an array
208 elif question_type == "Calculate the cumulative sum of an array":
209 array = [random.randint(1, 10000) for _ in

range(random.randint(5, 15))]↪→
210 question = f"Calculate the cumulative sum of the array

{array}."↪→
211 answer = [sum(array[:i+1]) for i in range(len(array))]
212 # 20. Extract first N elements in a list
213 elif question_type == "Extract first N elements in a list":
214 N = random.randint(5, 10)
215 array = [random.randint(1, 10000) for _ in

range(random.randint(15, 35))]↪→
216 question = f"Extract first {N} elements in the list {array}

and then plus 7 for each element in the sub-list."↪→
217 answer = array[:N]
218 answer = [a + 7 for a in answer]
219 # 21. Calculate cosine value
220 elif question_type == "Calculate cosine value":
221 degree = random.randint(0, 360) + 0.5
222 question = f"Calculate cosine value for {degree} degree and

round the result to two decimal places."↪→
223 answer = round(math.cos(math.radians(degree)), 2)
224 # 22. Reverse the order of elements in a list
225 elif question_type == "Reverse the order of elements in a list":
226 array = [random.randint(1, 10000) for _ in

range(random.randint(5, 15))]↪→
227 question = f"Reverse the order of the elements in the list

{array} and then plus 3 for each element."↪→
228 answer = array[::-1]
229 answer = [a + 3 for a in answer]
230 # 23. Calculate the sum of squares of numbers in an array
231 elif question_type == "Calculate the sum of squares of numbers in

an array":↪→
232 array = [random.randint(10, 10000) for _ in

range(random.randint(5, 15))]↪→
233 question = f"Calculate the sum of squares of the numbers in

the array {array}."↪→
234 answer = sum(x ** 2 for x in array)
235 # 24. Find the n-th smallest number in an array
236 elif question_type == "Find the n-th smallest number in an

array":↪→
237 array = [random.randint(1000, 10000000) for _ in

range(random.randint(5, 15))]↪→
238 n = random.randint(1, len(array))
239 question = f"Find the {n}-th smallest number in the array

{array}, give the result of multiplying it by 3."↪→
240 answer = sorted(array)[n - 1] * 3
241 # 25. Calculate the Euclidean distance between two points in a

plane↪→
242 elif question_type == "Calculate the Euclidean distance between

two points in a plane":↪→
243 x1, y1 = round(random.uniform(-100, 100), 2),

round(random.uniform(-100, 100), 2)↪→
244 x2, y2 = round(random.uniform(-100, 100), 2),

round(random.uniform(-100, 100), 2)↪→
245 question = f"Calculate the Euclidean distance between points

({x1}, {y1}) and ({x2}, {y2}), round the result to two
decimal places."

↪→
↪→

246 answer = round(math.sqrt((x2 - x1)**2 + (y2 - y1)**2), 2)
247 # 26. Find the intersection of two strings
248 elif question_type == "Find the intersection of two strings":

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

249 str1 = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(50, 100)))↪→

250 str2 = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(50, 100)))↪→

251 question = f"Find the intersection of string '{str1}' and
string '{str2}'."↪→

252 answer = ''.join(set(str1) & set(str2))
253 # 27. Calculate the compound interest given principal, rate, and

time↪→
254 elif question_type == "Calculate the compound interest given

principal, rate, and time":↪→
255 principal = random.randint(1000, 10000)
256 rate = round(random.uniform(1, 10), 2)
257 time = random.randint(1, 5)
258 question = f"Calculate the compound interest for principal

{principal}, rate {rate}%, and time {time} years, round
the result to two decimal places."

↪→
↪→

259 answer = round(principal * (1 + rate/100)**time, 2)
260 # 28. Find the length of the longest word in a string
261 elif question_type == "Find the length of the longest word in a

string":↪→
262 words = [''.join(random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(101, 200))) for _ in
range(random.randint(5, 15))]

↪→
↪→

263 string = ' '.join(words)
264 question = f"Find the length of the longest word in the

string '{string}'."↪→
265 answer = max(len(word) for word in words)
266 # 29. Count the number of vowels in a string
267 elif question_type == "Count the number of vowels in a string":
268 string = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(20, 50))) + 'a' * 101↪→
269 question = f"Count the number of vowels in the string

'{string}'."↪→
270 answer = sum(1 for char in string if char in 'aeiou')
271 # 30. Convert a list of Celsius temperatures to Fahrenheit
272 elif question_type == "Convert a list of Celsius temperatures to

Fahrenheit":↪→
273 celsius_list = [random.randint(-20, 40) for _ in range(5)]
274 question = f"Convert the list of Celsius temperatures

{celsius_list} to Fahrenheit, round the result to two
decimal places."

↪→
↪→

275 answer = [round(c * 9/5 + 32, 2) for c in celsius_list]
276 # 31. Calculate time difference between two time zones
277 elif question_type == "Calculate time difference between two time

zones":↪→
278 tz1, tz2 = random.sample(pytz.all_timezones, 2)
279 now = datetime.datetime.now()
280 time1 = pytz.timezone(tz1).localize(now)
281 time2 = pytz.timezone(tz2).localize(now)
282 time_difference = abs((time1 - time2).total_seconds())
283 question = f'Calculate time difference beween {tz1} and {tz2}

in seconds.'↪→
284 answer = time_difference
285 # 32. Find the leap year after a year
286 elif question_type == "Find the leap year after a year":
287 year = random.randint(1900, 2100)
288 while calendar.isleap(year):
289 year = random.randint(1900, 2100)
290 question = f"Find the leap year after year {year}."
291 answer = next(y for y in range(year + 1, year + 10000) if

calendar.isleap(y))↪→
292 # 33. Find the most common word in a paragraph
293 elif question_type == "Find the most common word in a paragraph":

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

294 words = ['apple', 'banana', 'orange', 'grape', 'pear',
'hello', 'iphone', 'newspaper']↪→

295 paragraph = ' '.join(random.choices(words, k=30))
296 question = f"Find the most common word in the paragraph

'{paragraph}', concatenate it with the second common word
in this paragraph."

↪→
↪→

297 answer =
Counter(paragraph.lower().split()).most_common(2)[0][0] +
Counter(paragraph.lower().split()).most_common(2)[1][0]

↪→
↪→

298 # 34. Calculate the perimeter of a rectangle given its length and
width↪→

299 elif question_type == "Calculate the perimeter of a rectangle
given its length and width":↪→

300 length, width = random.randint(100, 10000),
random.randint(100, 10000)↪→

301 question = f"Calculate the perimeter of a rectangle with
length {length} and width {width}."↪→

302 answer = 2 * (length + width)
303 # 35. Sum all the digits of a given number
304 elif question_type == "Sum all the digits of a given number":
305 num = int(str(random.randint(100, 99999)) +

'999999999999999')↪→
306 question = f"Sum all the digits of the number {num}."
307 answer = sum(int(digit) for digit in str(num))
308 # 36. Calculate the area of a triangle given its base and height
309 elif question_type == "Calculate the area of a triangle given its

base and height":↪→
310 base = round(random.uniform(100, 500), 2)
311 height = round(random.uniform(100, 500), 2)
312 question = f"Calculate the area of a triangle with base

{base} and height {height}, round the result to two
decimal places."

↪→
↪→

313 answer = round(0.5 * base * height, 2)
314 # 37. Find the real roots of a quadratic equation
315 elif question_type == "Find the real roots of a quadratic

equation":↪→
316 a = round(random.uniform(10, 200), 2)
317 b = round(random.uniform(10, 200), 2)
318 c = round(random.uniform(10, 200), 2)
319 question = f"Find the real roots of the quadratic equation

{a}xˆ2 + {b}x + {c} = 0, round the result to two decimal
places."

↪→
↪→

320 discriminant = b**2 - 4*a*c
321 if discriminant > 0:
322 root1 = (-b + math.sqrt(discriminant)) / (2*a)
323 root2 = (-b - math.sqrt(discriminant)) / (2*a)
324 answer = (round(root1, 2), round(root2, 2))
325 elif discriminant == 0:
326 root = -b / (2*a)
327 answer = round(root, 2)
328 else:
329 answer = "no real roots"
330 # 38. Calculate the sum of the cubes of a list
331 elif question_type == "Calculate the sum of the cubes of a list":
332 sequence = [random.randint(100, 10000) for _ in

range(random.randint(5, 15))]↪→
333 question = f"Calculate the sum of the cubes of the list

{sequence}."↪→
334 answer = sum([n**3 for n in sequence])
335 # 39. Round all elements in a list to two decimal places
336 elif question_type == "Round all elements in a list to two

decimal places":↪→
337 array = [random.uniform(100, 10000) for _ in

range(random.randint(5, 15))]↪→

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

338 question = f"Round all elements in the list {array} to two
decimal places."↪→

339 answer = [round(num, 2) for num in array]
340 # 40. Find the first recurring word in a string
341 elif question_type == "Find the first recurring word in a

string":↪→
342 words = [''.join(random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(5, 15))) for _ in
range(random.randint(5, 10))]

↪→
↪→

343 words = words * 3
344 random.shuffle(words)
345 paragraph = ' '.join(words)
346 question = f"Find the first recurring word in the paragraph

'{paragraph}', concatenate it with the second recurring
word in this paragraph."

↪→
↪→

347 def _find_recurring_words(paragraph):
348 words = paragraph.lower().split()
349 seen = set()
350 first, second = None, None
351 for word in words:
352 if word in seen:
353 if first is None:
354 first = word
355 elif second is None and word != first:
356 second = word
357 break
358 seen.add(word)
359 return first + second
360 answer = _find_recurring_words(paragraph)
361 # 41. Calculate the hypotenuse of a right triangle given the

other two sides↪→
362 elif question_type == "Calculate the hypotenuse of a right

triangle given the other two sides":↪→
363 side1 = random.randint(100, 20000)
364 side2 = random.randint(100, 20000)
365 question = f"Calculate the hypotenuse of a right triangle

with sides {side1} and {side2}, round the result to two
decimal places."

↪→
↪→

366 answer = round(math.sqrt(side1**2 + side2**2), 2)
367 # 42. Extract all the numbers in a string
368 elif question_type == "Extract all the numbers in a string":
369 string1 = random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(20, 50))↪→
370 string2 = random.choices('0123456789', k=random.randint(20,

50))↪→
371 string = string1 + string2
372 random.shuffle(string)
373 string = ''.join(string)
374 question = f"Extract all the numbers in the string '{string}'

in order and concatenate them."↪→
375 answer = ''.join(re.findall(r'\d+', string))
376 # 43. Convert a decimal number to its binary equivalent
377 elif question_type == "Convert a decimal number to its binary

equivalent":↪→
378 num = random.randint(1000, 1000000)
379 question = f"Convert the decimal number {num} to its binary

equivalent."↪→
380 answer = bin(num)[2:]
381 # 44. Calculate the difference between two lists
382 elif question_type == "Calculate the difference between two

lists":↪→
383 list1 = [random.randint(1, 50) for _ in range(10)]
384 list2 = [random.randint(1, 50) for _ in range(10)]
385 question = f"Calculate the difference between the lists

{list1} and {list2}."↪→

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

386 answer = list(set(list1) - set(list2))
387 # 45. Sum all odd numbers in a list
388 elif question_type == "Sum all odd numbers in a list":
389 array = [random.randint(1000, 1000000) for _ in

range(random.randint(5, 15))]↪→
390 question = f"Sum all the odd numbers in the list {array}."
391 answer = sum(x for x in array if x % 2 != 0)
392 # 46. Find out all the numbers that are not unique
393 elif question_type == "Find out all the numbers that are not

unique":↪→
394 array = [random.randint(20, 35) for _ in range(20)]
395 question = f"Find out all the numbers that are not unique in

the array {array}."↪→
396 answer = [num for num, count in Counter(array).items() if

count > 1]↪→
397 # 47. Flatten a 2D list into a 1D list
398 elif question_type == "Flatten a 2D list into a 1D list":
399 array_len = random.randint(2, 10)
400 array = [[random.randint(1, 1000) for _ in range(array_len)]

for _ in range(array_len)]↪→
401 question = f"Flatten the 2D list {array} into a 1D list."
402 answer = [item for sublist in array for item in sublist]
403 # 48. Remove duplicates from a list
404 elif question_type == "Remove duplicates from a list":
405 array = [random.randint(1, 20) for _ in range(15)]
406 while len(array) == len(set(array)):
407 array = [random.randint(1, 20) for _ in range(15)]
408 question = f"Remove duplicates from the list {array}."
409 answer = list(set(array))
410 # 49. Generate the smallest N primes
411 elif question_type == "Generate the smallest N primes":
412 n = random.randint(5, 20)
413 primes = []
414 candidate = 2
415 while len(primes) < n:
416 if all(candidate % i != 0 for i in range(2, int(candidate

** 0.5) + 1)):↪→
417 primes.append(candidate)
418 candidate += 1
419 question = f"Generate the smallest {n} prime numbers."
420 answer = primes
421 # 50. Find the sum of all elements above the main diagonal of a

matrix↪→
422 elif question_type == "Find the sum of all elements above the

main diagonal of a matrix":↪→
423 matrix_len = random.randint(2, 10)
424 matrix = [[random.randint(1000, 1000000) for _ in

range(matrix_len)] for _ in range(matrix_len)]↪→
425 question = f"Find the sum of all elements above the main

diagonal of the matrix {matrix}."↪→
426 answer = sum(matrix[i][j] for i in range(matrix_len) for j in

range(i + 1, matrix_len))↪→
427 # 51. Filter elements in a list based on a condition
428 elif question_type == "Filter elements in a list based on a

condition":↪→
429 array = [random.randint(-100, 100) for _ in

range(random.randint(10, 20))]↪→
430 condition = random.randint(-50, 50)
431 question = f"Filter all elements in the array {array} that

are greater than {condition}."↪→
432 answer = [x for x in array if x > condition]
433 # 52. Merge two dictionaries into one
434 elif question_type == "Merge two dictionaries into one":
435 dict1 = {chr(65 + i): random.randint(1, 100) for i in

range(random.randint(10, 20))}↪→

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

436 dict2 = {chr(67 + i): random.randint(1, 100) for i in
range(random.randint(10, 20))}↪→

437 question = f"Merge the dictionaries {dict1} and {dict2},
summing values for duplicate keys."↪→

438 answer = {k: dict1.get(k, 0) + dict2.get(k, 0) for k in
set(dict1) | set(dict2)}↪→

439 # 53. Extract all words of a specific length from a text
440 elif question_type == "Extract all words of a specific length

from a text":↪→
441 text = '

'.join([''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 10))) for _ in
range(random.randint(10, 20))])

↪→
↪→
↪→

442 length = random.randint(5, 10)
443 question = f"Find all words in the text '{text}' that have

exactly {length} characters."↪→
444 answer = [word for word in text.split() if len(word) ==

length]↪→
445 # 54. Extract email addresses from a text
446 elif question_type == "Extract email addresses from a text":
447 answer = [Faker().email() for _ in range(random.randint(2,

4))]↪→
448 text = answer +

[''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 10))) for _ in
range(random.randint(10, 20))]

↪→
↪→
↪→

449 random.shuffle(text)
450 text = ' '.join(text)
451 question = f"Find all email addresses in the text: '{text}'"
452 # 55. Sort a list of strings by their length
453 elif question_type == "Sort a list of strings by their length":
454 strings =

[''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 20))) for _ in
range(random.randint(10, 20))]

↪→
↪→
↪→

455 question = f"Sort the list {strings} by the length of each
string."↪→

456 answer = sorted(strings, key=len)
457 # 56. Check if two strings are anagrams
458 elif question_type == "Check if two strings are anagrams":
459 string1 = random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(10, 20))↪→
460 string2 = random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(10, 20)) if random.random() > 0.5 else
string1

↪→
↪→

461 random.shuffle(string2)
462 string1 = ''.join(string1)
463 string2 = ''.join(string2)
464 question = f"Check if '{string1}' and '{string2}' are

anagrams."↪→
465 answer = sorted(string1) == sorted(string2)
466 # 57. Extract hashtags from a social media post
467 elif question_type == "Extract hashtags from a social media

post":↪→
468 topic = [''.join(random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(5, 10))) for _ in
range(random.randint(10, 20))]

↪→
↪→

469 hashtags = ['#' +
''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 10))) for _ in
range(random.randint(2, 5))]

↪→
↪→
↪→

470 text = topic + hashtags
471 random.shuffle(text)
472 text = ' '.join(text)
473 question = f"Extract all hashtags from the post: '{text}'"

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

474 answer = [word for word in text.split() if
word.startswith("#")]↪→

475 # 58. Capitalize each word in a string
476 elif question_type == "Capitalize each word in a string":
477 text = '

'.join([''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 10))) for _ in
range(random.randint(10, 20))])

↪→
↪→
↪→

478 question = f"Capitalize each word in the string '{text}'."
479 answer = text.title()
480 # 59. Find the index of a substring in a string
481 elif question_type == "Find the index of a substring in a

string":↪→
482 string =

[''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 10))) for _ in
range(random.randint(10, 20))]

↪→
↪→
↪→

483 substring = random.choice(string)
484 string = ' '.join(string)
485 question = f"Find the index of the substring '{substring}' in

the string '{string}'."↪→
486 answer = string.find(substring)
487 # 60. Replace all vowels in a string with a specific character
488 elif question_type == "Replace all vowels in a string with a

specific character":↪→
489 string = '

'.join([''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 10))) for _ in
range(random.randint(10, 20))])

↪→
↪→
↪→

490 replacement = random.choice(["*", "$", "%", "&", "#", "@"])
491 question = f"Replace all vowels in the string '{string}' with

'{replacement}'."↪→
492 answer = ''.join([replacement if char.lower() in "aeiou" else

char for char in string])↪→
493 # not defined question
494 else:
495 raise ValueError(f'{question_type} is not defined')
496 # format and return
497 random_qa = {'question': question, 'answer': answer}
498 return random_qa

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

A.8 PROMPTS FOR CONSTRUTING FACT

We construct the FACT datasets by prompting GPT-4o with,

1. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Geography. Return them
as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

2. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with History. Return them as
a Python dictionary, with concise answers (3-5 words).

↪→

↪→

3. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Science. Return them as
a Python dictionary, with concise answers (3-5 words).

↪→

↪→

4. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Technology. Return them
as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

5. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Mathematics. Return them
as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

6. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Culture and Arts. Return
them as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

7. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Sports. Return them as a
Python dictionary, with concise answers (3-5 words).

↪→

↪→

8. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Politics. Return them as
a Python dictionary, with concise answers (3-5 words).

↪→

↪→

9. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Language and Grammar.
Return them as a Python dictionary, with concise answers (3-5
words).

↪→

↪→

↪→

10. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Current Affairs. Return
them as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

11. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Entertainment. Return
them as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

12. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Medicine and Health.
Return them as a Python dictionary, with concise answers (3-5
words).

↪→

↪→

↪→

13. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Economics and Business.
Return them as a Python dictionary, with concise answers (3-5
words).

↪→

↪→

↪→

14. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Religion and Mythology.
Return them as a Python dictionary, with concise answers (3-5
words).

↪→

↪→

↪→

15. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with General Knowledge.
Return them as a Python dictionary, with concise answers (3-5
words).

↪→

↪→

↪→

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

A.9 SOME PROMISING RESULTS

Here, we show some promising results and compare them with other LLMs.

Prompt: What is the 121st prime number?

Response [Llama3-8B SFT on ToolBridge]: The 121st prime number is 661. \n\nTo find the 121st prime number, we can use the Sieve of Eratosthenes

algorithm. This algorithm starts with a list of all the integers from 2 to 10000 (or any other upper limit), and then iterates through the list, marking as

composite (not prime) all multiples of the first prime number. It then moves on to the next unmarked number, which is the next prime number, and

repeats the process. This continues until all the numbers in the list have been marked as composite or prime.

Response [Llama3.1-70B-IT]: The 121st prime number is 691.

Response [GPT-4, Web UI]: The 121st prime number is 661.

Response [GPT-4o, Web UI]: The 121st prime number is 661.

Response [Gemma2-27B-IT]: The 121st prime number is 607. You can find prime numbers using primality tests or by looking them up in a list of prime numbers.

Prompt: What is the cosine of 20.4 degrees?

Response [Llama3-8B SFT on ToolBridge]: The cosine of 20.4 degrees is approximately 0.9372819894918915.

Response [Llama3.1-70B-IT]: The cosine of 20.4 degrees is approximately 0.9387.

Response [GPT-4, Web UI]: The cosine of 20.4 degrees is approximately 0.9362.

Response [GPT-4o, Web UI]: The cosine of 20.4 degrees is approximately 0.937.

Response [Gemma2-27B-IT]: You'll need a calculator to find the cosine of 20.4 degrees. Here's how: Make sure your calculator is in degree mode. Enter "cos 20.4"

and press enter. The result will be the cosine of 20.4 degrees. Let me know if you have any other questions.

Prompt: What is the area of a triangle with base 102.4 and height 215.9?

Response [Llama3-8B SFT on ToolBridge]: The area of a triangle is given by the formula: A = (1/2) * base * height. \n\nIn this case, the base is 102.4

and the height is 215.9. \n\nSubstituting these values into the formula, we get: \n\nA = (1/2) * 102.4 * 215.9 = 11054.080000000002.

Response [Llama3.1-70B-IT]: To find the area of a triangle, we use the formula: \n\nArea = (base × height) / 2\n\nGiven base = 102.4 and height = 215.9, we can

plug in these values:\n\nArea = (102.4 × 215.9) / 2\n\nFirst, let's calculate the product of base and height:\n102.4 × 215.9 = 22123.36\n\nNow, divide the result by

2:\n22123.36 / 2 = 11061.68\n\nSo, the area of the triangle is approximately 11061.68 square units.

Response [GPT-4, Web UI]: To find the area of a triangle, you can use the formula: Area = 1/2 × base × height. Plugging in the given values you provided: Area = 1/2

× 102.4 × 215.9 = 11041.92 square units. Therefore, the area of the triangle is 11041.92 square units.

Response [GPT-4o, Web UI]: The area of a triangle is calculated using the formula: Area = 1/2 × base × height. Plugging in the given values: Area = 1/2 × 102.4 ×

215.9 = 11053.12. So, the area of the triangle is 11,053.12 square units.

Response [Gemma2-27B-IT]: The area of a triangle is calculated as (base * height) / 2. Therefore, the area of a triangle with base 102.4 and height 215.9 is: (102.4 *

215.9) / 2 = 11054.08.

Prompt: Which is the higher value of 9.9 or 9.11

Response [Llama3-8B SFT on ToolBridge]: The higher value between 9.9 and 9.11 is 9.9.

Response [GPT-4o, Web UI]: 9.9 is higher than 9.11 when considering their decimal values. This is because 9.9 is equivalent to 9.90, which is greater than 9.11.

Response [Gemini, Web UI]: 9.11 is the higher value.

Prompt: Find the GCD of 270 and 192.

Response [Llama3-8B SFT on ToolBridge]: The GCD (Greatest Common Divisor) of 270 and 192 is 6.

Response [GPT-4o, Web UI]: The GCD (Greatest Common Divisor) of 270 and 192 is: \n6.

Response [Gemini, Web UI]: The GCD of 270 and 192 is 12.

Figure 5: Some promising results from LLMs trained on ToolBridge.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

A.10 EXTEND TO NATURAL WEB DATA

Our algorithm is not strictly reliant on the existing SFT datasets as it is equally applicable to natural
data sourced from the web. Because, by using LLMs like GPT-4o, raw web data can be transformed
into QA pairs, which can then be processed leveraging the proposed pipeline outlined in Section 3,
including the selection, conversion, and filtering of valuable data entries.

For instance, Google’s C4 dataset can be systematically transformed into QA pairs by using GPT-4o
with the following example prompt:

You are an expert assistant tasked with creating concise and
relevant Question-Answer (QA) pairs based on the content of a
given web page. Follow these guidelines:

↪→

↪→

1. Content Focus: Read the provided web page content carefully and
base all questions and answers solely on the information within
the page. Do not include external knowledge.

↪→

↪→

2. Question Types: Include a mix of factual, explanatory, and
inferential questions to test comprehension and understanding.↪→

3. Question Structure: Ensure questions are clear and specific. Use
diverse formats such as: What/Why/How questions.↪→

4. Answer Structure: Provide direct, accurate, and concise answers.
Avoid ambiguous or overly lengthy responses.↪→

Example Web Content:

Coffee is one of the most popular beverages in the world. It is made
from roasted coffee beans, which are seeds of the Coffea plant.
A standard cup of coffee contains approximately 95 milligrams of
caffeine. Studies suggest that consuming 400 milligrams of
caffeine per day is generally safe for most adults. Many people
drink coffee daily as part of their morning routine, with some
consuming 2 to 4 cups per day depending on their preference.

↪→

↪→

↪→

↪→

↪→

↪→

Example Output:

- Question 1: How much caffeine is in a standard cup of coffee?
- Answer: A standard cup of coffee contains approximately 95

milligrams of caffeine.↪→

- Question 2: If a person drinks 3 cups of coffee, how much caffeine
do they consume?↪→

- Answer: They consume 285 milligrams of caffeine (95 * 3 = 285).
- Question 3: If a person drinks 2 cups of coffee in the morning and

1 in the evening, how much caffeine do they consume in total?↪→

- Answer: They consume 285 milligrams of caffeine (95 * 2 + 95 =
285).↪→

- Question 4: How many cups of coffee would a person need to drink
to consume exactly 400 milligrams of caffeine?↪→

- Answer: They would need to drink approximately 4.2 cups of coffee
(400 ÷ 95 = 4.2).↪→

- Question 5: If a person reduces their daily coffee intake from 4
cups to 2 cups, how much less caffeine do they consume in a day?↪→

- Answer: They consume 190 milligrams less caffeine (95 * 4 - 95 * 2
= 380 - 190 = 190).↪→

Web Content:

PLACEHOLDER

Output:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Some examples of the output results are presented below,

Source data:

Schwarz has been the president of the Greater Cleveland Film Commission for over ten years. He has over thirty

years of experience in the film and television industries, working predominantly as a location manager and

producer. His work includes “Wild At Heart,” “My Name Is Earl,” “Entourage,” “The Comeback,” “From the Earth to

the Moon” and Tom Hanks and Steven Spielberg’s “Band of Brothers,” for which Ivan won a Golden Globe. The Film

Commission is the only nonprofit organization dedicated to bringing jobs and economic impact to Northeast Ohio

through the growth of a sustainable media production industry. Since passing the Ohio Motion Picture Tax Credit

in 2009, more than 110 productions have shot in Cleveland, including “The Avengers,” “Captain America: The Winter

Soldier,” and most recently, Matthew McConaughey’s “White Boy Rick” and Helen Hunt’s “I See You”.

Generated QA:

- Question1: How long has Schwarz been the president of the Greater Cleveland Film Commission?

- Answer: Schwarz has been the president of the Greater Cleveland Film Commission for over ten years.

- Question2: What is the primary goal of the Greater Cleveland Film Commission?

- Answer: The primary goal of the Greater Cleveland Film Commission is to bring jobs and economic impact to

Northeast Ohio through the growth of a sustainable media production industry.

- Question3: What significant legislation related to film production was passed in Ohio in 2009?

- Answer: The Ohio Motion Picture Tax Credit was passed in 2009.

Source data:

Earn monthly interest on our Citibank Time Deposits (also known as Fixed Deposits). What's more, you get to enjoy

the flexibility of making partial withdrawals before maturity date of your Time Deposit. Partial withdrawals in

multiples of RM5,000 before the maturity date. Option to pledge your Time Deposit for overdraft facility.

Continue to earn the original interest rate with your remaining balance. View your Citibank® Time Deposit

accounts across participating countries with a single login via Online Global View. Online account inquiries and

banking transactions via Citibank® or Citigold® Online. Make banking inquiries anytime, anywhere via live e-Chat,

'Call Me' function and 20 seconds1 call pickup. Eligible for protection by PIDM**. * Monthly interest is only

available for minimum deposit of RM50,000 and for a minimum tenure of 6 months. ** Click here for more details on

PIDM protection. 1From the moment you press 0 to speak to a CitiPhone officer. For the Citibank Account Terms and

Conditions, click here.

Generated QA:

- Question1: If a customer deposits RM100,000 into a Citibank Time Deposit account, how many partial withdrawals

of RM5,000 can they make before the maturity date?

- Answer: They can make 20 partial withdrawals of RM5,000 each (RM100,000 ÷ RM5,000 = 20).

- Question2: A customer earns monthly interest on a Time Deposit of RM200,000 with an interest rate of 2% per

annum. How much interest will they earn in one month?

- Answer: The monthly interest is RM333.33 (RM200,000 × 2% ÷ 12 = RM333.33).

- Question3: If a customer deposits RM75,000 for 6 months with an interest rate of 3% per annum, what is the

total interest earned at the end of the tenure?

- Answer: The total interest earned is RM1,125 (RM75,000 × 3% ÷ 12 × 6 = RM1,125).

- Question4: A customer deposits RM120,000 for 12 months with a 4% annual interest rate. How much interest will

they earn in total?

- Answer: The total interest earned is RM4,800 (RM120,000 × 4% = RM4,800).

- Question5: If the monthly interest on a Time Deposit of RM60,000 is RM100, what is the annual interest rate?

- Answer: The annual interest rate is 2% (RM100 × 12 ÷ RM60,000 = 2%).

Figure 6: Sample outcomes of converting natural web data from Google’s C4 dataset into QA format
with the help of GPT-4o.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

A.11 CONSTRUCT FACT WITH GEMINI

In Section 4.4, we employ GPT-4o, together with the prompts outlined in Appendix A.8, to construct
the FACT dataset, which is utilized to evaluate the extent to which ToolBridge enhances the LLMs’
capability for factual retrieval. Here, we also use Google Gemini to yield three batches of the FACT
datasets termed Gemini-FACT-B(n), with each batch corresponding sequentially to the five prompts
outlined in Appendix A.8. Table 12 demonstrates the evaluation results.

Models SFT data Gemini-FACT-B1 Gemini-FACT-B2 Gemini-FACT-B3
Llama3-8B - 75.8 52.5 60.3

Llama3-8B-Lora ToolBridge§ 83.4 61.7 66.2
Llama3-8B-Lora ToolBridge 89.2 63.3 71.2

Mistral-7B - 77.5 59.2 67.8
Mistral-7B-Lora ToolBridge§ 85.8 61.5 70.4
Mistral-7B-Lora ToolBridge 90.8 64.7 74.7

Table 12: Experimental results on Gemini-FACT under zero-shot setting.

We can observe that the models trained on ToolBridge consistently achieve superior performance.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

A.12 DISTRIBUTION OF PYTHON PACKAGES ADOPTED IN TOOLBRIDGE

Here, we provide the distribution of all Python packages used in ToolBridge.

Python Package Frequency Python Package Frequency Python Package Frequency
math 2669 re 2234 sympy 1838
nltk 1616 datetime 1512 langdetect 489

numpy 271 collections 248 string 246
fractions 209 pandas 205 itertools 121
statistics 118 sklearn 92 io 65
requests 54 difflib 35 calendar 34

bs4 32 os 31 random 23
functools 23 urllib 20 json 17
matplotlib 12 scipy 10 operator 8

xml 8 base64 7 codecs 6
sys 5 PIL 5 bisect 4
csv 3 subprocess 3 cmath 3
time 2 pytz 2 ipaddress 2

decimal 2 unicodedata 2 dateutil 2
pytest 2 enum 2 heapq 2

keyword 1 typing 1 inspect 1
configparser 1 struct 1 ctypes 1

networkx 1 lxml 1 pylab 1
cycler 1 torch 1 html 1

textwrap 1 ast 1 locale 1

Table 13: The usage frequency of all Python packages involved in ToolBridge.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

A.13 REVIEW PROCESS FOR SFT DATASETS IN TABLE 1

The integration of Supervised Fine-tuning (SFT) datasets presented in Table 1 was primarily carried
out by conducting keyword searches (e.g., ”supervised fine-tuning dataset”, ”SFT dataset”, ”instruc-
tion tuning dataset”, and ”LLM dataset”) across platforms including Google Scholar, Hugging Face
and GitHub. Representative search results include the following resources:

• https://github.com/Zjh-819/LLMDataHub,
• https://github.com/RenzeLou/awesome-instruction-learning,
• https://github.com/raunak-agarwal/instruction-datasets,
• https://github.com/zhilizju/Awesome-instruction-tuning,
• https://arxiv.org/abs/2402.18041,
• https://arxiv.org/abs/2402.06196.

Based on these resources, we conducted a manual review of all referenced datasets, including verify-
ing whether the dataset qualified as an SFT dataset, assessing its open-source availability, identifying
potential overlaps with existing collected datasets, and examining other potential concerns, such as
copyright issues. At last, we derived Table 1.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

A.14 THE PROMPT SELECTION STRATEGY FOR LLAMA3-70B

To select an appropriate prompt for LLama3-70B to perform valuable data entries selection, we first
designed the following candidate prompts:

Prompt1: Your task is to determine whether you can add calls to a
Python API to a piece of text. The calls should help you get
information required to complete the text. You only need to
respond with "Yes" or "No", "Yes" means you can and "No" means
you can't.

↪→

↪→

↪→

↪→

Input:

PLACEHOLDER

Output:

Prompt2: Determine if you can add Python API calls to the text to
complete it. Respond with "Yes" or "No".↪→

Input:

PLACEHOLDER

Output:

Prompt3: Prompt1 with example inputs outputs in Appendix A.1.

Prompt4: Prompt2 with example inputs outputs in Appendix A.1.

Then, we randomly sample 50 data entries from each dataset involved in Table 1 to serve as the test
set for evaluating the effectiveness of these prompts. For each entry, five people label it to determine
whether inserting Python code at the appropriate places can assist in yielding its subsequent contents.
The final label for each data entry is determined based on the majority rule.

The evaluation results for each prompt are shown in the following table:

Prompt ID True Positive False Positive False Negative True Negative Recall FPR
1 781 452 0 17 100.0% 96.4%
2 781 432 0 37 100.0% 92.1%
3 732 10 49 459 93.7% 2.1%
4 679 25 102 444 86.9% 5.3%

Table 14: Ablation studies on candidate prompts for LLama3-70B.

Given the role of LLama3-70B as outlined in Section 3.2, the central aim at this stage is to maximize
recall — safeguarding against the premature discarding of valuable data entries — while maintaining
a sufficiently low false positive rate (FPR) to prevent excessive computational overhead for GPT-4o-
mini in the subsequent stage.

In Section 3.3, we elaborate that GPT-4o-mini performs a secondary screening of the entries, refining
and further filtering data entries deemed valueless. Its higher accuracy and generalizability compared
to LLama3-70B make it the principal decision-making LLMs in our pipeline. However, owing to its
significantly higher computational cost, it is essential to minimize the volume of data entries passed
to GPT-4o-mini.

Based on the evaluation results in Table 14, Prompt 3 demonstrated the most balanced performance
for our requirements, achieving high recall (93.7%) and a notably low FPR (2.1%). While Prompt 1
and Prompt 2 achieved perfect recall, their exceedingly high FPRs (96.4% and 92.1%, respectively)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

made them unsuitable for the preliminary filtering task, as they would result in an excessive volume
of data entries being forwarded to GPT-4o-mini. Conversely, Prompt 4’s lower recall (86.9%) made
it less effective at retaining valuable entries.

Considering the performance of Prompt 3, we determined it was sufficient to meet the requirements
for LLama3-70B’s role in the ToolBridge pipeline. Consequently, we selected Prompt 3 as the final
prompt and did not conduct further ablation studies for LLama3-70B prompt design.

39

	Introduction
	Related Work
	ToolBridge
	Dataset Pool Construction
	Valuable Data Entries Selection
	Valuable data Entries conversion
	Data Entries Filtering by Consistency Validation

	EXPERIMENTS
	Dataset Statistics of ToolBridge
	Experimental setup
	Results on Standard Benchmarks
	Results on Custom Benchmarks

	Conclusion
	Appendix
	LLama3-70B Prompts
	GPT-4o-mini Prompts
	Detecting Simple Code Structures: Assignment Followed by Print Statement
	Optimizing Dataset Quality by Removing Non-Executable and Slow Tool Calls
	Compare Outputs from Llama3 Trained on C and ToolBridge
	Links to data sources used in the dataset pool
	Templates for Yielding RandomQA DATASET
	Prompts for Construting FACT
	Some Promising results
	Extend to Natural Web Data
	Construct FACT with Gemini
	Distribution of Python Packages adopted in ToolBridge
	Review Process for SFT datasets in Table 1
	The Prompt selection strategy For LLama3-70B

