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ABSTRACT

Scaling reinforcement learning to tens of thousands of parallel environments re-
quires overcoming the limited exploration capacity of a single policy. Ensemble-
based policy gradient methods, which employ multiple policies to collect diverse
samples, have recently been proposed to promote exploration. However, merely
broadening the exploration space does not always enhance learning capability,
since excessive exploration can reduce exploration quality or compromise training
stability. In this work, we theoretically analyze the impact of inter-policy diversity
on learning efficiency in policy ensembles, and propose Coupled Policy Optimiza-
tion (CPO), which regulates diversity through KL constraints between policies. The
proposed method enables effective exploration and outperforms strong baselines
such as SAPG, PBT, and PPO across multiple dexterous manipulation tasks in
both sample efficiency and final performance. Furthermore, analysis of policy
diversity and effective sample size during training reveals that follower policies
naturally distribute around the leader, demonstrating the emergence of structured
and efficient exploratory behavior. Our results indicate that diverse exploration
under appropriate regulation is key to achieving stable and sample-efficient learning
in ensemble policy gradient methods.

1 INTRODUCTION

With the advent of GPU-based massively parallel physics simulators such as Isaac Gym (Makoviychuk
et al., 2021) and Genesis (Authors, 2024), it has become feasible to collect data from over tens of
thousands of environments simultaneously for robot deep reinforcement learning (RL). Given the
inherently trial-and-error nature of RL, such parallelism has the potential to dramatically improve
learning efficiency for high-dimensional and complex tasks, such as dexterous hand manipulation.
However, recent work (Singla et al., 2024) has reported that simply increasing the amount of data does
not necessarily lead to improved learning efficiency in on-policy methods like PPO (Schulman et al.,
2017). This result suggests that simply using a single policy in massively parallelized environments
does not sufficiently diversify exploration and thus cannot significantly improve learning efficiency.

To address these challenges, agent ensemble approaches have been proposed to collect diverse samples.
Recent work (Singla et al., 2024) introduced a leader-follower framework shown in Fig. 1(a), in which
one leader agent and multiple followers are each assigned to separate blocks of parallel environments.
Each follower performs independent on-policy learning, while the leader aggregates off-policy
samples from followers using importance sampling (IS). Unlike other agent ensemble methods
(Aleksei Petrenko, 2023; Li et al., 2023a), this enables the use of all collected data without discarding
any samples, thereby facilitating diverse exploration. Their approach has demonstrated significantly
improved learning performance over non-aggregating methods like DexPBT (Aleksei Petrenko, 2023),
as well as over off-policy methods such as PQL (Li et al., 2023b). However, it remains an open
question whether greater inter-policy diversity necessarily translates into better performance.

In this work, we theoretically and empirically investigate the impact of inter-policy diversity on
ensemble policy gradient methods, showing that excessive diversity can harm both training stability
and sample efficiency as shown in Fig. 1(b). To address this issue, we propose Coupled Policy
Optimization (CPO), a novel method that introduces a KL divergence constraint during follower
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Figure 1: Appropriately controlled policy diversity improves the learning efficiency of ensemble
RL in large-scale environments. (a) The leader-follower approach is an agent ensemble method
that aggregates samples from multiple followers into a leader policy. (b) Misalignment between
policies may causes a decline in sample efficiency and training stability. (c) Our method introduces
KL divergence constraints to keep followers distributed around the leader, as well as adversarial
reward to prevent policies overconcentration.

policy updates in the leader-follower framework, thereby promoting diverse yet well-structured
exploration around the leader (Fig. 1(c)). In addition, to prevent overconcentration among policies,
we incorporate an adversarial reward that discriminates agent identity from state–action pairs, ensuring
balanced and effective diversity.

Extensive experiments on dexterous manipulation tasks demonstrate that our method outperforms
strong baselines such as SAPG, DexPBT, and PPO in both sample efficiency and final performance.
In addition, we confirm that the KL constraint drives the IS ratios closer to one, which increases
the effective sample size (ESS) and mitigates the clipping bias in PPO, thereby improving the
effective sample efficiency and training stability. Furthermore, analysis of the ensemble policies
reveals that SAPG suffers from severe policy misalignment, where some follower policies diverge
significantly from the leader, hindering leaning ability. In contrast, CPO naturally induces a stable and
well-structured policy formation, with followers distributed around the leader in a balanced manner.

To summarize, our main contributions are as follows:
• We provide a theoretical analysis showing that excessive inter-policy diversity in

ensemble policy gradient methods degrades training stability and sample efficiency.
• We propose CPO, a leader-follower framework that introduces a KL divergence con-

straint and adversarial reward during follower updates to enable effective and stable
exploration in policy space. The proposed method outperforms strong baselines
including SAPG, DexPBT, and PPO across multiple dexterous manipulation tasks.

• We empirically verify that the KL constraint keeps IS ratios close to one in leader’s
off-policy policy update, leading to improved sample efficiency.

• Through inter-policy KL divergence analysis, we show that CPO naturally induces
a structured policy formation in which follower policies are consistently distributed
around the leader policy, avoiding the policy misalignment observed in a prior method.

2 RELATED WORK

2.1 DISTRIBUTED REINFORCEMENT LEARNING

Deep reinforcement learning (RL) relies on trial-and-error, and increased data collection through
massively parallel environments directly contributes to performance improvement. Early work
focused on asynchronous distributed algorithms across multiple devices with hundreds to thousands
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of environments, favoring off-policy methods (Espeholt et al., 2018; Horgan et al., 2018; Espeholt
et al., 2019). Recently, GPU-based simulators such as Isaac Gym (Makoviychuk et al., 2021) have
enabled tens of thousands of environments to run synchronously on a single device, reviving interest
in on-policy methods that often achieve higher final performance in robotic tasks (Rudin et al., 2022;
Handa et al., 2023; Zhuang et al., 2023; Li et al., 2023b). However, naively scaling methods like
PPO to such large numbers of environments yields diminishing returns, since a single policy provides
limited exploration diversity, resulting in similar trajectories (Singla et al., 2024).

2.2 AGENT ENSEMBLE IN PARALLELED ENVIRONMENTS

To enhance exploration diversity in massively parallel environments, ensemble methods with multiple
policies have been explored. DexPBT (Aleksei Petrenko, 2023), for example, trains policies with
different hyperparameters in parallel but discards data from non-selected policies, reducing overall
efficiency. SAPG (Singla et al., 2024) instead leverages all follower data through IS in a leader-
follower framework, improving exploration diversity and training stability. Yet, the impact of
inter-policy diversity has not been thoroughly examined, and excessively divergent followers may
generate off-policy samples that destabilize the leader.

2.3 POLICY UPDATE WITH REGULARIZATION

Policy regularization is widely used in RL, typically constraining divergence either from the dataset
policy in offline RL (Fujimoto & Gu, 2021; Garg et al., 2023; Sikchi et al.; Nair et al., 2020) or
from the old policy in online RL (Schulman et al., 2015; 2017; Abdolmaleki et al., 2018), thereby
improving stability and efficiency. In this work, we regularize the divergence between follower and
leader policies so that followers explore near the leader in policy space, collecting data informative to
the leader while maintaining diversity. For this purpose, we employ KL divergence, following prior
approaches such as XQL (Garg et al., 2023) and AWAC (Nair et al., 2020).

3 PRELIMINARIES

In this paper, we theoretically show that excessive inter-policy diversity in ensemble policy gradient
methods under massively parallel environments can harm training stability and sample efficiency,
and we propose a method that controls the diversity between agents to promote efficient exploration.
Since both our analysis and the proposed method build upon the leader-follower framework of SAPG
(Singla et al., 2024), we first review the formulation of a fundamental on-policy algorithm, PPO
(Schulman et al., 2017), and then summarize the key ideas and limitations of SAPG.

3.1 REINFORCEMENT LEARNING

In RL, tasks are typically formalized as a Markov Decision Process (MDP), defined by a tuple
(S,A, P, r, γ, d). Here, S is the state space, A is the action space, P (st+1|st,at) is the state
transition probability density, r(s,a) is the reward function, γ is the discount factor, and d(s0) is the
initial state distribution. A policy π(a|s) : S ×A 7→ R is defined as a probability distribution over
actions conditioned on the state. The objective of RL is to learn a policy that maximizes the expected
return E[R0|π] where Rt = ΣTk=tγ

k−tr(sk,ak) and T is a task horizon.

3.2 PROXIMAL POLICY OPTIMIZATION (PPO)

PPO is a widely used on-policy algorithm that stabilizes updates by clipping the IS ratio with the
behavior policy. All agents in this study are trained with PPO with modifications. The objective is:

LPPO(θ) = −Es,a∼πθold
[min(r(θ)A(s,a), clip(r(θ), 1− ϵ, 1 + ϵ)A(s,a))] , (1)

where r(θ) = πθ(a|s)
πθold

(a|s) is the IS ratio and ϵ is the clipping parameter. The advantage function is
A(s,a) = Qπθ (s,a)− V πθ (s), with the action-value function Qπθ (s,a) = Eπθ

[R | s,a] and the
value function V πθ (s) = Eπθ

[R | s]. Thus, A(s,a) measures how much better action a is compared
to the average action under πθ.

3
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3.3 SPLIT AND AGGREGATE POLICY GRADIENTS (SAPG)

SAPG is a state-of-the-art RL method designed to enhance exploration diversity and sample efficiency
in massively parallel environments. It trains multiple policies concurrently, where each follower
agent collects data that is aggregated into a leader policy. The leader leverages off-policy data from
followers through IS, enabling diverse exploration with parallel environments.

Specifically, the N parallel environments are divided into M blocks, and one leader policy and M−1
follower policies are each assigned to the blocks. All agents share the same policy and value networks
conditioned on identification vectors. The leader policy πLθ

(a|s) and follower policies πFi,θ
(a|s),

where i ∈ {0, . . . ,M−2}, are updated by the objective functions in Eq. 2 and Eq. 3.

LSAPG,L(θ, j) = −Es,a∼πLθold

[
min

(
rLon(θ)A

L(s,a), clip(rLon(θ), 1−ϵ, 1+ϵ)AL(s,a)
)]

− Es,a∼πFj,θold

[
min

(
rLoff(θ)A

L(s,a), clip(rLoff(θ), 1−ϵ, 1+ϵ)AL(s,a)
)]
,

(2)

LSAPG,Fi
(θ) = −Es,a∼πFi,θold

[
min

(
rFi

(θ)AFi(s,a), clip(rFi
(θ), 1−ϵ, 1+ϵ)AFi(s,a)

)]
, (3)

where j ∈ {0, . . . ,M−2} denotes the index of a follower agent randomly sampled at each training
epoch, and the density ratios between behavior policy and the updating policy are defined as:

rLon(θ) =
πLθ

(a|s)
πLθold

(a|s)
, rLoff(θ) =

πLθ
(a|s)

πFj,θold
(a|s)

, rFi(θ) =
πFi,θ

(a|s)
πFi,θold

(a|s)
. (4)

Here, AFi(s,a) and AL(s,a) denote the advantage functions for the i-th follower and the leader
policy, respectively. Furthermore, SAPG introduces an entropy regularization term applied to all
policies to encourage diversity in exploration across agents.

However, SAPG lacks an explicit mechanism to control the distance between leader and follower
policies while applying entropy regularization. This may lead followers to be misaligned significantly
from the leader. In this paper, we discuss the impact of this excessive divergence on learning.

4 EFFECT OF POLICY DIVERSITY ON ENSEMBLE POLICY GRADIENT

Policy diversity affects ensemble policy gradient methods in two major aspects: data coverage and
training stability. While diverse exploration increases coverage and mitigates local optima, excessive
diversity reduces sample density and weakens the variance-reduction effect of parallel environments,
reflecting a fundamental exploration–exploitation trade-off in reinforcement learning. More critically,
excessive divergence between the leader and follower policies can directly harm training stability and
sample efficiency. We formalize this intuition through the following propositions.

Proposition 1. The expected absolute deviation of the IS ratio from 1 is inversely related to the
effective sample size (ESS); as the deviation increases, the ESS decreases.

When the leader and follower policies diverge, the expected absolute deviation of the IS ratio for
leader update with follower samples, Es,a∼πFold

[∣∣∣1− πL(a|s)
πFold

(a|s)

∣∣∣], increases. This deviation leads
to higher variance in the IS ratio, thereby diminishing the ESS, which is a standard metric of sample
efficiency in IS with approximation (Martino et al., 2017), where wi is the IS ratio, defined as follows:

ESS =
1∑N

i=1 w̃
2
i

, w̃i =
wi∑N
j=1 wj

. (5)

Intuitively, samples from misaligned follower policies contribute little to the leader’s learning, thereby
reducing the overall sample efficiency of the leader update. The detailed derivation is provided in
Appendix A.1.1.

Proposition 2. The L2 norm of the bias of the gradient estimate induced by the PPO clipping
operator is upper bounded by the square root of an expectation involving the IS ratio deviation.
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PPO ensures learning stability by clipping the IS ratio, however, this introduces bias into the gradient
estimate. As the IS deviation increases, the effect of clipping becomes more pronounced, resulting in
larger bias and destabilizing the leader’s learning. This can be shown by upper bounding the L2 norm
of the bias as a function of the IS deviation. The detailed derivation is provided in Appendix A.1.2.

These propositions show that while policy diversity improves exploration, excessive divergence
between the leader and follower policies causes the IS ratio to deviate from 1, which may undermine
the sample efficiency and stability of the leader update by reducing ESS and increasing the gradient
estimation bias, as shown in Fig. 1(b). We then examine how this deviation can be suppressed.

Proposition 3. For the leader update with follower samples, The expected absolute deviation of
IS ratio from 1 is upper bounded by the KL divergence between the follower and leader policies.

Proof. From Pinsker’s inequality, we have ∥P −Q∥ ≤
√
2DKL(P∥Q) for any two distributions P

and Q. Applying this to the leader and follower policies, then:∫
a

|πFold
(a|s)− πL(a|s)| da ≤

√
2DKL(πFold

(·|s)∥πL(·|s)). (6)

Here, using the identity
∣∣∣1− πL(a|s)

πFold
(a|s)

∣∣∣ = ∣∣∣πFold
(a|s)−πL(a|s)
πFold

(a|s)

∣∣∣, we take the expectation with respect
to a ∼ πFold

:

Ea∼πFold

[∣∣∣∣1− πL(a|s)
πFold

(a|s)

∣∣∣∣] =

∫
a

πFold
(a|s)

∣∣∣∣πFold
(a|s)− πL(a|s)
πFold

(a|s)

∣∣∣∣ da (7)

≤
√

2DKL(πFold
(·|s)∥πL(·|s)). (8)

Furthermore, assuming reachability, we take the expectation over the states encountered by the
follower policy. This yields Es,a∼πFold

[∣∣∣1− πL(a|s)
πFold

(a|s)

∣∣∣] ≤√
2DKL(πFold

(·|s)∥πL(·|s)), showing
that as the KL divergence increases, the IS ratio deviates further from 1.

Consequently, introducing a constraint on the KL divergence between the leader and follower policies
alleviates the IS ratio deviation. Schulman et al. (2015) also argues that as long as the KL divergence
between the target and behavior policies remains small, educes update error from distribution shift,
and performance improvement is guaranteed. These motivate the need for KL-based coupling between
leader and followers, to regulate policy diversity in ensemble policy gradient methods.

5 COUPLED POLICY OPTIMIZATION

Building upon the theoretical observation in section 4, we propose CPO, a method that regulates the
inter-agent distance during training. Our approach extends SAPG (Singla et al., 2024) by constraining
the KL divergence between the leader and each follower policy during follower updates, enabling
diverse yet meaningful exploration for the leader. Furthermore, we introduce an auxiliary adversarial
reward that encourages diversity across follower policies, to prevent overconcentration of agents.

5.1 FOLLOWER’S POLICY UPDATE UNDER KL CONSTRAINT

We formulate the update of each follower policy as a constrained optimization problem with a KL
divergence constraint to the leader policy:

π∗
Fi
(a|s) = argmax

πFi

AFi
(s,a) s.t. DKL(πFi

(·|s) ∥πL(·|s)) ≤ εKL. (9)

Following the approach of AWAC (Nair et al., 2020), this problem admits a closed-form non-
parametric solution, which we then approximate with a neural network policy πFi,θ

(a|s). The
resulting parametric objective of follower update can be written as follows:

LCPO,Fi
(θ) = −Ea,s∼πLθold

[
log πFi,θ

(a|s) exp
(

1

λf
AFi(s,a)

)]
+ LSAPG,Fi

(θ), (10)
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where, λf is a temperature parameter to control the strength of KL constraint. The detailed derivation
of Eq. 10 is provided in Appendix A.2. Thus, the policy objective of our proposed method, LCPO(θ, j),
can be expressed as an extension of the SAPG policy objective LSAPG(θ, j) as:

LCPO(θ) = LSAPG(θ, j) + β
∑

i∈{0,...,M−2}

LCPO,Fi,f
(θ, λf ), (11)

where β is a coefficient introduced to roughly match the scale between the PPO objective and the
KL-regularized loss term, which involves an exponential. The pseudocode of our method and the
discussion on computational complexity are provided in Appendix A.3.

5.2 ADVERSARIAL REWARD FOR FOLLOWERS DISTRIBUTION

In addition to KL constraint, we introduce an intrinsic reward to encourage sufficient separation
among the policies. While there are various ways to promote diverse exploration, we draw inspiration
from DIAYN (Eysenbach et al., 2018), and train a discriminator Dξ(y|st,at), parameterized by a
neural network with parameters ξ, to predict the index y ∈ {0, . . . ,M − 1} of the policy given a
state-action pair. The classification loss is then used as an intrinsic reward. This encourages each
follower to explore distinct regions in the state-action space, such that the discriminator can identify
their identity . Given a data buffer D, the discriminator loss and the intrinsic reward are given by:

LD(ξ) = −E(st,at,y)∼D[logDξ(y|st,at)], radv
t (st,at, y) = λadv logDξ(y|st,at). (12)

Notably, this intrinsic reward is not provided to the leader agent. When the leader is updated from the
off-policy samples collected by followers, only the true environment rewards are considered.

6 EXPERIMENTS

We evaluated our proposed method on six dexterous manipulation tasks (Andrychowicz et al., 2020;
Aleksei Petrenko, 2023), those have high dimensional action space, to compare its performance
against state-of-the-art methods under massively parallel settings. All experiments were conducted
on Isaac Gym (Makoviychuk et al., 2021) with N = 24576 parallel environments, following the
experimental setup of the prior work (Singla et al., 2024).

We adopted two relatively simple tasks and four complex tasks. The complex tasks are ones on
which the PPO (Schulman et al., 2017) baseline either fails to learn effectively or exhibits highly
unstable training behavior. All tasks provide dense rewards, and training is carried out for up to
20 billion environment steps. We also conducted experiments on two non-dexterous tasks to verify
its generalizability beyond dexterous manipulation, and the results are provided in Appendix A.4.
Detailed descriptions of the tasks are provided in Appendix A.7.

For baselines, we selected PPO, DexPBT (Aleksei Petrenko, 2023), and SAPG (Singla et al., 2024).
All of these methods are built upon PPO.

• PPO (Schulman et al., 2017): is a representative policy gradient algorithm widely used
across various tasks. We simply increased the number of samples collected per epoch to be
equal to the product of the horizon length and the number of environments N .

• DexPBT (Aleksei Petrenko, 2023): is a population-based parallel learning framework
that divides the N environments into M subsets, where M agents each with different
hyperparameters train in parallel. Periodically, the lowest-performing agents are removed
and replaced by new agents generated through genetic algorithms, which assign updated
hyperparameters for the next training phase.

• SAPG (Singla et al., 2024): adopts agent ensemble learning based on a leader-follower
network, and it represents the state-of-the-art in massively parallel environments to the best
of our knowledge. The leader agent is updated with not only its own on-policy samples, but
also off-policy samples from follower agents through IS.

For DexPBT, SAPG, and our proposed method, we set the number of parallel blocks to M = 6. In
SAPG and our method, the shared networks are conditioned on a one-dimensional vector ϕ ∈ R1.
Hyperparameters common to both SAPG and our method, such as the entropy coefficient, were set
to the same values as used in SAPG. The hyperparameters and computing environments used in all
experiments are provided in Appendix A.7. All experiments were conducted using five random seeds.
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7 RESULTS AND ANALYSIS

We analyze the learning performance of our proposed method compared to baselines, conduct an
ablation study on the strength of the KL constraint, and examine the evolution of inter-policy KL
divergence during training.

7.1 TRAINING PERFORMANCE

To compare the training performance of each method, we present the learning curves across six tasks
in Fig.2, along with the final performance after 2× 1010 environment steps training summarized in
Table1. Each result shows the mean and standard deviation over five random seeds. Following prior
work (Aleksei Petrenko, 2023), we use episode rewards as the metric for simple tasks and episode
success rate for complex tasks.

Our proposed method consistently achieves high sample efficiency and strong final performance
across all six tasks. In particular, while PBT fails to learn meaningful behavior in the Reorientation
task and SAPG struggles in the TwoArms Reorientation task, our method demonstrates robust learning
capability. Moreover, in many tasks, it reaches the final performance of SAPG with approximately
half the number of environment steps, indicating the acquisition of efficient exploration ability. No
significant improvement over SAPG is observed in the Regrasping and Throw tasks, which we discuss
in the next section. We also conducted an ablation study to isolate the contributions of the adversarial
reward and the KL constraint, as shown in Appendix A.5.

Figure 2: Comparison of algorithm performance across six tasks. Learning curves across six
dexterous manipulation tasks comparing CPO to SAPG, PBT, and PPO. CPO consistently achieves
higher sample efficiency and final performance, particularly in Shadow Hand, Allegro Hand, Allegro
Kuka Reorientation and Two-Arms Reorientation.

7.2 ABLATION STUDY ON KL CONSTRAINT

To assess the sensitivity to the KL constraint hyperparameter and to empirically verify the propositions
in section 4, we conducted an ablation study varying the KL coefficient (λf ) in the Shadow Hand
and AllegroKuka Reorientation tasks. To isolate the effect of the KL constraint, we conducted
experiments without the adversarial reward. Also, β in Eq. 11 was fixed at 0.001.

Fig. 3 presents training curves of our method with different λf values compared to SAPG, demon-
strating that CPO was robust to a wide range of values, consistently outperforming SAPG. A practical
tuning heuristic is starting with a weak constraint (λf = 0.5) and gradually strengthen it.

Table 2 shows the mean IS ratio deviation from 1 and the ESS (normalized to a maximum of 1) at
5× 109 environment steps. The deviation is computed from all follower samples, and the ESS from

7
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Table 1: Performance after 2 × 1010 environment steps of training. Bold indicates the method
with the highest average performance for each task, as well as those not significantly different from it,
as determined by a t-test (p > 0.05).

Task PPO PBT SAPG CPO (ours)
ShadowHand 10661 ± 1050 10294 ± 1728 12882 ± 343 13762 ± 414
AllegroHand 10439 ± 1282 13239 ± 239 11989 ± 817 14421 ± 885
Regrasping 0.76 ± 0.99 35.26 ± 2.82 37.20 ± 0.65 37.44 ± 1.21
Reorientation 1.04 ± 0.98 2.92 ± 4.27 38.79 ± 1.66 43.75 ± 0.65
Throw 15.69 ± 3.34 19.08 ± 1.02 22.51 ± 1.15 21.69 ± 2.44
Two-Arms Reorientation 1.41 ± 0.80 26.43 ± 11.12 5.11 ± 3.41 35.30 ± 2.77

Figure 3: Training Curves from the ablation study with different λf .

all leader and follower samples. Consistent with Proposition 1 in section 4, we observed that stronger
KL constraints (smaller λf ) lead to smaller deviations and higher ESS, improving sample efficiency.

Table 2: Mean IS Ratio Deviation and Overall ESS Rate at 5 × 109 environment steps. The
reported values are computed by averaging over a window of eleven iterations.

Task Method Mean IS Ratio Deviation (↓) ESS Rate (↑)
ShadowHand SAPG 0.889 0.0223

CPO(0.5) 0.403 0.763
CPO(0.2) 0.297 0.871
CPO(0.1) 0.222 0.923
CPO(0.05) 0.187 0.941

AllegroKuka Reorientation SAPG 0.608 0.110
CPO(0.5) 0.420 0.721
CPO(0.2) 0.276 0.888
CPO(0.1) 0.214 0.929
CPO(0.05) 0.199 0.938

7.3 KL DIVERGENCE ANALYSIS

In this section, we analyze the KL divergence between policies during training to compare agent
relationships in SAPG and our method (Fig. 4; higher-resolution results are provided in Appendix A.6).
In ShadowHand and AllegroKuka Reorientation, where our method clearly outperformed SAPG,
several SAPG followers misaligned significantly from the leader, producing harmful samples that
hinder the leader’s learning, as described in section 4. In contrast, our method maintained stable
inter-agent distances, yielding more informative samples. In AllegroKuka Regrasping, where both
methods achieved similar performance, SAPG followers did not show noticeable divergence, likely
due to incidental alignment between SAPG’s shared backbone and the task characteristics.

8
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Interestingly, in our method the leader consistently remained the closest agent to every follower (white
circles in Fig. 4), suggesting that KL regularization, together with adversarial reward and entropy
terms, naturally distributes followers around the leader without overconcentration. Furthermore,
unlike SAPG’s ablation where all agents sampled from each other, leading to excessive similarity and
reduced diversity (Singla et al., 2024), our approach preserves the leader-follower asymmetry: each
follower learns only from its own on-policy data and the leader’s off-policy data. This design helps
maintain diversity while keeping inter-policy distances under control.

Shadow Hand Allegro Kuka Reorientation Allegro Kuka Regrasping
SAPG CPO (ours) SAPG CPO (ours) SAPG CPO (ours)
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Figure 4: Comparison of the transition of KL divergence between agents with different algo-
rithms. Each heatmap shows the KL divergence between the leader and follower policies during
training. Row i, column j indicates the forward KL from agent i to agent j. The white circle marks
the agent closest from each follower, excluding itself. SAPG often shows misaligned followers, while
our method keeps them well-distributed around the leader.

8 CONCLUSION AND LIMITATION

In this work, we theoretically showed that excessive inter-policy diversity in ensemble policy gradient
methods under massively parallel environments can harm sample efficiency and stability by reducing
effective sample size, increasing clipping bias, and weakening monotonic improvement guarantees.
To address this issue, we proposed Coupled Policy Optimization, which introduces KL constraints
between leader and follower policies and adversarial rewards to prevent overconcentration. Experi-
ments on multiple dexterous manipulation tasks demonstrated that CPO outperforms strong baselines
such as SAPG, PBT, and PPO in both sample efficiency and final performance. Ablation studies
confirmed that KL constraint reduces IS-ratio deviation and improves effective sample size, while
KL-divergence visualizations revealed that followers naturally distribute around the leader without
misalignment, highlighting the stability and structural effectiveness of our method.

These findings suggest that in ensemble policy gradient methods under massively parallel environ-
ments, it is not sufficient to merely promote policy diversity; rather, appropriate control of diversity is
crucial for achieving both stable and sample-efficient learning.

A limitation of our method is still rely on a fixed number of policies and environments per policy.
However, the effective exploration range can vary with the task and training stage. Developing
algorithms that automatically adjust these parameters would be an interesting future direction,
unlocking the potential of massively parallel environments, especially for tasks with high-dimensional
action spaces and demanding exploration requirements.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide the source code of our proposed method, CPO, as supplemen-
tary material. The accompanying README highlights the files that contain the key functions used in
our implementation. Details of the experimental environments, as well as the hyperparameters used
in all experiments are listed in Appendix A.7.
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A APPENDIX

A.1 PROOFS OF PROPOSITIONS

In this section, we provide the proofs of Proposition 1 and Proposition 2 stated in section 4.

A.1.1 PROOF OF PROPOSITION 1

Proof. Let NL,on denote the number of leader (on-policy) samples and NL,off the number of follower
(off-policy) samples. Assuming reachability, i.e., the support of the target policy is contained in that
of the behavior policy, the IS ratio has unit mean: E[r] = 1. Then, ESS for the leader update can be
expressed as a function of Vars,a∼πFold

[rL,off(θ)] as follows:

ESS =

(∑NL,on+NL,off

i=1 wi

)2

∑NL,on+NL,off

i=1 w2
i

, (13)

=

(
NL,onEs,a∼πLold

[rL,on(θ)] +NL,offEs,a∼πFold
[rL,off(θ)]

)2

(Vars,a∼πLold
[rL,on(θ)] + 1) + (Vars,a∼πFold

[rL,off(θ)] + 1)
, (14)

=
(NL,on +NL,off)

2

Vars,a∼πLold
[rL,on(θ)] + Vars,a∼πFold

[rL,off(θ)] + 2
. (15)
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Here, the variance of IS ratio for off-policy samples is lower bounded by the expected absolute
deviation of it from 1 as:

Es,a∼πFold
[|1− rL,off |] ≤

√
Es,a∼πFold

[(1− rL,off(θ))2], (16)

=
√
Es,a∼πFold

[rL,off(θ)2]− 2Es,a∼πFold
[rL,off(θ)] + 1, (17)

=
√
Vars,a∼πFold

[rL,off(θ)] + (Es,a∼πFold
[rL,off(θ)]− 1)2, (18)

=
√

Vars,a∼πFold
[rL,off(θ)]. (19)

A.1.2 PROOF OF PROPOSITION 2

Proof. Formally, the gradient estimation bias introduced by PPO clipping operator for the leader
update with off-policy samples can be expressed as:

Bias = Es,a∼πFold
[∇θ log πL,θ(a|s) δ(s,a)] , (20)

where δ(s,a) = δLA(s,a) ·A(s,a) and

δA(s,a) =


(1 + ϵ)− rL,off(θ) if AL(s, a) > 0 and rL,off(θ) > 1 + ϵ,

(1− ϵ)− rL,off(θ) if AL(s, a) < 0 and rL,off(θ) < 1− ϵ,

0 otherwise.

The squared L2 norm of this bias can be bounded using Jensen’s inequality:

∥Bias∥ =
√∥∥∥Es,a∼πFold

[
∇θ log πL,θ(a|s) δ(s,a)

]∥∥∥2, (21)

≤
√

Es,a∼πFold

[
∥∇θ log πL,θ(a|s)∥2 · (|1− r(θ)|+ |ϵ|)2 ·A(s,a)2 · 1clipped

]
. (22)

Here, 1clipped denotes the indicator function that takes the value 1 if the PPO objective is in the
clipped regime, and 0 otherwise. Thus, the upper bound of the bias depends directly on |1− r(θ)|,
which increases as the IS ratio deviates from 1, leading training instability.

A.2 DERIVATION OF FOLLOWER POLICY UPDATE UNDER KL CONSTRAINT

This section presents the derivation of the follower policy objective in Eq. 10 under the proposed KL
constraint. The constrained optimization problem shown in Eq. 9 has a closed-form solution, which
can be obtained using the method of Lagrange multipliers, as follows:

π∗
Fi
(a|s) = 1

Z
πL(a|s) exp

(
1

λ
AFi(s,a)

)
, (23)

where Z =
∫
πL(a|s) exp

(
AFi (s,a)

λ

)
da and λ is the Lagrange multiplier associated with the KL

constraint, which also serves as a temperature parameter controlling the strength of attraction between
the leader and follower policies.

Since the closed-form solution is expressed in a non-parametric form, we approximate it using
a neural network policy πFi,θ

(a|s). To this end, we formulate the problem of approximating the
non-parametric solution with a parametric model as the minimization of both the forward and reverse
KL divergences between them. The minimization of the forward KL divergence can be expressed as

12
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follows:

argmin
θ
DKL(π

∗
Fi
(·|s)||πFi,θ

(·|s))

= argmin
θ

∫
π∗
Fi
(a|s) log

π∗
Fi
(a|s)

πFi,θ(a|s)
da,

=argmin
θ

∫
−πL(a|s) exp

(
1

λf
AFi(s,a)

)
log πFi,θ

(a|s)da,

=argmin
θ
−Es,a∼πL

[
log πFi,θ

(a|s) exp
(

1

λf
AFi(s,a)

)]
. (24)

Here, the objective function is computed as the expectation with respect to the leader’s off-policy
samples. In contrast, the minimization of the reverse KL divergence can be written as follows:

argmin
θ
DKL(πFi,θ

(·|s)||π∗
Fi
(·|s))

= argmin
θ

∫
πFi,θ

(a|s) log
πFi,θ

(a|s)
π∗
Fi
(a|s)

da,

=argmin
θ

∫
πFi,θ

(a|s)
(
log πFi,θ

(a|s)− log πL(a|s)−
1

λr
AFi(s,a)

)
da,

=argmin
θ
−Es,a∼πFi,θold

[
πFi,θ

(a|s)
πFi,θold

(a|s)

(
AFi(s,a)− λr log

πFi,θ
(a|s)

πL(a|s)

)]
. (25)

In this case, the objective function is computed as the expectation with respect to the follower’s
on-policy samples. Here, We use separate temperature parameters λf and λr for the forward and
reverse KL terms, respectively, to ensure computational stability. By minimizing both the forward
and reverse KL divergences instead of a one-sided KL divergence, we can effectively utilize samples
collected by both the leader and the follower.

For simplicity, we set λr = 0 to perform regularization solely through the forward KL term, and
clipping is applied for stable update. Thus, Eq. 25 reduces to LSAPG,Fi

(θ) in Eq. 3. Consequently, the
follower policy’s updated objective LCPO,Fi,f

(θ) and LCPO,Fi,r (θ) is obtained as follows:

LCPO,Fi,f
(θ, λf ) =− Ea,s∼πLθold

[
log πFi,θ

(a|s) exp
(

1

λf
AFi(s,a)

)]
, (26)

LCPO,Fi,r (θ) =LSAPG,Fi(θ).

A.3 PSEUDOCODE AND COMPUTATIONAL COMPLEXITY OF THE PROPOSED METHOD

In this section, we provide the pseudocode of the proposed method and discuss the computational
overhead introduced by the KL constraint. Algorithm.1 illustrates the overall procedure of CPO. The
main computational difference from SAPG lies in computing the follower loss LF,i(θ, λf ), where
the KL divergence constraint must be evaluated once for each of the five followers. Consequently, the
number of auto-differentiable forward–backward passes involves roughly 12 components in CPO
versus 7 in SAPG, 7 components in SAPG (five follower on-policy updates, one leader on-policy
update, and one leader off-policy update) plus five additional components in CPO for follower’s
update from leader’s samples.

Nevertheless, since data collection in SAPG typically requires about twice as much time as the
training updates, the overall wall-clock increase in training time for CPO is modest, amounting to
only about 25%.

13
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Algorithm 1: Coupled Policy Optimization (CPO)
Input: Number of environments N , number of agents M , KL coefficient λf , adversarial weight

λadv
Output: Updated policy parameters θ, value parameters ψ, discriminator parameters ξ
Initialize shared policy parameters θ; policy embeddings ϕ0, . . . , ϕM−1

Initialize value network Vψ
Initialize discriminator Dξ

Initialize N environments and assign to M agents (1 leader + M−1 followers)
for each training iteration do

// -- Data collection --
Collect trajectories Di from all agents in parallel
Compute discriminator loss LD(ξ) using (s, a, y) ∈ D
Compute adversarial reward radv

t = λadv logDξ(y|st, at)
// -- Advantage estimation --

For each agent i, compute advantages Âit and returns R̂it using Vψ,i
Sample a random follower index j ∈ {1, . . . ,M−1}
Recompute leader’s value/advantage on follower j’s data
Recompute each follower’s value/advantage on leader’s data
// -- Policy loss aggregation --
Lπ ← 0
Lπ ← Lπ + LL,on(θ) ; // Leader on-policy loss
Lπ ← Lπ + LL,off(θ, j) ; // Leader off-policy loss
Lπ ← Lπ +

∑
i LFi,r(θ) ; // Follower on-policy losses

Lπ ← Lπ + β
∑
i LFi,f (θ, λf ) ; // Follower KL-regularized losses

Lπ ← Lπ + Lent(θ) ; // Entropy regularization
// -- Value loss --

LV =
∑
i ∥Vψ(sit)− R̂it∥2

// -- Parameter updates --
Update policy θ ← θ − ηπ∇θLπ
Update value network ψ ← ψ − ηV∇ψLV
Update discriminator ξ ← ξ − ηD∇ξLD

A.4 EXPERIMENTS ON NON-DEXTEROUS MANIPULATION TASKS

Massively parallel environments generally demonstrate strong performance in challenging tasks with
high-dimensional action spaces and complex dynamics, such as dexterous manipulation. On the
other hand, to investigate the generalization ability of our method beyond dexterous manipulation, we
conducted comparative experiments on two locomotion tasks, Humanoid (21 Dof) and Anymal (12
DoF), using SAPG, PBT, and PPO as baselines. All experiments were conducted with N = 24, 576
environments, as in the other tasks, and trained for up to 5× 109 environment steps using five random
seeds. The hyperparameters and computing envirionments used in all experiments are provided in
Appendix A.7.

The learning curves are shown in Fig. 5. Since both tasks are easier than dexterous manipulation, the
performance differences across algorithms are smaller. Nevertheless, PBT exhibits relatively faster
convergence, indicating that in simpler tasks, algorithms such as PBT that explore a wide range of
policies in parallel can be advantageous. On the other hand, our proposed method converges slightly
faster than SAPG, suggesting that in leader-follower policy gradient frameworks, the stabilization and
sample efficiency gains brought by KL constraints outweigh the benefits of broader data coverage
through exploration diversity.

14
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Figure 5: Comparison of algorithm performance on manipulation tasks.

A.5 ABLATION STUDY ON ADVERSARIAL REWARD AND KL CONSTRAINT

In this section, we perform an ablation study to analyze the contributions of the two key components
of our method: the KL divergence constraint and the adversarial reward. We trained on two tasks,
Shadow Hand and Allegro Hand, using the full CPO algorithm, as well as two ablated variants for
analysis. The first variant, CPO (w/o AdR), disables the adversarial reward by setting its scaling
factor to zero (λadv = 0). The second variant, CPO (w/o KLC), removes the KL divergence
constraint by setting the coefficient for the solution of the forward KL minimization problem in Eq. 11
to zero (β = 0). The resulting learning curves are shown in Fig.6, while the discriminator losses are
plotted in Fig.7. Additionally, the transitions of inter-policy KL divergence are visualized as color
maps in Fig. 8.

Figure 6: Effects of KL constraint and adversarial reward on performance. Learning curves on
ShadowHand and AllegroHand tasks for three variants: full CPO (red), CPO without adversarial
reward (blue), and CPO without KL constraint (green).

Figure 7: Discriminator loss under different settings. Discriminator loss during training on the
ShadowHand and AllegroHand tasks for three variants: full CPO (red), CPO without adversarial
reward (blue), and CPO without KL constraint (green).

As shown in Fig 6, removing the KL constraint (CPO (wo/KLC)) leads to a degradation in training
performance. This suggests that, without proper regulation of policy distances, the followers explore
in directions that deviate from the leader, reducing sample efficiency and training stability. This
observation is further supported by the inter-policy KL divergence maps in Fig 8, where follower
policies under CPO (wo/KLC) are visibly misaligned and drift far from the leader policy.

In contrast, removing the adversarial reward (CPO (w/o AdR)) results in only a marginal difference
in training performance compared to the full CPO, although it tends to reduce the variance introduced
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Figure 8: Comparison of the transition of KL divergence between agents with different settings.
Each heatmap shows the KL divergence between the leader and follower policies during training.
Row i, column j indicates the forward KL from agent i to agent j. The white circle marks the agent
closest from each follower, excluding itself.

by the adversarial reward across random seeds. As shown in Fig 7, the discriminator loss converges
to the upper bound of random classification (ln 6 ≈ 1.792), indicating difficulty in distinguishing the
policies regardless of the adversarial reward. In preliminary experiments, increasing the scaling factor
of the adversarial reward λadv without performance tuning made the discriminator easily distinguish
between policies. In the current experiment, however, we tuned λadv for optimal performance. As
shown in Fig. 6 and Fig. 8, this results in follower policies remaining near the leader, suggesting that
such alignment promotes stable and efficient learning.

Interestingly, Fig 8 shows that even without the adversarial reward, each follower’s closest policy,
in terms of KL divergence, is consistently the leader. This implies that the intended role of the
adversarial reward, preventing overconcentration of followers, was already achieved through the
KL constraint and entropy regularization alone. The performance improvement observed with the
adversarial reward may stem from the uniform penalty it imposes, which encourages optimistic
behaviors in the policies due to the relatively high estimated value of unexplored states. The actual
impact of this regularization appears to vary depending on the task.

A.6 TRANSITION OF INTER-POLICY KL DIVERGENCE AT HIGHER TIME-RESOLUTION

Visualizations of the transition of inter-policy KL divergence across environment steps dur-
ing training are available on our project page: https://sites.google.com/view/
cpo-rl-iclr2026/.

A.7 TRAINING ENVIRONMENTS AND HYPERPARAMETERS

This section provides details on the experimental environments, task description and training hyper-
parameters.

A.7.1 EXPERIMENTAL ENVIRONMENTS

We conduct our experiments using an internal GPU cluster and a large-scale academic computing
facility equipped with NVIDIA A100 GPUs. Due to differences in network environments and
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CPU configurations, it is difficult to make a fair comparison of training time across tasks and
algorithms. However, each condition is trained for approximately one to four days to train through
20G environment steps.

A.7.2 TASK DESCRIPTION

Simple Tasks: As relatively simple tasks, we adopted in-hand reorientation with two types of
multi-fingered hands: ShadowHand (24 DoF) (Andrychowicz et al., 2020) and AllegroHand (16
DoF). The observation space consists of joint positions and velocities, as well as object orientation
and angular velocity. We used an MLP-based policy network for these tasks and set the horizon
length to 8.

Complex Tasks: As more complex tasks, we adopted the Regrasping, Reorientation, and Throw
tasks in the Allegro-Kuka environment (Aleksei Petrenko, 2023). In these tasks, an Allegro Hand
(16 DoF) is mounted on the end of a Kuka Arm (7 DoF). To further evaluate multi-arm dexterity, we
also included the Two-Arms Reorientation task, where two Allegro-Kuka systems simultaneously
manipulate a single object in a coordinated manner. For all tasks, we employed a policy network with
a single-layer LSTM and set the horizon length to 16.

Locomotion Tasks: As non-dexterous manipulation tasks, we adopted two locomotion benchmarks:
Humanoid (21 DoF) and Anymal (12 DoF). Although they involve high-dimensional control, their
contact dynamics are relatively simpler compared to dexterous manipulation tasks, making them
easier benchmarks in this context. For these tasks, we used an MLP-based policy network and set the
horizon length to 8.

A.7.3 TRAINING HYPERPARAMETERS

Simple Tasks: For relatively simple tasks, specifically Shadow Hand and Allegro Hand, we use
an MLP-based Gaussian policy with an ELU activation applied after each layer. The discriminator
for the adversarial reward is also implemented as an MLP with ELU activations, consisting of four
hidden layers with sizes [1024, 1024, 512, 512], and is trained using a fixed learning rate equal to the
initial value used for the policy. The hyperparameter settings for each task are summarized in Table 3.

Complex Tasks: For relatively complex tasks, specifically AllegroKuka Regrasping, Reorientation,
and Throw, we use a Gaussian policy that consists of an LSTM layer followed by an MLP with ELU
activations applied after each layer. The discriminator for the adversarial reward is also implemented
as an MLP with ELU activations, consisting of four hidden layers with sizes [1024, 1024, 512,
512], and is trained using a fixed learning rate equal to the initial value used for the policy. The
hyperparameter settings for each task are summarized in Table 4.

Locomotion Tasks: For locomotion tasks, specifically Humanoid and Anymal, we use an MLP-
based Gaussian policy with an ELU activation applied after each layer. The discriminator for the
adversarial reward is also implemented as an MLP with ELU activations, consisting of three hidden
layers with sizes [768, 512, 256], and is trained using a fixed learning rate equal to the initial value
used for the policy. The hyperparameter settings for each task are summarized in Table 5.
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Table 3: Training hyperparameters for Shadow Hand and Allegro Hand. The upper section lists
hyperparameters shared by SAPG and CPO, while the lower section lists those specific to CPO.

Hyperparameter Shadow Hand Allegro Hand
Common Hyperparameters (SAPG and CPO)

Discount factor, γ 0.99 0.99
GAE smoothing factor, τ 0.95 0.95
MLP hidden layers [512, 512, 256, 128] [512, 256, 128]
Learning rate 5e-4 5e-4
KL threshold for LR update 0.016 0.016
Grad norm 1.0 1.0
Entropy coefficient 0.005 0
Clipping factor, ϵ 0.2 0.2
Mini-batch size 4 × num_envs 4 × num_envs
Critic coefficient, λ′ 4.0 4.0
Horizon length 8 8
Bounds loss coefficient 0.0001 0.0001
Mini epochs 5 5

CPO-Specific Hyperparameters
β in Eq. 11 0.001 0.0005
Forward KL constraint temperature, λf 0.2 0.1
Reverse KL constraint temperature, λr 0 0
Adversarial reward scaling factor, λadv 0.01 0.001

Table 4: Training hyperparameters for complex tasks: AllegroKuka Regrasping, Reorientation
and Throw. The upper section lists hyperparameters shared by SAPG and CPO, while the lower
section lists those specific to CPO.

Hyperparameter Regrasping Reorientation Throw
Common Hyperparameters (SAPG and CPO)

Discount factor, γ 0.99 0.99 0.99
GAE smoothing factor, τ 0.95 0.95 0.95
LSTM hidden units 768 768 768
MLP hidden layers [768, 512, 256] [768, 512, 256] [768, 512, 256]
Learning rate 1e-4 1e-4 1e-4
KL threshold for LR update 0.016 0.016 0.016
Grad norm 1.0 1.0 1.0
Entropy coefficient 0 0.005 0
Clipping factor, ϵ 0.1 0.1 0.1
Mini-batch size 4 × num_envs 4 × num_envs 4 × num_envs
Critic coefficient, λ′ 4.0 4.0 4.0
Horizon length 16 16 16
LSTM Sequence length 16 16 16
Bounds loss coefficient 0.0001 0.0001 0.0001
Mini epochs 2 2 2

CPO-Specific Hyperparameters
β in Eq. 11 0.0001 0.001 0.0001
Forward KL constraint temperature, λf 0.2 0.2 0.1
Reverse KL constraint temperature, λr 0 0 0
Adversarial reward scaling factor, λadv 0 0 0
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Table 5: Training hyperparameters for locomotion tasks: Humanoid and Anymal. The upper
section lists hyperparameters shared by SAPG and CPO, while the lower section lists those specific
to CPO.

Hyperparameter Humanoid Anymal
Common Hyperparameters (SAPG and CPO)

Discount factor, γ 0.99 0.99
GAE smoothing factor, τ 0.95 0.95
MLP hidden layers [768, 512, 256] [768, 512, 256]
Learning rate 5e-4 3e-4
KL threshold for LR update 0.008 0.008
Grad norm 1.0 1.0
Entropy coefficient 0.002 0.002
Clipping factor, ϵ 0.2 0.2
Mini-batch size 4 × num_envs 4 × num_envs
Critic coefficient, λ′ 4.0 4.0
Horizon length 8 8
Bounds loss coefficient 0.0001 0.0001
Mini epochs 5 5

CPO-Specific Hyperparameters
β in Eq. 11 0.001 0.001
Forward KL constraint temperature, λf 0.2 0.2
Reverse KL constraint temperature, λr 0 0
Adversarial reward scaling factor, λadv 0 0
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