

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CAN GRAPH QUANTIZATION TOKENIZER CAPTURE TRANSFERABLE PARTTERNS?

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Graph tokenization aims to convert graph-structured data into discrete represen-
012 tations that can be used in foundation models. Recent methods propose to use
013 vector quantization to map nodes or subgraphs into discrete token IDs. However,
014 it remains unclear whether these quantized tokenizers truly capture high-level,
015 transferable graph patterns across diverse domains. In this work, we conduct a com-
016 prehensive empirical study to analyze the representational consistency of quantized
017 graph tokens across different datasets. We introduce the **Graph Token Information**
018 **Discrepancy Score (GTID)** to quantify the alignment of structural and feature
019 information between source and target graphs for each token. Our results reveal
020 that current graph quantized tokenizers often assign the same token to structurally
021 inconsistent patterns across graphs, resulting in high **GTID** and degraded transfer
022 performance. We further demonstrate that **GTID** is positively correlated with the
023 generalization gap in downstream tasks. Finally, we propose a simple yet effective
024 structural hard encoding (SHE) strategy to enhance the structural awareness of the
025 tokenizer. SHE leads to lower **GTID** and improved transferability, highlighting the
026 importance of explicitly encoding transferable graph structure in token design.

1 INTRODUCTION

030 In recent years, graph deep learning has emerged as a powerful toolkit for modeling data with inherent
031 relational structures (Ma & Tang, 2021; Xia et al., 2021a; Wu et al., 2020). Unlike traditional data
032 formats such as sequences (e.g., text) or grids (e.g., images), many real-world datasets, ranging from
033 citation networks to molecules (Xia et al., 2023; Jumper et al., 2021), can be naturally represented
034 as graphs (Xia et al., 2021b). To effectively process graph-structured data, a variety of graph neural
035 networks (GNNs) have been proposed, including Graph Convolutional Networks (Yao et al., 2019),
036 Graph Attention Networks (Veličković et al., 2018), and Graph Transformers (Yun et al., 2019;
037 Rampášek et al., 2022; Chen et al., 2022). These graph learning methods can model non-Euclidean
038 data well and enable learning representations for nodes, edges, and entire graphs. However, despite
039 the impressive success of GNNs in many tasks, they usually can be trained and applied to a single
040 dataset. The efforts of the generalizing deep graph learning models to multiple datasets have only
041 made limited progress due to the diversity and complexity of the graph data (Mao et al., 2024).

042 On the other hand, the success of foundation models (Brown et al., 2020; Achiam et al., 2023;
043 Team et al., 2023) in natural language processing (NLP) and computer vision (CV) has motivated
044 researchers to explore analogous approaches for graphs (Mao et al., 2024). One of the important
045 attempts is graph tokenization (Yang et al., 2023; Chen et al., 2024a), a method inspired by text and
046 image tokenization, where raw graph inputs are transformed into a sequence or set of "tokens" that
047 can be processed by powerful sequence models like transformers. Just as words or subwords serve as
048 basic units in language modeling, graph tokens aim to represent meaningful atomic or composite
049 units of graph data.

050 However, unlike the tokens can be naturally defined in language, there are no obvious basic unit in
051 the graph data. Hence, following the successful examples in CV (van den Oord et al., 2017; Lee
052 et al., 2022b; Tian et al., 2024), researchers recently proposed the quantization graph tokenizer (Wang
053 et al., 2024b; Luo et al., 2024) to learn the token representations. Specifically, the graph quantization
054 tokenization will learn to convert a graph or subgraph into a set of vectorized representations (tokens)
055 that encapsulate both the structural and feature information present in the original graph. Once the

054 tokenizer is trained, they can be applied to more datasets and generate graph tokens. Currently, the
 055 quantized graph tokenizer has achieved certain success in both supervised and unsupervised learning
 056 scenarios and on different downstream tasks such as node classification, link prediction, or graph
 057 classification (Luo et al., 2024; Liu et al., 2023b; Wang et al., 2024a,b).

058 However, a fundamental question arises: *Do current graph tokenization methods actually capture the*
 059 *high-level, transferrable patterns inherent in graph data?* In other words, do the quantized tokens
 060 encode the vital graph structural information, instead of assigning the tokens heavily based on the
 061 *raw node features?*

062 This question is related to the fundamental capabilities of graph quantized tokenizers. Many down-
 063 stream tasks in graph learning rely heavily on recognizing high-level structural patterns, such as
 064 degree distribution, homophily, and centrality. For example, in drug discovery, subtle topological
 065 variations in molecular graphs—captured by molecular topology and centrality descriptors—can
 066 directly influence biological activity and binding affinity (Zhang et al., 2025; Csermely et al., 2012).
 067 In social networks, tasks like community detection or influence modeling also depend critically on
 068 network connectivity and central nodes (Barabási & Oltvai, 2004; McPherson et al., 2001). When
 069 quantization tokenization fails to preserve these essential graph properties, the resulting graph tokens
 070 may omit meaningful structural patterns, impairing downstream task performance.

071 In this study, we present the first comprehensive empirical investigation into the knowledge encoded
 072 by graph quantized tokenizers. Specifically, we measure the discrepancy in both structural and feature
 073 information of nodes that are mapped to the same token across different datasets. Our analysis
 074 reveals that identical tokens often correspond to markedly different structural distributions in different
 075 graphs, indicating that *current graph quantized tokenizers fail to capture high-level, transferable*
 076 *patterns*. This deficiency undermines both the stability and cross-domain generalization ability of
 077 such tokenizers. The contributions of this work are as follows:

- 079 • We have analyzed both the structural and feature information encoded by the graph tokenizer.
 080 We find that there are significant information distribution discrepancies for the same token
 081 across different graphs.
- 082 • We show that the information discrepancy of the tokens will hinder the model’s transferra-
 083 bility, resulting in sub-optimal performance on the downstream tasks.
- 084 • Based on the findings above, we propose a trick to explicitly help the graph quantization
 085 tokenizer to encode the structural information. We show that the trick could mitigate the
 086 information discrepancy of tokens on different graphs, further affirming the value of our
 087 observations.

089 2 RELATED WORKS

090 Graph tokenization sits at the intersection of representation learning, graph neural networks (GNNs),
 091 and transformer-based models, drawing inspiration from tokenization practices in natural language
 092 processing and computer vision. Several strands of related research contribute to the development of
 093 tokenization methods for graph data.

094 **Quantization and Discrete Representation Learning.** Quantized latent representation learning
 095 has emerged as a powerful strategy to bridge the gap between continuous data and discrete sym-
 096 bolic reasoning. Among the most influential approaches, Vector Quantized Variational Autoencoder
 097 (VQ-VAE) (van den Oord et al., 2017; Esser et al., 2021) introduced a discrete bottleneck into
 098 the autoencoding framework, enabling learning of a codebook of latent embeddings that can com-
 099 pactly represent high-dimensional inputs. VQ-VAE has seen broad success in areas such as *image*
 100 *generation, speech modeling, and language modeling*, where discrete tokens enable autoregressive
 101 decoding and large-scale pretraining. Its extension, Residual Quantized VAE (RQ-VAE) (Lee et al.,
 102 2022a) addresses the limited capacity of shallow codebooks by employing *multi-level quantization*,
 103 decomposing inputs into multiple additive residuals. This yields richer token representations and
 104 better compression, making it particularly suitable for complex modalities.

105 **Quantized Representations in Graph Learning.** Despite the success of VQ-VAE in vision and
 106 language domains, its adaptation to *graph-structured data* remains relatively underexplored. Unlike
 107 pixels or words, graphs are *non-Euclidean* and *permutation-invariant*, posing significant challenges

Figure 1: The pipeline of graph quantized tokenizer.

for tokenization. Several recent efforts have sought to bridge this gap. GraphMAE (Hou et al., 2022) and GPT-GNN (Hu et al., 2020) introduced self-supervised frameworks for node- and graph-level representation learning, but they rely on continuous encodings. A more direct attempt at tokenization can be found in GVT (You et al., 2023), which integrates VQ-VAE to learn discrete node prototypes and supports masked autoencoding on graphs. However, such methods typically apply quantization at the node level, ignoring higher-order structures or global subgraph semantics.

Graph Pretraining with Structural Discreteness. Recent works such as OneForAll (Liu et al., 2023a) and GFT (Graph Foundation Model with Transferable Tree Vocabulary) (Wang et al., 2024b) argue for discrete graph vocabulary learning to enable large-scale generalization across domains. OneForAll explores cross-domain pretraining with task-level tokenization, while GFT builds hierarchical tree vocabularies based on rooted subtrees, which are then quantized for structural reuse. Other notable approaches include AnyGraph (Xia & Huang, 2024), which aims to unify different graph modalities with plug-and-play architecture, and GraphPrompt (Jin et al., 2022), which leverages discrete prompts to guide downstream adaptation.

3 METHODOLOGY

In this section, we will introduce the graph quantized tokenizer to be investigated. We will first introduce the key components, namely Vector Quantization (VQ) and Residual Vector Quantization (RVQ). Next, we will introduce the whole pipeline as shown in Fig. 1.

3.1 VECTOR QUANTIZATION METHODS

Vector Quantization (VQ) (Gray, 1984; Gong et al., 2014; Esser et al., 2021) aims to represent a large set of vectors, $\mathbf{Z} = \{\mathbf{z}_i\}_{i=1}^N$, with a small set of prototype (code) vectors of a codebook $\mathbf{C} = \{\mathbf{e}_k\}_{k=1}^K$, where $N \gg K$. The codebook is often created using algorithms such as k -means clustering via optimizing the following objective:

$$\min_{\mathbf{C}} \sum_{i=1}^N \min_{k=1}^K \|\mathbf{z}_i - \mathbf{e}_k\|_2^2. \quad (1)$$

Once the codebook is learned, each vector \mathbf{z}_i can be approximated by its closest prototype vector \mathbf{e}_t , where $t = \arg \min_k \|\mathbf{z}_i - \mathbf{e}_k\|_2^2$ is the index of the prototype vector.

Residual Vector Quantization (RVQ) (Juang & Gray, 1982; Martinez et al., 2014; Lee et al., 2022a) is an extension of the basic VQ. After performing an initial VQ, the *residual vector* is calculated:

$$\mathbf{r}_i = \mathbf{z}_i - \mathbf{e}_t, \quad (2)$$

which represents the quantization error from the initial quantization. Then, the residual vectors \mathbf{r}_i are quantized using a second codebook. This process can be repeated multiple times, with each stage quantizing the residual error from the previous stage.

162 3.2 GRAPH QUANTIZED TOKENIZER
163

164 The graph quantized tokenizer intends to assign a token ID to the given node based on its own feature
165 and neighboring nodes. To generate structure-aware node IDs, we employ an L -layer MPNN to
166 capture multi-order neighborhood structures. At each layer, we use vector quantization to encode the
167 node embeddings produced by the MPNN into M codewords (integer indices). For each node v , we
168 define the node ID of v as a tuple composed of $L \times M$ codewords, structured as follows:

$$169 \text{Node_ID}(v) = (c_{11}, \dots, c_{1M}, c_{21}, \dots, c_{2M}, \dots) \quad (3)$$

171 where c_{lm} represents the m -th codeword at the l -th layer. Both M and L are integers.
172

173 As illustrated in Fig. 1, at each layer l ($1 \leq l \leq L$) of the MPNN, we employ VQ/RVQ to quantize
174 the node embeddings and produce M digits of codewords for each node v . Each codeword c_{lm}
175 ($1 \leq m \leq M$) is generated by a distinct codebook $C_{lm} = \{e_k^{lm}\}_{k=1}^K$, where K is the size of the
176 codebook. Hence, there are a total of $L \times M$ codebooks, indexed by lm . Let r_{lm} denote the vector
177 to be quantized. Note that r_{l1} is the node embedding h_v^l produced by the MPNN. When $m > 1$,
178 r_{lm} represents the residual vector. Then, r_{lm} is approximated by its nearest code vector from the
179 corresponding codebook C_{lm} :

$$180 c_{lm} = \arg \min_k \|r_{lm} - e_k^{lm}\|, \quad (4)$$

182 producing the codeword c_{lm} , which is the index of the nearest code vector.
183

184 We follow the existing framework for learning node token IDs (codewords c_{lm}) by jointly training
185 the MPNN and the codebooks with the following loss function:

$$186 \mathcal{L}_{\text{total}} = \mathcal{L}_{\mathcal{G}} + \mathcal{L}_{\text{VQ}}, \quad (5)$$

188 where $\mathcal{L}_{\mathcal{G}}$ is a (self)-supervised graph learning objective, and \mathcal{L}_{VQ} is a vector quantization loss. $\mathcal{L}_{\mathcal{G}}$
189 aims to train the MPNN to produce effective node embeddings, while \mathcal{L}_{VQ} ensures the codebook
190 vectors align well with the node embeddings. For a single node v , \mathcal{L}_{VQ} is defined as

$$191 \mathcal{L}_{\text{VQ}} = \sum_{l=1}^L \sum_{m=1}^M \|\text{sg}(r_{lm}) - e_{c_{lm}}^{lm}\| + \beta \|r_{lm} - \text{sg}(e_{c_{lm}}^{lm})\|, \quad (6)$$

195 where sg denotes the stop gradient operation, and β is a weight parameter. The first term in Eq. (6) is
196 the *codebook loss*, which only affects the codebook and brings the selected code vector close to the
197 node embedding. The second term is the *commitment loss*, which only influences the node embedding
198 and ensures the proximity of the node embedding to the selected code vector. In practice, we can use
199 exponential moving averages (Razavi et al., 2019) as a substitute for the *codebook loss*.

200 The graph learning objective $\mathcal{L}_{\mathcal{G}}$ can be a self-supervised learning task, such as graph reconstruction
201 (i.e., reconstructing the node features or graph structures) or contrastive learning (Liu et al., 2021).
202 In this paper, we follow most of the existing works that utilize GraphMAE (Hou et al., 2022).
203 GraphMAE involves sampling a subset of nodes $\tilde{\mathcal{V}} \subset \mathcal{V}$, masking the node features as $\tilde{\mathbf{X}}$, encoding
204 the masked node features using an MPNN, and subsequently reconstructing the masked features with
205 a decoder. The reconstruction loss is based on the scaled cosine error, expressed as:

$$206 \mathcal{L}_{\text{MAE}} = \frac{1}{|\tilde{\mathcal{V}}|} \sum_{v \in \tilde{\mathcal{V}}} \left(1 - \frac{\mathbf{x}_v^T \mathbf{z}_v}{\|\mathbf{x}_v\| \cdot \|\mathbf{z}_v\|} \cdot \gamma \right),$$

210 where $\tilde{\mathcal{V}}$ is the set of masked nodes, $\mathbf{z}_v = f_D(\tilde{\mathbf{h}}_v^L)$ is the reconstructed node features by a decoder f_D ,
211 $\tilde{\mathbf{h}}_v^L = \text{MPNN}(v, \mathbf{A}, \tilde{\mathbf{X}})$, and $\gamma \geq 1$ is a scaling factor. Let $\tilde{r}_{l1} := \tilde{\mathbf{h}}_v^l$ denote the node embedding
212 generated by the l -th layer of the MPNN with the masked features. The overall training loss is
213

$$214 \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{MAE}} + \sum_{v \in \tilde{\mathcal{V}}} \sum_{l=1}^L \sum_{m=1}^M \|\text{sg}(\tilde{r}_{lm}) - e_{c_{lm}}^{lm}\| + \beta \|\tilde{r}_{lm} - \text{sg}(e_{c_{lm}}^{lm})\|. \quad (7)$$

216 4 PRELIMINARY
217218 4.1 EXPERIMENT SETUPS
219

220 Here we first introduce our experiment setups, i.e., how we train and evaluate the graph quantized
221 tokenizer. In order to obtain the comprehensive results, we train and evaluate both VQ and RVQ
222 methods. For all the models, we set the number of MPNN layers to be 2, and the number of codewords
223 to be 3. We train the tokenizer on the datasets from two domains: citation graphs and e-commerce
224 networks. The citation graphs include: cora, citess, dblp, arxiv and pubMed. The e-commerce
225 graphs include: bookhis, bookchild, elecomp, elephoto and sportsfit. The detailed information of the
226 datasets can be found in Appendix A. For each domain, we pretrain the tokenizer on 1 to 4 datasets
227 and then use infer on the remaining datasets in the domain. On both training and test datasets, we
228 will record the subgraphs that assigned to each token ID. For instance, for a node token ID c_{mn} , we
229 will record the subgraphs in training set assigned to it as a $\mathcal{S}_{mn,train}$, and we will record the the
230 subgraphs in test set assigned to it as a $\mathcal{S}_{mn,test}$. Then we would calculate the information discrepancy
231 between $\mathcal{S}_{mn,train}$ and $\mathcal{S}_{mn,test}$ for each token.

232 4.2 EVALUATION METRIC
233

234 Here we will introduce the metric we design to measure the information discrepancy of tokens.
235 Specifically, we design a metric named Graph Token Information Discrepancy Score (GTID) to
236 calculate the discrepancy between $\mathcal{S}_{mn,train}$ and $\mathcal{S}_{mn,test}$. Suppose the representations of $\mathcal{S}_{mn,train}$
237 and $\mathcal{S}_{mn,test}$ are $f_{mn,train}$ and $f_{mn,test}$. Following the previous works (Yan et al., 2017; Wang
238 et al., 2021), we use Maximum Mean Discrepancy (MMD) to calculate the discrepancy between
239 $f_{mn,train}$ and $f_{mn,test}$. Specifically, we tend to compare the MMD computed on node features
240 and structures. Therefore, we adapt Normalized Maximum Mean Discrepancy (NMMD) in this
241 work. First we normalize the vectors in $f_{mn,train}$ and $f_{mn,test}$ and denote $\hat{f}_{mn,train} = \{\mathbf{p}_i\}_{i=1}^v$ and
242 $\hat{f}_{mn,test} = \{\mathbf{q}_i\}_{i=1}^w$: Then we first calculate the MMD of the two vector sets:

$$244 \widehat{\text{MMD}}^2 = \frac{1}{v^2} \sum_{i=1}^v \sum_{i'=1}^v k(\mathbf{p}_i, \mathbf{p}_{i'}) + \frac{1}{w^2} \sum_{j=1}^w \sum_{j'=1}^w k(\mathbf{q}_j, \mathbf{q}_{j'}) - \frac{2}{vw} \sum_{i=1}^v \sum_{j=1}^w k(\mathbf{p}_i, \mathbf{q}_j). \quad (8)$$

247 where $k(\cdot, \cdot)$ is an RKHS kernel. And next we calculate the variance-normalized MMD:

$$250 \widehat{\text{NMMD}}^2 = \frac{\widehat{\text{MMD}}^2}{\widehat{V}}, \quad \widehat{V} = \frac{1}{v} \sum_{i=1}^v k(\mathbf{p}_i, \mathbf{q}_i) + \frac{1}{w} \sum_{j=1}^w k(\mathbf{q}_j, \mathbf{q}_j). \quad (9)$$

254 Finally, the GTID between the train and test domains is calculated with average of the normalized
255 maximum mean discrepancy on all the codewords:

$$257 \text{GTID} = \frac{\sum_m \sum_n \text{NMMD}(f_{mn,train}, f_{mn,test})}{mn} \quad (10)$$

260 The more information of calculation of Maximum Mean Discrepancy and Normalized Maximum
261 Mean Discrepancy can be found in the Appendix. In general, the larger GTID is, the larger information
262 discrepancy is.

263 Since the subgraphs contain both structural and feature information, we will calculate the GTID
264 for node features and structures respectively. For node features, we adapt the set of center node
265 features as $f_{mn,train}$ and $f_{mn,test}$. For the structures, we calculate the structure property vectors
266 [degree, clustering coefficient, closeness centrality, density, assortativity, transitivity, homophily]
267 as the representations. We give the details of calculating the structural properties in Appendix C.
268 Next, we will analyze the GTID and their relations to the model generalization. We observed similar
269 phenomena for both RVQ and VQ tokenizers. Hence, we mainly discuss the results based on RVQ
tokenizer and leave the results of VQ tokenizer to Appendix E.

270 4.3 THEORETICAL ANALYSIS
271

272 Before diving into the empirical observations, we first derive theoretical analysis to prove the
273 relationship between the token information discrepancy and the model transferability. We tend to
274 prove that low information discrepancy in tokens can lead to higher transferability and do this for
275 both node features and ego-graph structures. We will first give the theorems and provide the full
276 proof in Appendix D.

277 **Theorem 1** (Code-Conditional Transfer Bound: Feature View). *Let $\mathcal{D}_s, \mathcal{D}_t$ be source/target node
278 datasets (from graphs G_s, G_t). Each node v has an L -hop ego-subgraph $g(v)$ with feature tensor.
279 A fixed encoder $\phi : \mathcal{G} \rightarrow \mathbb{R}^m$ maps g to $z = \phi(g)$. A codebook Q with codes $\{c_1, \dots, c_K\}$ assigns
280 $\mathbf{J}(g) = Q(z) \in [K]$ by nearest center. A predictor h consumes a feature summary $u(g) \in \mathbb{R}^{d'}$ (e.g.,
281 pooled/root features), and the loss $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow [0, 1]$ is bounded.*

282 **Notation.** Let $\pi_\alpha(k) = \Pr_{(g,y) \sim \mathcal{D}_\alpha}[\mathbf{J}(g) = k]$ for $\alpha \in \{s, t\}$, and let \mathbb{P}_α^k be the conditional
283 law of (g, x, y) given $K(g) = k$. Define risks $\varepsilon_\alpha(h \circ Q \circ \phi) = \mathbb{E}_{\mathcal{D}_\alpha}[\ell(h(Q(\phi(g))), y)]$. Let the
284 code-marginal drift be $\Delta_{\text{code}} := \frac{1}{2} \sum_{k=1}^K |\pi_t(k) - \pi_s(k)|$. Define the quantization distortion $\Delta_q :=$
285 $\sup_{(g,y)} |\ell(h(Q(\phi(g))), y) - \ell(h(\phi(g)), y)|$, and let $p_{\text{mis}} := \Pr[K(g) \text{ is a misassignment}]$ (e.g., stale
286 codebook/ANN search).

287 **Assumptions.** (i) There exists a (possibly identity) preprocessing $S : \mathbb{R}^{d'} \rightarrow \mathbb{R}^{d'}$ such that $u \mapsto$
288 $\ell(h(u), y)$ is L_u -Lipschitz uniformly in y . (ii) For each code k , define the within-code feature
289 discrepancy

$$\Delta_k^{\text{feat}} := W_1(\mathcal{L}_t(S(u) \mid K = k), \mathcal{L}_s(S(u) \mid K = k)),$$

290 the 1-Wasserstein distance between the conditional feature summaries.

291 **Claim.** For any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the draws of the (finite) datasets and
292 the code-conditional estimates,

$$\varepsilon_t - \varepsilon_s \leq \sum_{k=1}^K \pi_t(k) L_u \Delta_k^{\text{feat}} + \Delta_{\text{code}} + \Delta_q + p_{\text{mis}} + c_1 \sqrt{\frac{\log(2K/\delta)}{\min_k n_t(k)}} + c_2 (\mathfrak{R}_{n_s} + \mathfrak{R}_{n_t})$$

300 Here $n_t(k)$ is the number of target samples with $K = k$, \mathfrak{R}_{n_α} denotes the Rademacher complexity of
301 the induced loss class on domain α , and constants c_1, c_2 depend only on sub-Gaussian/boundedness
302 parameters of $S(u)$ and on standard symmetrization constants.

303 **Theorem 2** (Code-Conditional Transfer Bound: Structure View). *Same as Theorem 1, except the
304 predictor h depends on a structural representation $\psi(g)$ that lies in an RKHS $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ with kernel
305 $k(\cdot, \cdot)$ and $\|\psi(g)\|_{\mathcal{H}} \leq B$. Risks, $\pi_\alpha(k)$, \mathbb{P}_α^k , Δ_{code} , Δ_q , and p_{mis} are as defined there.*

307 **Assumptions.** (i) For each code k , the conditional loss as a function of $\psi(g)$ belongs to a bounded
308 RKHS ball: there exists $f_k \in \mathcal{H}$ with $\|f_k\|_{\mathcal{H}} \leq C$ such that $\mathbb{E}[\ell(h(\psi(g)), y) \mid g, K = k] =$
309 $\langle f_k, \psi(g) \rangle_{\mathcal{H}}$. (ii) For each code k , define the within-code structural discrepancy

$$\Delta_k^{\text{struct}} := \text{MMD}_{\mathcal{H}}(\mathcal{L}_t(\psi \mid K = k), \mathcal{L}_s(\psi \mid K = k)).$$

312 **Claim.** For any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$\varepsilon_t - \varepsilon_s \leq \sum_{k=1}^K \pi_t(k) C \Delta_k^{\text{struct}} + \Delta_{\text{code}} + \Delta_q + p_{\text{mis}} + \tilde{c}_1 \sqrt{\frac{\log(2K/\delta)}{\min_k n_t(k)}} + \tilde{c}_2 (\mathfrak{R}_{n_s} + \mathfrak{R}_{n_t}),$$

316 where \tilde{c}_1, \tilde{c}_2 depend only on the kernel bound $k(x, x) \leq B^2$ and standard generalization constants.

318 5 RESULTS AND OBSERVATIONS
319320 5.1 THE GTID DISTRIBUTIONS
321

323 Following the evaluation process above, we can pretrain the tokenizers and evaluate them. Specifically,
we would pretrain the tokenizer with different combinations of datasets: from single dataset to four

Figure 3: The distributions of GTID of RVQ models on e-commerce datasets. We use abbreviated names for datasets in x-axis. hi: bookhis, ch: bookchild, cm: elecomp, ph: elephoto, sp: sportsfit.

datasets together. Then we will evaluate them on the remaining datasets in the same domain and calculate the corresponding GTID. The results are shown in Figure 2 and Figure 3 for the Citation domain and E-commerce domain, respectively.

Across both domains, we observe a consistent and obvious gap between structure-based and feature-based GTID. While feature discrepancy tends to decrease gradually as the number of pretraining datasets increases, the structural GTID remains relatively high and fluctuates across settings. This suggests that even with multi-dataset pretraining, the tokenizer struggles to align structural information consistently. For instance, in the Citation domain (Figure 2), structural GTID plateaus after the second pretraining dataset, indicating limited marginal gains in structural transferability. A similar trend is seen in the E-Commerce domain where feature-based discrepancy steadily decreases but structural discrepancy remains elevated, particularly in dataset groups that are structurally diverse.

Furthermore, while tokenizers benefit from more diverse feature distributions during pretraining, their ability to generalize structural semantics is far more constrained. This asymmetry highlights a key limitation of current quantization-based tokenizers: their reliance on local node features or first-order neighborhoods makes it difficult to internalize structural motifs that generalize across domains with heterogeneous graph topology. Hence, we would have the following observation:

Observation 1: The graph quantized tokenizes have difficulty capturing the transferrable patterns across graphs, especially the structural patterns.

Figure 4: The correlation between GTID and the model performance gap.

5.2 THE CORRELATIONS BETWEEN GTID AND MODEL'S TRANSFERABILITY

Furthermore, we leverage the results above to analyze the relationship between model generalization and performance gaps. Specifically, we define the *performance gap* (PG) as a metric to quantify generalization ability, measured by the accuracy difference between inter-dataset and intra-dataset pretraining.

For example, consider two datasets, A and B . Let P_1 denote the node classification accuracy of a model pretrained on A and fine-tuned on B_{train} , and P_2 denote the accuracy of a model both pretrained and fine-tuned on B_{train} (B_{train} and B_{test} are the training part and test part of dataset B , respectively). The performance gap is then computed as:

$$\text{PG} = \frac{P_2 - P_1}{P_2}.$$

This normalized gap reflects how well the pretrained knowledge transfers across datasets. The results are shown in Figure 4. The reported *coefficient of determination* (R^2) quantifies the extent to which GTID explains the transfer performance degradation.

The results are shown in Figure 4. Across all settings, we observe a strong positive correlation between GTID and performance gap. In the Citation domain, feature-based GTID achieves an R^2 of 0.714, while structure-based GTID yields 0.707. A similar trend is observed in the E-Commerce domain, where the feature and structure correlations yield R^2 values of 0.709 and 0.692, respectively. These results suggest that both forms of token discrepancy significantly affect downstream transferability, with feature discrepancy often exhibiting slightly higher explanatory power, potentially due to its stronger alignment with task-relevant attributes.

These findings indicate that token consistency across domains is critical for effective transfer learning. When the same token index encodes semantically or structurally divergent patterns across graphs, the transfer model struggles to leverage pre-learned representations. This mismatch leads to notable performance degradation during cross-domain adaptation.

Observation 2: The GTID is positively correlated the performance gap, indicating that the information discrepancy of the tokens will hinder model's transferability.

Figure 5: Comparison with the original RVQ tokenizer after utilizing the structural hard encoding.

5.3 STRUCTURAL HARD ENCODING

To evaluate whether adding structural information to the tokenizer can improve transferability, we incorporate a simple yet effective inductive bias: **Structural Hard Encoding (SHE)**. SHE explicitly encodes high-level structural cues (e.g., node degree bins, positional encodings) into the input of the quantized tokenizer, aiming to reduce the mismatch in structural semantics across graphs. For instance, nodes with degree 1 or 2 can only be assigned to ID 0 to 31, nodes with degree 3 can only be assigned to ID 32 to 63, etc. In this way, we force the token ID to distinguish with each other as their corresponding subgraphs will have structural properties’ difference.

As shown in Figures 5, SHE leads to a notable improvement in both structural alignment and downstream task performance. In Figure 5 Left, we observe that for all test graphs (Cora, Citeseer, DBLP, Pubmed), the *structure-based GTID* is consistently lower when using RVQ with SHE compared to vanilla RVQ. This reduction is especially pronounced on datasets with higher structural variability (e.g., DBLP and Pubmed), indicating that SHE effectively mitigates token inconsistency arising from structural heterogeneity.

The benefits of this structural regularization also translate into improved model generalization. Figure 5 Right shows that the *performance gap* between source-pretrained and target-finetuned models is also reduced across the same set of graphs when SHE is applied. This reinforces the claim that lower GTID correlates with improved transferability, and affirms that enhancing structural awareness during tokenization is a viable pathway to better cross-graph generalization. Hence, we would have the following observation:

Observation 3: With structural hard encoding (SHE), the RVQ tokenizer can reduce the structural GTID and performance gaps, which further affirm our previous observations and the importance of capturing transferrable for tokens.

6 CONCLUSION

In this paper, we investigate whether graph quantized tokenizers can capture transferable patterns across graph datasets. Through a detailed empirical analysis, we show that tokenized representations suffer from significant information discrepancies, particularly in structural properties, across different domains. We introduce the Token Information Discrepancy Score (TIDS) to quantify this phenomenon and demonstrate its strong correlation with performance degradation in transfer learning settings. These findings indicate that current quantized tokenization schemes are limited in their ability to produce consistent, reusable representations for graph data. To address this, we propose Structural Hard Encoding (SHE), a simple inductive bias that explicitly incorporates structural signals into the token assignment process. Our experiments show that SHE significantly reduces structural TIDS and improves cross-domain performance, validating our core hypothesis. This work provides actionable insights into the limitations of current graph tokenizers and opens up future research directions on structure-aware, transferable graph token learning.

486 ETHICS STATEMENT
487488 We acknowledge that we have read and commit to adhering to the ICLR Code of Ethics. Our study
489 relies solely on publicly available benchmark datasets [Chen et al. \(2024b\)](#). While our proposed
490 method presents no direct ethical concerns, the improved performance could be leveraged for both
491 ethical and unethical applications involving generative recommendation systems. We emphasize
492 the importance of applying machine learning algorithms responsibly to achieve socially beneficial
493 results.
494495 REPRODUCIBILITY STATEMENT
496497 Our experiments are based on the public datasets and code ([Wang et al., 2024b](#); [Chen et al., 2024b](#)).
498 To help reproducibility of the results, we provide experiment settings in the main text.
499

500 501 USAGE OF LARGE LANGUAGE MODELS

502 In this manuscript, we solely utilize LLMs to polish the writing and check grammatical errors. We
503 have reviewed the generated contents provided by large language models and will be responsible for
504 the correctness of the polished content.
505

506 507 REFERENCES

508 509 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
510 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
511 *arXiv preprint arXiv:2303.08774*, 2023.512 513 Albert-László Barabási and Zoltan N. Oltvai. Network biology: understanding the cell’s functional
514 organization. *Nature Reviews Genetics*, 2004.515 516 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
517 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.518 519 Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
520 representation learning. In *International conference on machine learning*, pp. 3469–3489. PMLR,
521 2022.522 523 Yongqiang Chen, Quanming Yao, Juzheng Zhang, James Cheng, and Yatao Bian. Improving graph-
524 language alignment with hierarchical graph tokenization. In *ICML 2024 Workshop on Foundation
Models in the Wild*, 2024a.525 526 Zhikai Chen, Haitao Mao, Jingzhe Liu, Yu Song, Bingheng Li, Wei Jin, Bahare Fatemi, Anton
527 Tsitsulin, Bryan Perozzi, Hui Liu, et al. Text-space graph foundation models: Comprehensive
528 benchmarks and new insights. *Advances in Neural Information Processing Systems*, 37:7464–7492,
529 2024b.530 531 Peter Csermely, Tamas Korcsmaros, Huba J. M. Kiss, Gabor London, and Ruth Nussinov. Structure
532 and dynamics of molecular networks: A novel paradigm of drug discovery. a comprehensive review.
533 *arXiv preprint arXiv:1210.0330*, 2012.534 535 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
536 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
537 pp. 12873–12883, 2021.538 539 Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
540 networks using vector quantization. *arXiv preprint arXiv:1412.6115*, 2014.541 Robert Gray. Vector quantization. *IEEE Assp Magazine*, 1(2):4–29, 1984.

540 Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
 541 Graphmae: Self-supervised masked graph autoencoders. In *Proceedings of the 28th ACM SIGKDD*
 542 *Conference on Knowledge Discovery and Data Mining*, pp. 594–604, 2022.

543

544 Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
 545 Gpt-gnn: Generative pre-training of graph neural networks. In *Proceedings of the 26th ACM*
 546 *SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD)*, pp. 1857–
 547 1867, 2020.

548 Wei Jin, Ke Yang, Xianfeng Tang, Yujia Liu, and Jiliang Tang. Graphprompt: Towards universal
 549 graph pre-training via prompt-based learning. In *Advances in Neural Information Processing*
 550 *Systems (NeurIPS)*, 2022.

551

552 Biing-Hwang Juang and A Gray. Multiple stage vector quantization for speech coding. In *ICASSP'82.*
 553 *IEEE International Conference on Acoustics, Speech, and Signal Processing*, volume 7, pp. 597–
 554 600. IEEE, 1982.

555 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 556 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 557 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.

558

559 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
 560 generation using residual quantization. In *Proceedings of the IEEE/CVF conference on computer*
 561 *vision and pattern recognition*, pp. 11523–11532, 2022a.

562

563 Youngjung Lee, Taesung Kim, Seunghoon Kim, and Heechul Song. Residual vector quantization: A
 564 robust discrete representation learning framework. In *European Conference on Computer Vision*
 565 (*ECCV*), 2022b.

566

567 Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
 568 Zhang. One for all: Towards training one graph model for all classification tasks. *arXiv preprint*
 569 *arXiv:2310.00149*, 2023a.

570

571 Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
 572 supervised learning: Generative or contrastive. *IEEE transactions on knowledge and data engi-*
 573 *neering*, 35(1):857–876, 2021.

574

575 Zhiyuan Liu, Yaorui Shi, An Zhang, Enzhi Zhang, Kenji Kawaguchi, Xiang Wang, and Tat-Seng
 576 Chua. Rethinking tokenizer and decoder in masked graph modeling for molecules. *Advances in*
 577 *Neural Information Processing Systems*, 36:25854–25875, 2023b.

578

579 Yuankai Luo, Hongkang Li, Qijiong Liu, Lei Shi, and Xiao-Ming Wu. Node identifiers: Compact,
 580 discrete representations for efficient graph learning. *arXiv preprint arXiv:2405.16435*, 2024.

581

582 Yao Ma and Jiliang Tang. *Deep learning on graphs*. Cambridge University Press, 2021.

583

584 Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
 585 Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In *Forty-first*
 586 *International Conference on Machine Learning*, 2024.

587

588 Julieta Martinez, Holger H Hoos, and James J Little. Stacked quantizers for compositional vector
 589 compression. *arXiv preprint arXiv:1411.2173*, 2014.

590

591 Miller McPherson, Lynn Smith-Lovin, and James M. Cook. Birds of a feather: Homophily in social
 592 networks. *Annual Review of Sociology*, 2001.

593

594 Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
 595 minique Beaini. Recipe for a general, powerful, scalable graph transformer. *Advances in Neural*
 596 *Information Processing Systems*, 35:14501–14515, 2022.

597

598 Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
 599 vq-vae-2. *Advances in neural information processing systems*, 32, 2019.

594 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 595 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 596 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

597

598 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 599 Scalable image generation via next-scale prediction. *Advances in neural information processing
 600 systems*, 37:84839–84865, 2024.

601 Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
 602 In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 30, 2017.

603

604 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 605 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 606 2018.

607 Limei Wang, Kaveh Hassani, Si Zhang, Dongqi Fu, Baichuan Yuan, Weilin Cong, Zhigang Hua,
 608 Hao Wu, Ning Yao, and Bo Long. Learning graph quantized tokenizers. *arXiv preprint
 609 arXiv:2410.13798*, 2024a.

610

611 Wei Wang, Haojie Li, Zhengming Ding, Feiping Nie, Junyang Chen, Xiao Dong, and Zhihui Wang.
 612 Rethinking maximum mean discrepancy for visual domain adaptation. *IEEE Transactions on
 613 Neural Networks and Learning Systems*, 34(1):264–277, 2021.

614

615 Zehong Wang, Zheyuan Zhang, Nitesh Chawla, Chuxu Zhang, and Yanfang Ye. Gft: Graph foundation
 616 model with transferable tree vocabulary. *Advances in Neural Information Processing Systems*, 37:
 617 107403–107443, 2024b.

618

619 Zehong Wang, Zheyuan Zhang, Tianyi Ma, Nitesh V Chawla, Chuxu Zhang, and Yanfang Ye. Beyond
 620 message passing: Neural graph pattern machine. *arXiv preprint arXiv:2501.18739*, 2025a.

621

622 Zehong Wang, Zheyuan Zhang, Tianyi Ma, Chuxu Zhang, and Yanfang Ye. Scalable graph generative
 623 modeling via substructure sequences. *arXiv preprint arXiv:2505.16130*, 2025b.

624

625 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
 626 comprehensive survey on graph neural networks. *IEEE transactions on neural networks and
 627 learning systems*, 32(1):4–24, 2020.

628

629 Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. Graph learning:
 630 A survey. *IEEE Transactions on Artificial Intelligence*, 2(2):109–127, 2021a.

631

632 Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. Graph learning:
 633 A survey. *IEEE Transactions on Artificial Intelligence*, 2(2):109–127, 2021b.

634

Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and Stan Z
 635 Li. Mole-bert: Rethinking pre-training graph neural networks for molecules. 2023.

636

Lianghao Xia and Chao Huang. Anygraph: Graph foundation model in the wild. *arXiv preprint
 637 arXiv:2408.10700*, 2024.

638

Hongliang Yan, Yukang Ding, Peihua Li, Qilong Wang, Yong Xu, and Wangmeng Zuo. Mind the
 639 class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. In
 640 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2272–2281,
 2017.

641

Ling Yang, Ye Tian, Minkai Xu, Zhongyi Liu, Shenda Hong, Wei Qu, Wentao Zhang, Bin Cui,
 642 Muhan Zhang, and Jure Leskovec. Vqgraph: Graph vector-quantization for bridging gnns and
 643 mlps. *arXiv preprint arXiv:2308.02117*, 2023.

644

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification. In
 645 *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 7370–7377, 2019.

646

Jiaxuan You, Rex Ying, and Jure Leskovec. Gvt: Graph discrete vae tokenizer for transferable graph
 647 pretraining. In *International Conference on Learning Representations (ICLR)*, 2023.

648 Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
649 networks. *Advances in neural information processing systems*, 32, 2019.
650
651 Odin Zhang, Haitao Lin, Xujun Zhang, and et al. Graph neural networks in modern ai-aided drug
652 discovery. *arXiv preprint arXiv:2506.06915*, 2025.
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703 A DATASET DETAILS704
705 Table 1 presents the detailed statistics of datasets we used in our experiments, including the dataset's
706 domain and sizes.
707708
709 Table 1: Dataset statistics.
710

Dataset	Domain	# Nodes	# Edges
Cora	Citation	2708	10556
Citeseer	Citation	3186	8450
Pubmed	Citation	19717	88648
DBLP	Citation	14376	431326
Arxiv	Citation	169343	2315598
Bookhis	E-commerce	41551	503180
Bookchild	E-commerce	76875	2325044
Elecomp	E-commerce	87229	1256548
Elephoto	E-commerce	48362	873782
Sportsfit	E-commerce	173055	3020134

721 B MAXIMUM MEAN DISCREPANCY
722723 Maximum Mean Discrepancy (MMD) is a statistical distance metric used to measure the discrepancy
724 between two probability distributions P and Q over a domain \mathcal{X} . Formally, given a function class \mathcal{F} ,
725 the MMD is defined as
726

727
728
$$\text{MMD}[\mathcal{F}, P, Q] = \sup_{f \in \mathcal{F}} (\mathbb{E}_{x \sim P}[f(x)] - \mathbb{E}_{y \sim Q}[f(y)]).$$

729 When \mathcal{F} is chosen to be the unit ball in a Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} with kernel
730 function k , the squared MMD can be computed in closed form as
731

732
733
$$\text{MMD}^2(P, Q) = \mathbb{E}_{x, x' \sim P}[k(x, x')] + \mathbb{E}_{y, y' \sim Q}[k(y, y')]$$

734 For empirical distributions based on samples $\{x_i\}_{i=1}^m$ from P and $\{y_j\}_{j=1}^n$ from Q , an unbiased
735 estimator of the squared MMD is given by
736

737
738
$$\text{MMD}^2(P, Q) = \frac{1}{m(m-1)} \sum_{i \neq j} k(x_i, x_j) + \frac{1}{n(n-1)} \sum_{i \neq j} k(y_i, y_j)$$

739 This formulation makes MMD particularly useful for two-sample tests and as a loss function in
740 machine learning tasks such as domain adaptation and generative modeling. The Normalized
741 Maximum Mean Discrepancy is calculated as
742

743
744
$$\text{Normalized_MMD}^2(P, Q) = \frac{\text{MMD}^2(P, Q)}{\text{MMD}^2(P, P) + \text{MMD}^2(Q, Q)}$$

745 C THE DEFINATIONS OF THE STRUCTURAL PROPERTIES
746

747 Degree (node & average)

748
749
750
$$k_i = \sum_{j=1}^n A_{ij}, \quad \bar{k} = \frac{1}{n} \sum_{i=1}^n k_i = \frac{2m}{n}.$$

751

752 Local clustering coefficient & global averages:
753

754
755
$$C_i = \begin{cases} \frac{2t_i}{k_i(k_i-1)}, & k_i \geq 2, \\ 0, & k_i < 2, \end{cases} \quad \text{where } t_i = \sum_{1 \leq p < q \leq n} A_{ip}A_{iq}A_{pq}.$$

756
757
758

$$C_{\text{avg}} = \frac{1}{n} \sum_{i=1}^n C_i.$$

759 **Closeness centrality:**

760
761
762
763

$$\text{clo}(i) = \sum_{\substack{j=1 \\ j \neq i}}^n d(i, j), \quad \text{CC}(i) = \frac{n-1}{\text{clo}(i)}.$$

764 **Density:**

765
766
767

$$\delta(G) = \frac{2m}{n(n-1)}.$$

768 **Degree assortativity:** Let $\mu = \frac{1}{2m} \sum_{(u,v) \in E} (k_u + k_v)$.

769
770
771
772
773
774
775

$$r_{\text{deg}} = \frac{\frac{1}{m} \sum_{(u,v) \in E} k_u k_v - \mu^2}{\frac{1}{m} \sum_{(u,v) \in E} \frac{k_u^2 + k_v^2}{2} - \mu^2}.$$

776 **Transitivity:**

777
778
779
780
781
782

$$T = \frac{3\Delta}{\wedge} = \frac{\sum_{i=1}^n 2t_i}{\sum_{i=1}^n k_i(k_i - 1)},$$

783 where Δ is the number of triangles and $\wedge = \sum_i \binom{k_i}{2}$ is the number of connected triples.

784 **Homophily:** Given a discrete node attribute $x : V \rightarrow \{1, \dots, C\}$, define

785
786
787
788

$$H_{\text{edge}} = \frac{1}{m} \sum_{(u,v) \in E} \mathbf{1}[x(u) = x(v)] \quad (\text{edge homophily rate}).$$

789 Let $p_c = \frac{|\{i \in V : x(i) = c\}|}{n}$ and $H_0 = \sum_{c=1}^C p_c^2$. A normalized (chance-corrected) homophily index is

790
791
792
793

$$H_{\text{norm}} = \frac{H_{\text{edge}} - H_0}{1 - H_0}.$$

794 D PROOF FOR THE THEOREMS

795 Since the two theorems have similar structures, we will prove them parallelly in this section. We will
796 first introduce some definitions and notations and will then move to the proof.

797 **Setting.** Let $\mathcal{D}_s, \mathcal{D}_t$ be source/target node datasets drawn from graphs G_s, G_t , respectively. Each
798 node v has an L -hop ego-subgraph $g(v)$ with feature tensor; let $\phi : \mathcal{G} \rightarrow \mathbb{R}^m$ be a (fixed) encoder,
799 and Q a codebook with codes $\{c_1, \dots, c_K\}$. Write $Z = \phi(g)$ and $\mathcal{J}(g) = Q(Z) \in [K]$. A predictor
800 h maps either (i) a *feature summary* $u(g) \in \mathbb{R}^{d'}$ or (ii) a *structural embedding* $\psi(g) \in \mathcal{H}$ to a
801 prediction; the loss ℓ is bounded in $[0, 1]$.

802 Let $\pi_\alpha(k) = \mathbb{P}_{(g,y) \sim \mathcal{D}_\alpha} [\mathcal{J}(g) = k]$ for $\alpha \in \{s, t\}$, and \mathbb{P}_α^k be the law of (g, x, y) conditional on
803 $K(g) = k$. Define risks $\varepsilon_\alpha(h \circ Q \circ \phi) = \mathbb{E}_{\mathcal{D}_\alpha} \ell(h(Q(\phi(g))), y)$.

804 We also consider the *pre-quantization predictor* $\tilde{f} = h \circ \phi$ and the *post-quantization predictor*
805 $f = h \circ Q \circ \phi$. Define the *quantization distortion*

806
807
808
809

$$\Delta_q := \sup_{(g,y)} |\ell(h(Q(\phi(g))), y) - \ell(h(\phi(g)), y)|.$$

810 Let $M(g)$ be the event that g is assigned to a code whose center lies outside a radius- τ cell around
 811 $\phi(g)$ (misassignment due to finite codebook update); set $p_{\text{mis}} = \mathbb{P}[M(g)]$.
 812

813 **Reproducing Kernel Hilbert Space (RKHS) setting.** Let (\mathcal{H}, k) be a reproducing kernel Hilbert
 814 space associated with a positive-definite kernel $k : \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$. Typical choices include graph kernels
 815 such as

- 816 • the Weisfeiler–Lehman subtree kernel,
- 817 • the shortest-path or random-walk kernel,
- 818 • or a message-passing neural kernel $k(g, g') = \langle \psi(g), \psi(g') \rangle$ where $\psi(g)$ is the feature map
 819 of a base GNN layer.

821 We assume k is bounded, $k(g, g) \leq B^2$, and that the feature map $\psi(g)$ satisfies $\|\psi(g)\|_{\mathcal{H}} \leq B$ for
 822 all subgraphs g . This ensures that $\text{MMD}_{\mathcal{H}}$ is well-defined and bounded in $[0, 2B]$. Specifically, we
 823 use Let $A \in \mathbb{R}^{n \times d}$ and $B \in \mathbb{R}^{m \times d}$. Denote the i -th row of A by $a_i \in \mathbb{R}^d$ and the j -th row of B by
 824 $b_j \in \mathbb{R}^d$. The Gaussian (RBF) kernel matrix $K \in \mathbb{R}^{n \times m}$ with bandwidth $\sigma > 0$ is defined entrywise
 825 as

$$826 \quad K_{ij} = \exp\left(-\frac{\|a_i - b_j\|_2^2}{2\sigma^2}\right), \quad i = 1, \dots, n, j = 1, \dots, m.$$

829 **Code-wise discrepancy metrics.** For each code k :

830 (Feature view) Fix a 1-Lipschitz map $S : \mathbb{R}^{d'} \rightarrow \mathbb{R}^{d'}$ (possibly identity) and suppose the composed
 831 map $u \mapsto \ell(h(u), y)$ is L_u -Lipschitz uniformly in y . Let
 832

$$833 \quad \Delta_k^{\text{feat}} := W_1(\mathcal{L}_t(S(u) \mid k), \mathcal{L}_s(S(u) \mid k)).$$

834 (Structure view) Let $\psi(g) \in \mathcal{H}$ be a bounded kernel embedding with $\|\psi(g)\|_{\mathcal{H}} \leq B$; assume the
 835 function $f_{\psi} : \mathcal{H} \rightarrow [0, 1]$ defined by $f_{\psi}(\psi(g)) = \mathbb{E}[\ell(h(\psi(g)), y) \mid g]$ lies in the RKHS ball $C\mathbb{B}_{\mathcal{H}}$.
 836 Define

$$837 \quad \Delta_k^{\text{struct}} := \text{MMD}_{\mathcal{H}}(\mathcal{L}_t(\psi \mid k), \mathcal{L}_s(\psi \mid k)).$$

839 Additionally define the *code-marginal drift*

$$840 \quad \Delta_{\text{code}} := \text{TV}(\pi_t, \pi_s) = \frac{1}{2} \sum_{k=1}^K |\pi_t(k) - \pi_s(k)|.$$

843 **Loss class and calibration.** Let $\mathcal{F} = \{g \mapsto \ell(h(\cdot), y)\}$ be the induced loss class after u or
 844 ψ . Assume a *margin-calibrated* property: there exists a non-decreasing $\Gamma : [0, 1] \rightarrow [0, 1]$ s.t.
 845 $|\mathbb{E}_{\mathbb{P}} f - \mathbb{E}_{\mathbb{Q}} f| \leq \Gamma(\text{IPM}(\mathbb{P}, \mathbb{Q}))$ for $f \in \mathcal{F}$, where IPM = W_1 in the feature case, and IPM =
 846 $\text{MMD}_{\mathcal{H}}$ in the structure case. For Lipschitz/ \mathcal{H} -bounded classes we can take $\Gamma(r) = L_u r$ and
 847 $\Gamma(r) = Cr$, respectively.

849 **Finite-sample estimation.** Suppose we observe n_{α} i.i.d. nodes from \mathcal{D}_{α} , with $n_{\alpha}(k)$ landing in
 850 code k . Let $\hat{\Delta}_k^{\text{feat}}$ (resp. $\hat{\Delta}_k^{\text{struct}}$) be empirical estimators. Assume $S(u)$ is sub-Gaussian with proxy
 851 σ^2 (per coordinate), and the kernel for ψ is bounded by B . Let $\delta \in (0, 1)$.
 852

853 **Theorem.** With probability at least $1 - \delta$, simultaneously for the feature and structure views,

$$855 \quad \varepsilon_t(f) - \varepsilon_s(f) \leq \underbrace{\sum_{k=1}^K \pi_t(k) \Gamma(\Delta_k)}_{\text{code-conditional shift}} + \Delta_{\text{code}} + \Delta_{\text{q}} + p_{\text{mis}} \\ 856 \\ 857 \\ 858 \\ 859 \\ 860 \\ 861 \\ 862 \\ 863 \quad + c_1 \underbrace{\sqrt{\frac{\log(2K/\delta)}{\min_k n_t(k)}}}_{\text{conditional estimation}} + c_2 \underbrace{\left(\mathfrak{R}_{n_s}(\mathcal{F}) + \mathfrak{R}_{n_t}(\mathcal{F})\right)}_{\text{function class complexity}},$$

where Δ_k equals Δ_k^{feat} in the feature view (with $\Gamma(r) = L_u r$) and equals Δ_k^{struct} in the structure
 view (with $\Gamma(r) = Cr$). Constants c_1, c_2 depend only on universal sub-Gaussian/kernel bounds.

Remarks. (i) The first three additive terms quantify, respectively, *within-code* conditional mismatch, *code-marginal* mismatch, and *quantization* distortion; p_{mis} captures assignment noise (e.g., stale codebook). (ii) The last two terms are finite-sample effects: conditional-IPM estimation error and richness of the induced loss class. (iii) If ϕ is L_ϕ -Lipschitz on (\mathcal{G}, d) and Q has cells of diameter τ , then $\Delta_q \leq L_\ell L_h L_\phi \tau$.

Proof. We start from the risk decomposition by code:

$$\varepsilon_t(f) - \varepsilon_s(f) = \sum_{k=1}^K \pi_t(k) (\mathbb{E}_{\mathbb{P}_t^k} \ell(h(c_k), y) - \mathbb{E}_{\mathbb{P}_s^k} \ell(h(c_k), y)) + \sum_{k=1}^K (\pi_t(k) - \pi_s(k)) \mathbb{E}_{\mathbb{P}_s^k} \ell(h(c_k), y). \quad (11)$$

The second sum is bounded by $\text{TV}(\pi_t, \pi_s)$ since $\ell \in [0, 1]$.

Step 1 (replace $Q \circ \phi$ by ϕ with distortion). Insert and subtract $\ell(h(\phi(g)), y)$ inside each conditional expectation. By the definition of Δ_q and the misassignment indicator $M(g)$,

$$|\mathbb{E}_{\mathbb{P}_\alpha^k} \ell(h(c_k), y) - \mathbb{E}_{\mathbb{P}_\alpha^k} \ell(h(\phi(g)), y)| \leq \Delta_q + \mathbb{P}_{\mathbb{P}_\alpha^k} [M(g)] \leq \Delta_q + p_{\text{mis}}.$$

Applying to $\alpha \in \{s, t\}$ and summing, we accrue an additive $2(\Delta_q + p_{\text{mis}})$; absorb constants to keep a single $(\Delta_q + p_{\text{mis}})$ term.

Step 2 (conditional IPM bound). Define F_k as the function class $\{(g, y) \mapsto \ell(h(\cdot), y)$ restricted to code $k\}$.

Feature view. Assume $u \mapsto \ell(h(u), y)$ is L_u -Lipschitz, uniformly in y . By Kantorovich–Rubinstein duality,

$$|\mathbb{E}_{\mathbb{P}_t^k} \ell(h(\phi(g)), y) - \mathbb{E}_{\mathbb{P}_s^k} \ell(h(\phi(g)), y)| \leq L_u W_1(\mathcal{L}_t(S(u) | k), \mathcal{L}_s(S(u) | k)) = L_u \Delta_k^{\text{feat}}.$$

Structure view. Let \mathcal{H} be the RKHS with kernel $k(\cdot, \cdot)$ and unit ball $\mathbb{B}_{\mathcal{H}}$. Assume the conditional expectation functional over $\psi(g)$ lies in $C\mathbb{B}_{\mathcal{H}}$: $\ell(h(\psi(g)), y) = \langle f_k, \psi(g) \rangle_{\mathcal{H}}$ with $\|f_k\|_{\mathcal{H}} \leq C$. Then by the MMD IPM property,

$$|\mathbb{E}_{\mathbb{P}_t^k} \ell(h(\phi(g)), y) - \mathbb{E}_{\mathbb{P}_s^k} \ell(h(\phi(g)), y)| \leq C \text{MMD}_{\mathcal{H}}(\mathcal{L}_t(\psi | k), \mathcal{L}_s(\psi | k)) = C \Delta_k^{\text{struct}}.$$

Thus, in either view,

$$|\mathbb{E}_{\mathbb{P}_t^k} \ell(h(\phi(g)), y) - \mathbb{E}_{\mathbb{P}_s^k} \ell(h(\phi(g)), y)| \leq \Gamma(\Delta_k).$$

Multiply by $\pi_t(k)$ and sum over k to control the first sum in (11).

Step 3 (finite-sample estimation of conditional IPMs). Let $\widehat{\Delta}_k$ be an empirical estimator based on $n_t(k)$ and $n_s(k)$ samples in code k .

Feature view. Assume $S(u)$ is sub-Gaussian with parameter σ^2 and bounded support radius R (w.l.o.g. by truncation). Then standard Wasserstein concentration (e.g., Bobkov–Götze type or transportation inequalities) yields, for each k and any $\eta > 0$, with probability $\geq 1 - \eta$,

$$|\widehat{W}_1(\widehat{\mathbb{P}}_t^k, \widehat{\mathbb{P}}_s^k) - W_1(\mathbb{P}_t^k, \mathbb{P}_s^k)| \leq C_1 \sigma \left(\sqrt{\frac{1}{n_t(k)}} + \sqrt{\frac{1}{n_s(k)}} \right) + C'_1 \sqrt{\frac{\log(1/\eta)}{\min\{n_t(k), n_s(k)\}}}.$$

A union bound over k with $\eta = \delta/(2K)$ gives the displayed c_1 term.

Structure view. For bounded kernels, MMD admits sub-Gaussian concentration; with $k(x, x) \leq B^2$,

$$|\widehat{\text{MMD}}_{\mathcal{H}} - \text{MMD}_{\mathcal{H}}| \leq C_2 B \left(\sqrt{\frac{1}{n_t(k)}} + \sqrt{\frac{1}{n_s(k)}} \right) + C'_2 \sqrt{\frac{\log(1/\eta)}{\min\{n_t(k), n_s(k)\}}}.$$

Apply a union bound across k .

Step 4 (function class complexity for empirical risk plug-in). If $\varepsilon_\alpha(f)$ is replaced by empirical risks $\hat{\varepsilon}_\alpha(f)$ in (11) to obtain data-driven guarantees, standard symmetrization yields

$$\mathbb{E} \left[\sup_{f \in \mathcal{F}} |\varepsilon_\alpha(f) - \hat{\varepsilon}_\alpha(f)| \right] \leq c \mathfrak{R}_{n_\alpha}(\mathcal{F}),$$

918 and concentration around the mean (e.g., Bousquet inequality) adds a term $O(\sqrt{\log(1/\delta)/n_\alpha})$.
919 Since \mathcal{F} is the composition of Lipschitz h, ℓ with ϕ and either u or ψ , $\mathfrak{R}_n(\mathcal{F})$ inherits Lipschitz
920 contractions.

921 Collecting all pieces completes the proof. \square

924 E RESULTS ON VQ TOKENIZER

926 In this section, we repeat the experiments in the main text and report the results in Figure 6, 7 and 8.
927 Overall, we get similar observations as on RVQ, further supporting our conclusions.

944 Figure 6: The distributions of GTID of VQ models on citation datasets.

941 Figure 7: The distributions of GTID of VQ models on e-commerce datasets.

944 F RESULTS ON MORE DOMAINS AND TASKS

946 We have added experiments on ten additional datasets for two new tasks: link prediction and graph
947 classification. Specifically, we evaluate our method on five knowledge graph datasets for the link
948 prediction task and five molecule datasets for the graph classification task. The details of these
949 datasets are provided in Tables 2 and 3. And the results are shown in Figure 9, 10, 11 and 12. Overall,
950 our observations still hold for the new datasets and tasks: the quantization tokenizer cannot effectively
951 capture transferable structural patterns, and the structure GTIDs remain correlated with downstream
952 performance.

Figure 8: The correlation between GTID and the VQ model performance gap. We observe similar phenomena as RVQ tokenizers.

Dataset	#Nodes	#Train Triples	#Valid Triples	#Test Triples
FB15k237	14541	272115	17535	20466
CoDEX Medium	17050	185584	10310	10311
WN18RR	40943	86835	3034	3134
NELL995	74536	149678	543	2818
ConceptNet100k	78334	100000	1200	1200

Table 2: The statistics of knowledge graph datasets.

G MORE RESULTS ON OTHER GRAPH TOKENIZERS

To provide a more extensive evaluation of our methodology, we additionally compare two more recent graph tokenization methods: *GPM* Wang et al. (2025a) and *G²PM* Wang et al. (2025b). Specifically, we conduct the same set of experiments on the Citation datasets as in Sections 4 and 5. The results are shown in the Figure 13, 14, 15 and 16. From these results, we find that GTID remains strongly correlated with the performance gaps. Moreover, structural GTID is still higher than feature GTID. The key difference is that *G²PM* exhibits lower structural GTID than *GPM*, and correspondingly achieves better transfer performance. This can be attributed to *G²PM*'s more advanced pretraining strategy, which combines both feature and structure reconstruction—consistent with the observations in the main text.

H MORE RESULTS ON THE ENCODER MODELS

To further demonstrate the generality of our methodology, we additionally evaluate it with different encoder backbones. As suggested, we replace the MPNN encoder with two representative graph transformers: Exphormer and GPS. We run the same experiments on the citation datasets. The results are reported in Figure 17, 18, 19 and 20. We observe that our main findings remain consistent across these architectures: the GTID-performance gap correlation still holds, and the limitations of graph quantization tokenizers appear for both MPNN- and transformer-based encoders. This suggests that

1026	Dataset	#Molecules
1027	PCBA	437,929
1028	HIV	41,127
1029	ChEMBL	365,065
1030	MUV	93,087
1031	ToxCast	8,576

Table 3: The statistics of molecule datasets.

Figure 9: The distributions of GTID of RVQ models on **knowledge graphs** datasets. We observe similar phenomena as in main texts.

the issue is not specific to a single encoder family, but reflects a broader challenge in current graph discretization methods.

Figure 10: The correlation between GTID and the model performance gap. We observe similar phenomena as in main texts.

Figure 11: The distributions of GTID of RVQ models on molecule datasets. We observe similar phenomena as in main texts.

1134
1135
1136
1137
1138
1139

1140 **RVQ on Molecule Datasets ($R^2=0.764$)**

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155 Figure 12: The correlation between GTID and the model performance gap. We observe similar
1156 phenomena as in main texts.
1157

1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182 Figure 13: The distributions of GTID of GPM models on citation datasets. We observe similar
1183 phenomena as in main texts.
1184
1185
1186
1187

Figure 14: The correlation between GTID and the GPM model performance gap. We observe similar phenomena as in main texts.

Figure 15: The distributions of GTID of G^2PM models on citation datasets. We observe similar phenomena as in main texts.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263

Figure 16: The correlation between GTID and the G^2PM model performance gap. We observe similar phenomena as in main texts.

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

Figure 17: The distributions of GTID of Exphormer+RVQ on citation datasets. We observe similar phenomena as in main texts.

1290
1291
1292
1293
1294
1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

Figure 18: The correlation between GTID and the Exphormer+RVQ model performance gap. We observe similar phenomena as in main texts.

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

Figure 19: The distributions of GTID of GPS+RVQ models on citation datasets. We observe similar phenomena as in main texts.

1346

1347

1348

1349

1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

Figure 20: The correlation between GTID and the GPS+RVQ model performance gap. We observe similar phenomena as in main texts.