RETHINKING POLICY DIVERSITY IN ENSEMBLE POLICY GRADIENT IN LARGE-SCALE REINFORCEMENT LEARNING

Anonymous authorsPaper under double-blind review

ABSTRACT

Scaling reinforcement learning to tens of thousands of parallel environments requires overcoming the limited exploration capacity of a single policy. Ensemblebased policy gradient methods, which employ multiple policies to collect diverse samples, have recently been proposed to promote exploration. However, merely broadening the exploration space does not always enhance learning capability, since excessive exploration can reduce exploration quality or compromise training stability. In this work, we theoretically analyze the impact of inter-policy diversity on learning efficiency in policy ensembles, and propose Coupled Policy Optimization (CPO), which regulates diversity through KL constraints between policies. The proposed method enables effective exploration and outperforms strong baselines such as SAPG, PBT, and PPO across multiple dexterous manipulation tasks in both sample efficiency and final performance. Furthermore, analysis of policy diversity and effective sample size during training reveals that follower policies naturally distribute around the leader, demonstrating the emergence of structured and efficient exploratory behavior. Our results indicate that diverse exploration under appropriate regulation is key to achieving stable and sample-efficient learning in ensemble policy gradient methods.

1 Introduction

With the advent of GPU-based massively parallel physics simulators such as Isaac Gym (Makoviychuk et al., 2021) and Genesis (Authors, 2024), it has become feasible to collect data from over tens of thousands of environments simultaneously for robot deep reinforcement learning (RL). Given the inherently trial-and-error nature of RL, such parallelism has the potential to dramatically improve learning efficiency for high-dimensional and complex tasks, such as dexterous hand manipulation. However, recent work (Singla et al., 2024) has reported that simply increasing the amount of data does not necessarily lead to improved learning efficiency in on-policy methods like PPO (Schulman et al., 2017). This result suggests that simply using a single policy in massively parallelized environments does not sufficiently diversify exploration and thus cannot significantly improve learning efficiency.

To address these challenges, agent ensemble approaches have been proposed to collect diverse samples. Recent work (Singla et al., 2024) introduced a leader-follower framework shown in Fig. 1(a), in which one leader agent and multiple followers are each assigned to separate blocks of parallel environments. Each follower performs independent on-policy learning, while the leader aggregates off-policy samples from followers using importance sampling (IS). Unlike other agent ensemble methods (Aleksei Petrenko, 2023; Li et al., 2023a), this enables the use of all collected data without discarding any samples, thereby facilitating diverse exploration. Their approach has demonstrated significantly improved learning performance over non-aggregating methods like DexPBT (Aleksei Petrenko, 2023), as well as over off-policy methods such as PQL (Li et al., 2023b). However, it remains an open question whether greater inter-policy diversity necessarily translates into better performance.

In this work, we theoretically and empirically investigate the impact of inter-policy diversity on ensemble policy gradient methods, showing that excessive diversity can harm both training stability and sample efficiency as shown in Fig. 1(b). To address this issue, we propose Coupled Policy Optimization (CPO), a novel method that introduces a KL divergence constraint during follower

Figure 1: Appropriately controlled policy diversity improves the learning efficiency of ensemble RL in large-scale environments. (a) The leader-follower approach is an agent ensemble method that aggregates samples from multiple followers into a leader policy. (b) Misalignment between policies may causes a decline in sample efficiency and training stability. (c) Our method introduces KL divergence constraints to keep followers distributed around the leader, as well as adversarial reward to prevent policies overconcentration.

policy updates in the leader-follower framework, thereby promoting diverse yet well-structured exploration around the leader (Fig. 1(c)). In addition, to prevent overconcentration among policies, we incorporate an adversarial reward that discriminates agent identity from state–action pairs, ensuring balanced and effective diversity.

Extensive experiments on dexterous manipulation tasks demonstrate that our method outperforms strong baselines such as SAPG, DexPBT, and PPO in both sample efficiency and final performance. In addition, we confirm that the KL constraint drives the IS ratios closer to one, which increases the effective sample size (ESS) and mitigates the clipping bias in PPO, thereby improving the effective sample efficiency and training stability. Furthermore, analysis of the ensemble policies reveals that SAPG suffers from severe policy misalignment, where some follower policies diverge significantly from the leader, hindering leaning ability. In contrast, CPO naturally induces a stable and well-structured policy formation, with followers distributed around the leader in a balanced manner.

To summarize, our main contributions are as follows:

- We provide a theoretical analysis showing that excessive inter-policy diversity in ensemble policy gradient methods degrades training stability and sample efficiency.
- We propose CPO, a leader-follower framework that introduces a KL divergence constraint and adversarial reward during follower updates to enable effective and stable exploration in policy space. The proposed method outperforms strong baselines including SAPG, DexPBT, and PPO across multiple dexterous manipulation tasks.
- We empirically verify that the KL constraint keeps IS ratios close to one in leader's off-policy policy update, leading to improved sample efficiency.
- Through inter-policy KL divergence analysis, we show that CPO naturally induces
 a structured policy formation in which follower policies are consistently distributed
 around the leader policy, avoiding the policy misalignment observed in a prior method.

2 RELATED WORK

2.1 DISTRIBUTED REINFORCEMENT LEARNING

Deep reinforcement learning (RL) relies on trial-and-error, and increased data collection through massively parallel environments directly contributes to performance improvement. Early work focused on asynchronous distributed algorithms across multiple devices with hundreds to thousands

of environments, favoring off-policy methods (Espeholt et al., 2018; Horgan et al., 2018; Espeholt et al., 2019). Recently, GPU-based simulators such as Isaac Gym (Makoviychuk et al., 2021) have enabled tens of thousands of environments to run synchronously on a single device, reviving interest in on-policy methods that often achieve higher final performance in robotic tasks (Rudin et al., 2022; Handa et al., 2023; Zhuang et al., 2023; Li et al., 2023b). However, naively scaling methods like PPO to such large numbers of environments yields diminishing returns, since a single policy provides limited exploration diversity, resulting in similar trajectories (Singla et al., 2024).

115 116

108

109

110

111

112

113

114

117

118

119

120

121

122

To enhance exploration diversity in massively parallel environments, ensemble methods with multiple policies have been explored. DexPBT (Aleksei Petrenko, 2023), for example, trains policies with different hyperparameters in parallel but discards data from non-selected policies, reducing overall efficiency. SAPG (Singla et al., 2024) instead leverages all follower data through IS in a leaderfollower framework, improving exploration diversity and training stability. Yet, the impact of inter-policy diversity has not been thoroughly examined, and excessively divergent followers may generate off-policy samples that destabilize the leader.

123 124 125 126

127

128

129

130

131

132

133 134

2.3 POLICY UPDATE WITH REGULARIZATION

2.2 AGENT ENSEMBLE IN PARALLELED ENVIRONMENTS

Policy regularization is widely used in RL, typically constraining divergence either from the dataset policy in offline RL (Fujimoto & Gu, 2021; Garg et al., 2023; Sikchi et al.; Nair et al., 2020) or from the old policy in online RL (Schulman et al., 2015; 2017; Abdolmaleki et al., 2018), thereby improving stability and efficiency. In this work, we regularize the divergence between follower and leader policies so that followers explore near the leader in policy space, collecting data informative to the leader while maintaining diversity. For this purpose, we employ KL divergence, following prior approaches such as XQL (Garg et al., 2023) and AWAC (Nair et al., 2020).

3 **PRELIMINARIES**

135 136 137

138

139

140

141

In this paper, we theoretically show that excessive inter-policy diversity in ensemble policy gradient methods under massively parallel environments can harm training stability and sample efficiency, and we propose a method that controls the diversity between agents to promote efficient exploration. Since both our analysis and the proposed method build upon the leader-follower framework of SAPG (Singla et al., 2024), we first review the formulation of a fundamental on-policy algorithm, PPO (Schulman et al., 2017), and then summarize the key ideas and limitations of SAPG.

142 143 144

3.1 Reinforcement Learning

145 146

147

148

149

150

In RL, tasks are typically formalized as a Markov Decision Process (MDP), defined by a tuple (S, A, P, r, γ, d) . Here, S is the state space, A is the action space, $P(s_{t+1}|s_t, a_t)$ is the state transition probability density, r(s, a) is the reward function, γ is the discount factor, and $d(s_0)$ is the initial state distribution. A policy $\pi(a|s): \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$ is defined as a probability distribution over actions conditioned on the state. The objective of RL is to learn a policy that maximizes the expected return $\mathbb{E}[R_0|\pi]$ where $R_t = \sum_{k=t}^T \gamma^{k-t} r(s_k, a_k)$ and T is a task horizon.

151 152

3.2 PROXIMAL POLICY OPTIMIZATION (PPO)

153 154 155

156

157 158 PPO is a widely used on-policy algorithm that stabilizes updates by clipping the IS ratio with the behavior policy. All agents in this study are trained with PPO with modifications. The objective is:

$$L_{\text{PPO}}(\theta) = -\mathbb{E}_{\boldsymbol{s}, \boldsymbol{a} \sim \pi_{\theta_{\text{old}}}} \left[\min(r(\theta) A(\boldsymbol{s}, \boldsymbol{a}), \text{clip}(r(\theta), 1 - \epsilon, 1 + \epsilon) A(\boldsymbol{s}, \boldsymbol{a})) \right], \tag{1}$$

where $r(\theta)=\frac{\pi_{\theta}(a|s)}{\pi_{\theta_{\mathrm{old}}}(a|s)}$ is the IS ratio and ϵ is the clipping parameter. The advantage function is 159 160 161

 $A(s, a) = Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s)$, with the action-value function $Q^{\pi_{\theta}}(s, a) = \mathbb{E}_{\pi_{\theta}}[R \mid s, a]$ and the value function $V^{\pi_{\theta}}(s) = \mathbb{E}_{\pi_{\theta}}[R \mid s]$. Thus, A(s, a) measures how much better action a is compared to the average action under π_{θ} .

3.3 SPLIT AND AGGREGATE POLICY GRADIENTS (SAPG)

SAPG is a state-of-the-art RL method designed to enhance exploration diversity and sample efficiency in massively parallel environments. It trains multiple policies concurrently, where each follower agent collects data that is aggregated into a leader policy. The leader leverages off-policy data from followers through IS, enabling diverse exploration with parallel environments.

Specifically, the N parallel environments are divided into M blocks, and one leader policy and M-1 follower policies are each assigned to the blocks. All agents share the same policy and value networks conditioned on identification vectors. The leader policy $\pi_{L_{\theta}}(\boldsymbol{a}|\boldsymbol{s})$ and follower policies $\pi_{F_{i,\theta}}(\boldsymbol{a}|\boldsymbol{s})$, where $i \in \{0,\ldots,M-2\}$, are updated by the objective functions in Eq. 2 and Eq. 3.

$$\begin{split} L_{\text{SAPG},L}(\theta,j) &= -\mathbb{E}_{\boldsymbol{s},\boldsymbol{a} \sim \pi_{L_{\theta_{\text{old}}}}} \left[\min \left(r_{L_{\text{on}}}(\theta) A^{L}(\boldsymbol{s},\boldsymbol{a}), \, \text{clip}(r_{L_{\text{on}}}(\theta), 1-\epsilon, 1+\epsilon) A^{L}(\boldsymbol{s},\boldsymbol{a}) \right) \right] \\ &- \mathbb{E}_{\boldsymbol{s},\boldsymbol{a} \sim \pi_{F_{j,\theta_{\text{old}}}}} \left[\min \left(r_{L_{\text{off}}}(\theta) A^{L}(\boldsymbol{s},\boldsymbol{a}), \, \text{clip}(r_{L_{\text{off}}}(\theta), 1-\epsilon, 1+\epsilon) A^{L}(\boldsymbol{s},\boldsymbol{a}) \right) \right], \end{split}$$

$$L_{\text{SAPG},F_i}(\theta) = -\mathbb{E}_{\boldsymbol{s},\boldsymbol{a} \sim \pi_{F_i,\theta_{\text{old}}}} \left[\min \left(r_{F_i}(\theta) A^{F_i}(\boldsymbol{s},\boldsymbol{a}), \operatorname{clip}(r_{F_i}(\theta), 1-\epsilon, 1+\epsilon) A^{F_i}(\boldsymbol{s},\boldsymbol{a}) \right) \right], \tag{3}$$

where $j \in \{0, ..., M-2\}$ denotes the index of a follower agent randomly sampled at each training epoch, and the density ratios between behavior policy and the updating policy are defined as:

$$r_{L_{\text{on}}}(\theta) = \frac{\pi_{L_{\theta}}(\boldsymbol{a}|\boldsymbol{s})}{\pi_{L_{\theta_{\text{old}}}}(\boldsymbol{a}|\boldsymbol{s})}, \quad r_{L_{\text{off}}}(\theta) = \frac{\pi_{L_{\theta}}(\boldsymbol{a}|\boldsymbol{s})}{\pi_{F_{j,\theta_{\text{old}}}}(\boldsymbol{a}|\boldsymbol{s})}, \quad r_{F_{i}}(\theta) = \frac{\pi_{F_{i,\theta}}(\boldsymbol{a}|\boldsymbol{s})}{\pi_{F_{i,\theta_{\text{old}}}}(\boldsymbol{a}|\boldsymbol{s})}. \tag{4}$$

Here, $A^{F_i}(s, a)$ and $A^L(s, a)$ denote the advantage functions for the *i*-th follower and the leader policy, respectively. Furthermore, SAPG introduces an entropy regularization term applied to all policies to encourage diversity in exploration across agents.

However, SAPG lacks an explicit mechanism to control the distance between leader and follower policies while applying entropy regularization. This may lead followers to be misaligned significantly from the leader. In this paper, we discuss the impact of this excessive divergence on learning.

4 EFFECT OF POLICY DIVERSITY ON ENSEMBLE POLICY GRADIENT

Policy diversity affects ensemble policy gradient methods in two major aspects: data coverage and training stability. While diverse exploration increases coverage and mitigates local optima, excessive diversity reduces sample density and weakens the variance-reduction effect of parallel environments, reflecting a fundamental exploration—exploitation trade-off in reinforcement learning. More critically, excessive divergence between the leader and follower policies can directly harm training stability and sample efficiency. We formalize this intuition through the following propositions.

Proposition 1. The expected absolute deviation of the IS ratio from 1 is inversely related to the effective sample size (ESS); as the deviation increases, the ESS decreases.

When the leader and follower policies diverge, the expected absolute deviation of the IS ratio for leader update with follower samples, $\mathbb{E}_{s,a \sim \pi_{F_{\text{old}}}} \left[\left| 1 - \frac{\pi_L(a|s)}{\pi_{F_{\text{old}}}(a|s)} \right| \right]$, increases. This deviation leads to higher variance in the IS ratio, thereby diminishing the ESS, which is a standard metric of sample efficiency in IS with approximation (Martino et al., 2017), where w_i is the IS ratio, defined as follows:

$$ESS = \frac{1}{\sum_{i=1}^{N} \tilde{w}_{i}^{2}}, \quad \tilde{w}_{i} = \frac{w_{i}}{\sum_{j=1}^{N} w_{j}}.$$
 (5)

Intuitively, samples from misaligned follower policies contribute little to the leader's learning, thereby reducing the overall sample efficiency of the leader update. The detailed derivation is provided in Appendix A.1.1.

Proposition 2. The L^2 norm of the bias of the gradient estimate induced by the PPO clipping operator is upper bounded by the square root of an expectation involving the IS ratio deviation.

PPO ensures learning stability by clipping the IS ratio, however, this introduces bias into the gradient estimate. As the IS deviation increases, the effect of clipping becomes more pronounced, resulting in larger bias and destabilizing the leader's learning. This can be shown by upper bounding the L^2 norm of the bias as a function of the IS deviation. The detailed derivation is provided in Appendix A.1.2.

These propositions show that while policy diversity improves exploration, excessive divergence between the leader and follower policies causes the IS ratio to deviate from 1, which may undermine the sample efficiency and stability of the leader update by reducing ESS and increasing the gradient estimation bias, as shown in Fig. 1(b). We then examine how this deviation can be suppressed.

Proposition 3. For the leader update with follower samples, The expected absolute deviation of IS ratio from 1 is upper bounded by the KL divergence between the follower and leader policies.

Proof. From Pinsker's inequality, we have $||P-Q|| \leq \sqrt{2D_{\text{KL}}(P||Q)}$ for any two distributions P and Q. Applying this to the leader and follower policies, then:

$$\int_{\boldsymbol{a}} |\pi_{F_{\text{old}}}(\boldsymbol{a}|\boldsymbol{s}) - \pi_{L}(\boldsymbol{a}|\boldsymbol{s})| d\boldsymbol{a} \le \sqrt{2D_{\text{KL}}(\pi_{F_{\text{old}}}(\cdot|\boldsymbol{s})||\pi_{L}(\cdot|\boldsymbol{s}))}.$$
 (6)

Here, using the identity $\left|1 - \frac{\pi_L(\boldsymbol{a}|\boldsymbol{s})}{\pi_{F_{\text{old}}}(\boldsymbol{a}|\boldsymbol{s})}\right| = \left|\frac{\pi_{F_{\text{old}}}(\boldsymbol{a}|\boldsymbol{s}) - \pi_L(\boldsymbol{a}|\boldsymbol{s})}{\pi_{F_{\text{old}}}(\boldsymbol{a}|\boldsymbol{s})}\right|$, we take the expectation with respect

$$\mathbb{E}_{\boldsymbol{a} \sim \pi_{F_{\text{old}}}} \left[\left| 1 - \frac{\pi_L(\boldsymbol{a}|\boldsymbol{s})}{\pi_{F_{\text{old}}}(\boldsymbol{a}|\boldsymbol{s})} \right| \right] = \int_{\boldsymbol{a}} \pi_{F_{\text{old}}}(\boldsymbol{a}|\boldsymbol{s}) \left| \frac{\pi_{F_{\text{old}}}(\boldsymbol{a}|\boldsymbol{s}) - \pi_L(\boldsymbol{a}|\boldsymbol{s})}{\pi_{F_{\text{old}}}(\boldsymbol{a}|\boldsymbol{s})} \right| d\boldsymbol{a}$$
(7)

$$\leq \sqrt{2D_{\text{KL}}(\pi_{F_{\text{old}}}(\cdot|\boldsymbol{s})||\pi_{L}(\cdot|\boldsymbol{s}))}.$$
(8)

Furthermore, assuming reachability, we take the expectation over the states encountered by the follower policy. This yields $\mathbb{E}_{s,a \sim \pi_{F_{\mathrm{old}}}} \left[\left| 1 - \frac{\pi_L(a|s)}{\pi_{F_{\mathrm{old}}}(a|s)} \right| \right] \leq \sqrt{2D_{\mathrm{KL}}(\pi_{F_{\mathrm{old}}}(\cdot|s)\|\pi_L(\cdot|s))}$, showing that as the KL divergence increases, the IS ratio deviates further from 1.

Consequently, introducing a constraint on the KL divergence between the leader and follower policies alleviates the IS ratio deviation. Schulman et al. (2015) also argues that as long as the KL divergence between the target and behavior policies remains small, educes update error from distribution shift, and performance improvement is guaranteed. These motivate the need for KL-based coupling between leader and followers, to regulate policy diversity in ensemble policy gradient methods.

COUPLED POLICY OPTIMIZATION

Building upon the theoretical observation in section 4, we propose CPO, a method that regulates the inter-agent distance during training. Our approach extends SAPG (Singla et al., 2024) by constraining the KL divergence between the leader and each follower policy during follower updates, enabling diverse yet meaningful exploration for the leader. Furthermore, we introduce an auxiliary adversarial reward that encourages diversity across follower policies, to prevent overconcentration of agents.

FOLLOWER'S POLICY UPDATE UNDER KL CONSTRAINT 5.1

We formulate the update of each follower policy as a constrained optimization problem with a KL divergence constraint to the leader policy:

$$\pi_{F_i}^*(\boldsymbol{a}|\boldsymbol{s}) = \arg\max_{\pi_{F_i}} A_{F_i}(\boldsymbol{s}, \boldsymbol{a}) \quad \text{s.t. } D_{\text{KL}}(\pi_{F_i}(\cdot|\boldsymbol{s}) \parallel \pi_L(\cdot|\boldsymbol{s})) \le \varepsilon_{\text{KL}}. \tag{9}$$

Following the approach of AWAC (Nair et al., 2020), this problem admits a closed-form nonparametric solution, which we then approximate with a neural network policy $\pi_{F_{i,\theta}}(a|s)$. The resulting parametric objective of follower update can be written as follows:

$$L_{\text{CPO},F_i}(\theta) = -\mathbb{E}_{\boldsymbol{a},\boldsymbol{s} \sim \pi_{L_{\theta_{\text{old}}}}} \left[\log \pi_{F_{i,\theta}}(\boldsymbol{a}|\boldsymbol{s}) \exp \left(\frac{1}{\lambda_f} A^{F_i}(\boldsymbol{s},\boldsymbol{a}) \right) \right] + L_{\text{SAPG},F_i}(\theta), \quad (10)$$

where, λ_f is a temperature parameter to control the strength of KL constraint. The detailed derivation of Eq. 10 is provided in Appendix A.2. Thus, the policy objective of our proposed method, $L_{\text{CPO}}(\theta, j)$, can be expressed as an extension of the SAPG policy objective $L_{\text{SAPG}}(\theta, j)$ as:

$$L_{\text{CPO}}(\theta) = L_{\text{SAPG}}(\theta, j) + \beta \sum_{i \in \{0, \dots, M-2\}} L_{\text{CPO}, F_{i, f}}(\theta, \lambda_f), \tag{11}$$

where β is a coefficient introduced to roughly match the scale between the PPO objective and the KL-regularized loss term, which involves an exponential. The pseudocode of our method and the discussion on computational complexity are provided in Appendix A.3.

5.2 ADVERSARIAL REWARD FOR FOLLOWERS DISTRIBUTION

In addition to KL constraint, we introduce an intrinsic reward to encourage sufficient separation among the policies. While there are various ways to promote diverse exploration, we draw inspiration from DIAYN (Eysenbach et al., 2018), and train a discriminator $D_{\xi}(y|s_t,a_t)$, parameterized by a neural network with parameters ξ , to predict the index $y \in \{0,\ldots,M-1\}$ of the policy given a state-action pair. The classification loss is then used as an intrinsic reward. This encourages each follower to explore distinct regions in the state-action space, such that the discriminator can identify their identity. Given a data buffer \mathcal{D} , the discriminator loss and the intrinsic reward are given by:

$$L_D(\xi) = -\mathbb{E}_{(\boldsymbol{s}_t, \boldsymbol{a}_t, y) \sim \mathcal{D}}[\log D_{\xi}(y|\boldsymbol{s}_t, \boldsymbol{a}_t)], \quad r_t^{\text{adv}}(\boldsymbol{s}_t, \boldsymbol{a}_t, y) = \lambda_{\text{adv}} \log D_{\xi}(y|\boldsymbol{s}_t, \boldsymbol{a}_t).$$
 (12) Notably, this intrinsic reward is not provided to the leader agent. When the leader is updated from the off-policy samples collected by followers, only the true environment rewards are considered.

6 EXPERIMENTS

We evaluated our proposed method on six dexterous manipulation tasks (Andrychowicz et al., 2020; Aleksei Petrenko, 2023), those have high dimensional action space, to compare its performance against state-of-the-art methods under massively parallel settings. All experiments were conducted on Isaac Gym (Makoviychuk et al., 2021) with N=24576 parallel environments, following the experimental setup of the prior work (Singla et al., 2024).

We adopted two relatively simple tasks and four complex tasks. The complex tasks are ones on which the PPO (Schulman et al., 2017) baseline either fails to learn effectively or exhibits highly unstable training behavior. All tasks provide dense rewards, and training is carried out for up to 20 billion environment steps. We also conducted experiments on two non-dexterous tasks to verify its generalizability beyond dexterous manipulation, and the results are provided in Appendix A.4. Detailed descriptions of the tasks are provided in Appendix A.7.

For baselines, we selected PPO, DexPBT (Aleksei Petrenko, 2023), and SAPG (Singla et al., 2024). All of these methods are built upon PPO.

- **PPO** (Schulman et al., 2017): is a representative policy gradient algorithm widely used across various tasks. We simply increased the number of samples collected per epoch to be equal to the product of the horizon length and the number of environments N.
- **DexPBT** (Aleksei Petrenko, 2023): is a population-based parallel learning framework that divides the *N* environments into *M* subsets, where *M* agents each with different hyperparameters train in parallel. Periodically, the lowest-performing agents are removed and replaced by new agents generated through genetic algorithms, which assign updated hyperparameters for the next training phase.
- **SAPG** (Singla et al., 2024): adopts agent ensemble learning based on a leader-follower network, and it represents the state-of-the-art in massively parallel environments to the best of our knowledge. The leader agent is updated with not only its own on-policy samples, but also off-policy samples from follower agents through IS.

For DexPBT, SAPG, and our proposed method, we set the number of parallel blocks to M=6. In SAPG and our method, the shared networks are conditioned on a one-dimensional vector $\phi \in \mathbb{R}^1$. Hyperparameters common to both SAPG and our method, such as the entropy coefficient, were set to the same values as used in SAPG. The hyperparameters and computing environments used in all experiments are provided in Appendix A.7. All experiments were conducted using five random seeds.

7 RESULTS AND ANALYSIS

We analyze the learning performance of our proposed method compared to baselines, conduct an ablation study on the strength of the KL constraint, and examine the evolution of inter-policy KL divergence during training.

7.1 Training Performance

To compare the training performance of each method, we present the learning curves across six tasks in Fig.2, along with the final performance after 2×10^{10} environment steps training summarized in Table1. Each result shows the mean and standard deviation over five random seeds. Following prior work (Aleksei Petrenko, 2023), we use episode rewards as the metric for simple tasks and episode success rate for complex tasks.

Our proposed method consistently achieves high sample efficiency and strong final performance across all six tasks. In particular, while PBT fails to learn meaningful behavior in the Reorientation task and SAPG struggles in the TwoArms Reorientation task, our method demonstrates robust learning capability. Moreover, in many tasks, it reaches the final performance of SAPG with approximately half the number of environment steps, indicating the acquisition of efficient exploration ability. No significant improvement over SAPG is observed in the Regrasping and Throw tasks, which we discuss in the next section. We also conducted an ablation study to isolate the contributions of the adversarial reward and the KL constraint, as shown in Appendix A.5.

Figure 2: Comparison of algorithm performance across six tasks. Learning curves across six dexterous manipulation tasks comparing CPO to SAPG, PBT, and PPO. CPO consistently achieves higher sample efficiency and final performance, particularly in Shadow Hand, Allegro Hand, Allegro Kuka Reorientation and Two-Arms Reorientation.

7.2 ABLATION STUDY ON KL CONSTRAINT

To assess the sensitivity to the KL constraint hyperparameter and to empirically verify the propositions in section 4, we conducted an ablation study varying the KL coefficient (λ_f) in the Shadow Hand and AllegroKuka Reorientation tasks. To isolate the effect of the KL constraint, we conducted experiments without the adversarial reward. Also, β in Eq. 11 was fixed at 0.001.

Fig. 3 presents training curves of our method with different λ_f values compared to SAPG, demonstrating that CPO was robust to a wide range of values, consistently outperforming SAPG. A practical tuning heuristic is starting with a weak constraint ($\lambda_f = 0.5$) and gradually strengthen it.

Table 2 shows the mean IS ratio deviation from 1 and the ESS (normalized to a maximum of 1) at 5×10^9 environment steps. The deviation is computed from all follower samples, and the ESS from

Table 1: **Performance after 2** \times **10**¹⁰ **environment steps of training.** Bold indicates the method with the highest average performance for each task, as well as those not significantly different from it, as determined by a t-test (p > 0.05).

Task	PPO	PBT	SAPG	CPO (ours)
ShadowHand	10661 ± 1050	10294 ± 1728	12882 ± 343	$\textbf{13762} \pm \textbf{414}$
AllegroHand	10439 ± 1282	13239 ± 239	11989 ± 817	$\textbf{14421} \pm \textbf{885}$
Regrasping	0.76 ± 0.99	$\textbf{35.26} \pm \textbf{2.82}$	$\textbf{37.20} \pm \textbf{0.65}$	$\textbf{37.44} \pm \textbf{1.21}$
Reorientation	1.04 ± 0.98	2.92 ± 4.27	38.79 ± 1.66	$\textbf{43.75} \pm \textbf{0.65}$
Throw	15.69 ± 3.34	19.08 ± 1.02	$\textbf{22.51} \pm \textbf{1.15}$	$\textbf{21.69} \pm \textbf{2.44}$
Two-Arms Reorientation	1.41 ± 0.80	$\textbf{26.43} \pm \textbf{11.12}$	5.11 ± 3.41	$\textbf{35.30} \pm \textbf{2.77}$

Figure 3: Training Curves from the ablation study with different λ_f .

all leader and follower samples. Consistent with Proposition 1 in section 4, we observed that stronger KL constraints (smaller λ_f) lead to smaller deviations and higher ESS, improving sample efficiency.

Table 2: Mean IS Ratio Deviation and Overall ESS Rate at 5×10^9 environment steps. The reported values are computed by averaging over a window of eleven iterations.

Task	Method	Mean IS Ratio Deviation (↓)	ESS Rate (†)
ShadowHand	SAPG	0.889	0.0223
	CPO(0.5)	0.403	0.763
	CPO(0.2)	0.297	0.871
	CPO(0.1)	0.222	0.923
	CPO(0.05)	0.187	0.941
AllegroKuka Reorientation	SAPG	0.608	0.110
_	CPO(0.5)	0.420	0.721
	CPO(0.2)	0.276	0.888
	CPO(0.1)	0.214	0.929
	CPO(0.05)	0.199	0.938

7.3 KL DIVERGENCE ANALYSIS

In this section, we analyze the KL divergence between policies during training to compare agent relationships in SAPG and our method (Fig. 4; higher-resolution results are provided in Appendix A.6). In ShadowHand and AllegroKuka Reorientation, where our method clearly outperformed SAPG, several SAPG followers misaligned significantly from the leader, producing harmful samples that hinder the leader's learning, as described in section 4. In contrast, our method maintained stable inter-agent distances, yielding more informative samples. In AllegroKuka Regrasping, where both methods achieved similar performance, SAPG followers did not show noticeable divergence, likely due to incidental alignment between SAPG's shared backbone and the task characteristics.

Interestingly, in our method the leader consistently remained the closest agent to every follower (white circles in Fig. 4), suggesting that KL regularization, together with adversarial reward and entropy terms, naturally distributes followers around the leader without overconcentration. Furthermore, unlike SAPG's ablation where all agents sampled from each other, leading to excessive similarity and reduced diversity (Singla et al., 2024), our approach preserves the leader-follower asymmetry: each follower learns only from its own on-policy data and the leader's off-policy data. This design helps maintain diversity while keeping inter-policy distances under control.

Figure 4: Comparison of the transition of KL divergence between agents with different algorithms. Each heatmap shows the KL divergence between the leader and follower policies during training. Row i, column j indicates the forward KL from agent i to agent j. The white circle marks the agent closest from each follower, excluding itself. SAPG often shows misaligned followers, while our method keeps them well-distributed around the leader.

8 Conclusion and Limitation

In this work, we theoretically showed that excessive inter-policy diversity in ensemble policy gradient methods under massively parallel environments can harm sample efficiency and stability by reducing effective sample size, increasing clipping bias, and weakening monotonic improvement guarantees. To address this issue, we proposed Coupled Policy Optimization, which introduces KL constraints between leader and follower policies and adversarial rewards to prevent overconcentration. Experiments on multiple dexterous manipulation tasks demonstrated that CPO outperforms strong baselines such as SAPG, PBT, and PPO in both sample efficiency and final performance. Ablation studies confirmed that KL constraint reduces IS-ratio deviation and improves effective sample size, while KL-divergence visualizations revealed that followers naturally distribute around the leader without misalignment, highlighting the stability and structural effectiveness of our method.

These findings suggest that in ensemble policy gradient methods under massively parallel environments, it is not sufficient to merely promote policy diversity; rather, appropriate control of diversity is crucial for achieving both stable and sample-efficient learning.

A limitation of our method is still rely on a fixed number of policies and environments per policy. However, the effective exploration range can vary with the task and training stage. Developing algorithms that automatically adjust these parameters would be an interesting future direction, unlocking the potential of massively parallel environments, especially for tasks with high-dimensional action spaces and demanding exploration requirements.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide the source code of our proposed method, CPO, as supplementary material. The accompanying README highlights the files that contain the key functions used in our implementation. Details of the experimental environments, as well as the hyperparameters used in all experiments are listed in Appendix A.7.

REFERENCES

- Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin Riedmiller. Maximum a posteriori policy optimisation. *arXiv preprint arXiv:1806.06920*, 2018.
- Gavriel State Ankur Handa Viktor Makoviychuk Aleksei Petrenko, Arthur Allshire. Dexpbt: Scaling up dexterous manipulation for hand-arm systems with population based training. In RSS, 2023.
- OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning dexterous in-hand manipulation. *The International Journal of Robotics Research*, 39(1):3–20, 2020.
- Genesis Authors. Genesis: A universal and generative physics engine for robotics and beyond, December 2024. URL https://github.com/Genesis-Embodied-AI/Genesis.
- Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. In *International conference on machine learning*, pp. 1407–1416. PMLR, 2018.
- Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl: Scalable and efficient deep-rl with accelerated central inference. *arXiv preprint arXiv:1910.06591*, 2019.
- Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need: Learning diverse skills without a reward function. 2018.
- Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. *Advances in neural information processing systems*, 34:20132–20145, 2021.
- Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent reinforcement learning without entropy. 2023. URL https://arxiv.org/abs/2301.02328.
- Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko, Ritvik Singh, Jingzhou Liu, Denys Makoviichuk, Karl Van Wyk, Alexander Zhurkevich, Balakumar Sundaralingam, et al. Dextreme: Transfer of agile in-hand manipulation from simulation to reality. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 5977–5984. IEEE, 2023.
- Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt, and David Silver. Distributed prioritized experience replay. 03 2018. doi: 10.48550/arXiv.1803.00933.
- Chao Li, Chen GONG, Qiang He, and Xinwen Hou. Keep various trajectories: Promoting exploration of ensemble policies in continuous control. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 5223–5235. Curran Associates, Inc., 2023a. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/10cb15f4559b3d578b7f24966d48a137-Paper-Conference.pdf.
- Zechu Li, Tao Chen, Zhang-Wei Hong, Anurag Ajay, and Pulkit Agrawal. Parallel *q*-learning: Scaling off-policy reinforcement learning under massively parallel simulation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 19440–19459. PMLR, 23–29 Jul 2023b. URL https://proceedings.mlr.press/v202/li23f.html.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High performance gpu-based physics simulation for robot learning, 2021.

Luca Martino, Víctor Elvira, and Francisco Louzada. Effective sample size for importance sampling based on discrepancy measures. *Signal Processing*, 131:386–401, 2017. ISSN 0165-1684. doi: https://doi.org/10.1016/j.sigpro.2016.08.025. URL https://www.sciencedirect.com/science/article/pii/S0165168416302110.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online reinforcement learning with offline datasets. *arXiv* preprint arXiv:2006.09359, 2020.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using massively parallel deep reinforcement learning. In *Conference on Robot Learning*, pp. 91–100. PMLR, 2022.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

Harshit Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and new methods for reinforcement and imitation learning. In *The Twelfth International Conference on Learning Representations*.

Jayesh Singla, Ananye Agarwal, and Deepak Pathak. Sapg: Split and aggregate policy gradients. In Proceedings of the 41st International Conference on Machine Learning (ICML 2024), Proceedings of Machine Learning Research, Vienna, Austria, July 2024. PMLR.

Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher Atkeson, Soeren Schwertfeger, Chelsea Finn, and Hang Zhao. Robot parkour learning. *arXiv preprint arXiv:2309.05665*, 2023.

A APPENDIX

A.1 PROOFS OF PROPOSITIONS

In this section, we provide the proofs of Proposition 1 and Proposition 2 stated in section 4.

A.1.1 PROOF OF PROPOSITION 1

Proof. Let $N_{L,\text{on}}$ denote the number of leader (on-policy) samples and $N_{L,\text{off}}$ the number of follower (off-policy) samples. Assuming reachability, i.e., the support of the target policy is contained in that of the behavior policy, the IS ratio has unit mean: $\mathbb{E}[r] = 1$. Then, ESS for the leader update can be expressed as a function of $\operatorname{Var}_{s,a \sim \pi_{E_{\text{old}}}}[r_{L,\text{off}}(\theta)]$ as follows:

$$ESS = \frac{\left(\sum_{i=1}^{N_{L,\text{on}} + N_{L,\text{off}}} w_i\right)^2}{\sum_{i=1}^{N_{L,\text{on}} + N_{L,\text{off}}} w_i^2},\tag{13}$$

$$= \frac{\left(N_{L,\text{on}}\mathbb{E}_{\boldsymbol{s},\boldsymbol{a}\sim\pi_{L_{\text{old}}}}[r_{L,\text{on}}(\theta)] + N_{L,\text{off}}\mathbb{E}_{\boldsymbol{s},\boldsymbol{a}\sim\pi_{F_{\text{old}}}}[r_{L,\text{off}}(\theta)]\right)^{2}}{\left(\operatorname{Var}_{\boldsymbol{s},\boldsymbol{a}\sim\pi_{L_{\text{old}}}}[r_{L,\text{on}}(\theta)] + 1\right) + \left(\operatorname{Var}_{\boldsymbol{s},\boldsymbol{a}\sim\pi_{F_{\text{old}}}}[r_{L,\text{off}}(\theta)] + 1\right)},$$
(14)

$$= \frac{(N_{L,\text{on}} + N_{L,\text{off}})^2}{\text{Var}_{\boldsymbol{s},\boldsymbol{a} \sim \pi_{L_{\text{old}}}}[r_{L,\text{on}}(\theta)] + \text{Var}_{\boldsymbol{s},\boldsymbol{a} \sim \pi_{F_{\text{old}}}}[r_{L,\text{off}}(\theta)] + 2}.$$
(15)

Here, the variance of IS ratio for off-policy samples is lower bounded by the expected absolute deviation of it from 1 as:

$$\mathbb{E}_{\boldsymbol{s},\boldsymbol{a}\sim\pi_{F_{\text{old}}}}[|1-r_{L,\text{off}}|] \leq \sqrt{\mathbb{E}_{\boldsymbol{s},\boldsymbol{a}\sim\pi_{F_{\text{old}}}}[(1-r_{L,\text{off}}(\theta))^{2}]},\tag{16}$$

$$= \sqrt{\mathbb{E}_{\boldsymbol{s},\boldsymbol{a} \sim \pi_{F_{\text{old}}}}[r_{L,\text{off}}(\theta)^2] - 2\mathbb{E}_{\boldsymbol{s},\boldsymbol{a} \sim \pi_{F_{\text{old}}}}[r_{L,\text{off}}(\theta)] + 1},$$
(17)

$$= \sqrt{\operatorname{Var}_{\boldsymbol{s},\boldsymbol{a} \sim \pi_{F_{\text{old}}}}[r_{L,\text{off}}(\theta)] + (\mathbb{E}_{\boldsymbol{s},\boldsymbol{a} \sim \pi_{F_{\text{old}}}}[r_{L,\text{off}}(\theta)] - 1)^2}, \quad (18)$$

$$= \sqrt{\operatorname{Var}_{\boldsymbol{s},\boldsymbol{a} \sim \pi_{F_{\text{old}}}}[r_{L,\text{off}}(\theta)]}.$$
(19)

A.1.2 PROOF OF PROPOSITION 2

Proof. Formally, the gradient estimation bias introduced by PPO clipping operator for the leader update with off-policy samples can be expressed as:

Bias =
$$\mathbb{E}_{s, \boldsymbol{a} \sim \pi_{E, ld}} [\nabla_{\theta} \log \pi_{L, \theta}(\boldsymbol{a}|s) \, \delta(s, \boldsymbol{a})],$$
 (20)

where $\delta(s, a) = \delta_A^L(s, a) \cdot A(s, a)$ and

$$\delta_A(\boldsymbol{s}, \boldsymbol{a}) = \begin{cases} (1+\epsilon) - r_{L, \text{off}}(\theta) & \text{if } A^L(s, a) > 0 \text{ and } r_{L, \text{off}}(\theta) > 1+\epsilon, \\ (1-\epsilon) - r_{L, \text{off}}(\theta) & \text{if } A^L(s, a) < 0 \text{ and } r_{L, \text{off}}(\theta) < 1-\epsilon, \\ 0 & \text{otherwise.} \end{cases}$$

The squared L^2 norm of this bias can be bounded using Jensen's inequality:

$$\|\text{Bias}\| = \sqrt{\left\|\mathbb{E}_{\boldsymbol{s},\boldsymbol{a}\sim\pi_{F_{\text{old}}}}\left[\nabla_{\theta}\log\pi_{L,\theta}(\boldsymbol{a}|\boldsymbol{s})\,\delta(\boldsymbol{s},\boldsymbol{a})\right]\right\|^{2}},\tag{21}$$

$$= \sqrt{\|\mathbb{E}_{\boldsymbol{s},\boldsymbol{a}\sim\pi_{F_{\text{old}}}}[\nabla\theta\log\pi_{L,\theta}(\boldsymbol{a}|\boldsymbol{s})\delta(\boldsymbol{s},\boldsymbol{a})]\|},$$

$$\leq \sqrt{\mathbb{E}_{\boldsymbol{s},\boldsymbol{a}\sim\pi_{F_{\text{old}}}}[\|\nabla\theta\log\pi_{L,\theta}(\boldsymbol{a}|\boldsymbol{s})\|^{2}\cdot(|1-r(\theta)|+|\epsilon|)^{2}\cdot A(\boldsymbol{s},\boldsymbol{a})^{2}\cdot\mathbb{1}_{\text{clipped}}]}.$$
(22)

Here, $\mathbb{1}_{\text{clipped}}$ denotes the indicator function that takes the value 1 if the PPO objective is in the clipped regime, and 0 otherwise. Thus, the upper bound of the bias depends directly on $|1 - r(\theta)|$, which increases as the IS ratio deviates from 1, leading training instability.

A.2 DERIVATION OF FOLLOWER POLICY UPDATE UNDER KL CONSTRAINT

This section presents the derivation of the follower policy objective in Eq. 10 under the proposed KL constraint. The constrained optimization problem shown in Eq. 9 has a closed-form solution, which can be obtained using the method of Lagrange multipliers, as follows:

$$\pi_{F_i}^*(\boldsymbol{a}|\boldsymbol{s}) = \frac{1}{Z}\pi_L(\boldsymbol{a}|\boldsymbol{s})\exp\left(\frac{1}{\lambda}A^{F_i}(\boldsymbol{s},\boldsymbol{a})\right),\tag{23}$$

where $Z = \int \pi_L(\boldsymbol{a}|\boldsymbol{s}) \exp\left(\frac{A^{F_i}(\boldsymbol{s},\boldsymbol{a})}{\lambda}\right) d\boldsymbol{a}$ and λ is the Lagrange multiplier associated with the KL constraint, which also serves as a temperature parameter controlling the strength of attraction between the leader and follower policies.

Since the closed-form solution is expressed in a non-parametric form, we approximate it using a neural network policy $\pi_{F_{i,\theta}}(a|s)$. To this end, we formulate the problem of approximating the non-parametric solution with a parametric model as the minimization of both the forward and reverse KL divergences between them. The minimization of the forward KL divergence can be expressed as

follows:

$$\arg \min_{\theta} D_{KL}(\pi_{F_{i}}^{*}(\cdot|\boldsymbol{s})||\pi_{F_{i,\theta}}(\cdot|\boldsymbol{s}))$$

$$= \arg \min_{\theta} \int \pi_{F_{i}}^{*}(\boldsymbol{a}|\boldsymbol{s}) \log \frac{\pi_{F_{i}}^{*}(\boldsymbol{a}|\boldsymbol{s})}{\pi_{F_{i,\theta}}(\boldsymbol{a}|\boldsymbol{s})} d\boldsymbol{a},$$

$$= \arg \min_{\theta} \int -\pi_{L}(\boldsymbol{a}|\boldsymbol{s}) \exp \left(\frac{1}{\lambda_{f}} A^{F_{i}}(\boldsymbol{s}, \boldsymbol{a})\right) \log \pi_{F_{i,\theta}}(\boldsymbol{a}|\boldsymbol{s}) d\boldsymbol{a},$$

$$= \arg \min_{\theta} -\mathbb{E}_{\boldsymbol{s},\boldsymbol{a} \sim \pi_{L}} \left[\log \pi_{F_{i,\theta}}(\boldsymbol{a}|\boldsymbol{s}) \exp \left(\frac{1}{\lambda_{f}} A^{F_{i}}(\boldsymbol{s}, \boldsymbol{a})\right) \right].$$
(24)

Here, the objective function is computed as the expectation with respect to the leader's off-policy samples. In contrast, the minimization of the reverse KL divergence can be written as follows:

$$\arg \min_{\theta} D_{\text{KL}}(\pi_{F_{i,\theta}}(\cdot|s)||\pi_{F_{i}}^{*}(\cdot|s))$$

$$= \arg \min_{\theta} \int \pi_{F_{i,\theta}}(\boldsymbol{a}|s) \log \frac{\pi_{F_{i,\theta}}(\boldsymbol{a}|s)}{\pi_{F_{i}}^{*}(\boldsymbol{a}|s)} d\boldsymbol{a},$$

$$= \arg \min_{\theta} \int \pi_{F_{i,\theta}}(\boldsymbol{a}|s) \left(\log \pi_{F_{i,\theta}}(\boldsymbol{a}|s) - \log \pi_{L}(\boldsymbol{a}|s) - \frac{1}{\lambda_{r}} A^{F_{i}}(\boldsymbol{s},\boldsymbol{a}) \right) d\boldsymbol{a},$$

$$= \arg \min_{\theta} -\mathbb{E}_{\boldsymbol{s},\boldsymbol{a} \sim \pi_{F_{i,\theta}\text{old}}} \left[\frac{\pi_{F_{i,\theta}}(\boldsymbol{a}|s)}{\pi_{F_{i,\theta}\text{old}}(\boldsymbol{a}|s)} \left(A^{F_{i}}(\boldsymbol{s},\boldsymbol{a}) - \lambda_{r} \log \frac{\pi_{F_{i,\theta}}(\boldsymbol{a}|s)}{\pi_{L}(\boldsymbol{a}|s)} \right) \right]. \tag{25}$$

In this case, the objective function is computed as the expectation with respect to the follower's on-policy samples. Here, We use separate temperature parameters λ_f and λ_r for the forward and reverse KL terms, respectively, to ensure computational stability. By minimizing both the forward and reverse KL divergences instead of a one-sided KL divergence, we can effectively utilize samples collected by both the leader and the follower.

For simplicity, we set $\lambda_r=0$ to perform regularization solely through the forward KL term, and clipping is applied for stable update. Thus, Eq. 25 reduces to $L_{\text{SAPG},F_i}(\theta)$ in Eq. 3. Consequently, the follower policy's updated objective $L_{\text{CPO},F_{i,r}}(\theta)$ and $L_{\text{CPO},F_{i,r}}(\theta)$ is obtained as follows:

$$L_{\text{CPO},F_{i,f}}(\theta,\lambda_f) = -\mathbb{E}_{\boldsymbol{a},\boldsymbol{s} \sim \pi_{L_{\theta_{\text{old}}}}} \left[\log \pi_{F_{i,\theta}}(\boldsymbol{a}|\boldsymbol{s}) \exp \left(\frac{1}{\lambda_f} A^{F_i}(\boldsymbol{s},\boldsymbol{a}) \right) \right], \tag{26}$$
$$L_{\text{CPO},F_{i,r}}(\theta) = L_{\text{SAPG},F_i}(\theta).$$

A.3 PSEUDOCODE AND COMPUTATIONAL COMPLEXITY OF THE PROPOSED METHOD

In this section, we provide the pseudocode of the proposed method and discuss the computational overhead introduced by the KL constraint. Algorithm.1 illustrates the overall procedure of CPO. The main computational difference from SAPG lies in computing the follower loss $L_{F,i}(\theta,\lambda_f)$, where the KL divergence constraint must be evaluated once for each of the five followers. Consequently, the number of auto-differentiable forward–backward passes involves roughly 12 components in CPO versus 7 in SAPG, 7 components in SAPG (five follower on-policy updates, one leader on-policy update, and one leader off-policy update) plus five additional components in CPO for follower's update from leader's samples.

Nevertheless, since data collection in SAPG typically requires about twice as much time as the training updates, the overall wall-clock increase in training time for CPO is modest, amounting to only about 25%.

```
702
          Algorithm 1: Coupled Policy Optimization (CPO)
703
          Input: Number of environments N, number of agents M, KL coefficient \lambda_f, adversarial weight
704
705
          Output: Updated policy parameters \theta, value parameters \psi, discriminator parameters \xi
706
          Initialize shared policy parameters \theta; policy embeddings \phi_0, \dots, \phi_{M-1}
          Initialize value network V_{\psi}
708
          Initialize discriminator D_{\xi}
709
          Initialize N environments and assign to M agents (1 leader + M-1 followers)
710
          for each training iteration do
711
               // -- Data collection --
712
               Collect trajectories \mathcal{D}_i from all agents in parallel
               Compute discriminator loss L_D(\xi) using (s, a, y) \in \mathcal{D}
713
               Compute adversarial reward r_t^{\overline{adv}} = \lambda_{adv} \log D_{\xi}(y|s_t, a_t)
714
               // -- Advantage estimation --
715
               For each agent i, compute advantages \hat{A}_{t}^{i} and returns \hat{R}_{t}^{i} using V_{ik} i
716
               Sample a random follower index j \in \{1, ..., M-1\}
717
               Recompute leader's value/advantage on follower j's data
718
               Recompute each follower's value/advantage on leader's data
719
               // -- Policy loss aggregation --
720
               L_{\pi} \leftarrow 0
721
               L_{\pi} \leftarrow L_{\pi} + L_{L,\text{on}}(\theta);
                                                                                   // Leader on-policy loss
722
               L_{\pi} \leftarrow L_{\pi} + \underline{L}_{L,\text{off}}(\theta, j);
                                                                                 // Leader off-policy loss
              L_{\pi} \leftarrow L_{\pi} + \sum_{i} L_{F_{i},r}(\theta);
L_{\pi} \leftarrow L_{\pi} + \beta \sum_{i} L_{F_{i},f}(\theta,\lambda_{f});
L_{\pi} \leftarrow L_{\pi} + L^{\text{ent}}(\theta);
723
                                                                           // Follower on-policy losses
724
                                                                  // Follower KL-regularized losses
725
                                                                                // Entropy regularization
               // -- Value loss --
726
727
               L_V = \sum_i ||V_{\psi}(s_t^i) - \hat{R}_t^i||^2
728
               // -- Parameter updates --
               Update policy \theta \leftarrow \theta - \eta_{\pi} \nabla_{\theta} L_{\pi}
729
               Update value network \psi \leftarrow \psi - \eta_V \nabla_{\psi} L_V
730
               Update discriminator \xi \leftarrow \xi - \eta_D \nabla_{\xi} \dot{L}_D
731
```

A.4 EXPERIMENTS ON NON-DEXTEROUS MANIPULATION TASKS

732733734

735 736

737

738

739

740

741

742

743

744

745

746

747

748

749

Massively parallel environments generally demonstrate strong performance in challenging tasks with high-dimensional action spaces and complex dynamics, such as dexterous manipulation. On the other hand, to investigate the generalization ability of our method beyond dexterous manipulation, we conducted comparative experiments on two locomotion tasks, Humanoid (21 Dof) and Anymal (12 DoF), using SAPG, PBT, and PPO as baselines. All experiments were conducted with N=24,576 environments, as in the other tasks, and trained for up to 5×10^9 environment steps using five random seeds. The hyperparameters and computing envirionments used in all experiments are provided in Appendix A.7.

The learning curves are shown in Fig. 5. Since both tasks are easier than dexterous manipulation, the performance differences across algorithms are smaller. Nevertheless, PBT exhibits relatively faster convergence, indicating that in simpler tasks, algorithms such as PBT that explore a wide range of policies in parallel can be advantageous. On the other hand, our proposed method converges slightly faster than SAPG, suggesting that in leader-follower policy gradient frameworks, the stabilization and sample efficiency gains brought by KL constraints outweigh the benefits of broader data coverage through exploration diversity.

Figure 5: Comparison of algorithm performance on manipulation tasks.

A.5 ABLATION STUDY ON ADVERSARIAL REWARD AND KL CONSTRAINT

In this section, we perform an ablation study to analyze the contributions of the two key components of our method: the KL divergence constraint and the adversarial reward. We trained on two tasks, Shadow Hand and Allegro Hand, using the full **CPO** algorithm, as well as two ablated variants for analysis. The first variant, **CPO** (w/o AdR), disables the adversarial reward by setting its scaling factor to zero ($\lambda_{\rm adv}=0$). The second variant, **CPO** (w/o KLC), removes the KL divergence constraint by setting the coefficient for the solution of the forward KL minimization problem in Eq. 11 to zero ($\beta=0$). The resulting learning curves are shown in Fig.6, while the discriminator losses are plotted in Fig.7. Additionally, the transitions of inter-policy KL divergence are visualized as color maps in Fig. 8.

Figure 6: **Effects of KL constraint and adversarial reward on performance.** Learning curves on ShadowHand and AllegroHand tasks for three variants: full CPO (red), CPO without adversarial reward (blue), and CPO without KL constraint (green).

Figure 7: **Discriminator loss under different settings.** Discriminator loss during training on the ShadowHand and AllegroHand tasks for three variants: full CPO (red), CPO without adversarial reward (blue), and CPO without KL constraint (green).

As shown in Fig 6, removing the KL constraint (CPO (wo/KLC)) leads to a degradation in training performance. This suggests that, without proper regulation of policy distances, the followers explore in directions that deviate from the leader, reducing sample efficiency and training stability. This observation is further supported by the inter-policy KL divergence maps in Fig 8, where follower policies under CPO (wo/KLC) are visibly misaligned and drift far from the leader policy.

In contrast, removing the adversarial reward (CPO (w/o AdR)) results in only a marginal difference in training performance compared to the full CPO, although it tends to reduce the variance introduced

Figure 8: Comparison of the transition of KL divergence between agents with different settings. Each heatmap shows the KL divergence between the leader and follower policies during training. Row i, column j indicates the forward KL from agent i to agent j. The white circle marks the agent closest from each follower, excluding itself.

by the adversarial reward across random seeds. As shown in Fig 7, the discriminator loss converges to the upper bound of random classification ($\ln 6 \approx 1.792$), indicating difficulty in distinguishing the policies regardless of the adversarial reward. In preliminary experiments, increasing the scaling factor of the adversarial reward $\lambda_{\rm adv}$ without performance tuning made the discriminator easily distinguish between policies. In the current experiment, however, we tuned $\lambda_{\rm adv}$ for optimal performance. As shown in Fig. 6 and Fig. 8, this results in follower policies remaining near the leader, suggesting that such alignment promotes stable and efficient learning.

Interestingly, Fig 8 shows that even without the adversarial reward, each follower's closest policy, in terms of KL divergence, is consistently the leader. This implies that the intended role of the adversarial reward, preventing overconcentration of followers, was already achieved through the KL constraint and entropy regularization alone. The performance improvement observed with the adversarial reward may stem from the uniform penalty it imposes, which encourages optimistic behaviors in the policies due to the relatively high estimated value of unexplored states. The actual impact of this regularization appears to vary depending on the task.

TRANSITION OF INTER-POLICY KL DIVERGENCE AT HIGHER TIME-RESOLUTION A.6

Visualizations of the transition of inter-policy KL divergence across environment steps during training are available on our project page: https://sites.google.com/view/ cpo-rl-iclr2026/.

TRAINING ENVIRONMENTS AND HYPERPARAMETERS

This section provides details on the experimental environments, task description and training hyperparameters.

EXPERIMENTAL ENVIRONMENTS

We conduct our experiments using an internal GPU cluster and a large-scale academic computing facility equipped with NVIDIA A100 GPUs. Due to differences in network environments and CPU configurations, it is difficult to make a fair comparison of training time across tasks and algorithms. However, each condition is trained for approximately one to four days to train through 20G environment steps.

A.7.2 TASK DESCRIPTION

Simple Tasks: As relatively simple tasks, we adopted in-hand reorientation with two types of multi-fingered hands: *ShadowHand* (24 DoF) (Andrychowicz et al., 2020) and *AllegroHand* (16 DoF). The observation space consists of joint positions and velocities, as well as object orientation and angular velocity. We used an MLP-based policy network for these tasks and set the horizon length to 8.

Complex Tasks: As more complex tasks, we adopted the *Regrasping*, *Reorientation*, and *Throw* tasks in the *Allegro-Kuka* environment (Aleksei Petrenko, 2023). In these tasks, an Allegro Hand (16 DoF) is mounted on the end of a Kuka Arm (7 DoF). To further evaluate multi-arm dexterity, we also included the *Two-Arms Reorientation* task, where two Allegro-Kuka systems simultaneously manipulate a single object in a coordinated manner. For all tasks, we employed a policy network with a single-layer LSTM and set the horizon length to 16.

Locomotion Tasks: As non-dexterous manipulation tasks, we adopted two locomotion benchmarks: *Humanoid* (21 DoF) and *Anymal* (12 DoF). Although they involve high-dimensional control, their contact dynamics are relatively simpler compared to dexterous manipulation tasks, making them easier benchmarks in this context. For these tasks, we used an MLP-based policy network and set the horizon length to 8.

A.7.3 Training Hyperparameters

Simple Tasks: For relatively simple tasks, specifically Shadow Hand and Allegro Hand, we use an MLP-based Gaussian policy with an ELU activation applied after each layer. The discriminator for the adversarial reward is also implemented as an MLP with ELU activations, consisting of four hidden layers with sizes [1024, 1024, 512, 512], and is trained using a fixed learning rate equal to the initial value used for the policy. The hyperparameter settings for each task are summarized in Table 3.

Complex Tasks: For relatively complex tasks, specifically AllegroKuka Regrasping, Reorientation, and Throw, we use a Gaussian policy that consists of an LSTM layer followed by an MLP with ELU activations applied after each layer. The discriminator for the adversarial reward is also implemented as an MLP with ELU activations, consisting of four hidden layers with sizes [1024, 1024, 512, 512], and is trained using a fixed learning rate equal to the initial value used for the policy. The hyperparameter settings for each task are summarized in Table 4.

Locomotion Tasks: For locomotion tasks, specifically Humanoid and Anymal, we use an MLP-based Gaussian policy with an ELU activation applied after each layer. The discriminator for the adversarial reward is also implemented as an MLP with ELU activations, consisting of three hidden layers with sizes [768, 512, 256], and is trained using a fixed learning rate equal to the initial value used for the policy. The hyperparameter settings for each task are summarized in Table 5.

Table 3: **Training hyperparameters for Shadow Hand and Allegro Hand.** The upper section lists hyperparameters shared by SAPG and CPO, while the lower section lists those specific to CPO.

924	
925	
926	(
927	1
928	I
929]
930	(
931	I
932	(
933	l
934	(

Hyperparameter	Shadow Hand	Allegro Hand	
Common Hyperparameters (SAPG and CPO)			
Discount factor, γ	0.99	0.99	
GAE smoothing factor, τ	0.95	0.95	
MLP hidden layers	[512, 512, 256, 128]	[512, 256, 128]	
Learning rate	5e-4	5e-4	
KL threshold for LR update	0.016	0.016	
Grad norm	1.0	1.0	
Entropy coefficient	0.005	0	
Clipping factor, ϵ	0.2	0.2	
Mini-batch size	$4 \times num_envs$	$4 \times num_envs$	
Critic coefficient, λ'	4.0	4.0	
Horizon length	8	8	
Bounds loss coefficient	0.0001	0.0001	
Mini epochs	5	5	
CPO-Specific Hyperparameters			
β in Eq. 11	0.001	0.0005	
Forward KL constraint temperature, λ_f	0.2	0.1	
Reverse KL constraint temperature, λ_r	0	0	
Adversarial reward scaling factor, λ_{adv}	0.01	0.001	

Table 4: Training hyperparameters for complex tasks: AllegroKuka Regrasping, Reorientation and Throw. The upper section lists hyperparameters shared by SAPG and CPO, while the lower section lists those specific to CPO.

Hyperparameter	Regrasping	Reorientation	Throw
Common Hyperparameters (SAPG and CPO)			
Discount factor, γ	0.99	0.99	0.99
GAE smoothing factor, τ	0.95	0.95	0.95
LSTM hidden units	768	768	768
MLP hidden layers	[768, 512, 256]	[768, 512, 256]	[768, 512, 256]
Learning rate	1e-4	1e-4	1e-4
KL threshold for LR update	0.016	0.016	0.016
Grad norm	1.0	1.0	1.0
Entropy coefficient	0	0.005	0
Clipping factor, ϵ	0.1	0.1	0.1
Mini-batch size	$4 \times num_envs$	$4 \times num_envs$	$4 \times num_envs$
Critic coefficient, λ'	4.0	4.0	4.0
Horizon length	16	16	16
LSTM Sequence length	16	16	16
Bounds loss coefficient	0.0001	0.0001	0.0001
Mini epochs	2	2	2
CPO-Specific Hyperparameters			
β in Eq. 11	0.0001	0.001	0.0001
Forward KL constraint temperature, λ_f	0.2	0.2	0.1
Reverse KL constraint temperature, λ_r	0	0	0
Adversarial reward scaling factor, λ_{adv}	0	0	0

Table 5: **Training hyperparameters for locomotion tasks: Humanoid and Anymal.** The upper section lists hyperparameters shared by SAPG and CPO, while the lower section lists those specific to CPO.

Hyperparameter	Humanoid	Anymal	
Common Hyperparameters (SAPG and CPO)			
Discount factor, γ	0.99	0.99	
GAE smoothing factor, τ	0.95	0.95	
MLP hidden layers	[768, 512, 256]	[768, 512, 256]	
Learning rate	5e-4	3e-4	
KL threshold for LR update	0.008	0.008	
Grad norm	1.0	1.0	
Entropy coefficient	0.002	0.002	
Clipping factor, ϵ	0.2	0.2	
Mini-batch size	$4 \times num_envs$	$4 \times num_envs$	
Critic coefficient, λ'	4.0	4.0	
Horizon length	8	8	
Bounds loss coefficient	0.0001	0.0001	
Mini epochs	5	5	
CPO-Specific Hyperparameters			
β in Eq. 11	0.001	0.001	
Forward KL constraint temperature, λ_f	0.2	0.2	
Reverse KL constraint temperature, λ_r	0	0	
Adversarial reward scaling factor, λ_{adv}	0	0	