Under review as a conference paper at ICLR 2026

CAN GRAPH QUANTIZATION TOKENZIER CAPTURE
TRANSFERABLE PARTTERNS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph tokenization aims to convert graph-structured data into discrete represen-
tations that can be used in foundation models. Recent methods propose to use
vector quantization to map nodes or subgraphs into discrete token IDs. However,
it remains unclear whether these quantized tokenizers truly capture high-level,
transferable graph patterns across diverse domains. In this work, we conduct
a comprehensive empirical study to analyze the representational consistency of
quantized graph tokens across different datasets. We introduce the Token Informa-
tion Discrepancy Score (TIDS) to quantify the alignment of structural and feature
information between source and target graphs for each token. Our results reveal
that current graph quantized tokenizers often assign the same token to structurally
inconsistent patterns across graphs, resulting in high TIDS and degraded transfer
performance. We further demonstrate that TIDS is positively correlated with the
generalization gap in downstream tasks. Finally, we propose a simple yet effective
structural hard encoding (SHE) strategy to enhance the structural awareness of the
tokenizer. SHE leads to lower TIDS and improved transferability, highlighting the
importance of explicitly encoding transferable graph structure in token design.

1 INTRODUCTION

In recent years, graph deep learning has emerged as a powerful toolkit for modeling data with inherent
relational structures (Ma & Tang, 2021; Xia et al., 2021a; Wu et al., 2020). Unlike traditional data
formats such as sequences (e.g., text) or grids (e.g., images), many real-world datasets, ranging from
citation networks to molecules (Xia et al., 2023; Jumper et al., 2021) , can be naturally represented
as graphs (Xia et al., 2021b). To effectively process graph-structured data, a variety of graph neural
networks (GNNs) have been proposed, including Graph Convolutional Networks (Yao et al., 2019),
Graph Attention Networks (Velickovic et al., 2018), and Graph Transformers (Yun et al., 2019;
Rampasek et al., 2022; Chen et al., 2022). These graph learning methods can model non-Euclidean
data well and enable learning representations for nodes, edges, and entire graphs. However, despite
the impressive success of GNNs in many tasks, they usually can be trained and applied to a single
dataset. The efforts of the generalizing deep graph learning models to multiple datasets have only
made limited progress due to the diversity and complexity of the graph data (Mao et al., 2024).

On the other hand, the success of foundation models (Brown et al., 2020; Achiam et al., 2023;
Team et al., 2023) in natural language processing (NLP) and computer vision (CV) has motivated
researchers to explore analogous approaches for graphs (Mao et al., 2024). One of the important
attempts is graph tokenization (Yang et al., 2023; Chen et al., 2024a), a method inspired by text and
image tokenization, where raw graph inputs are transformed into a sequence or set of tokens” that
can be processed by powerful sequence models like transformers. Just as words or subwords serve as
basic units in language modeling, graph tokens aim to represent meaningful atomic or composite
units of graph data.

However, unlike the tokens can be naturally defined in langugae, the are no obvious basic unit in
the graph data. Hence, following the successful examples in CV (van den Oord et al., 2017; Lee
et al., 2022b; Tian et al., 2024), researchers recently proposed the quantization graph tokenizer (Wang
et al., 2024b; Luo et al., 2024) to learn the token representations. Specifically, the graph quantization
tokenization will learn to convert a graph or subgraph into a set of vectorized representations (tokens)
that encapsulate both the structural and feature information present in the original graph. Once the

Under review as a conference paper at ICLR 2026

tokenizer is trained, they can be applied to more datasets and generate graph tokens. Currently, the
quantized graph tokenizer has achieved certain success in both supervised and unsupervised learning
senarios and on different downstream tasks such as node classification, link prediction, or graph
classification (Luo et al., 2024; Liu et al., 2023b; Wang et al., 2024a;b).

However, a fundamental question arises: Do current graph tokenization methods actually capture the
high-level, transferrable patterns inherent in graph data? In other words, do the quantized tokens
encode the vital graph structural information, instead of assigning the tokens heavily based on the
raw node features?

This question is related to the fundamental capabilities of graph quantized tokenizers. Many down-
stream tasks in graph learning rely heavily on recognizing high-level structural patterns, such as
degree distribution, homophily, and centrality. For example, in drug discovery, subtle topological
variations in molecular graphs—captured by molecular topology and centrality descriptors—can
directly influence biological activity and binding affinity (Zhang et al., 2025; Csermely et al., 2012).
In social networks, tasks like community detection or influence modeling also depend critically on
network connectivity and central nodes (Barabasi & Oltvai, 2004; McPherson et al., 2001). When
quantization tokenization fails to preserve these essential graph properties, the resulting graph tokens
may omit meaningful structural patterns, impairing downstream task performance.

In this study, we present the first comprehensive empirical investigation into the knowledge encoded
by graph quantized tokenizers. Specifically, we measure the discrepancy in both structural and feature
information of nodes that are mapped to the same token across different datasets. Our analysis
reveals that identical tokens often correspond to markedly different structural distributions in different
graphs, indicating that current graph quantized tokenizers fail to capture high-level, transferable
patterns. This deficiency undermines both the stability and cross-domain generalization ability of
such tokenizers. The contributions of this work are as follows:

* We have analyzed both the structural and feature information encoded by the graph tokenizer.
We find that there are significant information distribution discrepancies for the same token
across different graphs.

* We show that the information discrepency of the tokens will hinder the model’s transferra-
bility, resulting in sub-optimal performance on the downstream tasks.

* Based on the findings above, we propose a trick to explicitly help the graph quantization
tokenizer to encode the structural information. We show that the trick could mitigate the
information discrepancy of tokens on different graphs, further affirming the value of our
observations.

2 RELATED WORKS

Graph tokenization sits at the intersection of representation learning, graph neural networks (GNNs),
and transformer-based models, drawing inspiration from tokenization practices in natural language
processing and computer vision. Several strands of related research contribute to the development of
tokenization methods for graph data.

Quantization and Discrete Representation Learning. Quantized latent representation learning
has emerged as a powerful strategy to bridge the gap between continuous data and discrete sym-
bolic reasoning. Among the most influential approaches, Vector Quantized Variational Autoencoder
(VQ-VAE) (van den Oord et al., 2017; Esser et al., 2021) introduced a discrete bottleneck into
the autoencoding framework, enabling learning of a codebook of latent embeddings that can com-
pactly represent high-dimensional inputs. VQ-VAE has seen broad success in areas such as image
generation, speech modeling, and language modeling, where discrete tokens enable autoregressive
decoding and large-scale pretraining. Its extension, Residual Quantized VAE (RQ-VAE) (Lee et al.,
2022a) addresses the limited capacity of shallow codebooks by employing multi-level quantization,
decomposing inputs into multiple additive residuals. This yields richer token representations and
better compression, making it particularly suitable for complex modalities.

Quantized Representations in Graph Learning. Despite the success of VQ-VAE in vision and
language domains, its adaptation to graph-structured data remains relatively underexplored. Unlike
pixels or words, graphs are non-Euclidean and permutation-invariant, posing significant challenges

Under review as a conference paper at ICLR 2026

Input v ~ RVQ
g K
NN . Pretrain |
1 1
Encoder [TT] Decoder —! Loss :
» 5
[| Valoss |
N /

Figure 1: The pipeline of graph quantized tokenizer.

for tokenization. Several recent efforts have sought to bridge this gap. GraphMAE (Hou et al., 2022)
and GPT-GNN (Hu et al., 2020) introduced self-supervised frameworks for node- and graph-level
representation learning, but they rely on continuous encodings. A more direct attempt at tokenization
can be found in GVT (You et al., 2023), which integrates VQ-VAE to learn discrete node prototypes
and supports masked autoencoding on graphs. However, such methods typically apply quantization
at the node level, ignoring higher-order structures or global subgraph semantics.

Graph Pretraining with Structural Discreteness. Recent works such as OneForAll (Liu et al.,
2023a) and GFT (Graph Foundation Model with Transferable Tree Vocabulary) (Wang et al., 2024b)
argue for discrete graph vocabulary learning to enable large-scale generalization across domains.
OneForAll explores cross-domain pretraining with task-level tokenization, while GFT builds hierar-
chical tree vocabularies based on rooted subtrees, which are then quantized for structural reuse. Other
notable approaches include AnyGraph (Xia & Huang, 2024), which aims to unify different graph
modalities with plug-and-play architecture, and GraphPrompt (Jin et al., 2022), which leverages
discrete prompts to guide downstream adaptation.

3 METHODOLOGY

In this section, we will introduce the graph quantized tokenizer to be investigated. We will first intro-
duce the key components, namely Vector Quantization (VQ) and Residual Vector Quantization (RVQ).
Next, we will introduce the whole pipeline as shown in Fig. 1.

3.1 VECTOR QUANTIZATION METHODS

Vector Quantization (VQ) (Gray, 1984; Gong et al., 2014; Esser et al., 2021) aims to represent
a large set of vectors, Z = {zi}f\;l, with a small set of prototype (code) vectors of a codebook
C = {ek}szl, where V > K. The codebook is often created using algorithms such as k-means
clustering via optimizing the following objective:

N

K
. ¢ 2
min Elrkrirf||zi—ek||2.)
i=

Once the codebook is learned, each vector z; can be approximated by its closet prototype vector e;,
where ¢t = arg miny, ||z, — e] \3 is the index of the prototype vector.

Residual Vector Quantization (RVQ) (Juang & Gray, 1982; Martinez et al., 2014; Lee et al., 2022a)
is an extension of the basic VQ. After performing an initial VQ, the residual vector is calculated:

Ty = Zi — €y, (2)
which represents the quantization error from the initial quantization. Then, the residual vectors r; are

quantized using a second codebook. This process can be repeated multiple times, with each stage
quantizing the residual error from the previous stage.

Under review as a conference paper at ICLR 2026

3.2 GRAPH QUANTIZED TOKENIZER

The graph quantized tokenizer intends to assign a token ID to the given node based on its own feature
and neighboring nodes. To generate structure-aware node IDs, we employ an L-layer MPNN to
capture multi-order neighborhood structures. At each layer, we use vector quantization to encode the
node embeddings produced by the MPNN into M codewords (integer indices). For each node v, we
define the node ID of v as a tuple composed of L. x M codewords, structured as follows:

Node_ID(v) = (c11,- -+ ,C1ar, €21, 5 Cangy) &)
where ¢;,,, represents the m-th codeword at the I-th layer. Both M and L can be very small.

As illustrated in Fig. 1, at each layer ! (1 <! < L) of the MPNN, we employ VQ/RVQ to quantize
the node embeddings and produce M digits of codewords for each node v. Each codeword c;,,
(1 < m < M) is generated by a distinct codebook C,,, = {eim},f:l, where K is the size of the
codebook. Hence, there are a total of L x M codebooks, indexed by Im. Let 7, denote the vector
to be quantized. Note that r;; is the node embedding hf, produced by the MPNN. When m > 1,
1 represents the residual vector. Then, 7, is approximated by its nearest code vector from the
corresponding codebook C';,:

Cim = arg Inkin ||Tlm - egmev “

producing the codeword c;,,,, which is the index of the nearest code vector.

We follow the existing framework for learning node token IDs (codewords c;,,,) by jointly training
the MPNN and the codebooks with the following loss function:

Lol = Lg + Lvq, (5)

where Lg is a (self)-supervised graph learning objective, and Ly is a vector quantization loss. Lg
aims to train the MPNN to produce effective node embeddings, while Lyq ensures the codebook
vectors align well with the node embeddings. For a single node v, Ly is defined as

L M

Lvo =3 llse(rim) — €

=1 m=1

+ Bllrim — sglel™)|, (6)

where sg denotes the stop gradient operation, and /3 is a weight parameter. The first term in Eq. (6) is
the codebook loss, which only affects the codebook and brings the selected code vector close to the
node embedding. The second term is the commitment loss, which only influences the node embedding
and ensures the proximity of the node embedding to the selected code vector. In practice, we can use
exponential moving averages (Razavi et al., 2019) as a substitute for the codebook loss.

The graph learning objective L¢ can be a self-supervised learning task, such as graph reconstruction
(i.e., reconstructing the node features or graph structures) or contrastive learning (Liu et al., 2021).
In this paper, we follow most of the existing works that utilize GraphMAE (Hou et al., 2022).
GraphMAE involves sampling a subset of nodes Vo, masking the node features as X, encoding
the masked node features using an MPNN, and subsequently reconstructing the masked features with

a decoder. The reconstruction loss is based on the scaled cosine error, expressed as:

1 xTz
Lmag = —= <1M"Y)a
V| 2 [N

veY

= L. .
where V is the set of masked nodes, z, = fp(h,,) is the reconstructed node features by a decoder fp,

izf = MPNN(v, A, X), and v > 1 is a scaling factor. Let 71 := ﬁi denote the node embedding
generated by the [-th layer of the MPNN with the masked features. The overall training loss is

L M
Liota = LMAE + Z Z Z [sg(Pim) — €cp,, | + BllTim — sglec,,,)- N

vef) =1 m=1

Under review as a conference paper at ICLR 2026

4 PRELIMILARY

4.1 EXPERIMENT SETUPS

Here we first introduce our experiment setups, i.e., how we train and evaluate the graph quantized
tokenizer. In order to obtain the comprehensive results, we train and evaluate both VQ and RVQ
methods. For all the models, we set the number of MPNN layers to be 2, and the number of codewords
to be 3. We train the tokenizer on the datasets from two domains: citation graphs and e-commerce
networks. The citation graphs include: cora, citesser, dblp, arxiv and pubMed. The e-commerce
graphs include: bookhis, bookchild, elecomp, elephoto and sportsfit. The detailed information of the
datasets can be found in Appendix A. For each domain, we pretrain the tokenzier on 1 to 4 datasets
and then use infer on the remaining datasets in the domain. On both training and test datasets, we
will record the subgraphs that assigned to each token ID. For instance, for a node token ID ¢, we
will record the subgraphs in training set assigned to it as a Sy, trqin, and we will record the the
subgraphs in test set assigned to it as a Sy,n, test Then we would calculate the information discrepancy
between Syyp train ANd Spyp test for each token.

4.2 EVALUATION METRIC

Here we will introduce the metric we design to measure the information discrepancy of tokens.
Specifically, we design a metric named Graph Token Information Discrepency Score (GTID) to
calculate the discrepancy between Syn. train aNd Syun test. Suppose the representations of Sy, train
and Sy tes A€ fon train aNd fop test. Following the previous works (Yan et al., 2017; Wang
et al., 2021), we use Maximum Mean Discrepancy (MMD) to calculate the discrepancy between
fmn,train and fop test. Specifically, we tend to compare the MMD computed on node features
and structures. Therefore, we adapt Normalized Maximum Mean Discrepancy (NMMD) in this
work. First we normalize the vectors in fy,s, trqin and fin test and denote fmn,tmm = {p;}}_; and

fmn,test = {q;}}“;: Then we first calculate the MMD of the two vector sets:

2 1 LY 1 & 2 gy
MMDQZU—QZZk(pi,pl w—z::z::lk(qgaqw)—@ZZk(pi’qﬂ‘)' ®

i=14i'=1 i=1j=1

where k(-, -) is an RKHS kernel. And next we calculate the variance-normalized MMD:

2

2 MMD L1 ¢
NMMD =7 V:EZ Pi: di) Z CUCHE ©)

i=1 j=1

S\H

Finally, the GTID between the train and test domains is calculated with average of the normalized
maximum mean discrepancy on all the codewords:

Zm Zn NMMD(fmn,train7 fmn,test)
mn

GTID =

(10)

The more information of calculation of Maximum Mean Discrepancy and Normalized Maximum
Mean Discrepancy can be found in the Appendix. In general, the larger GTID is, the larger information
discrepancy is.

Since the subgraphs contain both structural and feature information, we will calculate the GTID
for node features and structures respectively. For node features, we adapt the set of center node
features as fin train aNd fyn test. For the structures, we calculate the structure property vectors
[degree, clustering coefficient, closeness centrality, density, assortativity, transitivity, homophily]
as the representations. We give the details of calculating the structural properties in Appendix C.
Next, we will analyze the GTID and their relations to the model generalization. We observed similar
phenomena for both RVQ and VQ tokenizers. Hence, we mainly discuss the results based on RVQ
tokenizer and leave the results of VQ tokenizer to Appendix E.

Under review as a conference paper at ICLR 2026

4.3 THEORETICAL ANALYSIS

Before diving into the empirical observations, we first derive theorectical analysis to prove the
relationship between the token information discrepancy and the model transferability. We tend to
prove that low information discrepancy in tokens can lead to higher transferability and do this for
both node features and ego-graph structures. We will first give the theorems and provide the full
proof in Appendix D.

Theorem 1 (Code-Conditional Transfer Bound: Feature View). Let Dy, D, be source/target node
datasets (from graphs G, G). Each node v has an L-hop ego-subgraph g(v) with feature tensor.
A fixed encoder ¢ : G — R™ maps g to z = ¢(g). A codebook Q with codes {ci,...,cx} assigns

K(g) = Q(z) € |K] by nearest center. A predictor h consumes a feature summary u(g) € R? (e.g.,
pooled/root features), and the loss £ : Y x Y — [0, 1] is bounded.

Notation. Let 7o (k) = Pr(y,p.[K(9) = k] for a € {s,t}, and let PX be the conditional
law of (g,x,y) given K(g) = k. Define risks eo(hoQo¢) = Ep_[L(h(Q(¢(g))),y)]- Let the
code-marginal drift be Acoge = 3 Z,Ile |7 (k) — ms(k)|. Define the quantization distortion A :=
sup g) [L(M(Q(¢(9))),y)—L(h(¢(g)), y)|, and let pris := Pr[K (g) is a misassignment] (e.g., stale
codebook/ANN search).

Assumptions. (i) There exists a (possibly identity) preprocessing S : RY — R? such that u —
C(h(u),y) is Ly-Lipschitz uniformly in y. (ii) For each code k, define the within-code feature
discrepancy

AR = W(Ly(S(u) | K = k), L(S(u) | K =k)),
the 1-Wasserstein distance between the conditional feature summaries.

Claim. For any ¢ € (0, 1), with probability at least 1 — § over the draws of the (finite) datasets and
the code-conditional estimates,

log(2K/9)

miny n¢ (k) + (P, + %)

K
€ —€&s < Zﬂ't(k) L, Affat + Acode + Aq + Pmis + C1
k=1

Here ny(k) is the number of target samples with K = k, R, denotes the Rademacher complexity of
the induced loss class on domain o, and constants c1, ¢y depend only on sub-Gaussian/boundedness
parameters of S(u) and on standard symmetrization constants.

Theorem 2 (Code-Conditional Transfer Bound: Structure View). Same as Theorem 1, except the
predictor h depends on a structural representation 1(g) that lies in an RKHS (H, (-, -)3) with kernel
k(-,-) and ||(g) |3 < B. Risks, 7o (), PE, Acoder Aq, and puis are as defined there.

Assumptions. (i) For each code k, the conditional loss as a function of 1¥(g) belongs to a bounded
RKHS ball: there exists fi, € H with || fr||ln < C such that E[l(h(¢p(9)),y) | 9. K = k] =
(&, ¥(g))3- (ii) For each code k, define the within-code structural discrepancy

ATt = MMDyy(Ly(0 | K = k), Loy | K =k)).

Claim. For any 0 € (0, 1), with probability at least 1 — 0,

al [log(2K/6)
—E&s < k)C Astruct Aco e A mis c T TN C mn mn ’
€ —E&s = ;7&() k + de T Bq + Pmis + C1 ming 1 (k) + C2(Rn, +R,)

where ¢1, o depend only on the kernel bound k(x,x) < B? and standard generalization constants.

5 RESULTS AND OBSERVATIONS

5.1 THE GTID DISTRIBUTIONS

Following the evaluation process above, we can pretrain the tokenizers and evaluate them. Specifically,
we would pretrain the tokenizer with different combinations of datasets: from single dataset to four

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
37
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 pretrain dataset 2 pretrain datasets 3 pretrain datasets 4 pretrain datasets

m Feature s Structure

Cor,
o,
"Me,
o
%y,
lege,
-
g,
.,
Qg
Ry
K
oy
% ¢
L
s,
g
@,
oy,

Figure 2: The distributions of GTID of RVQ models on citation datasets.

1 pretrain dataset 2 pretrain datasets 3 pretrain datasets 4 pretrain datasets

m Feature B Structure

b
0kt
°°"r/>//‘,
ee,
om,
o
Sley, -
0
5
Port
K3 ch
/”Lpﬁ
L sp
" cn,
25
Lsp
<
5o

b

Figure 3: The distributions of GTID of RVQ models on e-commerce datasets.

datasets together. Then we will evaluate them on the remaining datasets in the same domain and
calculate the corresponding GTID. The results are shown in Figure 2 and Figure 3 for the Citation
domain and E-commerce domain, respectively.

Across both domains, we observe a consistent and obvious gap between structure-based and feature-
based GTID. While feature discrepancy tends to decrease gradually as the number of pretraining
datasets increases, the structural GTID remains relatively high and fluctuates across settings. This
suggests that even with multi-dataset pretraining, the tokenizer struggles to align structural information
consistently. For instance, in the Citation domain (Figure 2), structural GTID plateaus after the
second pretraining dataset, indicating limited marginal gains in structural transferability. A similar
trend is seen in the E-Commerce domain where feature-based discrepancy steadily decreases but
structural discrepancy remains elevated, particularly in dataset groups that are structurally diverse.

Furthermore, while tokenizers benefit from more diverse feature distributions during pretraining, their
ability to generalize structural semantics is far more constrained. This asymmetry highlights a key
limitation of current quantization-based tokenizers: their reliance on local node features or first-order
neighborhoods makes it difficult to internalize structural motifs that generalize across domains with
heterogeneous graph topology. Hence, we would have the following observation:

Observation 1: The graph quantized tokenizes have difficulty capturing the transferrable
patterns across graphs, especially the structural patterns.

Under review as a conference paper at ICLR 2026

RVQ on Citation Datasets (R?=0.714) RVQ on Citation Datasets (R*=0.690)
5%- 5%

4%- o
3%- -

2%~ -

Performance Gap(PG)
\

‘\
Performance Gap(PG)
\

\

1%- Pl

i i i i i i il 1 0% - i i i i i i i 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
GTID for Feature GTID for Structure

RVQ on Commerse Datasets (R*=0.706) RVQ on Commerse Datasets (R?>=0.661)
5%- 5%
4%- - 4% -
3%- <~ 3%- -

2%~ -=7 2%~ --"

Performance Gap(PG)
\
\
Performance Gap(PG)
\
\

1%- _.-~ 1%- T

0% ~ 0% -
0.0 0.0

01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08
GTID for Feature GTID for Structure

Figure 4: The correlation between GTID and the model performance gap.

5.2 THE CORRELATIONS BETWEEN GTID AND MODEL’S TRANSFERABILITY

Furthermore, we leverage the results above to analyze the relationship between model generalization
and performance gaps. Specifically, we define the performance gap (PG) as a metric to quantify
generalization ability, measured by the accuracy difference between inter-dataset and intra-dataset
pretraining.

For example, consider two datasets, A and B. Let P, denote the node classification accuracy of a
model pretrained on A and fine-tuned on By.;,, and P> denote the accuracy of a model both pretrained

and fine-tuned on Biyin (Birin and By, are the training part and test part of dataset B, respectively).
The performance gap is then computed as:

Pk -P
==
This normalized gap reflects how well the pretrained knowledge transfers across datasets. The results

are shown in Figure 4. The reported coefficient of determination (R?) quantifies the extent to which
GTID explains the transfer performance degradation.

PG

The results are shown in Figure 4. Across all settings, we observe a strong positive correlation between
GTID and performance gap. In the Citation domain, feature-based GTID achieves an R? of 0.714,
while structure-based GTID yields 0.707. A similar trend is observed in the E-Commerce domain,
where the feature and structure correlations yield R? values of 0.709 and 0.692, respectively. These
results suggest that both forms of token discrepancy significantly affect downstream transferability,
with feature discrepancy often exhibiting slightly higher explanatory power, potentially due to its
stronger alignment with task-relevant attributes.

These findings indicate that token consistency across domains is critical for effective transfer learning.
When the same token index encodes semantically or structurally divergent patterns across graphs,
the transfer model struggles to leverage pre-learned representations. This mismatch leads to notable
performance degradation during cross-domain adaptation.

Observation 2: The GTID is positively correlated the performance gap, indicating that the
information discrepancy of the tokens will hinder model’s transferability.

Under review as a conference paper at ICLR 2026

Structure GTID Performance Gaps

RVQ RVQ
rea RVQ + SHE 4 RVQ + SHE

13l

cora citeseer dblp pubmed cora citeseer dblp pubmed
Test Graphs Test Graphs

GTID
Percentage(%)

N\
A\
N\

Figure 5: Comparison with the original RVQ tokenizer after utilizing the structural hard encoding.

5.3 STRUCTURAL HARD ENCODING

To evaluate whether adding structural information to the tokenizer can improve transferability, we
incorporate a simple yet effective inductive bias: Structural Hard Encoding (SHE). SHE explicitly
encodes high-level structural cues (e.g., node degree bins, positional encodings) into the input of
the quantized tokenizer, aiming to reduce the mismatch in structural semantics across graphs. For
instance, nodes with degree 1 or 2 can only be assigned to ID O to 31, nodes with degree 3 can only
assigned to ID 32 to 63, etc. In this way, we force the token ID distinguish with each other as their
corresponding subgraphs will have structural properties’ differece.

As shown in Figures 5, SHE leads to a notable improvement in both structural alignment and
downstream task performance. In Figure 5 Left, we observe that for all test graphs (Cora, Citeseer,
DBLP, Pubmed), the structure-based GTID is consistently lower when using RVQ with SHE compared
to vanilla RVQ. This reduction is especially pronounced on datasets with higher structural variability
(e.g., DBLP and Pubmed), indicating that SHE effectively mitigates token inconsistency arising from
structural heterogeneity.

The benefits of this structural regularization also translate into improved model generalization.
Figure 5 Right shows that the performance gap between source-pretrained and target-finetuned
models is also reduced across the same set of graphs when SHE is applied. This reinforces the
claim that lower GTID correlates with improved transferability, and affirms that enhancing structural
awareness during tokenization is a viable pathway to better cross-graph generalization. Hence, we
would have the following observation:

Observation 3: With structural hard encoding (SHE), the RVQ tokenizer can reduce the
structural GTID and performance gaps, which further affirm our previous observations and
the importance of capturing transferrable for tokens.

6 CONCLUSION

In this paper, we investigate whether graph quantized tokenizers can capture transferable patterns
across graph datasets. Through a detailed empirical analysis, we show that tokenized representations
suffer from significant information discrepancies, particularly in structural properties, across different
domains. We introduce the Token Information Discrepancy Score (TIDS) to quantify this phenomenon
and demonstrate its strong correlation with performance degradation in transfer learning settings.
These findings indicate that current quantized tokenization schemes are limited in their ability to
produce consistent, reusable representations for graph data. To address this, we propose Structural
Hard Encoding (SHE), a simple inductive bias that explicitly incorporates structural signals into the
token assignment process. Our experiments show that SHE significantly reduces structural TIDS and
improves cross-domain performance, validating our core hypothesis. This work provides actionable
insights into the limitations of current graph tokenizers and opens up future research directions on
structure-aware, transferable graph token learning.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We acknowledge that we have read and commit to adhering to the ICLR Code of Ethics. Our study
relies solely on publicly available benchmark datasets Chen et al. (2024b). While our proposed
method presents no direct ethical concerns, the improved performance could be leveraged for both
ethical and unethical applications involving generative recommendation systems. We emphasize
the importance of applying machine learning algorithms responsibly to achieve socially beneficial
results.

REPRODUCIBILITY STATEMENT

Our experiments are based on the public datasets and code (Wang et al., 2024b; Chen et al., 2024b).
To help reproducibility of the results, we provide experiment settings in the main text.

USAGE OF LARGE LANGUAGE MODELS

In this manuscript, we solely utilize LLMs to polish the writing and check grammatical errors. We
have reviewed the generated contents provided by large language models and will be responsible for
the correctness of the polished content.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Albert-Laszl6 Barabasi and Zoltan N. Oltvai. Network biology: understanding the cell’s functional
organization. Nature Reviews Genetics, 2004.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International conference on machine learning, pp. 3469-3489. PMLR,
2022.

Yonggiang Chen, Quanming Yao, Juzheng Zhang, James Cheng, and Yatao Bian. Improving graph-
language alignment with hierarchical graph tokenization. In ICML 2024 Workshop on Foundation
Models in the Wild, 2024a.

Zhikai Chen, Haitao Mao, Jingzhe Liu, Yu Song, Bingheng Li, Wei Jin, Bahare Fatemi, Anton
Tsitsulin, Bryan Perozzi, Hui Liu, et al. Text-space graph foundation models: Comprehensive
benchmarks and new insights. Advances in Neural Information Processing Systems, 37:7464-7492,
2024b.

Peter Csermely, Tamas Korcsmaros, Huba J. M. Kiss, Gabor London, and Ruth Nussinov. Structure
and dynamics of molecular networks: A novel paradigm of drug discovery. a comprehensive review.
arXiv preprint arXiv:1210.0330, 2012.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873-12883, 2021.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Robert Gray. Vector quantization. IEEE Assp Magazine, 1(2):4-29, 1984.

10

Under review as a conference paper at ICLR 2026

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 594-604, 2022.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pp. 1857—
1867, 2020.

Wei Jin, Ke Yang, Xianfeng Tang, Yujia Liu, and Jiliang Tang. Graphprompt: Towards universal
graph pre-training via prompt-based learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Biing-Hwang Juang and A Gray. Multiple stage vector quantization for speech coding. In ICASSP’82.
IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 7, pp. 597-
600. IEEE, 1982.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583-589, 2021.

Doyup Lee, Chiheon Kim, Saechoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 11523-11532, 2022a.

Youngjung Lee, Taesung Kim, Seunghoon Kim, and Heechul Song. Residual vector quantization: A
robust discrete representation learning framework. In European Conference on Computer Vision
(ECCV), 2022b.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. arXiv preprint
arXiv:2310.00149, 2023a.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
supervised learning: Generative or contrastive. IEEE transactions on knowledge and data engi-
neering, 35(1):857-876, 2021.

Zhiyuan Liu, Yaorui Shi, An Zhang, Enzhi Zhang, Kenji Kawaguchi, Xiang Wang, and Tat-Seng
Chua. Rethinking tokenizer and decoder in masked graph modeling for molecules. Advances in
Neural Information Processing Systems, 36:25854-25875, 2023b.

Yuankai Luo, Hongkang Li, Qijiong Liu, Lei Shi, and Xiao-Ming Wu. Node identifiers: Compact,
discrete representations for efficient graph learning. arXiv preprint arXiv:2405.16435, 2024.

Yao Ma and Jiliang Tang. Deep learning on graphs. Cambridge University Press, 2021.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In Forty-first
International Conference on Machine Learning, 2024.

Julieta Martinez, Holger H Hoos, and James J Little. Stacked quantizers for compositional vector
compression. arXiv preprint arXiv:1411.2173, 2014.

Miller McPherson, Lynn Smith-Lovin, and James M. Cook. Birds of a feather: Homophily in social
networks. Annual Review of Sociology, 2001.

Ladislav RampéSek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501-14515, 2022.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019.

11

Under review as a conference paper at ICLR 2026

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing
systems, 37:84839-84865, 2024.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
In Advances in Neural Information Processing Systems (NeurIPS), volume 30, 2017.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Limei Wang, Kaveh Hassani, Si Zhang, Dongqi Fu, Baichuan Yuan, Weilin Cong, Zhigang Hua,
Hao Wu, Ning Yao, and Bo Long. Learning graph quantized tokenizers. arXiv preprint
arXiv:2410.13798, 2024a.

Wei Wang, Haojie Li, Zhengming Ding, Feiping Nie, Junyang Chen, Xiao Dong, and Zhihui Wang.
Rethinking maximum mean discrepancy for visual domain adaptation. IEEE Transactions on
Neural Networks and Learning Systems, 34(1):264-277, 2021.

Zehong Wang, Zheyuan Zhang, Nitesh Chawla, Chuxu Zhang, and Yanfang Ye. Gft: Graph foundation
model with transferable tree vocabulary. Advances in Neural Information Processing Systems, 37:
107403-107443, 2024b.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4-24, 2020.

Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. Graph learning:
A survey. IEEE Transactions on Artificial Intelligence, 2(2):109-127, 2021a.

Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. Graph learning:
A survey. IEEE Transactions on Artificial Intelligence, 2(2):109-127, 2021b.

Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and Stan Z
Li. Mole-bert: Rethinking pre-training graph neural networks for molecules. 2023.

Lianghao Xia and Chao Huang. Anygraph: Graph foundation model in the wild. arXiv preprint
arXiv:2408.10700, 2024.

Hongliang Yan, Yukang Ding, Peihua Li, Qilong Wang, Yong Xu, and Wangmeng Zuo. Mind the
class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2272-2281,
2017.

Ling Yang, Ye Tian, Minkai Xu, Zhongyi Liu, Shenda Hong, Wei Qu, Wentao Zhang, Bin Cui,
Muhan Zhang, and Jure Leskovec. Vqgraph: Graph vector-quantization for bridging gnns and
mlps. arXiv preprint arXiv:2308.02117, 2023.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 7370-7377, 2019.

Jiaxuan You, Rex Ying, and Jure Leskovec. Gvt: Graph discrete vae tokenizer for transferable graph
pretraining. In International Conference on Learning Representations (ICLR), 2023.

Seongjun Yun, Minbyul Jeong, Raechyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Odin Zhang, Haitao Lin, Xujun Zhang, and et al. Graph neural networks in modern ai-aided drug
discovery. arXiv preprint arXiv:2506.06915, 2025.

12

Under review as a conference paper at ICLR 2026

A DATASET DETAILS

Table 1 presents the detailed statistics of datasets we used in our experiments, including the dataset’s
domain and sizes.

Table 1: Dataset statistics.

Dataset \ Domain #Nodes # Edges
Cora Citation 2708 10556
Citeseer Citation 3186 8450
Pubmed Citation 19717 88648
DBLP Citation 14376 431326
Arxiv Citation 169343 2315598

Bookhis E-commerce 41551 503180
Bookchild | E-commerce 76875 2325044
Elecomp | E-commerce 87229 1256548
Elephoto | E-commerce 48362 873782
Sportsfit E-commerce 173055 3020134

B MAXIMUM MEAN DISCREPANCY

Maximum Mean Discrepancy (MMD) is a statistical distance metric used to measure the discrepancy
between two probability distributions P and () over a domain X'. Formally, given a function class F,
the MMD is defined as

MMD[F, P, Q] = sup (Eanp[f(2)] = Eynelf(y)]) -

When F is chosen to be the unit ball in a Reproducing Kernel Hilbert Space (RKHS) H with kernel
function k, the squared MMD can be computed in closed form as

MMD2 (Pa Q) = E$)$I~P[k(l‘7 .’1?/)] + E’yﬁl}’NQ[k(ya y/)]

For empirical distributions based on samples {z;}7, from P and {y;}"_, from (@, an unbiased
estimator of the squared MMD is given by

1 1
MMD?*(P, Q) = ———— Y k(zi,25) + ——— > k(yi,y;
(7Q) m(WLf].)Z (.’L‘ x])+n(n71)z (y y])
i#] i#]

This formulation makes MMD particularly useful for two-sample tests and as a loss function in
machine learning tasks such as domain adaptation and generative modeling. The Normalized
Maximum Mean Discrepancy is calculated as
MMD?(P,Q)

Normalized_ MMD?(P, Q) = 5 5
MMD?(P, P) + MMD?*(Q, Q)

C THE DEFINATIONS OF THE STRUCTURAL PROPERTIES

Degree (node & average)

ki = iAij, o=
j=1

SRS

" 2m
;k = —.

Local clustering coefficient & global averages:
2t;
— ki 22,
C; = { ki(ki—1) where t; = Y ApAig A,

0, ki <2, 1<p<g<n

13

Under review as a conference paper at ICLR 2026

Closeness centrality:

J#i

Density:
2m

5C) = oy

Degree assortativity: Let 1 = 52, cp(ku + k).

1
— § kuk, — p?
m

(u,v)EE

1 k2 + k2 -
— § — Y T M
m 2

(u,v)EE

Tdeg =

Transitivity:

T - 22 _ i=1

A n ?

Z ki(ki —1)

where A is the number of triangles and A =, (’“2) is the number of connected triples.

Homophily: Given a discrete node attribute z : V—{1,...,C}, define

1
Hegge = o Z 1[z(u) = z(v)] (edge homophily rate).

(u,v)EE
Let p. = HZEV+1):CH and Hy = 25:1 p%. A normalized (chance-corrected) homophily index is
)28 _ Hedge - HO
norm 1 _ HO .

D PROOF FOR THE THEOREMS

Since the two theorems have similar structures, we will prove them parallely in this section. We will
first introduce some definations and notations and will then move to the proof.

Setting. Let D,, D; be source/target node datasets drawn from graphs G, G, respectively. Each
node v has an L-hop ego-subgraph g(v) with feature tensor; let ¢ : G — R™ be a (fixed) encoder,
and @ a codebook with codes {c1,...,cx}. Write Z = ¢(g) and K (g) = Q(Z) € [K]. A predictor

h maps either (i) a feature summary u(g) € R or (i) a structural embedding 1 (g) € H to a
prediction; the loss ¢ is bounded in [0, 1].

Let 7o (k) = Py y)~p.[K(g9) = k] for v € {s,t}, and P be the law of (g, z, y) conditional on
K(g) = k. Define risks £, (h o Q o ¢) = Ep_L(h(Q(¢(9))),y)-

We also consider the pre-quantization predictor f = h o ¢ and the post-quantization predictor
f = hoQ o ¢. Define the quantization distortion

Aq = sup [£{(h(Q(6(9))), y) — £(h(¢(9)), y)] -

(9,v)

Let M (g) be the event that g is assigned to a code whose center lies outside a radius-7 cell around
¢(g) (misassignment due to finite codebook update); set pmis = P[M (g)].

14

Under review as a conference paper at ICLR 2026

Code-wise discrepancy metrics. For each code k:

(Feature view) Fix a 1-Lipschitz map S : RY — RY (possibly identity) and suppose the composed
map u — ¢(h(u),y) is L,-Lipschitz uniformly in y. Let

AR = Wi(Ly(S(u) | k), Ls(S(u) | k)).

(Structure view) Let (g) € H be a bounded kernel embedding with [[¢(g)||,, < B; assume the
function fy, : H — [0, 1] defined by fy,(¢(g)) = E[¢(h(¥(g)),y) | g] lies in the RKHS ball CBy.
Define

AR = MMDy(Loy | k), Ls(¥ | K)).

Additionally define the code-marginal drift

ACode = TV 7Tta7rs - Z |7Tt)‘

Loss class and calibration. Let 7 = { g — £(h(:),y) } be the induced loss class after u or
v. Assume a margin-calibrated property: there exists a non-decreasing I : [0,1] — [0,1] s.t
|Epf — Eqf| < I'(IPM(P,Q)) for f € F, where IPM = W, in the feature case, and IPM =
MMD4, in the structure case. For Lipschitz/#H-bounded classes we can take I'(r) = L, and
I'(r) = Cr, respectively.

Finite-sample estimation. Suppose we observe n,, i.i.d. nodes from D,,, with n,, (k) landing in

code k. Let Afe"“ (resp. AS“““) be empirical estimators. Assume S(u) is sub-Gaussian with proxy
o? (per coordmate) and the kernel for 1) is bounded by B. Let § € (0, 1).

Theorem. With probability at least 1 — §, simultaneously for the feature and structure views,

Et(- Es Zﬂ-t +Acode + A + Pmis

code-conditional shift
log(2K /)
ming n (k)

e (mns (F) + R, (f)) :

- - function class complexity
conditional estimation

where A, equals A2t in the feature view (with I'(r) = L,r) and equals A$*t in the structure
view (with T'(r) = Cr). Constants ¢y, ¢z depend only on universal sub-Gaussian/kernel bounds.

Remarks. (i) The first three additive terms quantify, respectively, within-code conditional mismatch,
code-marginal mismatch, and quantization distortion; p.,;s captures assignment noise (e.g., stale
codebook). (ii) The last two terms are finite-sample effects: conditional-IPM estimation error and
richness of the induced loss class. (iii) If ¢ is Ly-Lipschitz on (G, d) and @ has cells of diameter 7,
then Aq < LyLpLyT.

Proof. We start from the risk decomposition by code:

er(f) —es(f Zm) (Epsl(h(ck),y) — Eprl(h(ck),y)) +

e

(e (k) — ms (k) Epr£(h(c), y)-

(1D
The second sum is bounded by TV (7, 75) since £ € [0, 1].

Step 1 (replace Q o ¢ by ¢ with distortion). Insert and subtract £(h(¢(g)), y) inside each conditional
expectation. By the definition of A, and the misassignment indicator M (g)

’Epﬁé Ck)7y) -]E]P’Zg(h(d)(g))ay” < Aq +]P[P”‘ [()] q T Pmis-

15

Under review as a conference paper at ICLR 2026

Applying to @ € {s,¢} and summing, we accrue an additive 2(Ay + pmis); absorb constants to keep
a single (A + Pris) term.

Step 2 (conditional IPM bound). Define Fj as the function class {(g,y) —
£(h(+),y) restricted to code k}.

Feature view. Assume u — £(h(u),y) is L,-Lipschitz, uniformly in y. By Kantorovich-Rubinstein
duality,

(e €0(6(9)),9) — Ere b(h(9(9)).)| < Lu Wi (Le(S() | B), Lo(S(w) | B)) = Ly A,

Structure view. Let H be the RKHS with kernel k(-, -) and unit ball By,. Assume the conditional
expectation functional over 1 (g) lies in CBy: £(h(¥(g)),y) = (fr, ¥ (9))4 With || fr|ly; < C. Then
by the MMD IPM property,

[Eag £h(6(9)),9) — Ess £(h(6(9)),)| < CMMDy (£, | B), £,(] B)) = € AP,

Thus, in either view,

Ep ((h(9(9)),) — Ese£(h(6(9)), y)| < T(A%).

Multiply by (k) and sum over k to control the first sum in (11).

Step 3 (finite-sample estimation of conditional IPMs). Let Ek be an empirical estimator based on
n¢(k) and ns(k) samples in code k.

Feature view. Assume S(u) is sub-Gaussian with parameter o and bounded support radius R (w.l.o.g.
by truncation). Then standard Wasserstein concentration (e.g., Bobkov—Gétze type or transportation
inequalities) yields, for each k and any 7 > 0, with probability > 1 — 7,

/ log(1/m)
((k \/ (k) + € min{n,(k),n(k)}"

A union bound over k with n = §/(2K) gives the displayed ¢; term.

W (B, BE) — Wa (B, P

Structure view. For bounded kernels, MMD admits sub-Gaussian concentration; with k(x, z) < B2,

log(1/
‘MMDH MMDH‘ < (3B (\/ mm TV (k) +Cyyf mm{n,g(k)z D)%

Apply a union bound across k.

Step 4 (function class complexity for empirical risk plug-in). If €, (f) is replaced by empirical risks
€,(f) in (11) to obtain data-driven guarantees, standard symmetrization yields

E[sup |Ea(f)_éa(f)‘:| < Ry, (F),
fer

and concentration around the mean (e.g., Bousquet inequality) adds a term O(\/log(1/6)/ns).
Since F is the composition of Lipschitz h, ¢ with ¢ and either u or ¢, R,,(F) inherits Lipschitz
contractions.

Collecting all pieces completes the proof. O

16

Under review as a conference paper at ICLR 2026

:2: E RESULTS ON VQ TOKENIZER
fee In this section, we repeat the experiments in the main text and report the results in Figure 6, 7 and 8.

867 Overall, we get similar observations as on RVQ, further supporting our conclusions.
868

869

870 1 pretrain dataset 2 pretrain datasets 3 pretrain datasets 4 pretrain datasets

871 s Feature WEN Structure

872

873

874 " *”
875 A
876 o
877 oz
878 o1
879 00l
880

se1 i
882 AR
883

884 Figure 6: The distributions of GTID of VQ models on citation datasets.

885
886
887
888 m Feature - Structure
889

890 °
891 o
892 o
893 02
894 02
895 o1
896 ool
897

898

899

900

201 Figure 7: The distributions of GTID of VQ models on e-commerce datasets.
902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Cory
p%’hed
%y,
Ctg, Seq
o
xy,
Loy,
o
o
K
L

Co

1 pretrain dataset 2 pretrain datasets 3 pretrain datasets 4 pretrain datasets

o
7, ch
h'\ﬂh

s
Leny

g
A, So

@, 1
N,

00,

ey, hog
‘o

sﬂo,r

b
0kt
5,
ety
e/eca,hp

17

Under review as a conference paper at ICLR 2026

VQ on Citation Datasets (R?=0.744) VQ on Citation Datasets (R?=0.707)
5%- 5%~

4%- A
3%- 2--
2% v

1%-

Performance Gap(PG)
\
\
Performance Gap(PG)
\

0% - T T T T T T T] 0%+ T T T T T T T]
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

GTID for Feature GTID for Structure

VQ on Commerse Datasets (R?=0.709) VQ on Commerse Datasets (R?=0.692)
5%- 5%-

4%- _s-
3%- -
2%- v

1%~~~

Performance Gap(PG)
\
)
Performance Gap(PG)
\
\

T T T T T] 0%+ T T T T T T T]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

GTID for Feature GTID for Structure

Figure 8: The correlation between GTID and the VQ model performance gap. We observe similar
phenomena as RVQ tokenizers.

18

	Introduction
	Related Works
	Methodology
	Vector Quantization Methods
	Graph Quantized Tokenizer

	Prelimilary
	Experiment Setups
	Evaluation Metric
	Theoretical Analysis

	Results and Observations
	The GTID Distributions
	The Correlations between GTID and Model's transferability
	Structural Hard Encoding

	Conclusion
	Dataset Details
	Maximum Mean Discrepancy
	The Definations of the Structural Properties
	Proof for the Theorems
	Results on VQ Tokenizer

