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ABSTRACT

Through the integration of external tools, large language models (LLMs) such as
GPT-4o and Llama 3.1 significantly expand their functional capabilities, evolving
from elementary conversational agents to general-purpose assistants. We contend
that the primary drivers of these advancements are the quality and diversity of the
training data. However, the existing LLMs with external tool integration provide
only limited transparency regarding their datasets and data collection approaches,
which has led to the initiation of this study. Specifically, in this work, we endeavor
to present a detailed exposition of the methodology for constructing datasets that
facilitate LLMs in effectively learning how to utilize external tools and make this
process available to the public through the introduction of ToolBridge. ToolBridge
proposes to leverage a collection of general open-access datasets as its raw dataset
pool and incorporates a series of strategies to identify the appropriate data entries
for external tool API insertions. By supervised fine-tuning (SFT) on these curated
data entries, LLMs can invoke external tools in appropriate contexts to boost their
predictive accuracy, particularly for essential functions including factual retrieval,
data processing and numerical computation. Our experiments meticulously isolate
model architectures and training configurations, zeroing in exclusively on the role
of data. The experimental results indicate that LLMs trained on ToolBridge exhibit
consistent performance gains on both standard benchmarks and custom evaluation
datasets. All associated code and data will be released as open source, promoting
transparency and facilitating the broader community to explore methodologies for
equipping LLMs with external tools capabilities.

1 INTRODUCTION

Large language models (LLMs) have revolutionized natural language processing, excelling in tasks
including question answering, summarization, and text generation Jiang et al. (2023); Achiam et al.
(2023); Dubey et al. (2024); Gunter et al. (2024); Team et al. (2024). Despite the impressive achieve-
ments of LLMs, they persistently underperform in fundamental areas, such as arithmetic and factual
lookup, where external tools can effectively provide solutions Schick et al. (2024).

Consequently, there has been a rise in research efforts committed to equipping LLMs with the ability
to utilize external tools. These efforts can be broadly categorized into two distinct areas: (1) function
calling, such as Toolllm Qin et al. (2023) and API-Bank Li et al. (2023), which offer curated datasets
and standardized evaluation protocols to systematically assess and compare the tool-use capabilities
of LLMs, focusing on enabling LLMs to function as agents that call APIs without requiring explicit
training on their usage. (2) tool former, exemplified by GPT-4o and Toolformer Schick et al. (2024),
which seek to empower LLMs with the capability to autonomously invoke and utilize external tools
during inference, emphasizing advanced reasoning by enabling LLMs to discern which external tool
to call, the appropriate timing for the call, and the systematic parsing and integration of the execution
results into the generated text. This study primarily concentrates on the latter area.

Within the latter context, Llama 3.1 Dubey et al. (2024) is trained to utilize Brave Search, Wolfram
Alpha API and Python interpreter by incorporating synthetic data combined with human-annotated
data. Toolformer Schick et al. (2024) adopts a self-supervised training strategy to equip LLMs with
the capability to leverage diverse tools effectively. However, these existing works tend to either only
open-source their trained models and code or restrict access to the models through usage interfaces
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User: “Calculate the answer to: 5^2.”

Assistant: “The answer to 5^2 is <python>answer = 5**2\nprint(answer)</python><result>25</result> 25.”

User: “Standardize the following date to the ISO 8601 format.\nJuly 26th, 2021.”

Assistant: “The standardized date in ISO 8601 format is: <python>from datetime import datetime\ndate_str = 'July 26th, 2021'\ndate_obj = 

datetime.strptime(date_str, '%B %dth, %Y')\niso_date = date_obj.date().isoformat()\nprint(iso_date)</python><result>2021-07-26</result> 

2021-07-26.”

User: “Question: What's the answer to that question: what currency do the ukraine use?\nAnswer:”

Assistant: “The currency used in Ukraine is the <python>import requests\n\nresponse = 

requests.get('https://restcountries.com/v3.1/name/Ukraine')\ncurrency = response.json()[0]['currencies']\ncurrency_code = 

list(currency.keys())[0]\ncurrency_name = currency[currency_code]['name']\nprint(currency_name)</python><result>Ukrainian 

hryvnia</result> Ukrainian hryvnia (UAH).”

User: “Solve 5*z - 180 = -165 for z. What is the answer?”

Assistant: “To solve for z in the equation 5*z - 180 = -165, we need to isolate z on one side of the equation. \n\nFirst, we can add 180 to both 

sides of the equation to get rid of the constant term on the left side: \n\n5*z - 180 + 180 = -165 + 180 \n\nSimplifying the left side, we get: 

\n\n5*z = 15 \n\nNext, we can divide both sides of the equation by 5 to isolate z: \n\n5*z/5 = 15/5 \n\nSimplifying, we get: <python>from 

sympy import symbols, Eq, solve\nz = symbols('z')\nequation = Eq(5*z - 180, -165)\nsolution = solve(equation, 

z)\nprint(solution[0])</python><result>3</result>\n\nz = 3 \n\nTherefore, the solution to the equation 5*z - 180 = -165 is z = 3.”

Figure 1: Examples of data entries from ToolBridge. The proposed pipeline is capable of gener-
ating a large volume of data entries to facilitate model learning to utilize external tools.

Achiam et al. (2023); Dubey et al. (2024); Gunter et al. (2024). The data underlying the training of
these models is commonly withheld from public disclosure, enveloped in secrecy.

The widespread availability of pre-trained models stands in stark contrast to the limited transparency
surrounding their training datasets, which impedes the community’s progress in advancing discov-
eries in this area. This emphasizes the critical need to explore ways to create high-quality, publicly
available datasets for training LLMs to utilize external tools to facilitate their reasoning process.

In response to the challenges discussed, this paper proposes a pipeline for the large-scale creation of
datasets tailored to equip LLMs with the capability to effectively utilize external tools. Specifically,
we begin by aggregating a substantial collection of open-source datasets used for LLMs supervised
fine-tuning (SFT) from the community, which circumvents proprietary concerns including copyright
issues. Upon establishing the dataset pool, we propose a systematic strategy to assist in identification
of valuable data entries and convert them into a standardized format. Finally, consistency validation
is conducted to further boost the quality of the converted data entries and ToolBridge is constructed.
As demonstrated in Figure 1, we showcase the data entries from ToolBridge, which function to guide
LLMs in understanding how to incorporate external tools in appropriate contexts, thereby improving
the accuracy and reliability of their outputs. For instance, the third case in Figure 1 serves to instruct
LLMs in leveraging the requests module to gather factual information from web sources. Moreover,
LLMs can employ the fourth scenario to understand how sympy library can be applied to solve linear
equation of one variable.

In summary, the contributions of this paper are as follows,

• We propose a pipeline capable of producing large volumes of entries for training LLMs to
incorporate various external tools. The collection of over 178K yielded data entries, named
ToolBridge, will be open-sourced to the community, marking a significant advancement in
the transparency and accessibility of the data for training LLMs to leverage external tools.

• Our experimental results demonstrates that LLMs supervised fine-tuned on ToolBridge can
achieve consistent performance improvements on several standard benchmarks.

• We also propose to curate a set of data entries to examine the abilities of LLMs in numerical
calculation, data processing and factual retrieval before and after supervised fine-tuning on
ToolBridge. Experimental outcomes reaffirm the effectiveness of ToolBridge

This is, to our knowledge, the first work in the domain of enabling LLMs to learn to utilize external
tools that open-sources the training data. We anticipate that ToolBridge will facilitate the community
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Dataset Pool 𝒫

Valuable Data
Entries Selection

~20 M

Valuable Data
Entries Conversion

Valuable Data
Entries Filtering

~1.5 M

Entries 𝒱 Entries 𝒞

~0.36 M

ToolBridge

~0.17 M

(1) Collect SFT datasets and reformat
(2) Estimate 𝑊! and 𝑄!

(3) Obtain top 10 million entries based on 𝑊! and 𝑄!
(4) Select appropriate data entries with LLama3-70B

(5) Insert Python code with GPT-4o-mini
(6) Execute Python code and insert returned results

(7) Consistency Validation
(8) ToolBridge Constructed

Figure 2: Overview of the construction pipeline for ToolBridge. The construction of ToolBridge
follows three main steps: identifying valuable data entries in the dataset pool, converting these data
entries through the integration of external tool calls and finally conducting a thorough cleanup of the
converted data entries by consistency validation.

in further investigating the ability of LLMs to use external tools, thereby advancing LLMs from basic
conversational models to versatile general-purpose assistants.

2 RELATED WORK

Tool Use for LLMs. Enabling LLMs to use external tools like search engines and code interpreters
significantly broadens the range of tasks LLMs can address and strengthens their predictive accuracy.
The methodologies for equipping LLMs with the capability to employ external tools can be broadly
categorized into two paradigms, i.e., function calling and tool former. In particular, function calling
emphasizes allowing LLMs to act as agents that invoke APIs using predefined functions and prompts
without necessitating explicit training on their usage Li et al. (2023); Shen et al. (2024). Conversely,
tool former prioritize empowering LLMs with the ability to autonomously identify appropriate tools,
determine the optimal invocation timings, and incorporate the outputs into their reasoning processes.
For example, Komeili (2021) proposed to enable LLMs to adopt a search engine by learning to yield
an internet search query based on the context, and then condition its generated response on the search
results. Cobbe et al. (2021) facilitated LLMs’ utilization of a calculator during inference by training
the models with calculation annotations injected into the datasets. Thoppilan et al. (2022) proposed
to assist LLMs in invoking external tools from a toolset, comprising an information retrieval system,
a calculator and a translator, by training it to produce a special string TS. Gao et al. (2023) suggested
adopting LLMs to interpret natural language problems and yield programs as intermediate reasoning,
while delegating the solution process to a runtime environment like a Python interpreter. Toolformer
Schick et al. (2024) allowed LLMs to learn how to adopt the external tools through a self-supervised
learning approach. Of late, the works like GPT-4o, Llama 3.1 Dubey et al. (2024) and Apple LLMs
further strengthened LLMs’ ability to leverage external tools through improvements in training data,
model architectures, etc. This study falls into the latter category, namely tool former.

Although previous research in the domain of tool former are highly praiseworthy, they seldom make
the data required for training their models publicly available, which is crucial for the community to
advance research and build upon their contributions. This paper presents a pipeline aimed at yielding
data entries for training models in external tool utilization, along with open-sourcing all data entries
produced using this methodology This open access facilitates the development of more effective and
efficient algorithms for the next generation of LLMs integrated with external tool functionalities.

Training Datasets for Tool Use. Previous datasets designed to train LLMs to utilize external tools
primarily fall within the function calling paradigm. For instance, Qin et al. (2023) collected a high-
quality instruction-tuning dataset ToolBench, which is constructed automatically adopting ChatGPT.
Li et al. (2023) introduced API-Bank, which encompasses 1,888 tool-use dialogues from 2,138 APIs
spanning 1,000 distinct domains. However, to the best of our knowledge, there is a notable absence
of research efforts that have open-sourced training datasets within the tool former domain.

To address this significant gap, this paper presents ToolBridge - a dataset of more than 178,000 data
entries to support LLMs in effectively learning to utilize external tools within tool former paradigm.
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3 TOOLBRIDGE

Previous LLMs like GPT-4o and Llama 3.1 only provide limited information on how they curate the
data entries to empower themselves to employ external tools. To address the lack of transparency in
training data, we propose a generic pipeline for constructing large-scale datasets from public sources
to enable LLMs to use external tools. As indicated in Figure 1, the whole pipeline follows three main
steps: valuable data entries selection, conversion and filtering.

Source # of Entries Source # of Entries
School Math 0.25M 248,481 LIMA 1,330

code instructions 120k alpaca 121,959 TigerBot 1,199,030
Platypus 24,926 TSI-v0 5,607,620

ShareGPT90K 90,665 LaMini-Instruction 2,585,615
WizardLM Orca 54,974 Bactrian-X 67,017

WizardLM evol instruct 70k 70,000 Baize 210,311
tiny-codes 1,632,309 COIG 178,246

WizardLM evolve instruct V2 143,000 MOSS SFT 1,074,551
No Robots 10,000 AlpacaDataCleaned 51,760

ign clean instruct dataset 500k 508,620 GPT-4all 808,812
GPT-4-LLM 113,003 Alpaca 52,002
ChatAlpaca 20,000 self-instruct 82,439
OpenOrca 4,233,923

Table 1: The composition of our dataset pool P to construct ToolBridge.

3.1 DATASET POOL CONSTRUCTION

Our work starts with a review of the data accessible in the community for the purpose of supervised
fine-tuning (SFT). Table 1 summarizes the results. Owing to the diverse range of teams contributing
the SFT datasets, there is significant heterogeneity in their formats, which introduces difficulties on
effective model training. Hence, we first reformat all candidate datasets into a standardized ChatML
format for further processing:

data entry = [{"role": "user", "content": "..."},
{"role": "assistant", "content": "..."},
...].

After reformatting all datasets, we construct the dataset pool as P = {(Di,Wi, Qi) | i ≥ 0}, where
Di denotes one candidate dataset, Wi measures the proportion of valuable entries for each dataset,
and Qi serves as a metric for assessing the quality of each dataset.

Practically, to obtain Wi, we first perform random sampling onDi to produce a subset Si, containing
1% data entries of Di. Llama3-70B is then applied to judge the appropriateness of each entry in Si
for external tool invocation to enhance reasoning, where the prompt employed is shown in Appendix
A.1. In generally, if an entry is deemed suitable for invoking external tools to help LLMs’ reasoning
process, we label it as a valuable entry. At last, we determine Wi as the ratio between the number of
valuable data entries and the total number of data entries in Si.
Additionally, we observe that some candidate datasets within the dataset poolP are partially sourced
from the Internet via web scraping, resulting in the inclusion of certain meaningless HTML tags and
other irrelevant content. Thus, we incorporate Qi as an additional metric to evaluate the data quality
of each candidate dataset. To compute Qi, we randomly sample N data entries fromDi and conduct
a manual review to identify any presence of irrelevant characters or content, where we configure N
as 100 by default. Qi is then derived as the fraction of data entries devoid of irrelevant contents over
the total number of sampled entries N .

3.2 VALUABLE DATA ENTRIES SELECTION

Upon constructing the dataset pool P , due to the large scale of candidate data entries, we propose to
select 10 million data entries from P for further processing tailored to the dataset attributes Wi and
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Qi. Particularly, we first arrange Di in descending order guided by the value of Qi ×Wi. Then, the
data entries are selected from the top-ranked datasets sequentially until the overall volume amounts
to 10 million data entries.

Subsequently, Llama3-70B with the prompt detailed in Appendix A.1 is applied to ascertain whether
each entry within the 10 million samples is appropriate for LLMs to enhance reasoning via utilizing
external tools. And we represent the collection of these appropriate data entries with V , namely, the
valuable data entries. In Table 2, we present the distribution of V across the respective datasets from
which they are derived. It is observed that leveraging the capabilities of Llama3-70B, we can refine
the 10 million data entries down to 1,527,153 valuable entries.

Source # of Entries Source # of Entries
School Math 0.25M 205,996 ChatAlpaca 2,643

Platypus 7,776 ShareGPT90K 24,348
WizardLM Orca 8,659 WizardLM evol instruct 70k 28,293

WizardLM evolve instruct V2 5,399 MOSS SFT 136,603
TigerBot 182,249 GPT-4all 47,627

COIG 15,181 LIMA 309
AlpacaDataCleaned 13,805 GPT-4-LLM 9,978

Bactrian-X 3,313 OpenOrca 834,974

Table 2: The composition of the selected valuable data entries V .

3.3 VALUABLE DATA ENTRIES CONVERSION

Following valuable data entries selection, we further convert the selected entries, allowing LLMs to
learn how to invoke the external tools effectively within the proper context to support their reasoning
process. In particular, we draw on previous methodologies Schick et al. (2024); Dubey et al. (2024);
Thoppilan et al. (2022) by embedding special characters in each selected entry to enable the external
tool invocation, and LLMs are used to pinpoint the appropriate context for calling external tools.

Algorithm 1 Process Special Tokens During Inference
Require: Python interpreter and inputs.
Ensure: Execute the code enclosed by <python> and </python>, and use the captured output

as a condition for the subsequent text generation.
1: Initialize an empty list outputs
2: Initialize condition← None
3: while outputs is empty or outputs[−1] ̸= <|end of text|> do
4: output← LLM(inputs)
5: if output = <python> then
6: start← length of outputs + length of <python>
7: else if output = </python> then
8: Extract substring code← outputs[start :]
9: condition← ExecutePython(code)

10: end if
11: Append output to both inputs and outputs
12: if condition is not None then
13: Append condition to both inputs and outputs
14: Reset condition← None
15: end if
16: end while
17: Post-process and return outputs

As illustrated in the examples in Figure 1, <python> and </python> are represented as a pair of
special tokens. The content enclosed by the special tokens specifies the Python invocation for using
external tools. During the construction of ToolBridge, we predominantly use GPT-4o-mini to insert
the special tokens in the appropriate context within each data entry identified in Section 3.2, as well
as to create the associated code for invoking external tools. To facilitate the return of tool execution
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results, we examine the code generated by GPT-4o when calling Python API as part of its reasoning
process. It is observed that the final results are always printed at the end of the code. In line with the
strategy of GPT-4o, we include a directive in the prompt for GPT-4o-mini to print the final result of
the tool execution as the concluding line of the code (refer to Appendix A.2).

Following GPT-4o-mini’s processing of V , we retrieve the code segments between <python> and
</python>, execute them, and finally insert the captured output after corresponding </python>,
where the output will be wrapped within another pair of special tokens, denoted as <result> and
</result>. To summarize, the tool invocation in ToolBridge can be formatted as,

<python>generated code</python><result>captured output</result>.

During the reasoning process of the models, it is sufficient to verify the existence of the pre-defined
special tokens <python> and </python>. If identified, the Python interpreter will be adopted to
execute the enclosed code between the special tokens, and the final result is wrapped in <result>
and </result> to condition further text generation. Algorithm 1 describes the primary inference
process of LLMs post-SFT on the ToolBridge dataset.

Table 3 summarizes the composition of the data entries after converting V , denoted as C.

Source # of Entries Source # of Entries
School Math 0.25M 150,104 ChatAlpaca 116

Platypus 82 ShareGPT90K 3
WizardLM Orca 88 WizardLM evol instruct 70k 3,716

WizardLM evolve instruct V2 8 OpenOrca 101,715
TigerBot 66,793 GPT-4all 8,936

COIG 7,877 LIMA 107
AlpacaDataCleaned 4,510 GPT-4-LLM 2,577

Bactrian-X 84

Table 3: The composition of the converted data entries C.

It is worth noting that the data entries in C, totaling 364,605, are significantly fewer than those in V
which amount to 1,527,153. We attribute this to the following factors,

• The returned data entries that lack the Python code inserted by GPT-4o-mini are eliminated.
Approximately 19.2% of the data entries in V fall under this category, which indicates that
GPT-4o-mini regards these entries as not requiring external tools to aid in LLMs’ reasoning.

• The returned data format did not match the expected structure, resulting in parsing failure.
Instances include an unequal count of <python> and </python> tokens, modifications
to the original content alongside Python code insertion, to name a few. Such entries account
for approximately 27.2% of the data entries in V .

• The request to GPT-4o-mini fails. These data entries constitute approximately 2.1% of V .

• With Python’s ast library, we filter out the returned data entries where the inserted code is
only an assignment followed by a print statement. Such entries represent about 4.8% of V .
We provide the detailed algorithm we use to filter such data entries in Appendix A.3.

• We filter around 22.8% data entries of V to remove tool calls that could not be executed or
the execution time of the tool exceeded 30 seconds (refer to Appendix A.4 for details).

In summary, 23.9% of the entries from V remain in the converted data entries C.

3.4 DATA ENTRIES FILTERING BY CONSISTENCY VALIDATION

In practice, we observe that LLMs trained on C do not always base their subsequent contents on the
results produced by the yielded Python code during inference. So, we conduct a reassessment of the
data entries within C and observe that the execution results from the code generated by GPT-4o-mini
also does not always align with the ensuing text, which can explain LLMs’ sporadic inconsistencies
between tool execution results and further contents during inference.
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To alleviate the issues above, we propose to filter out the entries in C where the tool execution results
are inconsistent with the following text, which is accomplished by validating if the execution results
are included in the subsequent content in our approach. Upon the conclusion of the filtering process,
the open-source dataset ToolBridge is constructed. In Appendix A.5, we compare the generated text
of Llama3-8B after SFT on C and ToolBridge, which demonstrates the necessity for the data entries
filtering by consistency validation.

The data sources that comprise ToolBridge, totaling 178,023 entries, are outlined in Table 4, which
represents 48.8% of the total data entries in C.

Source # of Entries Source # of Entries
School Math 0.25M 100,836 ChatAlpaca 17

Platypus 35 ShareGPT90K 3
WizardLM Orca 29 WizardLM evol instruct 70k 794

WizardLM evolve instruct V2 1 OpenOrca 46,449
TigerBot 22,306 GPT-4all 2,616

COIG 2,706 LIMA 27
AlpacaDataCleaned 1,129 GPT-4-LLM 1,043

Bactrian-X 32

Table 4: The final composition of our proposed ToolBridge.

4 EXPERIMENTS

In this section, we first present the statistics of ToolBridge and then investigate whether LLMs with
SFT on ToolBridge could leverage external tools to facilitate their reasoning process. The evaluation
consists of two components: (1) by comparing LLMs’ performance on standard benchmarks before
and after SFT on ToolBridge (Section 4.3); (2) by evaluating the accuracy of the models on custom
datasets RandomQA and FACT (Section 4.4).

Source # of Tool Use # of Libraries Source # of Tool Use # of Libraries
School Math 0.25M 104,983 8 ChatAlpaca 73 1

Platypus 36 3 ShareGPT90K 3 0
WizardLM Orca 33 4 WizardLM evol instruct 70k 836 22

WizardLM evolve instruct V2 1 0 OpenOrca 46,832 28
TigerBot 22,507 40 GPT-4all 2,870 42

COIG 2,719 28 LIMA 27 2
AlpacaDataCleaned 1,139 23 GPT-4-LLM 1,052 14

Bactrian-X 36 3

Table 5: Statistics of the usage of external tools in ToolBridge.

4.1 DATASET STATISTICS OF TOOLBRIDGE

In Table 4, we present 15 source datasets involved in the data entries of ToolBridge, along with their
respective composition ratios. To prevent any confusion for the datasets (e.g, other datasets with the
same name and the same datasets with different versions), we also provide download links for these
datasets in Appendix A.6.

Besides, we provide a summary of the frequency of external tool calls in ToolBridge and the variety
of Python packages used for these calls, as presented in Table 5. By comparing Table 4 and Table 5,
we can observe that the majority of the data entries in ToolBridge involve only a single external tool
call. Furthermore, Table 5 also suggests that the data entries in ToolBridge originating from datasets
with narrower topics (e.g., School Math 0.25M) generally leverage fewer kinds of Python packages
compared to those from datasets with broader topics (e.g., TigerBot), which is consistent with logic.
To summarize, there are 183,147 external tool calls in our ToolBridge dataset, utilizing a total of 60
Python packages, including requests, math, datetime, sklearn, to name a few.

In Appendix A.12, we also quantify the usage frequency of the 60 Python packages incorporated in
ToolBridge, and their distribution is illustrated in Table 13.
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4.2 EXPERIMENTAL SETUP

Baseline Models. Our experiments incorporate four baseline models: the base model of Mistral-7B,
Llama2-7B, Llama3-8B and Llama3-70B. Also, we remove all the external tool invocation sections
in each entry in ToolBridge (denote as ToolBridge§) and report the accuracy of four baseline models
SFT on ToolBridge§ as four additional baseline models.

Benchmark Datasets. The standard benchmark datasets leveraged in our experiments include GSM
8K Cobbe et al. (2021), GSM Plus Li et al. (2024), MathBench Liu et al. (2024), Stanford WebQA
Berant et al. (2013) and TruthfulQA Lin et al. (2021). For GSM 8k and GSM Plus, the performance
is evaluated on their respective test sets under few-shot setting, where we leverage a fixed CoT-n-shot
prompt template, as outlined in Li et al. (2024). For MathBench, we report results on MathBench-A,
where we transform the multiple-choice questions in the College, High and Middle categories into a
question-and-answer format for CoT-n-shot evaluation. To differentiate from standard MathBench,
we refer to this adjusted dataset as MathBench∗.

We also develop two custom datasets, termed RandomQA and FACT, to evaluate the capabilities of
LLMs in data processing, numerical computation and factual retrieval. Section 4.4 elaborates on the
specifics of both datasets.

SFT Settings. All the models in our experiments are trained with the open-source TRL library from
Hugging Face von Werra et al. (2020). The LoRA module Hu et al. (2021) is employed to carry out
SFT on the base model of Mistral-7B, Llama2-7B, Llama3-8B and Llama3-70B using ToolBridge§
or ToolBridge, with a LoRA rank of 16. Model training is conducted on 64 ×MI200 64GB GPUs,
with each processing a batch size of 2 (i.e., total batch size is 128). AdamW is employed to optimize
the parameters of LoRA, with a cosine learning rate scheduler, configuring the initial lr at 3e-5 and
the total training epoch at 3.

Inference Settings. The primary process of model inference is described in Algorithm 1. Moreover,
to handle potential tool call failures during inference, we propose to eliminate failed tool calls from
the current output before conditioning the generation of further text. All trained models are evaluated
on 16 ×MI200 64 GB GPUs, with the max new tokens set to 512 and the temperature set to zero.

Models SFT data GSM 8k GSM Plus MathBench∗
Llama2-7B - 13.6 8.9 18.0

Llama2-7B-Lora ToolBridge§ 16.9 9.9 19.1
Llama2-7B-Lora ToolBridge 18.1 11.0 21.4

Llama3-8B - 52.3 36.9 33.0
Llama3-8B-Lora ToolBridge§ 53.4 37.8 35.2
Llama3-8B-Lora ToolBridge 55.8 40.0 37.4

Mistral-7B - 38.1 25.1 27.8
Mistral-7B-Lora ToolBridge§ 42.8 27.6 28.9
Mistral-7B-Lora ToolBridge 45.0 29.8 31.0

Llama3-70B - 75.3 54.4 42.1
Llama3-70B-Lora ToolBridge§ 78.5 57.6 44.1
Llama3-70B-Lora ToolBridge 80.1 59.8 46.9

Table 6: Ablation studies on GSM 8k, GSM Plus and MathBench∗ with (8 shots, CoT) setting.

4.3 RESULTS ON STANDARD BENCHMARKS

In this section, we conduct ablation studies on standard benchmark datasets, including TruthfulQA,
GSM 8k, GSM Plus, MathBench and Stanford WebQA, where GSM 8k, GSM Plus and MathBench
are primarily responsible for evaluating the capability of LLMs in numerical reasoning and compu-
tation, and TruthfulQA and Stanford WebQA are primarily adopted to assess the ability of LLMs in
factual retrieval. Table 6, 7 and 8 demonstrates the evaluation results.

It is observed that the models SFT on ToolBridge significantly outperform the baseline models. For
example, Llama3-8B SFT on ToolBridge brings 3.1% and 2.2% accuracy improvements to the base
model of Llama3-8B and the Llama3-8B model SFT on ToolBridge§ when evaluating on GSM Plus,
respectively. These results indicate that SFT on ToolBridge can help strengthen LLMs’ capabilities
in handling numerical computations. Furthermore, ToolBridge is able to facilitate abilities of LLMs

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Models SFT data Stanford WebQA
Llama3-8B - 21.2

Llama3-8B-Lora ToolBridge§ 37.7
Llama3-8B-Lora ToolBridge 39.9

Mistral-7B - 34.4
Mistral-7B-Lora ToolBridge§ 35.8
Mistral-7B-Lora ToolBridge 39.1

Table 7: Ablation studies on Stanford WebQA under zero-shot setting.

Models SFT data ROUGE1 BLEURT
Llama3-8B - 41.2 34.6

Llama3-8B-Lora ToolBridge§ 47.0 42.8
Llama3-8B-Lora ToolBridge 48.7 44.4

Mistral-7B - 43.5 39.4
Mistral-7B-Lora ToolBridge§ 44.9 42.3
Mistral-7B-Lora ToolBridge 47.7 44.9

Table 8: Ablation studies on TruthfulQA under zero-shot setting.

in factual retrieval. As shown in Table 7 and 8, SFT on ToolBridge enables Llama3-8B and Mistral-
7B to achieve notable gains on Stanford WebQA and TruthfulQA. Specifically, ToolBridge increases
the accuracy of Llama3-8B on Stanford WebQA from 21.2% to 39.9%, and on TruthfulQA, it boosts
ROUGE1 from 41.2% to 48.7% and BLEURT from 34.6% to 44.4%.

The results above demonstrate that LLMs can effectively learn how to use external tools to enhance
their capabilities in basic functions after SFT on ToolBridge. Moreover, it is worthy noting that there
is considerable room for improvements in these results, as our emphasis is on the training data, with
minimal adjustments made to the model architectures and training strategies, which may help LLMs
better learn how to employ external tools through ToolBridge.

Models SFT data RandomQA-DP-B1 RandomQA-DP-B2 RandomQA-NC-B1 RandomQA-NC-B2
Llama2-7B - 10.0 9.0 3.3 3.2

Llama2-7B-Lora. ToolBridge§ 19.2 16.6 7.7 8.6
Llama2-7B-Lora. ToolBridge 53.2 54.0 63.4 60.7

Llama3-8B - 9.6 9.2 5.8 7.0
Llama3-8B-Lora ToolBridge§ 30.3 29.0 15.8 13.9
Llama3-8B-Lora ToolBridge 62.1 60.0 82.1 80.1

Mistral-7B - 10.8 9.0 13.8 13.6
Mistral-7B-Lora ToolBridge§ 24.7 23.2 16.8 16.5
Mistral-7B-Lora ToolBridge 61.8 60.5 83.3 82.5

Llama3-70B - 20.0 17.1 9.6 8.9
Llama3-70B-Lora ToolBridge§ 32.1 31.7 22.0 20.3
Llama3-70B-Lora ToolBridge 74.2 69.9 89.7 89.1

Table 9: Experimental results on RandomQA under zero-shot setting, where DP denotes data pro-
cessing and NC means numerical computation.

4.4 RESULTS ON CUSTOM BENCHMARKS

To further assess whether SFT on the ToolBridge dataset can equip LLMs with the ability to leverage
external tools for aiding its reasoning process, we propose to design two custom datasets to evaluate
LLMs’ performance before and after SFT on the ToolBridge dataset.

RandomQA. To assess LLMs’ accuracy in data processing and numerical computation capabilities
after SFT on ToolBridge, we propose to design 30 templates capable of generating question-answer
pairs to validate the abilities of LLMs in data processing and numerical computations, respectively.
Here is one example,

1 # Template1: Reverse the order of elements in a list
2 array = [random.randint(1, 10000) for _ in range(random.randint(5, 15))]
3 question = f"Reverse the order of the elements in the list {array} and

then plus 3 for each element."↪→
4 answer = array[::-1]
5 answer = [a + 3 for a in answer]

9
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The complete list can be found in Appendix A.7. With these pre-defined templates, we first generate
four RandomQA datasets, each consisting of 1,000 data entries, and focusing on data processing or
numerical computation, i.e., RandomQA-DP-B1/2, RandomQA-NC-B1/2, where DP signifies using
template related to data processing to yield the dataset and NC means numerical computation. Then,
we evaluate the accuracy of LLMs on the four datasets before and after SFT on ToolBridge. Table 9
demonstrates the results. It is observed that after SFT on ToolBridge, the models shows a significant
increase in accuracy on RandomQA.

Models SFT data FACT-200-Batch1 FACT-200-Batch2 FACT-200-Batch3
Llama2-7B - 69.5 55.0 49.0

Llama2-7B-Lora ToolBridge§ 86.0 67.5 65.7
Llama2-7B-Lora ToolBridge 88.5 72.5 73.2

Llama3-8B - 79.0 60.5 62.2
Llama3-8B-Lora ToolBridge§ 89.0 73.0 73.7
Llama3-8B-Lora ToolBridge 90.0 73.5 80.2

Mistral-7B - 85.0 67.5 65.9
Mistral-7B-Lora ToolBridge§ 86.5 70.0 66.2
Mistral-7B-Lora ToolBridge 90.5 72.0 77.3

Llama3-70B - 76.0 53.5 54.0
Llama3-70B-Lora ToolBridge§ 88.3 72.4 70.7
Llama3-70B-Lora ToolBridge 91.2 74.6 82.6

Table 10: Experimental results on FACT under zero-shot setting.

FACT. To determine if the factual retrieval skills of LLMs can be improved by SFT on ToolBridge,
we construct the FACT datasets. Specifically, we begin by prompting GPT-4o to produce thousands
of question-answer pairs focused on factual retrieval. One example prompt is as following,

1. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Geography. Return them
as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

Appendix A.8 contains the entire set of the adopted prompts for constructing FACT. Upon obtaining
the candidate question-answer pairs, we continuously draw random entries from them and manually
check their correctness until 200 correct data entries are verified. Through iterating the above process
three times with five different prompts each time, we construct three FACT datasets, each with a size
of 200 entries, termed FACT-200-Batch1/2/3. Table 10 presents a comparison of the performance of
LLMs on the three datasets before and after SFT on the ToolBridge dataset, which shows that LLMs
demonstrates enhanced abilities in retrieving factual content.

Besides, one should be aware that relying on external tools to improve the fact retrieval performance
of LLMs can be inconsistent. During our experiments, we uncover the following deficiencies

• Using external tools like the requests module to obtain information from external websites
can lead to potentially unreliable information and LLMs thus yield incorrect predictions. A
solution to address this issue is to construct a curated list of trustworthy domains, restricting
LLMs from accessing websites beyond this approved whitelist. Besides, we should further
refine the training entries to exclude unreliable access links.

• The content scraped from web pages may be overly lengthy, hindering the ability of LLMs
to efficiently extract useful information from the scraped contents.

• When LLMs access some external websites, they may attempt to download files from those
sites, which poses potential security risks in real-world applications.

Therefore, we recommend that ToolBridge is only used for academic research, with controlled mea-
sures in place when it attempts to access external websites.

5 CONCLUSION

This paper proposes ToolBridge, which is the first open-source dataset for training LLMs in the use
of external tools in the area of tool former. The principal steps to build ToolBridge involves valuable
data entries selection, conversion and filtering. Ablation studies on standard and custom benchmark
datasets demonstrate the effectiveness of ToolBridge.
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A APPENDIX

A.1 LLAMA3-70B PROMPTS

The prompt applied while using Llama3-70B to identify valuable data is as follow,

Your task is to determine whether you can add calls to a Python API to a piece
of text. The calls should help you get information required to complete the
text. You only need to respond with "Yes" or "No", "Yes" means you can and
"No" means you can't. Here are some examples:

↪→
↪→
↪→

Input:

{"messages": [{"role": "user", "content": "Sort the numbers in the list arr =
[1, 10, 2, 5, -2, 11, 12] in descending order."}, {"role": "assistant",
"content": "The sorted list in descending order is: [12, 11, 10, 5, 2, 1,
-2]."}]}

↪→
↪→
↪→

Output:

Yes

Input:

{"messages": [{"role": "user", "content": "Can you tell me a little bit about
what LaTeX is?"}, {"role": "assistant", "content": "LaTeX is a high-quality
typesetting system; it includes features designed for the production of
technical and scientific documentation. LaTeX is the de facto standard for
the communication and publication of scientific documents. It is widely used
by mathematicians, scientists, engineers, philosophers, linguists,
economists, and other scholars in academia and the professional world."}]}

↪→
↪→
↪→
↪→
↪→
↪→

Output:

No

Input:

{"messages": [{"role": "user", "content": "What is the value of sin 40 degrees
plus cos 31 degrees?"}, {"role": "assistant", "content": "The value is
approximately sin 40 + cos 31 = 0.6428 + 0.8572 = 1.500."}]}

↪→
↪→

Output:

Yes

Input:

{"messages": [{"role": "user", "content": "Write a Python script that reads an
image and recognizes the text on it."}, {"role": "assistant", "content": "To
read an image and recognize text on it in Python, you can use the
pytesseract library along with Pillow for image processing. Here's a simple
example: \nimport pytesseract; from PIL import Image;
print(pytesseract.image_to_string(Image.open('path_to_image.jpg'))). \nMake
sure you have Tesseract OCR installed on your machine and the required
libraries (pytesseract and Pillow) installed in your Python environment. You
can install them using: \npip install pytesseract pillow"}]}

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Output:

No

Input:

PLACEHOLDER

Output:
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A.2 GPT-4O-MINI PROMPTS

The prompt applied while using GPT-4o-mini to convert data entries is as follow,

Your task is to add calls to a Python API to a piece of text. The calls should help you
get information required to complete the text. You can call the API by writing
"<python>code</python>" where "code" is the code to be executed. The last line of
all code should print the variable that stores the final result. Here are some
examples of API calls:

↪→
↪→
↪→
↪→

Input:

{"messages": [{"role": "user", "content": "Which number is greater, 13.11 or 13.8?"},
{"role": "assistant", "content": "13.8 is greater than 13.11."}]}↪→

Output:

{"messages": [{"role": "user", "content": "Which number is greater, 13.11 or 13.8?"},
{"role": "assistant", "content": "<python>greater_number = max(13.11,
13.8)\nprint(greater_number)</python> 13.8 is greater than 13.11."}]}

↪→
↪→

Input:

{"messages": [{"role": "user", "content": "How many unique words are there in the
sentence 'The quick brown fox jumps over the lazy dog'?"}, {"role": "assistant",
"content": "There are eight unique words in the sentence 'The quick brown fox jumps
over the lazy dog.'"}]}

↪→
↪→
↪→

Output:

{"messages": [{"role": "user", "content": "How many unique words are there in the
sentence 'The quick brown fox jumps over the lazy dog'?"}, {"role": "assistant",
"content": "There are <python>unique_words = len(set('The quick brown fox jumps over
the lazy dog'.lower().split()))\nprint(unique_words)</python> eight unique words in
the sentence 'The quick brown fox jumps over the lazy dog.'"}]}

↪→
↪→
↪→
↪→

Input:

{"messages": [{"role": "user", "content": "What is the area of a circle with a radius of
5?"}, {"role": "assistant", "content": "The area of a circle with radius 5 is
78.54."}]}

↪→
↪→

Output:

{"messages": [{"role": "user", "content": "What is the area of a circle with a radius of
5?"}, {"role": "assistant", "content": "The area of a circle with radius 5 is
<python>import math\narea = math.pi * 5**2\nprint(area)</python> 78.54."}]}

↪→
↪→

Input:

{"messages": [{"role": "user", "content": "Sort the numbers [5, 3, 8, 1, 2] in ascending
order."}, {"role": "assistant", "content": "The sorted list is [1, 2, 3, 5, 8]."}]}↪→

Output:

{"messages": [{"role": "user", "content": "Sort the numbers [5, 3, 8, 1, 2] in ascending
order."}, {"role": "assistant", "content": "The sorted list is <python>lst =
sorted([5, 3, 8, 1, 2])\nprint(lst)</python> [1, 2, 3, 5, 8]."}]}

↪→
↪→

Input:

{"messages": [{"role": "user", "content": "Extract the domain from the email
'example@test.com'."}, {"role": "assistant", "content": "The domain of the email
'example@test.com' is 'test.com'."}]}

↪→
↪→

Output:

{"messages": [{"role": "user", "content": "Extract the domain from the email
'example@test.com'."}, {"role": "assistant", "content": "The domain of the email
'example@test.com' is <python>domain =
'example@test.com'.split('@')[1]\nprint(domain)</python> 'test.com'."}]}

↪→
↪→
↪→

Input:

PLACEHOLDER

Output:
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A.3 DETECTING SIMPLE CODE STRUCTURES: ASSIGNMENT FOLLOWED BY PRINT
STATEMENT

We use the following code to determine if the inserted code in each entry is simply an assignment
followed by printing the variable.

Algorithm 2 Identifying Code Patterns: Distinguishing Assignments Followed by Print Statements

1 import ast
2

3 '''
4 Function:
5 Identifying Code Patterns: Distinguishing Assignments Followed

by Print Statements
6 Argument:
7 node: node = ast.parse(code)
8 '''
9 def isuselesscode(node):

10 # Check if the node is an AST Module
11 if isinstance(node, ast.Module):
12 # Ensure the module has exactly two statements:
13 # an assignment and an expression.
14 if len(node.body) == 2 and isinstance(node.body[0], ast.

Assign) and isinstance(node.body[1], ast.Expr):
15 assign_node = node.body[0]
16 expr_node = node.body[1]
17 # Check if the assignment targets a variable and
18 # the value is a constant.
19 if isinstance(assign_node.targets[0], ast.Name) and

isinstance(assign_node.value, ast.Constant):
20 # Check if the expression is a function call
21 # to 'print'.
22 if isinstance(expr_node.value, ast.Call) and

isinstance(expr_node.value.func, ast.Name) and
expr_node.value.func.id == 'print':

23 # Ensure 'print' has exactly one argument.
24 if len(expr_node.value.args) == 1:
25 arg = expr_node.value.args[0]
26 # Check if the argument to 'print' is
27 # the same variable assigned earlier.
28 if isinstance(arg, ast.Name) and arg.id ==

assign_node.targets[0].id:
29 return True
30 # Alternatively, check if 'print' uses an
31 # f-string format with the variable.
32 elif isinstance(arg, ast.JoinedStr):
33 for value in arg.values:
34 if isinstance(value, ast.

FormattedValue) and isinstance(
value.value, ast.Name):

35 # Confirm the formatted
36 # variable is the same as
37 # the assigned variable.
38 if value.value.id ==

assign_node.targets[0].id:
39 return True
40 return False

15
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A.4 OPTIMIZING DATASET QUALITY BY REMOVING NON-EXECUTABLE AND SLOW TOOL
CALLS

The core code for removing data entries that either fail to execute or exceed the execution time limit
is as follows.

Algorithm 3 Efficient Dataset Curation: Filtering Non-Executable and Time-Consuming Tool Calls

1 import re
2 import io
3 import contextlib
4 import multiprocessing
5

6 # Execute Python code
7 def executecode(code):
8 with io.StringIO() as buf, contextlib.redirect_stdout(buf):
9 try:

10 exec(code)
11 return buf.getvalue().strip()
12 except Exception:
13 return None
14

15 # Execute Python code with timeout = 30 second
16 def safeexecutecode(code, timeout=30):
17 result_queue = multiprocessing.Queue()
18 def target():
19 result = executecode(code)
20 result_queue.put(result)
21 process = multiprocessing.Process(target=target)
22 process.start()
23 process.join(timeout)
24 if process.is_alive():
25 process.terminate()
26 process.join()
27 return None
28 else:
29 return result_queue.get() if not result_queue.empty() else

None
30

31 # Filtering
32 DATASET_FILTERED = []
33 for item in tqdm(DATASET):
34 success_calling = False
35 for message in item['messages']:
36 if message['role'] == 'assistant':
37 code_matches = re.findall(r'<python>(.*?)</python>',

message['content'], re.DOTALL)
38 if code_matches:
39 for code in code_matches:
40 python_str = f'<python>{code}</python>'
41 result = safeexecutecode(code=code)
42 if result is None:
43 message['content'] = message['content'].

replace(python_str, '')
44 else:
45 result_str = f'<result>{result}</result>'
46 message['content'] = message['content'].

replace(python_str, f'{python_str}{
result_str}')

47 success_calling = True
48 if success_calling:
49 DATASET_FILTERED.append(item)
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A.5 COMPARE OUTPUTS FROM LLAMA3 TRAINED ON C AND TOOLBRIDGE

We notice in actual applications that the models train on C may not always use the Python output as
a basis for generating further content. Here are some examples.

Example 1: 

User: “Count the number of vowels in the sentence 'This is a simple sentence'.”

Assistant: “There are <python>sentence = 'This is a simple sentence'\nvowels = 'aeiou'\ncount = sum(1 for char in sentence if 

char.lower() in vowels)\nprint(count)</python><result>8</result> 5 vowels in the sentence 'This is a simple sentence'.”

Example 2:

User: “What is the date 30 days after January 31, 2022?”

Assistant: “The date 30 days after January 31, 2022 is <python>from datetime import datetime, timedelta\n\ndate = 

datetime.strptime('2022-01-31', '%Y-%m-%d')\nnew_date = date + timedelta(days=30)\nresult = new_date.strftime('%B %d, 

%Y')\nprint(result)</python><result>March 02, 2022</result> March 1, 2022. Note that February only has 28 days in non-leap years, 

so the 30th day would fall on March 1, 2022 in a leap year. ”

Inconsistent outputs from Llama3 trained on 𝓒

Figure 3: Inconsistency between LLMs’ outputs and the returned results from Python interpreter.

By filtering out the entries in C that show inconsistencies between the Python execution results and
the following content, we create the ToolBridge dataset. This refined dataset is then used to train the
Llama3 model, yielding outputs consistent with the Python results. Here are some examples.

Example 1: 

User: “Count the number of vowels in the sentence 'This is a simple sentence'.”

Assistant: “There are <python>sentence = 'This is a simple sentence‘\nvowels = ['a', 'e', 'i', 'o', 'u']\ncount = sum(1 for char in 

sentence.lower() if char in vowels)\nprint(count)</python><result>8</result> 8 vowels in the sentence 'This is a simple sentence'.”

Example 2:

User: “What is the date 30 days after January 31, 2022?”

Assistant: “The date 30 days after January 31, 2022 is <python>from datetime import datetime, timedelta\n\ndate = 

datetime.strptime('2022-01-31', '%Y-%m-%d')\nnew_date = date + timedelta(days=30)\nresult = new_date.strftime('%B %d, 

%Y')\nprint(result)</python><result>March 02, 2022</result> February 30, 2022. However, this date is not valid as February only has 

28 days in a non-leap year. So, the date would be March 02, 2022.”

Consistent outputs from Llama3 trained on ToolBridge

Figure 4: Consistency between LLMs’ outputs and the returned results from Python interpreter.
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A.6 LINKS TO DATA SOURCES USED IN THE DATASET POOL

To avoid any confusion regarding the datasets, the download links for each dataset are also provided
in Table 11. Note that, links to all datasets from the dataset pool P are presented in the table, even
those not incorporated into ToolBridge.

Dataset Source Link
School Math 0.25M https://huggingface.co/datasets/BelleGroup/school math 0.25M

ChatAlpaca https://github.com/cascip/ChatAlpaca
Platypus https://huggingface.co/datasets/garage-bAInd/Open-Platypus

ShareGPT90K https://huggingface.co/datasets/liyucheng/ShareGPT90K
WizardLM Orca https://huggingface.co/datasets/pankajmathur/WizardLM Orca

WizardLM evol instruct 70k https://huggingface.co/datasets/WizardLMTeam/WizardLM evol instruct 70k
WizardLM evolve instruct V2 https://huggingface.co/datasets/WizardLMTeam/WizardLM evol instruct V2 196k

OpenOrca https://huggingface.co/datasets/Open-Orca/OpenOrca
TigerBot https://huggingface.co/datasets/TigerResearch/sft en, TigerResearch/sft zh
GPT-4all https://huggingface.co/datasets/nomic-ai/gpt4all-j-prompt-generations

COIG https://huggingface.co/datasets/BAAI/COIG
LIMA https://huggingface.co/datasets/GAIR/lima

AlpacaDataCleaned https://huggingface.co/datasets/yahma/alpaca-cleaned
GPT-4-LLM https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM
Bactrian-X https://huggingface.co/datasets/MBZUAI/Bactrian-X

code instructions 120k alpaca https://huggingface.co/datasets/iamtarun/code instructions 120k alpaca
TSI-v0 https://huggingface.co/datasets/tasksource/tasksource-instruct-v0
Alpaca https://github.com/tatsu-lab/stanford alpaca

No Robots https://huggingface.co/datasets/HuggingFaceH4/no robots
Baize https://github.com/project-baize/baize-chatbot

LaMini-Instruction https://huggingface.co/datasets/MBZUAI/LaMini-instruction
tiny-codes https://huggingface.co/datasets/nampdn-ai/tiny-codes

self-instruct https://github.com/yizhongw/self-instruct
ign clean instruct dataset 500k https://huggingface.co/datasets/ignmilton/ign clean instruct dataset 500k

MOSS SFT https://github.com/OpenMOSS/MOSS

Table 11: Source links for the datasets utilized in the dataset pool.

Here is a brief description of each dataset,

• School Math 0.25M: It includes approximately 250,000 Chinese math problems generated
by the BELLE project, along with their solution processes.

• ChatAlpaca: ChatAlpaca is a comprehensive dataset created to assist researchers in build-
ing models for instruction-following across multi-turn conversations. It expands upon the
Stanford Alpaca dataset by incorporating a broader range of multi-turn instructions and
their corresponding responses.

• Platypus: This dataset is designed to enhance the logical reasoning capabilities of LLMs
and was instrumental in training the Platypus2 models. It combines eleven public datasets,
carefully curated through keyword filtering and further refined using Sentence Transform-
ers to exclude questions with more than 80% similarity.

• ShareGPT90K: A high quality dataset generated by using GPT-4.

• WizardLM Orca: Enhanced WizardLM dataset, generated using the Orca methodology.

• WizardLM evol instruct 70k: This is the training data of WizardLM.

• WizardLM evolve instruct V2: The dataset contains 143K mixed evolved data derived from
Alpaca and ShareGPT. It represents the latest optimized version of Evol-Instruct training
data for the WizardLM model.

• OpenOrca: A collection of augmented FLAN data, generated using the methodology de-
scribed in the Orca paper.

• TigerBot: Datasets used to train TigerBot include pretraining data, STF data, and domain-
specific datasets such as financial research reports.

• GPT-4all: A curated mix of subsets from OIG, P3, and StackOverflow, focusing on topics
such as general question-answering and customized creative queries.

• COIG: A Chinese-focused dataset encompassing domains such as general-purpose QA,
Chinese exams, and coding. Its quality has been verified by human annotators.

• LIMA: High quality SFT dataset used by LIMA.
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• AlpacaDataCleaned: An improved and cleaned iteration of the Alpaca, GPT LLM, and
GPTeacher datasets.

• GPT-4-LLM: It is generated using GPT-4 and other LLMs to produce improved pairs and
data for RLHF.

• Bactrian-X: A multilingual adaptation of the Alpaca and Dolly-15K datasets.
• code instructions 120k alpaca: Code instruction data formatted for instruction fine-tuning.
• TSI-v0: A multi-task instruction-tuning dataset derived from 475 Tasksource datasets, de-

signed in a manner similar to the Flan and Natural Instructions datasets.
• Alpaca: It consists of 52K instruction-following examples, specifically designed for fine-

tuning the Alpaca model.
• No Robots: High-quality, human-generated STF data in a single-turn format.
• Baize: A dialogue dataset generated by GPT-4 through self-talking, with questions and

topics sourced from Quora, StackOverflow, and various medical knowledge bases.
• LaMini-Instruction: A dataset distilled from the FLAN collection, P3, and Self-Instruct.
• tiny-codes: This synthetic dataset comprises 1.6 million concise and clear code snippets,

designed to help LLM models develop reasoning skills in both natural and programming
languages. The dataset spans a wide range of programming languages, including Python,
TypeScript, JavaScript, Ruby, Julia, Rust, C++, Bash, Java, C#, and Go.

• self-instruct: This dataset is generated using the methodology outlined in Self-Instruct:
Aligning Language Models with Self-Generated Instructions.

• ign clean instruct dataset 500k: A large-scale SFT dataset synthetically generated from a
subset of Ultrachat prompts.

• MOSS SFT: A conversational dataset curated and developed by the MOSS team, with each
entry annotated with labels for usefulness, loyalty, and harmlessness.
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A.7 TEMPLATES FOR YIELDING RANDOMQA DATASET

The complete list of templates used to generate the RandomQA dataset is as follows,

1 '''RandomQAGenerator'''
2 class RandomQAGenerator():
3 question_types_data_processing = [
4 "Sort an array in ascending order",
5 "Transpose a 2D matrix",
6 "Reverse the string",
7 "Extract first N elements in a list",
8 "Reverse the order of elements in a list",
9 "Count the frequency of one character in a string",

10 "Find the intersection of two strings",
11 "Find the length of the longest word in a string",
12 "Count the number of vowels in a string",
13 "Convert a list of Celsius temperatures to Fahrenheit",
14 "Calculate time difference between two time zones",
15 "Find the leap year after a year",
16 "Find the most common word in a paragraph",
17 "Find the first recurring word in a string",
18 "Extract all the numbers in a string",
19 "Convert a decimal number to its binary equivalent",
20 "Calculate the difference between two lists",
21 "Find out all the numbers that are not unique",
22 "Flatten a 2D list into a 1D list",
23 "Remove duplicates from a list",
24 "Filter elements in a list based on a condition",
25 "Merge two dictionaries into one",
26 "Extract all words of a specific length from a text",
27 "Extract email addresses from a text",
28 "Sort a list of strings by their length",
29 "Check if two strings are anagrams",
30 "Extract hashtags from a social media post",
31 "Capitalize each word in a string",
32 "Find the index of a substring in a string",
33 "Replace all vowels in a string with a specific character",
34 ]
35 question_types_numerical_computation = [
36 "Calculate the average of an array",
37 "Find the maximum and minimum values of an array",
38 "Calculate the dot product of two arrays",
39 "Generate a set of random integers and find their sum",
40 "Generate the smallest prime number greater than x",
41 "Calculate the standard deviation of a list of floating-point

numbers",↪→
42 "Generate a random matrix and find its inverse",
43 "Find the median of an array",
44 "Generate Fibonacci sequence up to n-th term",
45 "Find the GCD (Greatest Common Divisor) of two numbers",
46 "Calculate the factorial of a number",
47 "Find the mode of a list of numbers",
48 "Calculate the sum of even numbers in a list",
49 "Calculate the cumulative sum of an array",
50 "Calculate cosine value",
51 "Square every number in a list",
52 "Calculate the sum of squares of numbers in an array",
53 "Find the n-th smallest number in an array",
54 "Calculate the Euclidean distance between two points in a plane",
55 "Calculate the compound interest given principal, rate, and

time",↪→
56 "Calculate the perimeter of a rectangle given its length and

width",↪→
57 "Sum all the digits of a given number",
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58 "Calculate the area of a triangle given its base and height",
59 "Find the real roots of a quadratic equation",
60 "Calculate the sum of the cubes of a list",
61 "Round all elements in a list to two decimal places",
62 "Calculate the hypotenuse of a right triangle given the other two

sides",↪→
63 "Sum all odd numbers in a list",
64 "Generate the smallest N primes",
65 "Find the sum of all elements above the main diagonal of a

matrix"↪→
66 ]
67 def __init__(self, num_gen_qa=1000):
68 self.num_gen_qa = num_gen_qa
69 '''generate'''
70 def generate(self):
71 qa_pairs = []
72 for _ in range(self.num_gen_qa):
73

qa_pairs.append(self.randomgenone(self.question_types_data_processing))↪→
74 pickle.dump(qa_pairs,

open(f'random_qa_dp_{int(time.time())}.pkl', 'wb'))↪→
75 time.sleep(1)
76 qa_pairs = []
77 for _ in range(self.num_gen_qa):
78

qa_pairs.append(self.randomgenone(self.question_types_data_processing))↪→
79 pickle.dump(qa_pairs,

open(f'random_qa_dp_{int(time.time())}.pkl', 'wb'))↪→
80 time.sleep(1)
81 qa_pairs = []
82 for _ in range(self.num_gen_qa):
83

qa_pairs.append(self.randomgenone(self.question_types_numerical_computation))↪→
84 pickle.dump(qa_pairs,

open(f'random_qa_nc_{int(time.time())}.pkl', 'wb'))↪→
85 time.sleep(1)
86 qa_pairs = []
87 for _ in range(self.num_gen_qa):
88

qa_pairs.append(self.randomgenone(self.question_types_numerical_computation))↪→
89 pickle.dump(qa_pairs,

open(f'random_qa_nc_{int(time.time())}.pkl', 'wb'))↪→
90 '''randomgenone'''
91 def randomgenone(self, question_types):
92 # randomly choose a question type
93 question_type = random.choice(question_types)
94 # generate question and answer based on type
95 # 1. Calculate the average of an array
96 if question_type == "Calculate the average of an array":
97 array = [round(random.uniform(-10000, 10000)) for _ in

range(random.randint(5, 15))]↪→
98 question = f"Calculate the average of the array {array} and

round the result to two decimal places."↪→
99 answer = round(sum(array) / len(array), 2)

100 # 2. Find the maximum and minimum values of an array
101 elif question_type == "Find the maximum and minimum values of an

array":↪→
102 array = [round(random.uniform(-10000, 10000)) for _ in

range(random.randint(5, 15))]↪→
103 max_or_min = random.choice(['maximum', 'minimum'])
104 question = f"Find the {max_or_min} value of the array

{array}, give the result of multiplying it by 7."↪→
105 answer = max(array) if max_or_min == 'maximum' else

min(array)↪→
106 answer = answer * 7
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107 # 3. Calculate the dot product of two arrays
108 elif question_type == "Calculate the dot product of two arrays":
109 length = random.randint(5, 15)
110 array1 = [random.randint(20, 1000) for _ in range(length)]
111 array2 = [random.randint(20, 1000) for _ in range(length)]
112 question = f"Calculate the dot product of the arrays {array1}

and {array2}."↪→
113 answer = sum(x * y for x, y in zip(array1, array2))
114 # 4. Sort an array in ascending order
115 elif question_type == "Sort an array in ascending order":
116 array = [random.randint(-10000, 10000) for _ in

range(random.randint(5, 15))]↪→
117 question = f"Sort the array {array} in ascending order."
118 answer = sorted(array)
119 # 5. Generate a set of random integers and find their sum
120 elif question_type == "Generate a set of random integers and find

their sum":↪→
121 array = [random.randint(1000, 100000) for _ in

range(random.randint(5, 15))]↪→
122 question = f"Here is a set of random integers {array}, please

find their sum."↪→
123 answer = sum(array)
124 # 6. Generate the smallest prime number greater than x
125 elif question_type == "Generate the smallest prime number greater

than x":↪→
126 num = random.randint(2000, 100000)
127 question = f"Generate the smallest prime number greater than

{num}."↪→
128 answer = nextprime(num)
129 # 7. Calculate the standard deviation of a list of floating-point

numbers↪→
130 elif question_type == "Calculate the standard deviation of a list

of floating-point numbers":↪→
131 array = [round(random.uniform(10, 1000), 2) for _ in

range(random.randint(5, 15))]↪→
132 mean = sum(array) / len(array)
133 variance = sum((x - mean) ** 2 for x in array) / len(array)
134 question = f"Calculate the standard deviation of the array

{array} and round the result to two decimal places."↪→
135 answer = round(variance ** 0.5, 2)
136 # 8. Generate a random matrix and find its inverse
137 elif question_type == "Generate a random matrix and find its

inverse":↪→
138 matrix_len = random.randint(2, 10)
139 matrix = [[random.randint(1, 1000) for _ in

range(matrix_len)] for _ in range(matrix_len)]↪→
140 question = f"Here is a random matrix {matrix}, please find

its inverse, you can answer with 'not invertible' if its
inverse does not exist."

↪→
↪→

141 det = np.linalg.det(matrix)
142 if int(det) != 0:
143 inv_matrix = np.linalg.inv(matrix).tolist()
144 else:
145 inv_matrix = "not invertible"
146 answer = inv_matrix
147 # 9. Count the frequency of one character in a string
148 elif question_type == "Count the frequency of one character in a

string":↪→
149 char = random.choice('abcdefghijklmnopqrstuvwxyz')
150 string = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(50, 100))) + char * 101↪→
151 question = f"Count the frequency of character {char} in the

string '{string}'."↪→
152 answer = string.count(char)
153 # 10. Square every number in a list
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154 elif question_type == "Square every number in a list":
155 array = [random.randint(1, 10000) for _ in

range(random.randint(5, 15))]↪→
156 question = f"Square every number in the list {array}."
157 answer = [x ** 2 for x in array]
158 # 11. Find the median of an array
159 elif question_type == "Find the median of an array":
160 array = [random.randint(200000, 10000000) for _ in

range(random.randint(5, 15))]↪→
161 sorted_array = sorted(array)
162 question = f"Find the median of the array {array}, give the

result of multiplying it by 9."↪→
163 answer = sorted_array[len(sorted_array) // 2]
164 answer = answer * 9
165 # 12. Generate Fibonacci sequence up to n-th term
166 elif question_type == "Generate Fibonacci sequence up to n-th

term":↪→
167 n = random.randint(5, 20)
168 question = f"Generate the Fibonacci sequence up to the {n}-th

term."↪→
169 fib = [0, 1]
170 for i in range(2, n):
171 fib.append(fib[-1] + fib[-2])
172 answer = fib
173 # 13. Transpose a 2D matrix
174 elif question_type == "Transpose a 2D matrix":
175 matrix_len = random.randint(2, 10)
176 matrix = [[random.randint(-1000, 1000) for _ in

range(matrix_len)] for _ in range(matrix_len)]↪→
177 question = f"Transpose the matrix {matrix}."
178 answer = [list(row) for row in zip(*matrix)]
179 # 14. Reverse the string
180 elif question_type == "Reverse the string":
181 string = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(10, 20)))↪→
182 question = f"Reverse the string {string}, and splice it

behind the string 'appleiphone'."↪→
183 answer = 'appleiphone' + string[::-1]
184 # 15. Find the GCD (Greatest Common Divisor) of two numbers
185 elif question_type == "Find the GCD (Greatest Common Divisor) of

two numbers":↪→
186 answer = 0
187 while answer <= 100:
188 a, b = random.randint(200, 1000000), random.randint(200,

1000000)↪→
189 question = f"Find the GCD of the numbers {a} and {b}."
190 answer = math.gcd(a, b)
191 # 16. Calculate the factorial of a number
192 elif question_type == "Calculate the factorial of a number":
193 num = random.randint(10, 100)
194 question = f"Calculate the factorial of {num}."
195 answer = math.factorial(num)
196 # 17. Find the mode of a list of numbers
197 elif question_type == "Find the mode of a list of numbers":
198 array = [random.randint(113333, 113343) for _ in range(15)]
199 question = f"Find the mode of the array {array}, give the

result of multiplying it by 3."↪→
200 answer = max(set(array), key=array.count)
201 answer = answer * 3
202 # 18. Calculate the sum of even numbers in a list
203 elif question_type == "Calculate the sum of even numbers in a

list":↪→
204 array = [random.randint(1000, 1000000) for _ in

range(random.randint(10, 25))]↪→
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205 question = f"Calculate the sum of even numbers in the list
{array}."↪→

206 answer = sum(x for x in array if x % 2 == 0)
207 # 19. Calculate the cumulative sum of an array
208 elif question_type == "Calculate the cumulative sum of an array":
209 array = [random.randint(1, 10000) for _ in

range(random.randint(5, 15))]↪→
210 question = f"Calculate the cumulative sum of the array

{array}."↪→
211 answer = [sum(array[:i+1]) for i in range(len(array))]
212 # 20. Extract first N elements in a list
213 elif question_type == "Extract first N elements in a list":
214 N = random.randint(5, 10)
215 array = [random.randint(1, 10000) for _ in

range(random.randint(15, 35))]↪→
216 question = f"Extract first {N} elements in the list {array}

and then plus 7 for each element in the sub-list."↪→
217 answer = array[:N]
218 answer = [a + 7 for a in answer]
219 # 21. Calculate cosine value
220 elif question_type == "Calculate cosine value":
221 degree = random.randint(0, 360) + 0.5
222 question = f"Calculate cosine value for {degree} degree and

round the result to two decimal places."↪→
223 answer = round(math.cos(math.radians(degree)), 2)
224 # 22. Reverse the order of elements in a list
225 elif question_type == "Reverse the order of elements in a list":
226 array = [random.randint(1, 10000) for _ in

range(random.randint(5, 15))]↪→
227 question = f"Reverse the order of the elements in the list

{array} and then plus 3 for each element."↪→
228 answer = array[::-1]
229 answer = [a + 3 for a in answer]
230 # 23. Calculate the sum of squares of numbers in an array
231 elif question_type == "Calculate the sum of squares of numbers in

an array":↪→
232 array = [random.randint(10, 10000) for _ in

range(random.randint(5, 15))]↪→
233 question = f"Calculate the sum of squares of the numbers in

the array {array}."↪→
234 answer = sum(x ** 2 for x in array)
235 # 24. Find the n-th smallest number in an array
236 elif question_type == "Find the n-th smallest number in an

array":↪→
237 array = [random.randint(1000, 10000000) for _ in

range(random.randint(5, 15))]↪→
238 n = random.randint(1, len(array))
239 question = f"Find the {n}-th smallest number in the array

{array}, give the result of multiplying it by 3."↪→
240 answer = sorted(array)[n - 1] * 3
241 # 25. Calculate the Euclidean distance between two points in a

plane↪→
242 elif question_type == "Calculate the Euclidean distance between

two points in a plane":↪→
243 x1, y1 = round(random.uniform(-100, 100), 2),

round(random.uniform(-100, 100), 2)↪→
244 x2, y2 = round(random.uniform(-100, 100), 2),

round(random.uniform(-100, 100), 2)↪→
245 question = f"Calculate the Euclidean distance between points

({x1}, {y1}) and ({x2}, {y2}), round the result to two
decimal places."

↪→
↪→

246 answer = round(math.sqrt((x2 - x1)**2 + (y2 - y1)**2), 2)
247 # 26. Find the intersection of two strings
248 elif question_type == "Find the intersection of two strings":
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249 str1 = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(50, 100)))↪→

250 str2 = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(50, 100)))↪→

251 question = f"Find the intersection of string '{str1}' and
string '{str2}'."↪→

252 answer = ''.join(set(str1) & set(str2))
253 # 27. Calculate the compound interest given principal, rate, and

time↪→
254 elif question_type == "Calculate the compound interest given

principal, rate, and time":↪→
255 principal = random.randint(1000, 10000)
256 rate = round(random.uniform(1, 10), 2)
257 time = random.randint(1, 5)
258 question = f"Calculate the compound interest for principal

{principal}, rate {rate}%, and time {time} years, round
the result to two decimal places."

↪→
↪→

259 answer = round(principal * (1 + rate/100)**time, 2)
260 # 28. Find the length of the longest word in a string
261 elif question_type == "Find the length of the longest word in a

string":↪→
262 words = [''.join(random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(101, 200))) for _ in
range(random.randint(5, 15))]

↪→
↪→

263 string = ' '.join(words)
264 question = f"Find the length of the longest word in the

string '{string}'."↪→
265 answer = max(len(word) for word in words)
266 # 29. Count the number of vowels in a string
267 elif question_type == "Count the number of vowels in a string":
268 string = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(20, 50))) + 'a' * 101↪→
269 question = f"Count the number of vowels in the string

'{string}'."↪→
270 answer = sum(1 for char in string if char in 'aeiou')
271 # 30. Convert a list of Celsius temperatures to Fahrenheit
272 elif question_type == "Convert a list of Celsius temperatures to

Fahrenheit":↪→
273 celsius_list = [random.randint(-20, 40) for _ in range(5)]
274 question = f"Convert the list of Celsius temperatures

{celsius_list} to Fahrenheit, round the result to two
decimal places."

↪→
↪→

275 answer = [round(c * 9/5 + 32, 2) for c in celsius_list]
276 # 31. Calculate time difference between two time zones
277 elif question_type == "Calculate time difference between two time

zones":↪→
278 tz1, tz2 = random.sample(pytz.all_timezones, 2)
279 now = datetime.datetime.now()
280 time1 = pytz.timezone(tz1).localize(now)
281 time2 = pytz.timezone(tz2).localize(now)
282 time_difference = abs((time1 - time2).total_seconds())
283 question = f'Calculate time difference beween {tz1} and {tz2}

in seconds.'↪→
284 answer = time_difference
285 # 32. Find the leap year after a year
286 elif question_type == "Find the leap year after a year":
287 year = random.randint(1900, 2100)
288 while calendar.isleap(year):
289 year = random.randint(1900, 2100)
290 question = f"Find the leap year after year {year}."
291 answer = next(y for y in range(year + 1, year + 10000) if

calendar.isleap(y))↪→
292 # 33. Find the most common word in a paragraph
293 elif question_type == "Find the most common word in a paragraph":
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294 words = ['apple', 'banana', 'orange', 'grape', 'pear',
'hello', 'iphone', 'newspaper']↪→

295 paragraph = ' '.join(random.choices(words, k=30))
296 question = f"Find the most common word in the paragraph

'{paragraph}', concatenate it with the second common word
in this paragraph."

↪→
↪→

297 answer =
Counter(paragraph.lower().split()).most_common(2)[0][0] +
Counter(paragraph.lower().split()).most_common(2)[1][0]

↪→
↪→

298 # 34. Calculate the perimeter of a rectangle given its length and
width↪→

299 elif question_type == "Calculate the perimeter of a rectangle
given its length and width":↪→

300 length, width = random.randint(100, 10000),
random.randint(100, 10000)↪→

301 question = f"Calculate the perimeter of a rectangle with
length {length} and width {width}."↪→

302 answer = 2 * (length + width)
303 # 35. Sum all the digits of a given number
304 elif question_type == "Sum all the digits of a given number":
305 num = int(str(random.randint(100, 99999)) +

'999999999999999')↪→
306 question = f"Sum all the digits of the number {num}."
307 answer = sum(int(digit) for digit in str(num))
308 # 36. Calculate the area of a triangle given its base and height
309 elif question_type == "Calculate the area of a triangle given its

base and height":↪→
310 base = round(random.uniform(100, 500), 2)
311 height = round(random.uniform(100, 500), 2)
312 question = f"Calculate the area of a triangle with base

{base} and height {height}, round the result to two
decimal places."

↪→
↪→

313 answer = round(0.5 * base * height, 2)
314 # 37. Find the real roots of a quadratic equation
315 elif question_type == "Find the real roots of a quadratic

equation":↪→
316 a = round(random.uniform(10, 200), 2)
317 b = round(random.uniform(10, 200), 2)
318 c = round(random.uniform(10, 200), 2)
319 question = f"Find the real roots of the quadratic equation

{a}xˆ2 + {b}x + {c} = 0, round the result to two decimal
places."

↪→
↪→

320 discriminant = b**2 - 4*a*c
321 if discriminant > 0:
322 root1 = (-b + math.sqrt(discriminant)) / (2*a)
323 root2 = (-b - math.sqrt(discriminant)) / (2*a)
324 answer = (round(root1, 2), round(root2, 2))
325 elif discriminant == 0:
326 root = -b / (2*a)
327 answer = round(root, 2)
328 else:
329 answer = "no real roots"
330 # 38. Calculate the sum of the cubes of a list
331 elif question_type == "Calculate the sum of the cubes of a list":
332 sequence = [random.randint(100, 10000) for _ in

range(random.randint(5, 15))]↪→
333 question = f"Calculate the sum of the cubes of the list

{sequence}."↪→
334 answer = sum([n**3 for n in sequence])
335 # 39. Round all elements in a list to two decimal places
336 elif question_type == "Round all elements in a list to two

decimal places":↪→
337 array = [random.uniform(100, 10000) for _ in

range(random.randint(5, 15))]↪→
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338 question = f"Round all elements in the list {array} to two
decimal places."↪→

339 answer = [round(num, 2) for num in array]
340 # 40. Find the first recurring word in a string
341 elif question_type == "Find the first recurring word in a

string":↪→
342 words = [''.join(random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(5, 15))) for _ in
range(random.randint(5, 10))]

↪→
↪→

343 words = words * 3
344 random.shuffle(words)
345 paragraph = ' '.join(words)
346 question = f"Find the first recurring word in the paragraph

'{paragraph}', concatenate it with the second recurring
word in this paragraph."

↪→
↪→

347 def _find_recurring_words(paragraph):
348 words = paragraph.lower().split()
349 seen = set()
350 first, second = None, None
351 for word in words:
352 if word in seen:
353 if first is None:
354 first = word
355 elif second is None and word != first:
356 second = word
357 break
358 seen.add(word)
359 return first + second
360 answer = _find_recurring_words(paragraph)
361 # 41. Calculate the hypotenuse of a right triangle given the

other two sides↪→
362 elif question_type == "Calculate the hypotenuse of a right

triangle given the other two sides":↪→
363 side1 = random.randint(100, 20000)
364 side2 = random.randint(100, 20000)
365 question = f"Calculate the hypotenuse of a right triangle

with sides {side1} and {side2}, round the result to two
decimal places."

↪→
↪→

366 answer = round(math.sqrt(side1**2 + side2**2), 2)
367 # 42. Extract all the numbers in a string
368 elif question_type == "Extract all the numbers in a string":
369 string1 = random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(20, 50))↪→
370 string2 = random.choices('0123456789', k=random.randint(20,

50))↪→
371 string = string1 + string2
372 random.shuffle(string)
373 string = ''.join(string)
374 question = f"Extract all the numbers in the string '{string}'

in order and concatenate them."↪→
375 answer = ''.join(re.findall(r'\d+', string))
376 # 43. Convert a decimal number to its binary equivalent
377 elif question_type == "Convert a decimal number to its binary

equivalent":↪→
378 num = random.randint(1000, 1000000)
379 question = f"Convert the decimal number {num} to its binary

equivalent."↪→
380 answer = bin(num)[2:]
381 # 44. Calculate the difference between two lists
382 elif question_type == "Calculate the difference between two

lists":↪→
383 list1 = [random.randint(1, 50) for _ in range(10)]
384 list2 = [random.randint(1, 50) for _ in range(10)]
385 question = f"Calculate the difference between the lists

{list1} and {list2}."↪→
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386 answer = list(set(list1) - set(list2))
387 # 45. Sum all odd numbers in a list
388 elif question_type == "Sum all odd numbers in a list":
389 array = [random.randint(1000, 1000000) for _ in

range(random.randint(5, 15))]↪→
390 question = f"Sum all the odd numbers in the list {array}."
391 answer = sum(x for x in array if x % 2 != 0)
392 # 46. Find out all the numbers that are not unique
393 elif question_type == "Find out all the numbers that are not

unique":↪→
394 array = [random.randint(20, 35) for _ in range(20)]
395 question = f"Find out all the numbers that are not unique in

the array {array}."↪→
396 answer = [num for num, count in Counter(array).items() if

count > 1]↪→
397 # 47. Flatten a 2D list into a 1D list
398 elif question_type == "Flatten a 2D list into a 1D list":
399 array_len = random.randint(2, 10)
400 array = [[random.randint(1, 1000) for _ in range(array_len)]

for _ in range(array_len)]↪→
401 question = f"Flatten the 2D list {array} into a 1D list."
402 answer = [item for sublist in array for item in sublist]
403 # 48. Remove duplicates from a list
404 elif question_type == "Remove duplicates from a list":
405 array = [random.randint(1, 20) for _ in range(15)]
406 while len(array) == len(set(array)):
407 array = [random.randint(1, 20) for _ in range(15)]
408 question = f"Remove duplicates from the list {array}."
409 answer = list(set(array))
410 # 49. Generate the smallest N primes
411 elif question_type == "Generate the smallest N primes":
412 n = random.randint(5, 20)
413 primes = []
414 candidate = 2
415 while len(primes) < n:
416 if all(candidate % i != 0 for i in range(2, int(candidate

** 0.5) + 1)):↪→
417 primes.append(candidate)
418 candidate += 1
419 question = f"Generate the smallest {n} prime numbers."
420 answer = primes
421 # 50. Find the sum of all elements above the main diagonal of a

matrix↪→
422 elif question_type == "Find the sum of all elements above the

main diagonal of a matrix":↪→
423 matrix_len = random.randint(2, 10)
424 matrix = [[random.randint(1000, 1000000) for _ in

range(matrix_len)] for _ in range(matrix_len)]↪→
425 question = f"Find the sum of all elements above the main

diagonal of the matrix {matrix}."↪→
426 answer = sum(matrix[i][j] for i in range(matrix_len) for j in

range(i + 1, matrix_len))↪→
427 # 51. Filter elements in a list based on a condition
428 elif question_type == "Filter elements in a list based on a

condition":↪→
429 array = [random.randint(-100, 100) for _ in

range(random.randint(10, 20))]↪→
430 condition = random.randint(-50, 50)
431 question = f"Filter all elements in the array {array} that

are greater than {condition}."↪→
432 answer = [x for x in array if x > condition]
433 # 52. Merge two dictionaries into one
434 elif question_type == "Merge two dictionaries into one":
435 dict1 = {chr(65 + i): random.randint(1, 100) for i in

range(random.randint(10, 20))}↪→
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436 dict2 = {chr(67 + i): random.randint(1, 100) for i in
range(random.randint(10, 20))}↪→

437 question = f"Merge the dictionaries {dict1} and {dict2},
summing values for duplicate keys."↪→

438 answer = {k: dict1.get(k, 0) + dict2.get(k, 0) for k in
set(dict1) | set(dict2)}↪→

439 # 53. Extract all words of a specific length from a text
440 elif question_type == "Extract all words of a specific length

from a text":↪→
441 text = '

'.join([''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 10))) for _ in
range(random.randint(10, 20))])

↪→
↪→
↪→

442 length = random.randint(5, 10)
443 question = f"Find all words in the text '{text}' that have

exactly {length} characters."↪→
444 answer = [word for word in text.split() if len(word) ==

length]↪→
445 # 54. Extract email addresses from a text
446 elif question_type == "Extract email addresses from a text":
447 answer = [Faker().email() for _ in range(random.randint(2,

4))]↪→
448 text = answer +

[''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 10))) for _ in
range(random.randint(10, 20))]

↪→
↪→
↪→

449 random.shuffle(text)
450 text = ' '.join(text)
451 question = f"Find all email addresses in the text: '{text}'"
452 # 55. Sort a list of strings by their length
453 elif question_type == "Sort a list of strings by their length":
454 strings =

[''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 20))) for _ in
range(random.randint(10, 20))]

↪→
↪→
↪→

455 question = f"Sort the list {strings} by the length of each
string."↪→

456 answer = sorted(strings, key=len)
457 # 56. Check if two strings are anagrams
458 elif question_type == "Check if two strings are anagrams":
459 string1 = random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(10, 20))↪→
460 string2 = random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(10, 20)) if random.random() > 0.5 else
string1

↪→
↪→

461 random.shuffle(string2)
462 string1 = ''.join(string1)
463 string2 = ''.join(string2)
464 question = f"Check if '{string1}' and '{string2}' are

anagrams."↪→
465 answer = sorted(string1) == sorted(string2)
466 # 57. Extract hashtags from a social media post
467 elif question_type == "Extract hashtags from a social media

post":↪→
468 topic = [''.join(random.choices('abcdefghijklmnopqrstuvwxyz',

k=random.randint(5, 10))) for _ in
range(random.randint(10, 20))]

↪→
↪→

469 hashtags = ['#' +
''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 10))) for _ in
range(random.randint(2, 5))]

↪→
↪→
↪→

470 text = topic + hashtags
471 random.shuffle(text)
472 text = ' '.join(text)
473 question = f"Extract all hashtags from the post: '{text}'"
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474 answer = [word for word in text.split() if
word.startswith("#")]↪→

475 # 58. Capitalize each word in a string
476 elif question_type == "Capitalize each word in a string":
477 text = '

'.join([''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 10))) for _ in
range(random.randint(10, 20))])

↪→
↪→
↪→

478 question = f"Capitalize each word in the string '{text}'."
479 answer = text.title()
480 # 59. Find the index of a substring in a string
481 elif question_type == "Find the index of a substring in a

string":↪→
482 string =

[''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 10))) for _ in
range(random.randint(10, 20))]

↪→
↪→
↪→

483 substring = random.choice(string)
484 string = ' '.join(string)
485 question = f"Find the index of the substring '{substring}' in

the string '{string}'."↪→
486 answer = string.find(substring)
487 # 60. Replace all vowels in a string with a specific character
488 elif question_type == "Replace all vowels in a string with a

specific character":↪→
489 string = '

'.join([''.join(random.choices('abcdefghijklmnopqrstuvwxyz',
k=random.randint(5, 10))) for _ in
range(random.randint(10, 20))])

↪→
↪→
↪→

490 replacement = random.choice(["*", "$", "%", "&", "#", "@"])
491 question = f"Replace all vowels in the string '{string}' with

'{replacement}'."↪→
492 answer = ''.join([replacement if char.lower() in "aeiou" else

char for char in string])↪→
493 # not defined question
494 else:
495 raise ValueError(f'{question_type} is not defined')
496 # format and return
497 random_qa = {'question': question, 'answer': answer}
498 return random_qa
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A.8 PROMPTS FOR CONSTRUTING FACT

We construct the FACT datasets by prompting GPT-4o with,

1. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Geography. Return them
as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

2. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with History. Return them as
a Python dictionary, with concise answers (3-5 words).

↪→

↪→

3. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Science. Return them as
a Python dictionary, with concise answers (3-5 words).

↪→

↪→

4. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Technology. Return them
as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

5. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Mathematics. Return them
as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

6. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Culture and Arts. Return
them as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

7. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Sports. Return them as a
Python dictionary, with concise answers (3-5 words).

↪→

↪→

8. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Politics. Return them as
a Python dictionary, with concise answers (3-5 words).

↪→

↪→

9. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Language and Grammar.
Return them as a Python dictionary, with concise answers (3-5
words).

↪→

↪→

↪→

10. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Current Affairs. Return
them as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

11. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Entertainment. Return
them as a Python dictionary, with concise answers (3-5 words).

↪→

↪→

12. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Medicine and Health.
Return them as a Python dictionary, with concise answers (3-5
words).

↪→

↪→

↪→

13. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Economics and Business.
Return them as a Python dictionary, with concise answers (3-5
words).

↪→

↪→

↪→

14. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with Religion and Mythology.
Return them as a Python dictionary, with concise answers (3-5
words).

↪→

↪→

↪→

15. Generate 100 Q&A pairs for LLM factual retrieval testing. The
question topic should be related with General Knowledge.
Return them as a Python dictionary, with concise answers (3-5
words).

↪→

↪→

↪→
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A.9 SOME PROMISING RESULTS

Here, we show some promising results and compare them with other LLMs.

Prompt: What is the 121st prime number?

Response [Llama3-8B SFT on ToolBridge]: The 121st prime number is  661. \n\nTo find the 121st prime number, we can use the Sieve of Eratosthenes 

algorithm. This algorithm starts with a list of all the integers from 2 to 10000 (or any other upper limit), and then iterates through the list, marking as 

composite (not prime) all multiples of the first prime number. It then moves on to the next unmarked number, which is the next prime number, and 

repeats the process. This continues until all the numbers in the list have been marked as composite or prime.

Response [Llama3.1-70B-IT]: The 121st prime number is 691.

Response [GPT-4, Web UI]: The 121st prime number is 661.

Response [GPT-4o, Web UI]: The 121st prime number is 661.

Response [Gemma2-27B-IT]:  The 121st prime number is 607. You can find prime numbers using primality tests or by looking them up in a list of prime numbers.

Prompt: What is the cosine of 20.4 degrees?

Response [Llama3-8B SFT on ToolBridge]: The cosine of 20.4 degrees is approximately 0.9372819894918915.

Response [Llama3.1-70B-IT]: The cosine of 20.4 degrees is approximately 0.9387.

Response [GPT-4, Web UI]: The cosine of 20.4 degrees is approximately 0.9362.

Response [GPT-4o, Web UI]: The cosine of 20.4 degrees is approximately 0.937.

Response [Gemma2-27B-IT]: You'll need a calculator to find the cosine of 20.4 degrees. Here's how: Make sure your calculator is in degree mode. Enter "cos 20.4" 

and press enter. The result will be the cosine of 20.4 degrees. Let me know if you have any other questions.

Prompt: What is the area of a triangle with base 102.4 and height 215.9? 

Response [Llama3-8B SFT on ToolBridge]: The area of a triangle is given by the formula: A = (1/2) * base * height. \n\nIn this case, the base is 102.4 

and the height is 215.9. \n\nSubstituting these values into the formula, we get: \n\nA = (1/2) * 102.4 * 215.9 = 11054.080000000002. 

Response [Llama3.1-70B-IT]: To find the area of a triangle, we use the formula: \n\nArea = (base × height) / 2\n\nGiven base = 102.4 and height = 215.9, we can 

plug in these values:\n\nArea = (102.4 × 215.9) / 2\n\nFirst, let's calculate the product of base and height:\n102.4 × 215.9 = 22123.36\n\nNow, divide the result by 

2:\n22123.36 / 2 = 11061.68\n\nSo, the area of the triangle is approximately 11061.68 square units. 

Response [GPT-4, Web UI]: To find the area of a triangle, you can use the formula: Area = 1/2 × base × height. Plugging in the given values you provided: Area = 1/2 

× 102.4 × 215.9 = 11041.92 square units. Therefore, the area of the triangle is  11041.92 square units. 

Response [GPT-4o, Web UI]: The area of a triangle is calculated using the formula: Area = 1/2 × base × height. Plugging in the given values: Area = 1/2 × 102.4 × 

215.9 = 11053.12. So, the area of the triangle is 11,053.12 square units. 

Response [Gemma2-27B-IT]: The area of a triangle is calculated as (base * height) / 2. Therefore, the area of a triangle with base 102.4 and height 215.9 is: (102.4 * 

215.9) / 2 = 11054.08.

Prompt: Which is the higher value of 9.9 or 9.11

Response [Llama3-8B SFT on ToolBridge]: The higher value between 9.9 and 9.11 is 9.9.

Response [GPT-4o, Web UI]: 9.9 is higher than 9.11 when considering their decimal values. This is because 9.9 is equivalent to 9.90, which is greater than 9.11.

Response [Gemini, Web UI]: 9.11 is the higher value.

Prompt: Find the GCD of 270 and 192.

Response [Llama3-8B SFT on ToolBridge]: The GCD (Greatest Common Divisor) of 270 and 192 is 6.

Response [GPT-4o, Web UI]:  The GCD (Greatest Common Divisor) of 270 and 192 is: \n6.

Response [Gemini, Web UI]: The GCD of 270 and 192 is 12.

Figure 5: Some promising results from LLMs trained on ToolBridge.
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A.10 EXTEND TO NATURAL WEB DATA

Our algorithm is not strictly reliant on the existing SFT datasets as it is equally applicable to natural
data sourced from the web. Because, by using LLMs like GPT-4o, raw web data can be transformed
into QA pairs, which can then be processed leveraging the proposed pipeline outlined in Section 3,
including the selection, conversion, and filtering of valuable data entries.

For instance, Google’s C4 dataset can be systematically transformed into QA pairs by using GPT-4o
with the following example prompt:

You are an expert assistant tasked with creating concise and
relevant Question-Answer (QA) pairs based on the content of a
given web page. Follow these guidelines:

↪→

↪→

1. Content Focus: Read the provided web page content carefully and
base all questions and answers solely on the information within
the page. Do not include external knowledge.

↪→

↪→

2. Question Types: Include a mix of factual, explanatory, and
inferential questions to test comprehension and understanding.↪→

3. Question Structure: Ensure questions are clear and specific. Use
diverse formats such as: What/Why/How questions.↪→

4. Answer Structure: Provide direct, accurate, and concise answers.
Avoid ambiguous or overly lengthy responses.↪→

Example Web Content:

Coffee is one of the most popular beverages in the world. It is made
from roasted coffee beans, which are seeds of the Coffea plant.
A standard cup of coffee contains approximately 95 milligrams of
caffeine. Studies suggest that consuming 400 milligrams of
caffeine per day is generally safe for most adults. Many people
drink coffee daily as part of their morning routine, with some
consuming 2 to 4 cups per day depending on their preference.

↪→

↪→

↪→

↪→

↪→

↪→

Example Output:

- Question 1: How much caffeine is in a standard cup of coffee?
- Answer: A standard cup of coffee contains approximately 95

milligrams of caffeine.↪→

- Question 2: If a person drinks 3 cups of coffee, how much caffeine
do they consume?↪→

- Answer: They consume 285 milligrams of caffeine (95 * 3 = 285).
- Question 3: If a person drinks 2 cups of coffee in the morning and

1 in the evening, how much caffeine do they consume in total?↪→

- Answer: They consume 285 milligrams of caffeine (95 * 2 + 95 =
285).↪→

- Question 4: How many cups of coffee would a person need to drink
to consume exactly 400 milligrams of caffeine?↪→

- Answer: They would need to drink approximately 4.2 cups of coffee
(400 ÷ 95 = 4.2).↪→

- Question 5: If a person reduces their daily coffee intake from 4
cups to 2 cups, how much less caffeine do they consume in a day?↪→

- Answer: They consume 190 milligrams less caffeine (95 * 4 - 95 * 2
= 380 - 190 = 190).↪→

Web Content:

PLACEHOLDER

Output:
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Some examples of the output results are presented below,

Source data:  

Schwarz has been the president of the Greater Cleveland Film Commission for over ten years. He has over thirty 

years of experience in the film and television industries, working predominantly as a location manager and 

producer. His work includes “Wild At Heart,” “My Name Is Earl,” “Entourage,” “The Comeback,” “From the Earth to 

the Moon” and Tom Hanks and Steven Spielberg’s “Band of Brothers,” for which Ivan won a Golden Globe. The Film 

Commission is the only nonprofit organization dedicated to bringing jobs and economic impact to Northeast Ohio 

through the growth of a sustainable media production industry. Since passing the Ohio Motion Picture Tax Credit 

in 2009, more than 110 productions have shot in Cleveland, including “The Avengers,” “Captain America: The Winter 

Soldier,” and most recently, Matthew McConaughey’s “White Boy Rick” and Helen Hunt’s “I See You”.

Generated QA:  

- Question1: How long has Schwarz been the president of the Greater Cleveland Film Commission?

- Answer: Schwarz has been the president of the Greater Cleveland Film Commission for over ten years.

- Question2: What is the primary goal of the Greater Cleveland Film Commission?

- Answer: The primary goal of the Greater Cleveland Film Commission is to bring jobs and economic impact to 

Northeast Ohio through the growth of a sustainable media production industry.

- Question3: What significant legislation related to film production was passed in Ohio in 2009?

- Answer: The Ohio Motion Picture Tax Credit was passed in 2009.

Source data:  

Earn monthly interest on our Citibank Time Deposits (also known as Fixed Deposits). What's more, you get to enjoy 

the flexibility of making partial withdrawals before maturity date of your Time Deposit. Partial withdrawals in 

multiples of RM5,000 before the maturity date. Option to pledge your Time Deposit for overdraft facility. 

Continue to earn the original interest rate with your remaining balance. View your Citibank® Time Deposit 

accounts across participating countries with a single login via Online Global View. Online account inquiries and 

banking transactions via Citibank® or Citigold® Online. Make banking inquiries anytime, anywhere via live e-Chat, 

'Call Me' function and 20 seconds1 call pickup. Eligible for protection by PIDM**. * Monthly interest is only 

available for minimum deposit of RM50,000 and for a minimum tenure of 6 months. ** Click here for more details on 

PIDM protection. 1From the moment you press 0 to speak to a CitiPhone officer. For the Citibank Account Terms and 

Conditions, click here.

Generated QA: 

- Question1: If a customer deposits RM100,000 into a Citibank Time Deposit account, how many partial withdrawals 

of RM5,000 can they make before the maturity date?

- Answer: They can make 20 partial withdrawals of RM5,000 each (RM100,000 ÷ RM5,000 = 20).

- Question2: A customer earns monthly interest on a Time Deposit of RM200,000 with an interest rate of 2% per 

annum. How much interest will they earn in one month?

- Answer: The monthly interest is RM333.33 (RM200,000 × 2% ÷ 12 = RM333.33).

- Question3: If a customer deposits RM75,000 for 6 months with an interest rate of 3% per annum, what is the 

total interest earned at the end of the tenure?

- Answer: The total interest earned is RM1,125 (RM75,000 × 3% ÷ 12 × 6 = RM1,125).

- Question4: A customer deposits RM120,000 for 12 months with a 4% annual interest rate. How much interest will 

they earn in total?

- Answer: The total interest earned is RM4,800 (RM120,000 × 4% = RM4,800).

- Question5: If the monthly interest on a Time Deposit of RM60,000 is RM100, what is the annual interest rate?

- Answer: The annual interest rate is 2% (RM100 × 12 ÷ RM60,000 = 2%).

Figure 6: Sample outcomes of converting natural web data from Google’s C4 dataset into QA format
with the help of GPT-4o.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

A.11 CONSTRUCT FACT WITH GEMINI

In Section 4.4, we employ GPT-4o, together with the prompts outlined in Appendix A.8, to construct
the FACT dataset, which is utilized to evaluate the extent to which ToolBridge enhances the LLMs’
capability for factual retrieval. Here, we also use Google Gemini to yield three batches of the FACT
datasets termed Gemini-FACT-B(n), with each batch corresponding sequentially to the five prompts
outlined in Appendix A.8. Table 12 demonstrates the evaluation results.

Models SFT data Gemini-FACT-B1 Gemini-FACT-B2 Gemini-FACT-B3
Llama3-8B - 75.8 52.5 60.3

Llama3-8B-Lora ToolBridge§ 83.4 61.7 66.2
Llama3-8B-Lora ToolBridge 89.2 63.3 71.2

Mistral-7B - 77.5 59.2 67.8
Mistral-7B-Lora ToolBridge§ 85.8 61.5 70.4
Mistral-7B-Lora ToolBridge 90.8 64.7 74.7

Table 12: Experimental results on Gemini-FACT under zero-shot setting.

We can observe that the models trained on ToolBridge consistently achieve superior performance.
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A.12 DISTRIBUTION OF PYTHON PACKAGES ADOPTED IN TOOLBRIDGE

Here, we provide the distribution of all Python packages used in ToolBridge.

Python Package Frequency Python Package Frequency Python Package Frequency
math 2669 re 2234 sympy 1838
nltk 1616 datetime 1512 langdetect 489

numpy 271 collections 248 string 246
fractions 209 pandas 205 itertools 121
statistics 118 sklearn 92 io 65
requests 54 difflib 35 calendar 34

bs4 32 os 31 random 23
functools 23 urllib 20 json 17
matplotlib 12 scipy 10 operator 8

xml 8 base64 7 codecs 6
sys 5 PIL 5 bisect 4
csv 3 subprocess 3 cmath 3
time 2 pytz 2 ipaddress 2

decimal 2 unicodedata 2 dateutil 2
pytest 2 enum 2 heapq 2

keyword 1 typing 1 inspect 1
configparser 1 struct 1 ctypes 1

networkx 1 lxml 1 pylab 1
cycler 1 torch 1 html 1

textwrap 1 ast 1 locale 1

Table 13: The usage frequency of all Python packages involved in ToolBridge.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

A.13 REVIEW PROCESS FOR SFT DATASETS IN TABLE 1

The integration of Supervised Fine-tuning (SFT) datasets presented in Table 1 was primarily carried
out by conducting keyword searches (e.g., ”supervised fine-tuning dataset”, ”SFT dataset”, ”instruc-
tion tuning dataset”, and ”LLM dataset”) across platforms including Google Scholar, Hugging Face
and GitHub. Representative search results include the following resources:

• https://github.com/Zjh-819/LLMDataHub,
• https://github.com/RenzeLou/awesome-instruction-learning,
• https://github.com/raunak-agarwal/instruction-datasets,
• https://github.com/zhilizju/Awesome-instruction-tuning,
• https://arxiv.org/abs/2402.18041,
• https://arxiv.org/abs/2402.06196.

Based on these resources, we conducted a manual review of all referenced datasets, including verify-
ing whether the dataset qualified as an SFT dataset, assessing its open-source availability, identifying
potential overlaps with existing collected datasets, and examining other potential concerns, such as
copyright issues. At last, we derived Table 1.
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A.14 THE PROMPT SELECTION STRATEGY FOR LLAMA3-70B

To select an appropriate prompt for LLama3-70B to perform valuable data entries selection, we first
designed the following candidate prompts:

Prompt1: Your task is to determine whether you can add calls to a
Python API to a piece of text. The calls should help you get
information required to complete the text. You only need to
respond with "Yes" or "No", "Yes" means you can and "No" means
you can't.

↪→

↪→

↪→

↪→

Input:

PLACEHOLDER

Output:

Prompt2: Determine if you can add Python API calls to the text to
complete it. Respond with "Yes" or "No".↪→

Input:

PLACEHOLDER

Output:

Prompt3: Prompt1 with example inputs outputs in Appendix A.1.

Prompt4: Prompt2 with example inputs outputs in Appendix A.1.

Then, we randomly sample 50 data entries from each dataset involved in Table 1 to serve as the test
set for evaluating the effectiveness of these prompts. For each entry, five people label it to determine
whether inserting Python code at the appropriate places can assist in yielding its subsequent contents.
The final label for each data entry is determined based on the majority rule.

The evaluation results for each prompt are shown in the following table:

Prompt ID True Positive False Positive False Negative True Negative Recall FPR
1 781 452 0 17 100.0% 96.4%
2 781 432 0 37 100.0% 92.1%
3 732 10 49 459 93.7% 2.1%
4 679 25 102 444 86.9% 5.3%

Table 14: Ablation studies on candidate prompts for LLama3-70B.

Given the role of LLama3-70B as outlined in Section 3.2, the central aim at this stage is to maximize
recall — safeguarding against the premature discarding of valuable data entries — while maintaining
a sufficiently low false positive rate (FPR) to prevent excessive computational overhead for GPT-4o-
mini in the subsequent stage.

In Section 3.3, we elaborate that GPT-4o-mini performs a secondary screening of the entries, refining
and further filtering data entries deemed valueless. Its higher accuracy and generalizability compared
to LLama3-70B make it the principal decision-making LLMs in our pipeline. However, owing to its
significantly higher computational cost, it is essential to minimize the volume of data entries passed
to GPT-4o-mini.

Based on the evaluation results in Table 14, Prompt 3 demonstrated the most balanced performance
for our requirements, achieving high recall (93.7%) and a notably low FPR (2.1%). While Prompt 1
and Prompt 2 achieved perfect recall, their exceedingly high FPRs (96.4% and 92.1%, respectively)
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made them unsuitable for the preliminary filtering task, as they would result in an excessive volume
of data entries being forwarded to GPT-4o-mini. Conversely, Prompt 4’s lower recall (86.9%) made
it less effective at retaining valuable entries.

Considering the performance of Prompt 3, we determined it was sufficient to meet the requirements
for LLama3-70B’s role in the ToolBridge pipeline. Consequently, we selected Prompt 3 as the final
prompt and did not conduct further ablation studies for LLama3-70B prompt design.

39


	Introduction
	Related Work
	ToolBridge
	Dataset Pool Construction
	Valuable Data Entries Selection
	Valuable data Entries conversion
	Data Entries Filtering by Consistency Validation

	EXPERIMENTS
	Dataset Statistics of ToolBridge
	Experimental setup
	Results on Standard Benchmarks
	Results on Custom Benchmarks

	Conclusion
	Appendix
	LLama3-70B Prompts
	GPT-4o-mini Prompts
	Detecting Simple Code Structures: Assignment Followed by Print Statement
	Optimizing Dataset Quality by Removing Non-Executable and Slow Tool Calls
	Compare Outputs from Llama3 Trained on C and ToolBridge
	Links to data sources used in the dataset pool
	Templates for Yielding RandomQA DATASET
	Prompts for Construting FACT
	Some Promising results
	Extend to Natural Web Data
	Construct FACT with Gemini
	Distribution of Python Packages adopted in ToolBridge
	Review Process for SFT datasets in Table 1
	The Prompt selection strategy For LLama3-70B


