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man → Iron Man left cat → Samoyed, right cat → Tiger，
background → sunrise

left cat → Panda, right cat → Toy poodle，
ground → grassy meadow, background → starry night

man → Superman man → Superman in cap

Editing to same class objects Separated editing to different instances

Editing objects while adding new part-level attributes 

man → Batman,
clay court → snow court, stone wall → iced wall

Class level Instance level

Part level

Figure 1: ST-Modulator enables multi-grained video editing across class, instance, and part levels.

ABSTRACT

Recent advancements in diffusion models have significantly improved video gen-
eration and editing capabilities. However, multi-grained video editing, which
encompasses class-level, instance-level, and part-level modifications, remains a
formidable challenge. The major difficulties in multi-grained editing include se-
mantic misalignment of text-to-region control and feature coupling within the dif-
fusion model. To address these difficulties, we present ST-Modulator, a zero-
shot approach that modulates space-time (cross- and self-) attention mechanisms
to achieve fine-grained control over video content. We enhance text-to-region
control by amplifying each local prompt’s attention to its corresponding spatial-
disentangled region while minimizing interactions with irrelevant areas in cross-
attention. Additionally, we improve feature separation by increasing intra-region
awareness and reducing inter-region interference in self-attention. Extensive ex-
periments demonstrate our method achieves state-of-the-art performance in real-
world scenarios. More details are available on the project page.
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1 INTRODUCTION

Source Video Class Level T2I class-level:
TokenFlow

Instance Level Part Level T2I instance-level:
Ground-A-Video

T2V based:
DMT

T2V based:
Pika

man→Spiderman left man→Spiderman,
right man→Polar bear

Polar bear
+sunglasses

 "A Spiderman and a polar bear are jogging on grassy meadow
before cherry trees"

Figure 2: Definition of multi-grained video editing and comparison on instance editing

Recent advances in Text-to-Image (T2I) and Text-to-Video (T2V) diffusion models (Rombach et al.,
2022; Chen et al., 2024; Wang et al., 2023a; Brooks et al., 2024) have enabled video manipulation
through natural language prompts. In practical applications, enabling users to edit regions at vari-
ous levels of granularity based on textual prompts offers greater flexibility. To investigate this, we
introduce a new task called multi-grained video editing, which encompasses class-level, instance-
level, and part-level editing, as shown in Fig. 2 left. Class-level editing refers to modifying objects
within the same class. Instance-level editing means editing different instances into distinct objects.
Part-level going further, requires adding new part-level elements while editing objects.

While existing methods employ various visual consistency techniques, such as optical flow (Cong
et al., 2023; Yang et al., 2023), control signals (Zhang et al., 2023b), or feature correspondence
(Geyer et al., 2023). These methods remain instance-agnostic, often mixing features of different
instances during editing (see Fig. 2 right). Ground-A-Video (Jeong & Ye, 2023), which inherits
text-to-bounding box generation priors (Li et al., 2023), should be instance-level editing but still
suffer from artifacts. Similarly, recent T2V-based methods like DMT (Yatim et al., 2024) and Pika
(pik), although equipped with video generation priors, struggle with multi-grained edits. We find that
the core issue is that diffusion models tend to treat different instances as the same class segments,
leading to strong feature coupling across instances, as illustrated in Figure 3.

To address this problem, our primary insight is to 1) enable text-to-region control and 2) keep feature
separation between regions. In the typical diffusion models, the cross-attention layer serves as a key
component to update textual features control over each spatial region, while the self-attention layer
generates globally coherent structures by connecting each frame token across time. Therefore, we
propose Spatial-Temporal Layout-Guided Attention (ST-Layout Attn), which modulates both space-
time cross- and self-attention in a unified manner to achieve the above goals.

In the cross-attention layer, the uniform application of global text prompts across all frame tokens
leads to severe semantic misalignment, which reduces the precision of multi-grained text-to-region
control. To address this, we modulate cross-attention to amplify each local prompt’s focus on its
corresponding spatial-disentangled region while suppressing attention to irrelevant areas. In the
self-attention layer, pixels from one region may attend to outside or similar regions within the same
class, leading to feature coupling and texture mixing, which is an inherent limitation of diffusion
models that complicates multi-grained video editing. To mitigate this, we modulate self-attention to
enhance feature separation by increasing intra-region focus and reducing inter-region interactions,
ensuring each query attends only to its target region.

Our key contributions can be summarized as follows:

• To the best of our knowledge, this is the first attempt at multi-grained video editing. Our
method enables both class-level, instance-level and part-level editing.

• We propose a novel framework, dubbed ST-Modulater, which modulates spatial-temporal
cross- and self-attention for text-to-region control and feature separation between regions.

• Without tuning any parameters, we achieve state-of-the-art results on existing benchmarks
and real-world videos both qualitatively and quantitatively.
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2 RELATED WORK

2.1 TEXT-TO-IMAGE EDITING/GENERATION

In the realm of single attribute text-to-image editing, various approaches have been explored, from
manipulating attention maps in Pix2Pix-Zero (Parmar et al., 2023) and Prompt2Prompt (Hertz et al.,
2022) to employing masks in DiffEdit (Couairon et al., 2023) and Latent Blend (Avrahami et al.,
2022; 2023) for foreground modifications while preserving the background.

For multi-grained editing, efforts like Attention and Excite (Chefer et al., 2023) and DPL (Wang
et al., 2023b) focus on maximizing attention scores for each subject token and reducing attention
leakage. In image generation, (Kim et al., 2023) modulates attention based on layout masks and
dense captions, while (Phung et al., 2023) proposed an attention refocus loss for regularization.
However, using single-frame layout masks and dense captioning alone is insufficient for video edit-
ing, as it fails to maintain the original video’s integrity and temporal consistency.

2.2 TEXT-TO-VIDEO EDITING

Video Editing based on Image Diffusion Models. Tune-A-Video (TAV) (Wu et al., 2022) is the
first work to extend latent diffusion models to the spatial-temporal domain and encode the source
motion implicitly by one-shot tuning but still fails to preserve local details. Fatezero (Qi et al., 2023)
and Pix2Video (Ceylan et al., 2023) fuse self- or cross-attention maps in the inversion process for
temporal consistency. However, (Qi et al., 2023) requires extensive RAM usage and suffers from lay-
out preservation even when equipping TAV for local object editing. (Chai et al., 2023) and (Ouyang
et al., 2023), following the Neural Atlas (Kasten et al., 2021) or dynamic Nerf’s deformation field
(Mildenhall et al., 2021; Pumarola et al., 2021), struggle with non-grid human motion. Subsequent
methods like Rerender-A-Video (Yang et al., 2023), Flatten (Cong et al., 2023) ControlVideo (Zhao
et al., 2023a; Zhang et al., 2023b) achieve strict temporal consistency via optical-flow, depth/edge
maps, but failed in multi-grained editing while preserving original layouts. Tokenflow (Geyer et al.,
2023) enforces a linear mix of nearest key-frame features to ensure consistency but results in detail
loss. Ground-A-VIDEO (Jeong & Ye, 2023) leverages groundings for multi-grained editing, but it
suffers from feature mixing when bounding boxes overlap.

Video Editing based on Video Diffusion Models. Previous video editing work primarily utilized
text-to-image SD model (Rombach et al., 2022). Recent advancements in video foundation models
(Blattmann et al., 2023; Yu et al., 2023; Guo et al., 2023; Wang et al., 2023a) have led efforts like
MotionDirector (Zhao et al., 2023b) and VideoSwap (Gu et al., 2023) to employ temporal priors for
customized motion transfer. Yet, current video foundation models are limited to fixed views and
struggle with non-grid human motions. Additionally, these editing methods require tuning parame-
ters, which poses a challenge for real-time video editing applications. In contrast, our ST-Modulator
method requires no parameter tuning, enabling zero-shot, multi-grained video editing.

3 METHOD

3.1 MOTIVATION

To investigate why previous methods failed in instance-level video editing (see Fig. 2), we begin
with a basic analysis of the self-attention and cross-attention features within the diffusion model.

As shown in Fig. 3 (b), we apply K-Means clustering to the per-frame self-attention features during
DDIM Inversion. Although the clustering captures a clear semantic layout, it fails to distinguish be-
tween distinct instances (e.g., “left man” and “right man”). Increasing the number of clusters leads
to finer segmentation at the part level but does not resolve this issue, indicating that feature homo-
geneity across instances limits the diffusion model’s effectiveness in multi-grained video editing.

Next, we attempt to edit the same class of two men into different instances using SDEdit (Meng
et al., 2021). However, Fig. 3 (d) shows that the weights for “Iron Man” and “Spiderman” overlap
on the left man, and “blossoms” weight leaks onto the right man, resulting in the failed edit in (c).
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Frame 1 Frame 2 Frame 3

(a) Source video input (b) K-Means cluster Self-Attention feature 

segment = 3 segment = 4 segment =5

(d) Cross-Attention Map: "An Iron Man and a Spiderman are jogging under cherry blossoms"(c) Instance-level failed case
Figure 3: Analysis of why the diffusion model failed in instance-level video editing. Our goal is
to edit left man into “Iron Man,” right man into “Spiderman,” and trees into “cherry blossoms.” In
(b), we apply K-Means on self-attention, and in (d), we visualize the 32x32 cross-attention map.

Thus, for effective multi-grained editing, we pose the following question: Can we modulate attention
to ensure that each local edit’s attention weights are accurately distributed in the intended regions?

To answer this, we propose ST-Modulator with two key designs: (1) Modulate cross-attention to
induce textual features to congregate in corresponding spatial-disentangled regions, thereby enabling
text-to-region control. (2) Modulate self-attention across the spatial-temporal axis to enhance intra-
region focus and reduce inter-region interference, avoiding feature coupling within diffusion model.

3.2 PROBLEM FORMULATION

The purpose of this work is to perform multi-grained video editing across multiple regions based on
the given prompts. This involves three hierarchical levels:

(1) Class-level editing: Editing objects within the same class. (e.g., changing two men to “Spider-
man,” where both belong to the human class, as seen in Fig. 2 second column)

(2) Instance-level editing: Editing each individual instance to distinct object. (e.g., editing left man
to “Spiderman,” right man to “Polar Bear,” as shown in Fig. 2 third column).

(3) Part-level editing: Applying part-level edit to specific elements of individual instances. (e.g.,
adding “sunglasses ”when editing the right man to “Polar Bear” in Fig. 2 fourth column).

Given a source video V ∈ RN×3×H×W , where N is the number of frames, our goal is to obtain an
edited video V′ based on specified edits. We aim to improve multi-grained control in video editing
by conditioning on each region’s location and its text prompt. More formally, we optimize a video
editing model f(τg, (τ1,m1), . . . , (τk,mk)), where τg is a global prompt, and (τk,mk) are the kth
region’s prompt and corresponding location.

3.3 OVERALL FRAMEWORK

The proposed zero-shot multi-grained video editing pipeline is illustrated in Fig. 4 top. Initially,
to retain high fidelity, we perform DDIM Inversion (Song et al., 2021) over the clean latent x0 to
get the noisy latent xt. After the inversion process, we cluster the self-attention features to get
the semantic layout as in Fig. 3 (b). Since self-attention features alone cannot distinguish between
individual instances, we further employ SAM-Track (Cheng et al., 2023) to segment each instance.
Finally, in the denoising process, we introduce ST-Layout Attn to modulate cross- and self-attention
for text-to-region control and keep feature separation between regions, as detailed in Sec. 3.4.

Different from one global text prompt control of all frames, ST-Modulator allows paired instance-
or part-level prompts and their locations to be specified in the denoising process. Our method is also
versatile to ControlNet condition e, which can be depth or pose maps to provide structure condition.

4
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: original cross attention.          : positive score.           : negative score 
              

Negative Pair

: original self attention.          : positive score.           : negative score   

Figure 4: ST-Modulator pipeline. (1) we integrate ST-Layout Attn into the frozen SD for multi-
grained editing, where we modulate self- and cross-attention in a unified manner. (2) In cross-
attention, we view each local prompt and its location as positive pairs, while the prompt and
outside-location areas are negative pairs, enabling text-to-region control. (3) In self-attention, we en-
hance positive awareness within intra-regions and restrict negative interactions between inter-regions
across frames, making each query only attend to the target region and keep feature separation. In the
bottom two figures, p denotes original attention score and w, i denotes the word and frame index.

3.4 SPATIAL-TEMPORAL LAYOUT-GUIDED ATTENTION

Based on the observation in Sec.3.1, cross-attention weight distribution adheres to the edit result.
Meanwhile, self-attention is also crucial to generate temporal consistent video. However, the pixels
in one region may attend to outside or similar regions, which poses an obstacle for multi-grained
video editing. Therefore, we need to modulate both self- and cross-attention to make each pixel or
local prompt only focus on the correct region.

To achieve this goal, we modulate both cross- and self-attention mechanisms via a unified increase
positive and decrease negative manner. Specifically, for the ith frame of the query feature, we
modulate the query-key QK⊤ condition map as follows:

A
self/cross
i = softmax(

QK⊤ + λM self/cross
√
d

),

M self/cross = Ri ⊙M pos
i − (1−Ri)⊙M neg

i ,

(1)

where Ri ∈ R|queries|×|keys| indicates the query-key pair condition map at frame i, manipulating
whether to increase or decrease the attention score for a particular pair. And λ = ξ(t) · (1− Si) is a
regularization term. We follow the conclusion from (Kim et al., 2023), the ξ(t) controls the modu-
lation intensity across time-steps, allowing for gradual refinement of shape and appearance details.
The latter is a size regulation term, making smaller region mk subjected to larger modulation, en-
abling dynamic attention weight adjustments to layout size variations.
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Modulate Cross-Attention for Text-to-Region Control. In the cross-attention layer, the textual
feature serves as key and value, and interacts with the query feature from the video latent. Since
each instance’s appearance and location are closely related to the cross-attention weight distribution,
we aim to encourage each instance’s textual features to congregate in the corresponding location.

As shown in Fig. 4 mid, given the layout condition (τk,mk). For example, for τ1 = Spiderman,
within the query-key cross-attention map, we can manually specify that the portion of the query
feature corresponding to m1 is positive, while all the remaining parts are designated as negative.
Therefore, for each frame i, we can set the modulation value in cross attention layer as:

M pos
i = max(QK⊤)−QK⊤,

M neg
i = QK⊤ − min(QK⊤),

(2)

Rcross
i [x, y] =

{
mi,k, if y ∈ τk
0, otherwise , (3)

where x and y are the query and key indices, and Rcross
i is the query-key condition map in the cross

attention layer. We regularize this condition map by initially broadcasting each region’s mask mi,k

to its corresponding text key embedding Kτk , resulting in a condition map Rcross
i ∈ R(H×W )×L.

Each sub-region intensity then adjusts gradually in the generation process. We set M pos/neg
i based

on the gap between max/min values and the original scores, to keep modulated values within the
original range. Our modulation is applied to all frames to achieve spatial-temporal region control.

As illustrated in the right part of Fig. 4 mid, after applying our cross attention modulation, the
original distract attention value of “polar” “bear” becomes concentrated in the right man, while the
attention value of “Spiderman” is amplified and focus on the left man. This modulation makes each
local prompt’s weight focus on the target regions, enabling precise text-to-region control.

Modulate Self-Attention to Keep Feature Separation. To adapt the T2I model for T2V editing,
we treat the full video as ”a larger picture,” replacing spatial attention with spatial-temporal self-
attention while retaining the pretrained weights. This enhances cross-frame interaction and provides
a broader visual context. However, naive self-attention can cause regions to attend to irrelevant or
similar areas (e.g., Fig. 4 bottom, before modulation query p attend to two-man), which leads to
mixed texture. To address this, we need to strengthen positive focus within the same region and
restrict negative interactions between different regions.

As shown in Fig. 4 (bottom left), the maximum cross-frame diffusion feature indicates the strongest
response among tokens within the same region. Note that DIFT (Tang et al., 2023) uses this to
match different images, while we focus on cross-frame correspondences and intra-region attention
modulation in the generation process. Nevertheless, negative inter-region correspondence is equally
crucial for decoupling feature mixing. Beyond DIFT, we find that the minimum cross-frame dif-
fusion feature similarity effectively captures the relations between tokens across different regions.
Therefore, we define the spatial-temporal positive/negative values as:

M pos
i = max(Qi[K1, · · · ,Kn]

⊤)−Qi[K1, · · · ,Kn]
⊤),

M neg
i = Qi[K1, · · · ,Kn]

⊤ − min(Qi[K1, · · · ,Kn]
⊤
).

(4)

To ensure each patch attends to intra-regions feature while avoiding interaction in inter-regions fea-
ture. We define the spatial-temporal query-key condition map:

Rself
i [x, y] =

{
0,∀j ∈ [1 : N ], if mi,k[x] ̸= mj,k[y]
1, otherwise . (5)

For frame indices i and j, the value is zero when tokens belong to different instances across frames.

As shown in the right part of Fig. 4 bottom, after applying our self-attention modulation, the query
feature from the left man’s nose attends only to the left instance, avoiding distraction to the right
instance. This demonstrates that our self-attention modulation breaks the diffusion model’s class-
level feature correspondence, ensuring feature separation at the instance level.
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" A cute pig in the autumn forest " " A firetruck and a school bus are driving on the road "

" A Spider Man and a Wonder Woman are playing
badminton before charcoal grey wall "

" An  Iron Man pushes a Stormtrooper in the soapbox
on mossy stone bridge over lake in the forest "

" An Iron Man and a Spiderman are jogging under cherry blossoms "

Instances swap identity + bg -> asphalt road with building under sky

" Superman  spins moon under cherry blossoms "

Part-level editing: Superman + sunglasses

Figure 5: Qualitative results of ST-Modulator. Our method is versatile for general objects like
animals, cars, and humans while also supporting instance identity swapping and part-level editing.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

In the experiment, we adopt the pretrained Stable Diffusion v1.5 as the base model, using 50 steps
of DDIM inversion and denoising. Our ST-Modulator operates in a zero-shot manner, requiring no
additional parameter tuning. To enhance memory efficiency, we re-engineer slice attention within
our ST Layout Attn. ST Layout Attn is applied during the first 15 denoising steps. We set ξ(t) =
0.3·t5 for self-attention and ξ(t) = t5 for cross-attention, where the timestep t ∈ [0, 1] is normalized.
All The experiments are conducted on an NVIDIA A40 GPU. We evaluate our ST-Modulator using
a dataset of 76 video-text pairs, including videos from DAVIS (Perazzi et al., 2016), TGVE1, and the
Internet2 , with 16-32 frames per video. Four automatic metrics are employed for evaluation: CLIP-
T, CLIP-F, Warp-Err, and Q-edit, following (Wu et al., 2022; Cong et al., 2023). All metrics are
scaled by 100 for clarity. For baselines, we compare against T2I-based methods, including FateZero
(Qi et al., 2023), ControlVideo (Zhang et al., 2023b), TokenFlow (Geyer et al., 2023), GroundVideo
(Jeong & Ye, 2023) and T2V-based DMT (Yatim et al., 2024). For all of these baseline methods,
we follow the default settings from their official GitHub repositories. More detailed experimental
settings are provided in the Appendix.

1
https://sites.google.com/view/loveucvpr23/track4

2
https://www.istockphoto.com/ and https://www.pexels.com/
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A Panda and a toy poodle are playing
toys in starry night on grassy meadow

D
M
T

 
An Iron Man and a monkey are riding bikes
on the snowy ground under cherry blossoms

Thor in sunglasses, punching red boxing
gloves in starry night sky

Animal Instances Part level

Figure 6: Qualitative comparisons. We refer the reader to our project page for detailed assessment.

4.2 RESULTS

We evaluate ST-Modulator on videos covering class-level, instance-level, and part-level edits. Our
method demonstrates versatility in handling animals, such as transforming a “wolf” into a “pig”
(Fig. 5, top left). For instance-level editing, we can modify vehicles separately (e.g., transforming
an “SUV” into a “firetruck” and a “van” into a “school bus”) in Fig. 5, top right. ST-Modulator
excels at editing multiple instances in complex, occluded scenes, like “Spider-Man and Wonder
Woman playing badminton” (Fig. 5, middle left). Previous methods often struggle with such non-
rigid motion. In addition, our method is capable of multi-region editing, where both foreground and
background are edited, as shown in the soap-box scene, where the background changes to “a mossy
stone bridge over a lake in the forest” (Fig. 5, middle right). Thanks to precise attention weight
distribution, we can swap identities seamlessly, such as in the jogging scene, where “Iron Man”
and “Spider-Man” swap identities (Fig. 5, bottom left). For part-level edits, ST-Modulator excels in
adjusting a character to wear a Superman suit while keeping sunglasses intact (Fig. 5, bottom right).
Overall, for multi-grained editing, our ST-Modulator demonstrates outstanding performance.

4.3 QUALITATIVE AND QUANTITATIVE COMPARISONS

Qualitative Comparison. Figure 6 shows a comparison between ST-Modulator and baseline meth-
ods, including T2I-based and T2V-based approaches, for instance-level and part-level editing. For
fairness, all T2I-based methods use ControlNet conditioning. (1) Animal instances: In the left col-
umn, T2I-based methods like FateZero, ControlVideo, and TokenFlow edit both cats into pandas due
to same-class feature coupling in diffusion models, failing to perform separate edits. DMT, even with
video generation priors, still blends the panda and toy poodle features. In contrast, ST-Modulator
successfully edits one into a panda and the other into a toy poodle. (2) Human instances: In the
middle column, baselines struggle with same-class feature coupling, partially editing both men into

8
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Automatic Metric Human Evaluation
Method CLIP-F ↑ CLIP-T ↑ Warp-Err ↓ Q-edit ↑ Edit-Acc ↑ Temp-Con ↑ Overall ↑
FateZero 95.75 33.78 3.08 10.96 59.8 78.6 59.6

ControlVideo 97.71 34.41 4.73 7.27 53.2 50.0 43.6
TokenFlow 96.48 34.59 2.82 12.28 45.4 50.4 39.8

Ground-A-Video 95.17 35.09 4.43 7.92 69.0 72.0 63.2
DMT 96.34 34.09 2.05 16.63 58.7 79.4 64.5

ST-Modulator(ours) 98.63 36.56 1.42 25.75 88.4 85.0 83.0
Table 1: Quantitative comparison of automatic metrics and human evaluation. The best results are bolded.

Iron Man. DMT and Ground-A-Video also fail to follow user intent, incorrectly editing the left and
right instances. ST-Modulator, however, correctly transforms the right man into a monkey, break-
ing the human-class limitation. (3) Part-level editing: In the third column, ST-Modulator manages
part-level edits, such as sunglasses and boxing gloves. ControlVideo edits the gloves but struggles
with sunglasses and motion consistency. TokenFlow and DMT edit the sunglasses but fail to modify
the gloves or background. In comparison, ST-Modulator achieves both instance-level and part-level
edits, significantly outperforming previous methods.

Quantitative Comparison. We compare the performance of different methods using both automatic
metrics and human evaluation. CLIP-T calculates the average cosine similarity between the input
prompt and all video frames, while CLIP-F measures the average cosine similarity between consec-
utive frames. Additionally, Warp-Err captures pixel-level differences by warping the edited video
frames according to the optical flow of the source video, extracted using RAFT-Large (Teed & Deng,
2020). To provide a more comprehensive measure of video editing quality, we follow (Cong et al.,
2023) and use Q-edit, defined as CLIP-T/Warp-Err. For clarity, we scale all automatic metrics by
100. In terms of human evaluation, we assess three key aspects: Edit-Accuracy (whether each local
edit is accurately applied), Temporal Consistency (evaluated by participants for coherence between
video frames), and Overall Edit Quality. We invited 20 participants to rate 76 video-text pairs on a
scale of 20 to 100 across these three criteria, following (Jeong & Ye, 2023). As demonstrated in Ta-
ble 1, ST-Modulator consistently outperforms both T2I- and T2V-based methods. This is primarily
due to ST-Layout Attn’s precise text-to-region control and maintaining feature separation between
regions. As a result, our method achieves significantly higher CLIP-T and Edit-Accuracy scores
compared to other baselines. The improved Warp-Err and Temporal Consistency metrics further
indicate that ST-Modulator delivers temporally coherent video edits.

Efficiency Comparison. To evaluate efficiency, we compared baselines with ST-Modulator on a
single A6000 GPU for editing 16 video frames. The metrics include editing time (time taken to per-
form one edit) and both GPU and CPU memory usage. From Tab. 2, it is clear our method achieves
the fastest editing time with the lowest memory usage, indicating its computational efficiency.

Time(min) ↓ Memory (GB) ↓ RAM (GB) ↓
FateZero 8.68 27.35 144.22
ControlVideo 4.41 16.15 7.03
TokenFlow 4.56 17.84 5.35
Ground-A-Video 5.81 17.31 9.96
DMT 5.79 27.88 8.12
ST-Modulator 3.83 15.94 4.42

Table 2: Efficiency comparison.

❌ W/O ST-Layout Attn Attn Weight Before  ✅ ST-Layout AttnAttn Weight After

Figure 7: Attention weight distribution.

4.4 ABLATION STUDY

To assess the contributions of different components in our proposed ST-Layout Attn, we first evalu-
ate whether our attention can achieve attention weight distribution, then decouple the self-attention
modulation and cross-attention modulation to evaluate their individual effectiveness.

Attention Weight Distribution. We evaluate the impact of ST-Layout Attn on attention weight
distribution. As shown in Fig. 7, the target prompt is “An Iron Man is playing tennis on a snow
court.” We visualize the cross-attention map for “man” to assess weight distribution. Without ST-
Layout Attn, feature mixing occurs, with “snow” weight spilling onto “Iron Man.” With ST-Layout
Attn, the man’s weight is correctly distributed. This is because we enhance positive pair scores and
suppress negative pairs in both cross- and self-attention. This enables precise, separate edits for
“Iron Man” and “snow.” Additional visualizations are in the Appendix.
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Source video (—) Cross-Attention Modulation
(—)  Self-Attention Modulation

left man → Iron Man, right man → Spider man,  ground, trees  →  frosty yellow leaves

(+) Cross-Attention Modulation
(+) Self-Attention Modulation

(+) Cross-Attention Modulation
(—) Self-Attention Modulation

Figure 8: Ablation of cross- and self-modulation in ST-Layout Attn.

Method CLIP-F ↑ CLIP-T ↑ Warp-Err ↓ Qedit ↑
Baseline 95.21 33.59 3.86 8.70

Baseline + Cross Modulation 96.28 36.09 2.53 14.26
Baseline + Cross Modulation + Self Modulation 98.63 36.56 1.42 25.75

Table 3: Quantitative ablation of cross- and self-modulation in ST-Layout Attn.

Cross-Attention Modulation. In Fig. 8 and Tab. 3, we illustrate video editing results under different
set up: (1) Baseline (2) Baseline + Cross-Attn Modulation (3) Baseline + Cross-Attn Modulation +
Self-Attn Modulation. As shown in Fig. 8 top right, direct editing fails to discriminate between the
left and right instances, leading to incorrect (left) or no edits(right). However, when equipped with
cross-attention modulation, we achieve accurate text-to-region control, thereby editing left man to
“Iron Man” and right man to “Spiderman” separately. The quantitative results in Tab. 3 indicate that
with cross-attention modulation (second row), CLIP-T increases by 7.4%, and Q-edit increases by
63.9%. This demonstrates the effectiveness of our cross-attention modulation.

Self-Attention Modulation. However, modulating only cross-attention still leads to structure dis-
tortions, such as the spider web appearing on the left man. This is caused by the coupling of same
class-level features (e.g., human). When using our self-attention modulation, the feature mixing is
significantly reduced, and the left man retains unique object features. This is achieved by decreas-
ing the negative pair scores between different instances, while increasing positive scores within the
same instance. As a result, more part-level details, such as the distinctive blue sides, are generated
in the optimized areas. The quantitative decrease in Warp-Err by 43.9% and increase in Q-edit by
80.6% in Tab. 3 further prove the effectiveness of self-attention modulation.

5 CONCLUSION

In this paper, we aim to solve the problem of multi-grained video editing, which includes both
class-level, instance-level and part-level video editing. To the best of our knowledge, this is the first
attempt at this task. In this task, we find that the key problem is that the diffusion model views
different instances as same-class features and direct global editing will mix different local regions.
To wrestle with these problems, we propose ST-Modulator to modulate spatial-temporal cross- and
self-attention for text-to-region control while keeping feature separation between regions. In cross-
attention, we enhance each local prompt’s focus on its corresponding spatial-disentangled region
while suppressing attention to irrelevant areas, thereby enabling text-to-region control. In self-
attention, we increase intra-region awareness and reduce inter-region interactions to keep feature
separation between regions. Extensive experiments demonstrate that our ST-Modulator surpasses
previous video editing methods on both class-level, instance-level, and part-level video editing.
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6 ETHICS STATEMENT

This project aims to solve multi-grained video editing. However, the potential misuse of this tech-
nology, such as the creation of deceptive videos by altering identities, poses a risk. Strategies like
incorporating invisible watermarking could be explored to ensure videos are not used maliciously.
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A APPENDIX

A.1 LIMITATIONS.

First, although our method can achieve multi-grained editing of video, the generation quality is still
limited by the base model since we are a training-free method. In scenarios where the generation
prior to SD is not ideal, artifacts may occur in the editing results. Second, since our method is based
on a T2I model, it struggles with large shape deformations and significant appearance changes. This
limitation is inherent in zero-shot methods. A potential future direction is to incorporate motion
priors from T2V generation models (Chen et al., 2024; Wang et al., 2023a) to handle such challenges.

A.2 MORE GENERAL OBJECTS AND SHAPE EDITING

Source Video

  Edit prompt:  A husky and a corgi and a zebra in autumn view lawn

  Edit prompt:  A teddy bear and a tiger are on the grass 

Source Video

  Edit prompt: A red porsche car driving before the autumn view lawn

Source Video

  Edit prompt: A red porsche car driving in the autumn view lawn forest

Source Video

Figure 9: More general objects instance editing (animals) and shape editing (cars) results.
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A.3 MORE VISUALIZATION
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Figure 10: More frames ablation of ST-Layout Attn’s effects on attention weight distribution.

A.4 LATENT BLEND

To preserve areas not intended for editing (i.e., τ3 in ∆τ = {τ1→τ1′ , τ2→τ2′ , τ3→τ3, · · · }), we
employ Latent Blend (Avrahami et al., 2022; 2023), which leverages masks to direct the model
focus on areas requiring editing while keeping the background region identical to the source video.

For each frame i in the video, we first merge each attribute mask to form the global foreground mask
Mi by applying the logical OR operation across all layouts masks mi,k = [mi,1,mi,2, · · · ,mi,k] :

Mi = mi,1 ∨mi,2 ∨ · · · ∨mi,k. (6)

We aggregate the masks Mi from all frames to obtain a combined mask M , and then blend the latent
states zt at each timestep t during the denoising process as follows:

zt = (1−M) · z̃t +M · zt, (7)

where z̃t indicates the latent feature in the DDIM inversion process and zt is corresponding latent
feature during the DDIM denoising process.

The key behind employing Latent Blend for preserving the background is that, given a desired area
mask, the less noisy foreground latent can be guided by the target text prompt ∆τ . Meanwhile, the
latent features outside the mask (the background) can be preserved. This blending ensures that, even
if the latent feature within the edit area is modified, the background features stay consistent.
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A.5 EXPERIMENTAL DETAILS

For FateZero3 (Qi et al., 2023), we employ prompt-to-prompt(Hertz et al., 2022) replace editing. To
enhance the identity binding of the edited object, we set the self/cross replacement steps at 0.3 and
the blending threshold at 0.7. In TokenFlow4 (Geyer et al., 2023), we utilize SD editing and default
to 4 keyframes for 16-frame videos. For other comparative methods like ControlVideo5 (Zhang
et al., 2023b) and GroundVideo6 (Jeong & Ye, 2023) and DMT7 (Yatim et al., 2024), we adhere to
their default hyperparameter settings. To ensure fairness across all T2I-based methods compared,
we re-implement ControlNet (Zhang et al., 2023a) on their codebases.

3
https://github.com/ChenyangQiQi/FateZero

4
https://github.com/omerbt/TokenFlow

5
https://github.com/YBYBZhang/ControlVideo

6
https://github.com/Ground-A-Video/Ground-A-Video

7
https://github.com/diffusion-motion-transfer/diffusion-motion-transfer
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