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ABSTRACT

Graph tokenization aims to convert graph-structured data into discrete represen-
tations that can be used in foundation models. Recent methods propose to use
vector quantization to map nodes or subgraphs into discrete token IDs. However,
it remains unclear whether these quantized tokenizers truly capture high-level,
transferable graph patterns across diverse domains. In this work, we conduct
a comprehensive empirical study to analyze the representational consistency of
quantized graph tokens across different datasets. We introduce the Token Informa-
tion Discrepancy Score (TIDS) to quantify the alignment of structural and feature
information between source and target graphs for each token. Our results reveal
that current graph quantized tokenizers often assign the same token to structurally
inconsistent patterns across graphs, resulting in high TIDS and degraded transfer
performance. We further demonstrate that TIDS is positively correlated with the
generalization gap in downstream tasks. Finally, we propose a simple yet effective
structural hard encoding (SHE) strategy to enhance the structural awareness of the
tokenizer. SHE leads to lower TIDS and improved transferability, highlighting the
importance of explicitly encoding transferable graph structure in token design.

1 INTRODUCTION

In recent years, graph deep learning has emerged as a powerful toolkit for modeling data with inherent
relational structures (Ma & Tang, 2021; Xia et al., 2021a; Wu et al., 2020). Unlike traditional data
formats such as sequences (e.g., text) or grids (e.g., images), many real-world datasets, ranging from
citation networks to molecules (Xia et al., 2023; Jumper et al., 2021) , can be naturally represented
as graphs (Xia et al., 2021b). To effectively process graph-structured data, a variety of graph neural
networks (GNNs) have been proposed, including Graph Convolutional Networks (Yao et al., 2019),
Graph Attention Networks (Veličković et al., 2018), and Graph Transformers (Yun et al., 2019;
Rampášek et al., 2022; Chen et al., 2022). These graph learning methods can model non-Euclidean
data well and enable learning representations for nodes, edges, and entire graphs. However, despite
the impressive success of GNNs in many tasks, they usually can be trained and applied to a single
dataset. The efforts of the generalizing deep graph learning models to multiple datasets have only
made limited progress due to the diversity and complexity of the graph data (Mao et al., 2024).

On the other hand, the success of foundation models (Brown et al., 2020; Achiam et al., 2023;
Team et al., 2023) in natural language processing (NLP) and computer vision (CV) has motivated
researchers to explore analogous approaches for graphs (Mao et al., 2024). One of the important
attempts is graph tokenization (Yang et al., 2023; Chen et al., 2024a), a method inspired by text and
image tokenization, where raw graph inputs are transformed into a sequence or set of ”tokens” that
can be processed by powerful sequence models like transformers. Just as words or subwords serve as
basic units in language modeling, graph tokens aim to represent meaningful atomic or composite
units of graph data.

However, unlike the tokens can be naturally defined in langugae, the are no obvious basic unit in
the graph data. Hence, following the successful examples in CV (van den Oord et al., 2017; Lee
et al., 2022b; Tian et al., 2024), researchers recently proposed the quantization graph tokenizer (Wang
et al., 2024b; Luo et al., 2024) to learn the token representations. Specifically, the graph quantization
tokenization will learn to convert a graph or subgraph into a set of vectorized representations (tokens)
that encapsulate both the structural and feature information present in the original graph. Once the
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tokenizer is trained, they can be applied to more datasets and generate graph tokens. Currently, the
quantized graph tokenizer has achieved certain success in both supervised and unsupervised learning
senarios and on different downstream tasks such as node classification, link prediction, or graph
classification (Luo et al., 2024; Liu et al., 2023b; Wang et al., 2024a;b).

However, a fundamental question arises: Do current graph tokenization methods actually capture the
high-level, transferrable patterns inherent in graph data? In other words, do the quantized tokens
encode the vital graph structural information, instead of assigning the tokens heavily based on the
raw node features?

This question is related to the fundamental capabilities of graph quantized tokenizers. Many down-
stream tasks in graph learning rely heavily on recognizing high-level structural patterns, such as
degree distribution, homophily, and centrality. For example, in drug discovery, subtle topological
variations in molecular graphs—captured by molecular topology and centrality descriptors—can
directly influence biological activity and binding affinity (Zhang et al., 2025; Csermely et al., 2012).
In social networks, tasks like community detection or influence modeling also depend critically on
network connectivity and central nodes (Barabási & Oltvai, 2004; McPherson et al., 2001). When
quantization tokenization fails to preserve these essential graph properties, the resulting graph tokens
may omit meaningful structural patterns, impairing downstream task performance.

In this study, we present the first comprehensive empirical investigation into the knowledge encoded
by graph quantized tokenizers. Specifically, we measure the discrepancy in both structural and feature
information of nodes that are mapped to the same token across different datasets. Our analysis
reveals that identical tokens often correspond to markedly different structural distributions in different
graphs, indicating that current graph quantized tokenizers fail to capture high-level, transferable
patterns. This deficiency undermines both the stability and cross-domain generalization ability of
such tokenizers. The contributions of this work are as follows:

• We have analyzed both the structural and feature information encoded by the graph tokenizer.
We find that there are significant information distribution discrepancies for the same token
across different graphs.

• We show that the information discrepency of the tokens will hinder the model’s transferra-
bility, resulting in sub-optimal performance on the downstream tasks.

• Based on the findings above, we propose a trick to explicitly help the graph quantization
tokenizer to encode the structural information. We show that the trick could mitigate the
information discrepancy of tokens on different graphs, further affirming the value of our
observations.

2 RELATED WORKS

Graph tokenization sits at the intersection of representation learning, graph neural networks (GNNs),
and transformer-based models, drawing inspiration from tokenization practices in natural language
processing and computer vision. Several strands of related research contribute to the development of
tokenization methods for graph data.

Quantization and Discrete Representation Learning. Quantized latent representation learning
has emerged as a powerful strategy to bridge the gap between continuous data and discrete sym-
bolic reasoning. Among the most influential approaches, Vector Quantized Variational Autoencoder
(VQ-VAE) (van den Oord et al., 2017; Esser et al., 2021) introduced a discrete bottleneck into
the autoencoding framework, enabling learning of a codebook of latent embeddings that can com-
pactly represent high-dimensional inputs. VQ-VAE has seen broad success in areas such as image
generation, speech modeling, and language modeling, where discrete tokens enable autoregressive
decoding and large-scale pretraining. Its extension, Residual Quantized VAE (RQ-VAE) (Lee et al.,
2022a) addresses the limited capacity of shallow codebooks by employing multi-level quantization,
decomposing inputs into multiple additive residuals. This yields richer token representations and
better compression, making it particularly suitable for complex modalities.

Quantized Representations in Graph Learning. Despite the success of VQ-VAE in vision and
language domains, its adaptation to graph-structured data remains relatively underexplored. Unlike
pixels or words, graphs are non-Euclidean and permutation-invariant, posing significant challenges
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Figure 1: The pipeline of graph quantized tokenizer.

for tokenization. Several recent efforts have sought to bridge this gap. GraphMAE (Hou et al., 2022)
and GPT-GNN (Hu et al., 2020) introduced self-supervised frameworks for node- and graph-level
representation learning, but they rely on continuous encodings. A more direct attempt at tokenization
can be found in GVT (You et al., 2023), which integrates VQ-VAE to learn discrete node prototypes
and supports masked autoencoding on graphs. However, such methods typically apply quantization
at the node level, ignoring higher-order structures or global subgraph semantics.

Graph Pretraining with Structural Discreteness. Recent works such as OneForAll (Liu et al.,
2023a) and GFT (Graph Foundation Model with Transferable Tree Vocabulary) (Wang et al., 2024b)
argue for discrete graph vocabulary learning to enable large-scale generalization across domains.
OneForAll explores cross-domain pretraining with task-level tokenization, while GFT builds hierar-
chical tree vocabularies based on rooted subtrees, which are then quantized for structural reuse. Other
notable approaches include AnyGraph (Xia & Huang, 2024), which aims to unify different graph
modalities with plug-and-play architecture, and GraphPrompt (Jin et al., 2022), which leverages
discrete prompts to guide downstream adaptation.

3 METHODOLOGY

In this section, we will introduce the graph quantized tokenizer to be investigated. We will first intro-
duce the key components, namely Vector Quantization (VQ) and Residual Vector Quantization (RVQ).
Next, we will introduce the whole pipeline as shown in Fig. 1.

3.1 VECTOR QUANTIZATION METHODS

Vector Quantization (VQ) (Gray, 1984; Gong et al., 2014; Esser et al., 2021) aims to represent
a large set of vectors, Z = {zi}Ni=1, with a small set of prototype (code) vectors of a codebook
C = {ek}Kk=1, where N ≫ K. The codebook is often created using algorithms such as k-means
clustering via optimizing the following objective:

min
C

N∑
i=1

K
min
k=1

||zi − ek||22 . (1)

Once the codebook is learned, each vector zi can be approximated by its closet prototype vector et,
where t = argmink ||zi − ek||22 is the index of the prototype vector.

Residual Vector Quantization (RVQ) (Juang & Gray, 1982; Martinez et al., 2014; Lee et al., 2022a)
is an extension of the basic VQ. After performing an initial VQ, the residual vector is calculated:

ri = zi − et, (2)

which represents the quantization error from the initial quantization. Then, the residual vectors ri are
quantized using a second codebook. This process can be repeated multiple times, with each stage
quantizing the residual error from the previous stage.

3
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3.2 GRAPH QUANTIZED TOKENIZER

The graph quantized tokenizer intends to assign a token ID to the given node based on its own feature
and neighboring nodes. To generate structure-aware node IDs, we employ an L-layer MPNN to
capture multi-order neighborhood structures. At each layer, we use vector quantization to encode the
node embeddings produced by the MPNN into M codewords (integer indices). For each node v, we
define the node ID of v as a tuple composed of L×M codewords, structured as follows:

Node ID(v) = (c11, · · · , c1M , c21, · · · , c2M , · · · ) (3)

where clm represents the m-th codeword at the l-th layer. Both M and L can be very small.

As illustrated in Fig. 1, at each layer l (1 ≤ l ≤ L) of the MPNN, we employ VQ/RVQ to quantize
the node embeddings and produce M digits of codewords for each node v. Each codeword clm
(1 ≤ m ≤ M ) is generated by a distinct codebook Clm = {elmk }Kk=1, where K is the size of the
codebook. Hence, there are a total of L×M codebooks, indexed by lm. Let rlm denote the vector
to be quantized. Note that rl1 is the node embedding hlv produced by the MPNN. When m > 1,
rlm represents the residual vector. Then, rlm is approximated by its nearest code vector from the
corresponding codebook Clm:

clm = argmin
k

||rlm − elmk ||, (4)

producing the codeword clm, which is the index of the nearest code vector.

We follow the existing framework for learning node token IDs (codewords clm) by jointly training
the MPNN and the codebooks with the following loss function:

Ltotal = LG + LVQ, (5)

where LG is a (self)-supervised graph learning objective, and LVQ is a vector quantization loss. LG
aims to train the MPNN to produce effective node embeddings, while LVQ ensures the codebook
vectors align well with the node embeddings. For a single node v, LVQ is defined as

LVQ =

L∑
l=1

M∑
m=1

∥sg(rlm)− elmclm∥+ β∥rlm − sg(elmclm)∥, (6)

where sg denotes the stop gradient operation, and β is a weight parameter. The first term in Eq. (6) is
the codebook loss, which only affects the codebook and brings the selected code vector close to the
node embedding. The second term is the commitment loss, which only influences the node embedding
and ensures the proximity of the node embedding to the selected code vector. In practice, we can use
exponential moving averages (Razavi et al., 2019) as a substitute for the codebook loss.

The graph learning objective LG can be a self-supervised learning task, such as graph reconstruction
(i.e., reconstructing the node features or graph structures) or contrastive learning (Liu et al., 2021).
In this paper, we follow most of the existing works that utilize GraphMAE (Hou et al., 2022).
GraphMAE involves sampling a subset of nodes Ṽ ⊂ V , masking the node features as X̃ , encoding
the masked node features using an MPNN, and subsequently reconstructing the masked features with
a decoder. The reconstruction loss is based on the scaled cosine error, expressed as:

LMAE =
1

|Ṽ|

∑
v∈Ṽ

(
1− xTv zv

∥xv∥ · ∥zv∥
· γ

)
,

where Ṽ is the set of masked nodes, zv = fD(h̃
L

v ) is the reconstructed node features by a decoder fD,

h̃
L

v = MPNN(v,A, X̃), and γ ≥ 1 is a scaling factor. Let r̃l1 := h̃
l

v denote the node embedding
generated by the l-th layer of the MPNN with the masked features. The overall training loss is

Ltotal = LMAE +
∑
v∈Ṽ

L∑
l=1

M∑
m=1

∥sg(r̃lm)− eclm∥+ β∥r̃lm − sg(eclm)∥. (7)
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4 PRELIMILARY

4.1 EXPERIMENT SETUPS

Here we first introduce our experiment setups, i.e., how we train and evaluate the graph quantized
tokenizer. In order to obtain the comprehensive results, we train and evaluate both VQ and RVQ
methods. For all the models, we set the number of MPNN layers to be 2, and the number of codewords
to be 3. We train the tokenizer on the datasets from two domains: citation graphs and e-commerce
networks. The citation graphs include: cora, citesser, dblp, arxiv and pubMed. The e-commerce
graphs include: bookhis, bookchild, elecomp, elephoto and sportsfit. The detailed information of the
datasets can be found in Appendix A. For each domain, we pretrain the tokenzier on 1 to 4 datasets
and then use infer on the remaining datasets in the domain. On both training and test datasets, we
will record the subgraphs that assigned to each token ID. For instance, for a node token ID cmn, we
will record the subgraphs in training set assigned to it as a Smn,train, and we will record the the
subgraphs in test set assigned to it as a Smn,test Then we would calculate the information discrepancy
between Smn,train and Smn,test for each token.

4.2 EVALUATION METRIC

Here we will introduce the metric we design to measure the information discrepancy of tokens.
Specifically, we design a metric named Graph Token Information Discrepency Score (GTID) to
calculate the discrepancy between Smn,train and Smn,test. Suppose the representations of Smn,train
and Smn,tes are fmn,train and fmn,test. Following the previous works (Yan et al., 2017; Wang
et al., 2021), we use Maximum Mean Discrepancy (MMD) to calculate the discrepancy between
fmn,train and fmn,test. Specifically, we tend to compare the MMD computed on node features
and structures. Therefore, we adapt Normalized Maximum Mean Discrepancy (NMMD) in this
work. First we normalize the vectors in fmn,train and fmn,test and denote f̂mn,train = {pi}vi=1 and
f̂mn,test = {qi}wi=1: Then we first calculate the MMD of the two vector sets:

M̂MD
2
=

1

v2

v∑
i=1

v∑
i′=1

k(pi,pi′) +
1

w2

w∑
j=1

w∑
j′=1

k(qj ,qj′)−
2

vw

v∑
i=1

w∑
j=1

k(pi,qj). (8)

where k(·, ·) is an RKHS kernel. And next we calculate the variance-normalized MMD:

N̂MMD
2
=

M̂MD
2

V̂
, V̂ =

1

v

v∑
i=1

k(pi,qi) +
1

w

w∑
j=1

k(qj ,qj). (9)

Finally, the GTID between the train and test domains is calculated with average of the normalized
maximum mean discrepancy on all the codewords:

GTID =

∑
m

∑
nNMMD(fmn,train, fmn,test)

mn
(10)

The more information of calculation of Maximum Mean Discrepancy and Normalized Maximum
Mean Discrepancy can be found in the Appendix. In general, the larger GTID is, the larger information
discrepancy is.

Since the subgraphs contain both structural and feature information, we will calculate the GTID
for node features and structures respectively. For node features, we adapt the set of center node
features as fmn,train and fmn,test. For the structures, we calculate the structure property vectors
[degree, clustering coefficient, closeness centrality, density, assortativity, transitivity, homophily]
as the representations. We give the details of calculating the structural properties in Appendix C.
Next, we will analyze the GTID and their relations to the model generalization. We observed similar
phenomena for both RVQ and VQ tokenizers. Hence, we mainly discuss the results based on RVQ
tokenizer and leave the results of VQ tokenizer to Appendix E.
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4.3 THEORETICAL ANALYSIS

Before diving into the empirical observations, we first derive theorectical analysis to prove the
relationship between the token information discrepancy and the model transferability. We tend to
prove that low information discrepancy in tokens can lead to higher transferability and do this for
both node features and ego-graph structures. We will first give the theorems and provide the full
proof in Appendix D.
Theorem 1 (Code-Conditional Transfer Bound: Feature View). Let Ds,Dt be source/target node
datasets (from graphs Gs, Gt). Each node v has an L-hop ego-subgraph g(v) with feature tensor.
A fixed encoder ϕ : G → Rm maps g to z = ϕ(g). A codebook Q with codes {c1, . . . , cK} assigns
K(g) = Q(z) ∈ [K] by nearest center. A predictor h consumes a feature summary u(g) ∈ Rd′ (e.g.,
pooled/root features), and the loss ℓ : Y × Y → [0, 1] is bounded.

Notation. Let πα(k) = Pr(g,y)∼Dα
[K(g) = k] for α ∈ {s, t}, and let Pkα be the conditional

law of (g, x, y) given K(g) = k. Define risks εα(h◦Q◦ϕ) = EDα
[ℓ(h(Q(ϕ(g))), y)]. Let the

code-marginal drift be ∆code :=
1
2

∑K
k=1 |πt(k)− πs(k)|. Define the quantization distortion ∆q :=

sup(g,y) |ℓ(h(Q(ϕ(g))), y)−ℓ(h(ϕ(g)), y)|, and let pmis := Pr[K(g) is a misassignment] (e.g., stale
codebook/ANN search).

Assumptions. (i) There exists a (possibly identity) preprocessing S : Rd′ → Rd′ such that u 7→
ℓ(h(u), y) is Lu-Lipschitz uniformly in y. (ii) For each code k, define the within-code feature
discrepancy

∆feat
k := W1

(
Lt(S(u) | K = k) , Ls(S(u) | K = k)

)
,

the 1-Wasserstein distance between the conditional feature summaries.

Claim. For any δ ∈ (0, 1), with probability at least 1− δ over the draws of the (finite) datasets and
the code-conditional estimates,

εt − εs ≤
K∑
k=1

πt(k)Lu∆
feat
k + ∆code + ∆q + pmis + c1

√
log(2K/δ)

mink nt(k)
+ c2(Rns +Rnt)

Here nt(k) is the number of target samples with K = k, Rnα denotes the Rademacher complexity of
the induced loss class on domain α, and constants c1, c2 depend only on sub-Gaussian/boundedness
parameters of S(u) and on standard symmetrization constants.
Theorem 2 (Code-Conditional Transfer Bound: Structure View). Same as Theorem 1, except the
predictor h depends on a structural representation ψ(g) that lies in an RKHS (H, ⟨·, ·⟩H) with kernel
k(·, ·) and ∥ψ(g)∥H ≤ B. Risks, πα(k), Pkα, ∆code, ∆q, and pmis are as defined there.

Assumptions. (i) For each code k, the conditional loss as a function of ψ(g) belongs to a bounded
RKHS ball: there exists fk ∈ H with ∥fk∥H ≤ C such that E[ℓ(h(ψ(g)), y) | g,K = k] =
⟨fk, ψ(g)⟩H. (ii) For each code k, define the within-code structural discrepancy

∆struct
k := MMDH

(
Lt(ψ | K = k) , Ls(ψ | K = k)

)
.

Claim. For any δ ∈ (0, 1), with probability at least 1− δ,

εt − εs ≤
K∑
k=1

πt(k)C∆struct
k + ∆code + ∆q + pmis + c̃1

√
log(2K/δ)

mink nt(k)
+ c̃2(Rns

+Rnt
) ,

where c̃1, c̃2 depend only on the kernel bound k(x, x) ≤ B2 and standard generalization constants.

5 RESULTS AND OBSERVATIONS

5.1 THE GTID DISTRIBUTIONS

Following the evaluation process above, we can pretrain the tokenizers and evaluate them. Specifically,
we would pretrain the tokenizer with different combinations of datasets: from single dataset to four

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

co
ra

pu
bm

ed db
lp

cit
es

ee
r

ar
xiv

co
_p

u
co

_d
b

co
_c

i
ar

_d
b

ar
_c

i
db

_c
i

pu
_d

b
pu

_a
r

pu
_c

i
co

_a
r

co
_p

u_
ax

co
_p

u_
db

co
_p

u_
ci

co
_a

r_d
b

co
_a

r_c
i

co
_d

b_
ci

pu
_a

r_d
b

pu
_a

r_c
i

pu
_d

b_
ci

ar
_d

b_
ci

cit
at

ion
_w

o_
co

ra
cit

at
ion

_w
o_

pu
bm

ed
cit

at
ion

_w
o_

db
lp

cit
at

ion
_w

o_
ar

xiv
cit

at
ion

_w
o_

cit
es

ee
r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TI
DS

1 pretrain dataset 2 pretrain datasets 3 pretrain datasets 4 pretrain datasets

Feature Structure

Figure 2: The distributions of GTID of RVQ models on citation datasets.
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Figure 3: The distributions of GTID of RVQ models on e-commerce datasets.

datasets together. Then we will evaluate them on the remaining datasets in the same domain and
calculate the corresponding GTID. The results are shown in Figure 2 and Figure 3 for the Citation
domain and E-commerce domain, respectively.

Across both domains, we observe a consistent and obvious gap between structure-based and feature-
based GTID. While feature discrepancy tends to decrease gradually as the number of pretraining
datasets increases, the structural GTID remains relatively high and fluctuates across settings. This
suggests that even with multi-dataset pretraining, the tokenizer struggles to align structural information
consistently. For instance, in the Citation domain (Figure 2), structural GTID plateaus after the
second pretraining dataset, indicating limited marginal gains in structural transferability. A similar
trend is seen in the E-Commerce domain where feature-based discrepancy steadily decreases but
structural discrepancy remains elevated, particularly in dataset groups that are structurally diverse.

Furthermore, while tokenizers benefit from more diverse feature distributions during pretraining, their
ability to generalize structural semantics is far more constrained. This asymmetry highlights a key
limitation of current quantization-based tokenizers: their reliance on local node features or first-order
neighborhoods makes it difficult to internalize structural motifs that generalize across domains with
heterogeneous graph topology. Hence, we would have the following observation:

Observation 1: The graph quantized tokenizes have difficulty capturing the transferrable
patterns across graphs, especially the structural patterns.
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Figure 4: The correlation between GTID and the model performance gap.

5.2 THE CORRELATIONS BETWEEN GTID AND MODEL’S TRANSFERABILITY

Furthermore, we leverage the results above to analyze the relationship between model generalization
and performance gaps. Specifically, we define the performance gap (PG) as a metric to quantify
generalization ability, measured by the accuracy difference between inter-dataset and intra-dataset
pretraining.

For example, consider two datasets, A and B. Let P1 denote the node classification accuracy of a
model pretrained onA and fine-tuned onBtrain, and P2 denote the accuracy of a model both pretrained
and fine-tuned on Btrain (Btrain and Btrain are the training part and test part of dataset B, respectively).
The performance gap is then computed as:

PG =
P2 − P1

P2
.

This normalized gap reflects how well the pretrained knowledge transfers across datasets. The results
are shown in Figure 4. The reported coefficient of determination (R2) quantifies the extent to which
GTID explains the transfer performance degradation.

The results are shown in Figure 4. Across all settings, we observe a strong positive correlation between
GTID and performance gap. In the Citation domain, feature-based GTID achieves an R2 of 0.714,
while structure-based GTID yields 0.707. A similar trend is observed in the E-Commerce domain,
where the feature and structure correlations yield R2 values of 0.709 and 0.692, respectively. These
results suggest that both forms of token discrepancy significantly affect downstream transferability,
with feature discrepancy often exhibiting slightly higher explanatory power, potentially due to its
stronger alignment with task-relevant attributes.

These findings indicate that token consistency across domains is critical for effective transfer learning.
When the same token index encodes semantically or structurally divergent patterns across graphs,
the transfer model struggles to leverage pre-learned representations. This mismatch leads to notable
performance degradation during cross-domain adaptation.

Observation 2: The GTID is positively correlated the performance gap, indicating that the
information discrepancy of the tokens will hinder model’s transferability.
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Figure 5: Comparison with the original RVQ tokenizer after utilizing the structural hard encoding.

5.3 STRUCTURAL HARD ENCODING

To evaluate whether adding structural information to the tokenizer can improve transferability, we
incorporate a simple yet effective inductive bias: Structural Hard Encoding (SHE). SHE explicitly
encodes high-level structural cues (e.g., node degree bins, positional encodings) into the input of
the quantized tokenizer, aiming to reduce the mismatch in structural semantics across graphs. For
instance, nodes with degree 1 or 2 can only be assigned to ID 0 to 31, nodes with degree 3 can only
assigned to ID 32 to 63, etc. In this way, we force the token ID distinguish with each other as their
corresponding subgraphs will have structural properties’ differece.

As shown in Figures 5, SHE leads to a notable improvement in both structural alignment and
downstream task performance. In Figure 5 Left, we observe that for all test graphs (Cora, Citeseer,
DBLP, Pubmed), the structure-based GTID is consistently lower when using RVQ with SHE compared
to vanilla RVQ. This reduction is especially pronounced on datasets with higher structural variability
(e.g., DBLP and Pubmed), indicating that SHE effectively mitigates token inconsistency arising from
structural heterogeneity.

The benefits of this structural regularization also translate into improved model generalization.
Figure 5 Right shows that the performance gap between source-pretrained and target-finetuned
models is also reduced across the same set of graphs when SHE is applied. This reinforces the
claim that lower GTID correlates with improved transferability, and affirms that enhancing structural
awareness during tokenization is a viable pathway to better cross-graph generalization. Hence, we
would have the following observation:

Observation 3: With structural hard encoding (SHE), the RVQ tokenizer can reduce the
structural GTID and performance gaps, which further affirm our previous observations and
the importance of capturing transferrable for tokens.

6 CONCLUSION

In this paper, we investigate whether graph quantized tokenizers can capture transferable patterns
across graph datasets. Through a detailed empirical analysis, we show that tokenized representations
suffer from significant information discrepancies, particularly in structural properties, across different
domains. We introduce the Token Information Discrepancy Score (TIDS) to quantify this phenomenon
and demonstrate its strong correlation with performance degradation in transfer learning settings.
These findings indicate that current quantized tokenization schemes are limited in their ability to
produce consistent, reusable representations for graph data. To address this, we propose Structural
Hard Encoding (SHE), a simple inductive bias that explicitly incorporates structural signals into the
token assignment process. Our experiments show that SHE significantly reduces structural TIDS and
improves cross-domain performance, validating our core hypothesis. This work provides actionable
insights into the limitations of current graph tokenizers and opens up future research directions on
structure-aware, transferable graph token learning.
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A DATASET DETAILS

Table 1 presents the detailed statistics of datasets we used in our experiments, including the dataset’s
domain and sizes.

Table 1: Dataset statistics.
Dataset Domain # Nodes # Edges

Cora Citation 2708 10556
Citeseer Citation 3186 8450
Pubmed Citation 19717 88648
DBLP Citation 14376 431326
Arxiv Citation 169343 2315598
Bookhis E-commerce 41551 503180
Bookchild E-commerce 76875 2325044
Elecomp E-commerce 87229 1256548
Elephoto E-commerce 48362 873782
Sportsfit E-commerce 173055 3020134

B MAXIMUM MEAN DISCREPANCY

Maximum Mean Discrepancy (MMD) is a statistical distance metric used to measure the discrepancy
between two probability distributions P and Q over a domain X . Formally, given a function class F ,
the MMD is defined as

MMD[F , P,Q] = sup
f∈F

(Ex∼P [f(x)]− Ey∼Q[f(y)]) .

When F is chosen to be the unit ball in a Reproducing Kernel Hilbert Space (RKHS) H with kernel
function k, the squared MMD can be computed in closed form as

MMD2(P,Q) = Ex,x′∼P [k(x, x
′)] + Ey,y′∼Q[k(y, y′)]

For empirical distributions based on samples {xi}mi=1 from P and {yj}nj=1 from Q, an unbiased
estimator of the squared MMD is given by

MMD2(P,Q) =
1

m(m− 1)

∑
i̸=j

k(xi, xj) +
1

n(n− 1)

∑
i̸=j

k(yi, yj)

This formulation makes MMD particularly useful for two-sample tests and as a loss function in
machine learning tasks such as domain adaptation and generative modeling. The Normalized
Maximum Mean Discrepancy is calculated as

Normalized MMD2(P,Q) =
MMD2(P,Q)

MMD2(P, P ) +MMD2(Q,Q)

C THE DEFINATIONS OF THE STRUCTURAL PROPERTIES

Degree (node & average)

ki =

n∑
j=1

Aij , k̄ =
1

n

n∑
i=1

ki =
2m

n
.

Local clustering coefficient & global averages:

Ci =


2 ti

ki(ki − 1)
, ki ≥ 2,

0, ki < 2,
where ti =

∑
1≤p<q≤n

AipAiqApq.
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Cavg =
1

n

n∑
i=1

Ci.

Closeness centrality:

clo(i) =

n∑
j=1
j ̸=i

d(i, j), CC(i) =
n− 1

clo(i)
.

Density:

δ(G) =
2m

n(n− 1)
.

Degree assortativity: Let µ = 1
2m

∑
(u,v)∈E

(
ku + kv

)
.

rdeg =

1

m

∑
(u,v)∈E

kukv − µ2

1

m

∑
(u,v)∈E

k2u + k2v
2

− µ2

.

Transitivity:

T =
3△
∧

=

n∑
i=1

2 ti

n∑
i=1

ki(ki − 1)

,

where △ is the number of triangles and ∧ =
∑
i

(
ki
2

)
is the number of connected triples.

Homophily: Given a discrete node attribute x : V →{1, . . . , C}, define

Hedge =
1

m

∑
(u,v)∈E

1[x(u) = x(v)] (edge homophily rate).

Let pc =
|{i∈V :x(i)=c}|

n and H0 =
∑C
c=1 p

2
c . A normalized (chance-corrected) homophily index is

Hnorm =
Hedge −H0

1−H0
.

D PROOF FOR THE THEOREMS

Since the two theorems have similar structures, we will prove them parallely in this section. We will
first introduce some definations and notations and will then move to the proof.

Setting. Let Ds,Dt be source/target node datasets drawn from graphs Gs, Gt, respectively. Each
node v has an L-hop ego-subgraph g(v) with feature tensor; let ϕ : G → Rm be a (fixed) encoder,
and Q a codebook with codes {c1, . . . , cK}. Write Z = ϕ(g) and K(g) = Q(Z) ∈ [K]. A predictor
h maps either (i) a feature summary u(g) ∈ Rd′ or (ii) a structural embedding ψ(g) ∈ H to a
prediction; the loss ℓ is bounded in [0, 1].

Let πα(k) = P(g,y)∼Dα
[K(g) = k] for α ∈ {s, t}, and Pkα be the law of (g, x, y) conditional on

K(g) = k. Define risks εα(h ◦Q ◦ ϕ) = EDα
ℓ(h(Q(ϕ(g))), y).

We also consider the pre-quantization predictor f̃ = h ◦ ϕ and the post-quantization predictor
f = h ◦Q ◦ ϕ. Define the quantization distortion

∆q := sup
(g,y)

|ℓ(h(Q(ϕ(g))), y)− ℓ(h(ϕ(g)), y)| .

Let M(g) be the event that g is assigned to a code whose center lies outside a radius-τ cell around
ϕ(g) (misassignment due to finite codebook update); set pmis = P[M(g)].
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Code-wise discrepancy metrics. For each code k:

(Feature view) Fix a 1-Lipschitz map S : Rd′ → Rd′ (possibly identity) and suppose the composed
map u 7→ ℓ(h(u), y) is Lu-Lipschitz uniformly in y. Let

∆feat
k := W1

(
Lt(S(u) | k) , Ls(S(u) | k)

)
.

(Structure view) Let ψ(g) ∈ H be a bounded kernel embedding with ∥ψ(g)∥H ≤ B; assume the
function fψ : H → [0, 1] defined by fψ(ψ(g)) = E[ℓ(h(ψ(g)), y) | g] lies in the RKHS ball CBH.
Define

∆struct
k := MMDH

(
Lt(ψ | k) , Ls(ψ | k)

)
.

Additionally define the code-marginal drift

∆code := TV(πt, πs) =
1

2

K∑
k=1

|πt(k)− πs(k)| .

Loss class and calibration. Let F = { g 7→ ℓ(h(·), y) } be the induced loss class after u or
ψ. Assume a margin-calibrated property: there exists a non-decreasing Γ : [0, 1] → [0, 1] s.t.
|EPf − EQf | ≤ Γ

(
IPM(P,Q)

)
for f ∈ F , where IPM = W1 in the feature case, and IPM =

MMDH in the structure case. For Lipschitz/H-bounded classes we can take Γ(r) = Lur and
Γ(r) = Cr, respectively.

Finite-sample estimation. Suppose we observe nα i.i.d. nodes from Dα, with nα(k) landing in
code k. Let ∆̂feat

k (resp. ∆̂struct
k ) be empirical estimators. Assume S(u) is sub-Gaussian with proxy

σ2 (per coordinate), and the kernel for ψ is bounded by B. Let δ ∈ (0, 1).

Theorem. With probability at least 1− δ, simultaneously for the feature and structure views,

εt(f) − εs(f) ≤
K∑
k=1

πt(k) Γ
(
∆k

)
︸ ︷︷ ︸
code-conditional shift

+ ∆code + ∆q + pmis

+ c1

√
log(2K/δ)

mink nt(k)︸ ︷︷ ︸
conditional estimation

+ c2

(
Rns

(F) +Rnt
(F)

)
︸ ︷︷ ︸

function class complexity

,

where ∆k equals ∆feat
k in the feature view (with Γ(r) = Lur) and equals ∆struct

k in the structure
view (with Γ(r) = Cr). Constants c1, c2 depend only on universal sub-Gaussian/kernel bounds.

Remarks. (i) The first three additive terms quantify, respectively, within-code conditional mismatch,
code-marginal mismatch, and quantization distortion; pmis captures assignment noise (e.g., stale
codebook). (ii) The last two terms are finite-sample effects: conditional-IPM estimation error and
richness of the induced loss class. (iii) If ϕ is Lϕ-Lipschitz on (G, d) and Q has cells of diameter τ ,
then ∆q ≤ LℓLhLϕ τ .

Proof. We start from the risk decomposition by code:

εt(f)− εs(f) =

K∑
k=1

πt(k)
(
EPk

t
ℓ(h(ck), y)− EPk

s
ℓ(h(ck), y)

)
+

K∑
k=1

(πt(k)− πs(k))EPk
s
ℓ(h(ck), y).

(11)

The second sum is bounded by TV(πt, πs) since ℓ ∈ [0, 1].

Step 1 (replace Q ◦ ϕ by ϕ with distortion). Insert and subtract ℓ(h(ϕ(g)), y) inside each conditional
expectation. By the definition of ∆q and the misassignment indicator M(g),∣∣EPk

α
ℓ(h(ck), y)− EPk

α
ℓ(h(ϕ(g)), y)

∣∣ ≤ ∆q + PPk
α
[M(g)] ≤ ∆q + pmis.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Applying to α ∈ {s, t} and summing, we accrue an additive 2(∆q + pmis); absorb constants to keep
a single (∆q + pmis) term.

Step 2 (conditional IPM bound). Define Fk as the function class {(g, y) 7→
ℓ(h(·), y) restricted to code k}.

Feature view. Assume u 7→ ℓ(h(u), y) is Lu-Lipschitz, uniformly in y. By Kantorovich–Rubinstein
duality,∣∣∣EPk

t
ℓ(h(ϕ(g)), y)− EPk

s
ℓ(h(ϕ(g)), y)

∣∣∣ ≤ LuW1

(
Lt(S(u) | k), Ls(S(u) | k)

)
= Lu∆

feat
k .

Structure view. Let H be the RKHS with kernel k(·, ·) and unit ball BH. Assume the conditional
expectation functional over ψ(g) lies in CBH: ℓ(h(ψ(g)), y) = ⟨fk, ψ(g)⟩H with ∥fk∥H ≤ C. Then
by the MMD IPM property,∣∣∣EPk

t
ℓ(h(ϕ(g)), y)− EPk

s
ℓ(h(ϕ(g)), y)

∣∣∣ ≤ CMMDH
(
Lt(ψ | k), Ls(ψ | k)

)
= C∆struct

k .

Thus, in either view, ∣∣∣EPk
t
ℓ(h(ϕ(g)), y)− EPk

s
ℓ(h(ϕ(g)), y)

∣∣∣ ≤ Γ(∆k).

Multiply by πt(k) and sum over k to control the first sum in (11).

Step 3 (finite-sample estimation of conditional IPMs). Let ∆̂k be an empirical estimator based on
nt(k) and ns(k) samples in code k.

Feature view. Assume S(u) is sub-Gaussian with parameter σ2 and bounded support radiusR (w.l.o.g.
by truncation). Then standard Wasserstein concentration (e.g., Bobkov–Götze type or transportation
inequalities) yields, for each k and any η > 0, with probability ≥ 1− η,∣∣∣Ŵ1(P̂kt , P̂ks)−W1(Pkt ,Pks)

∣∣∣ ≤ C1σ
(√

1
nt(k)

+
√

1
ns(k)

)
+ C ′

1

√
log(1/η)

min{nt(k),ns(k)} .

A union bound over k with η = δ/(2K) gives the displayed c1 term.

Structure view. For bounded kernels, MMD admits sub-Gaussian concentration; with k(x, x) ≤ B2,∣∣∣M̂MDH −MMDH

∣∣∣ ≤ C2B
(√

1
nt(k)

+
√

1
ns(k)

)
+ C ′

2

√
log(1/η)

min{nt(k),ns(k)} .

Apply a union bound across k.

Step 4 (function class complexity for empirical risk plug-in). If εα(f) is replaced by empirical risks
ε̂α(f) in (11) to obtain data-driven guarantees, standard symmetrization yields

E
[
sup
f∈F

|εα(f)− ε̂α(f)|
]

≤ cRnα(F),

and concentration around the mean (e.g., Bousquet inequality) adds a term O(
√
log(1/δ)/nα).

Since F is the composition of Lipschitz h, ℓ with ϕ and either u or ψ, Rn(F) inherits Lipschitz
contractions.

Collecting all pieces completes the proof.
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E RESULTS ON VQ TOKENIZER

In this section, we repeat the experiments in the main text and report the results in Figure 6, 7 and 8.
Overall, we get similar observations as on RVQ, further supporting our conclusions.
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Figure 6: The distributions of GTID of VQ models on citation datasets.
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Figure 7: The distributions of GTID of VQ models on e-commerce datasets.
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Figure 8: The correlation between GTID and the VQ model performance gap. We observe similar
phenomena as RVQ tokenizers.
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