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ABSTRACT

Stein variational gradient descent (SVGD) (Liu & Wang, 2016) is a particle-based
technique for Bayesian inference. SVGD has recently gained popularity because it
combines the ability of variational inference to handle tall data with the modeling
power of non-parametric inference. Unfortunately, variance estimation scales
inversely with the dimensionality of the model leading to underestimation, meaning
more particles are required to represent high-dimensional models adequately. Stein
mixtures (Nalisnick & Smyth, 2017) alleviate the exponential growth in particles by
letting each particle parameterize a distribution. However, the inference algorithm
proposed by Nalisnick & Smyth (2017) can be numerically unstable. We show that
their algorithm corresponds to inference with the Rényi α-divergence for α = 0 and
that using other values for α can lead to a more stable inference. We empirically
study the performance of Stein mixtures inferred with different α values on various
real-world problems, demonstrating significantly and consistently improved results
when using α = 1, which corresponds to using the evidence lower bound (ELBO).
We call this instance of our algorithm ELBO-within-Stein. An easy-to-use version
of the inference algorithm (for arbitrary α ∈ R) is available in the deep probabilistic
programming language NumPyro (Phan et al., 2019).

1 INTRODUCTION

The ability of Bayesian deep learning to quantify the uncertainty of predictions by deep models is
causing a surge of interest in using these techniques (Izmailov et al., 2021). Bayesian inference aims
to describe i.i.d. data D = {xi}ni=1 using a model with latent a variable z. Bayesian inference does
this by computing a posterior distribution p(z|D) over the latent variable given a model describing
the joint distribution p(z,D) = p(D|z)p(z). We obtain the posterior by following Bayes’ theorem,

p(z|D) =
∏n

i=1 p(xi|z)p(z)/p(D),

where p(D) =
∫
z

∏n
i=1 p(xi|z)p(z)dz is the normalization constant. For most practical models, the

normalization constant lacks an analytic solution or poses a computability problem, complicating the
Bayesian inference problem.

Stein variational gradient descent (SVGD) (Liu & Wang, 2016) is a recent technique for Bayesian
inference that uses a set of particles Z = {zi}Ni=1 to approximate the posterior p(z|D). The idea
behind SVGD is to iteratively transport Z according to a force field SZ , called the Stein force. The
Stein force is given by

SZ(zi) = Ezj∼qZ [k(zi, zj)∇zj
log p(zj |D) +∇zj

k(zi, zj)], (1)

where k(·, ·) is a reproducing kernel (Berlinet & Thomas-Agnan, 2011), qZ = N−1
∑
i δzi

is the
empirical measure on the set of particles Z , δx(y) represents the Dirac delta measure, which is equal
to 1 if x = y and 0 otherwise, and ∇zj log p(zj |D) is the gradient of the posterior with respect to
the j-th particle. The technique is scalable to tall data (i.e. datasets with many data points) and
offers the flexibility and scope of techniques such as Markov chain Monte Carlo (MCMC). SVGD is
good at capturing multi-modality (Liu & Wang, 2016; Wang & Liu, 2019), and has useful theoretical
interpretations such as a set of particles following a gradient flow (Liu, 2017) or in terms of the
properties of kernels (Liu & Wang, 2018).

The main problem is that SVGD suffers from the curse of dimensionality: variance estimation scales
inversely with dimensionality (Ba et al., 2021). Nalisnick & Smyth (2017) suggest resolving this by
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using a Stein mixture (SM). SMs lift each particle to the parameters of a variational distribution q,
also called a guide. The idea is that each guide in the Stein mixture represents the density of multiple
particles in SVGD, thereby reducing the number of particles needed to represent a posterior. The
Nalisnick & Smyth algorithm introduces guides by replacing each posterior gradient∇zj

log p(zj |D)
in Equation (1) with the corresponding gradient of the marginal log-variational likelihood given by

log p(D|ϕϕϕj) = logEq(z|D,ϕϕϕj)

[
p(D, z)
q(z|D,ϕϕϕj)

]
. (2)

Here, we denote the particles by Φ = {ϕϕϕj}Ni=1 instead of Z = {zi}Ni=1 to emphasize they
parameterize guide components q(z|ϕϕϕi,D). The change in gradient corresponds to minimizing
DKL[qΦ(ϕϕϕ) ∥ p(ϕϕϕ|D)] rather than DKL[qZ(z) ∥ p(z|D)], as in SVGD. Note that the line between
the model p and guide q becomes blurred, as p(D|ϕϕϕ) is random in both data (D), as is usually the
case, but also in the guide hyper-parameters ϕϕϕ (Ranganath et al., 2016; Nalisnick & Smyth, 2017).
To distinguish the two we subsequently refer to p(D) as the evidence and p(D|ϕϕϕ) as the hierarchical
likelihood.

The Stein force using the log hierarchical likelihood, which we call the hierarchical Stein force SH
Φ,

becomes

SH
Φ(ϕϕϕi) = Eϕϕϕj∼qΦ

[
k(ϕϕϕi,ϕϕϕj)∇ϕϕϕj

logEq(z|D,ϕϕϕj)

[
p(D, z)
q(z|D,ϕϕϕj)

]
+∇ϕϕϕj

k(ϕϕϕi,ϕϕϕj)

]
, (3)

where qΦ is an empirical measure analogous to qZ .

Inference converges (i.e. reaches a fixed point) when SH
Φ(ϕϕϕi) = 0 for all particles, meaning all

gradients in SH
Φ must cancel (i.e. sum to zero). However, computing the gradient of the log-variational

likelihood requires numerical estimation as analytical solutions do not exist for most models. Hence,
we cannot expect the inference converges with noisy gradient estimations as the Stein force will
compensate for the error in the gradient by a counterforce in the next iteration. Therefore, SMs require
good (i.e. low relative variance) gradient approximations; otherwise, the particles will fluctuate around
a fixed point without reaching it. We demonstrate that replacing the log hierarchical likelihood with the
evidence lower bound (ELBO) can provide better (lower relative variance) gradient approximations.
We call the new algorithm ELBO-within-Stein (EoS). We connect EoS with the algorithm proposed
by Nalisnick & Smyth (2017) in terms of computing the gradient of different orders of the variational
Rényi (VR) bound (Van Erven & Harremos, 2014). Similarly to the ELBO, the VR bound is a lower
bound of the evidence, p(D), also called the normalization constant, and is given by

p(D) ≥ 1

1− α
logEq(z|D,ϕϕϕ)

[(
p(D, z)
q(z|D,ϕϕϕ)

)1−α
]
, (4)

where α ≥ 0 is known as its order1. Understanding the inference of SMs in terms of the VR bound
yields insight into the behavior of the two algorithms, as we can now understand α as controlling the
variance of each component of the guide. Furthermore, presuming accurate gradient approximation
for all (viable) values of α, the connection leads to a family of inference algorithms indexed by the
VR bound order.

After reviewing SVGD, the Rényi divergence, and the signal-to-noise ratio (SN-ratio) that is used to
estimate the relative variance in Section 2, we make the following contributions:

• We demonstrate that inaccurate gradient estimates can lead to issues with convergence for
SMs.

• We introduce a new family of inference algorithms for SMs indexed by the parameter α. The
family results from connecting inference with SMs to the Rényi α-divergence and includes
the inference algorithm by Nalisnick & Smyth (2017) as a special case for α = 0.

• Unlike previous work, our algorithm allows for investigating a range of values for α for a
model of interest. This allows us to investigate the convergence stability for different α’s
by measuring the SN-ratio. We find that α = 1 is optimal for models with a latent variable

1The VR bound can be extended to α ∈ R. We presume α is finite, but we allow α to be less than or equal to
zero (Van Erven & Harremos, 2014)
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for each data point (local latent variables), resulting in better SN-ratios than all other α
values. For models where all datapoints share a latent variable (global latent variables), using
α = 0.5 (corresponding to the Hellinger distance) is on par with Nalisnick & Smyth (2017)’s
algorithm (which corresponds to α = 0). Other values for α result in worse SN-ratios.

• We evaluate our inference algorithm for different values of α on Bayesian neural networks
(BNNs) and variational autoencoders (VAEs), showing that the α that results in the highest
performance varies depending on both model and data set.

• We describe a black-box inference algorithm for our proposed family of inference algorithms
and provide a software library, called EinSteinVI, in NumPyro.

In Section 4 we discuss related work. We benchmark our algorithm in Section 5. Finally, we
summarize our results in Section 6.

2 BACKGROUND

Let z be a latent variable of interest taking values in a space Z ⊆ Rd (up to a diffeomorphism) and
D = {xi}n∈N be a set of i.i.d. observations. For many models, exact Bayesian inference is computa-
tionally impracticable due to the cost of evaluating the evidence p(D). Therefore, practitioners turn
to tractable approximate variational inference (VI).

VI aims to bring a computationally cheap variational distribution q(z|D) close to the model
posterior. Typically, we measure closeness by the Kullback-Leibler divergence (DKL), i.e.
DKL [q(z|D) ∥ p(z|D)]. However, we generally avoid directly evaluating DKL [q(z|D) ∥ p(z|D)] as
this requires evaluating the evidence, p(D). We will concern ourselves with two types of VI.

The first type of VI searches for a parameterization ψ∗ of q in a family of distributions Q that
minimizes the divergence to the posterior. When the divergence is measured by DKL, this type of VI
is made tractable by maximizing the evidence lower bound (ELBO), that is

ψ∗ = argmax
ψ

(log p(D)−DKL[q(z|D;ψ) ∥ p(z|D)]) = argmax
ψ

Eq(z|D)

[
log

p(D, z)
q(z|D;ψ)

]
.

The second type of VI we consider relies on particle-based methods and is the focus of this article.
This type of VI relies on transporting a finite set of particles such that their empirical measure is close
to the posterior. We will discuss this method in detail below.

2.1 STEIN VARIATIONAL GRADIENT DESCENT

The core idea of SVGD is to perform inference by approximating the target posterior distribution
p(z|D) by an empirical distribution qZ(z) = N−1

∑
i δzi

(z) based on a set of particles Z , where
Z = {zi}Ni=1. One could thus see the approximating distribution qZ(z) as a (uniform) mixture
of point estimates, each represented by a particle zi ∈ Z . The SVGD algorithm minimizes the
Kullback-Leibler divergence DKL[qZ(z) ∥ p(z|D)] between the approximated and the true posterior
by iteratively updating the particles using the following expression:

zi+1 ← zi + ϵSZ(zi)

where ϵ is the learning rate and SZ denotes the Stein force.

The two forces of SVGD The Stein force SZ consists of two underlying forces that work additively,
with SZ = S+

Z + S−
Z . The attractive force is given by

S+
Z (zi) = Ezj∼qZ [k(zi, zj)∇zj

log p(zj |D)]

and the repulsive force by
S−
Z (zi) = Ezj∼qZ [∇zjk(zi, zj)]. (5)

Here k : Rd × Rd → R is a kernel. The attractive force can be seen as pushing the particles towards
the modes of the true posterior distribution, smoothed by some kernel. The repulsive force stops
particles with high kernel values from collapsing onto each other. In Appendix C, we demonstrate the
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repulsive behavior for a radial basis function (RBF) kernel. The computational cost of SZ is quadratic
in the size of Z , i.e. O(N2), which makes SVGD computationally burdensome for high-dimensional
posteriors. For a particle method such as SVGD, the number of particles required to represent a
posterior distribution adequately is exponential in its dimensionality.

SVGD suffers from the curse of dimensionality (Ba et al., 2021), which results in variance collapse (i.e.
variance is underestimated). Wang et al. (2018) demonstrates the problem with a simple factorized
Gaussian, suggesting the (RBF) kernel introduces global statistical dependence driving the need for
particles up for accurate representation. Ba et al. (2021) demonstrate that the collapse is due to the
deterministic update of the attractive force. They do this by showing that re-sampling the particles at
each iteration eliminates the underestimation of variance. Note that their particle re-sampling scheme
by Ba et al. (2021) is not generally tractable; hence it does not suffice as a practical solution.

2.2 RÉNYI DIVERGENCE AND THE VARIATIONAL RÉNYI BOUND

The Rényi divergence (Rényi, 1961) is a family of divergences between distributions p and q indexed
by the order parameter {α|α ∈ R+/{0, 1}, |Dα| <∞}. The divergence is given by

Dα [p ∥ q] =
1

α− 1
log

∫
p(z)αq(z)1−αdz.

The Rényi divergence can be extended to α ∈ {0, 1,∞} by continuity. In addition, if we allow for
Dα[p ∥ q] ≤ 0, the order can be further extended to α ∈ R (Van Erven & Harremos, 2014). Several
orders correspond to known divergences (see (Van Erven & Harremos, 2014) and (Li & Turner, 2016)
for an overview). In particular, α = 1 corresponds to DKL.

Analogous to the use of the DKL in the ELBO, Dα leads to a variational Rényi bound (Li & Turner,
2016) which, when formulated as used with SMs, is given by

log p(D)−Dα [q(z|D,ϕϕϕ) ∥ p(z|D)] =
1

1− α
logEq(z|ϕϕϕ)

[(
p(z,D)
q(z|D,ϕϕϕ)

)1−α
]
. (6)

Note that model hyper-parameters (ϕ) in the variational posterior, q(z|D,ϕϕϕ), are lifted to random
variables when doing inference with SMs. See Appendix A for the derivation of Equation (6).
Assuming reparameterization of z is possible, we can approximate the gradient Λ(ϕϕϕ) of Equation (6)
using Monte Carlo integration by

ΛK(ϕϕϕ) =

K∑
k=1

ωαk (Z,D)∇ϕϕϕ log
(
p(Zk,D)
q(Zk|D,ϕϕϕ)

)
, with Zk ∼ q(z|D,ϕϕϕ), (7)

where K ∈ N number of draws used to compute the VR bound and

ωαk (z,D) =
1

C

(
p(D, zk)
q(zk|D,ϕϕϕ)

)1−α

, with C =

K∑
i=1

(
p(D, zi)
q(zi|D,ϕϕϕ)

)1−α

. (8)

We provide the derivation in Appendix A.

2.3 THE SIGNAL-TO-NOISE RATIO

The signal-to-noise (SN) ratio was introduced by Rainforth et al. (2018) to study the effect of tighter
variational bounds on gradient estimation. The SNR is given by

SNRM,K(ϕϕϕ) =

∣∣∣∣∣∣E
[
∆α
M,K(ϕϕϕ)

]
σ
[
∆α
M,K(ϕϕϕ)

]
∣∣∣∣∣∣ , (9)

where σ[·] is the standard deviation, M,K ∈ N are the number of Monte Carlo draws, and ∆α
M,K(ϕϕϕ)

derives from rewriting Equation (7) in the form

∆α
M,K(ϕϕϕ) =

1

1− α
1

M

M∑
m

∇ϕϕϕ log

[
1

K

K∑
k=1

(
p(Zm,k,D)
q(Zm,k|D,ϕϕϕ)

)1−α
]
. (10)
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Here, we separate tightening the bound (by increasing K) from reducing the noise in the gradient
estimation (by increasing M ). If the rate at which the expected gradient decreases is faster than the
rate of decrease of the variance, the gradient estimates worsen as K increases. The counter-intuitive
implication is that a tighter bound can worsen the gradient estimation.

2.4 THE STEIN MIXTURE

Variational inference with SMs (Nalisnick & Smyth, 2017) approximates the target posterior distribu-
tion p(z|D) by letting the Stein particles Φ = {ϕϕϕi}Ni=1 parameterize guide programs, q(z|ϕϕϕi,D). A
SM yields a mixture marginal variational posterior, p(z|D) ≈ 1/|Φ|

∑
ϕϕϕ∈Φ q(z|ϕϕϕ,D), from which it

takes its name. Formally, SM is a hierarchical variational model (HVM) (Ranganath et al., 2016)
with an empirical measure of particles qΦ (defined in the same way as qZ ) as its variational poste-
rior, a uniform variational prior, and variational likelihood Eq(z|D,ϕϕϕ) [p(D,z|ϕϕϕ)/q(z|D,ϕϕϕ)]. Similarly to
SVGD, SM minimizes DKL(q(ϕϕϕ) ∥ p(ϕϕϕ|D)) by iteratively transporting the particles according to the
following expression

ϕϕϕi+1 ← ϕϕϕi + ϵSH
Φ(ϕϕϕi)

where ϵ ≥ 0 is the learning rate and SH
Φ is the hierarchical Stein force.

The attractive force of SM Like SVGD, SM also makes use of two additive forces, SH
Φ =

SH+
Φ + S−

Φ . The repulsive force S−
Φ is the same as in SVGD, given by Equation (5). The attractive

force is given by

SH+
Φ (ϕϕϕi) = Eϕϕϕ∼qΦ

[
k(ϕϕϕi,ϕϕϕ)∇ϕϕϕ logEq(z|ϕϕϕ)

[
p(D, z)
q(z|D,ϕϕϕ)

]]
,

where k : Rd × Rd → R is a kernel. From the construction of SVGD, we require that the kernel has
the reproducing property, so the kernel is dense in the space of continuous functions. If we choose
Gaussian guides, the expected likelihood (EL) kernel (Jebara et al., 2004) is a natural choice because
it accounts for the geometry of q(z|D,ϕϕϕj) and reduces to the RBF kernel for fixed variance, which is
a reproducing kernel. The EL kernel is given by

k(ϕϕϕi,ϕϕϕj) =

∫
q(z|D,ϕϕϕi)q(z|D,ϕϕϕj)dz = ⟨q(z|D,ϕϕϕi), q(z|D,ϕϕϕj)⟩L2

,

where L2 is an inner product and k is a positive definite kernel.

3 α-INDEXED STEIN MIXTURES INFERENCE AND ELBO-WITHIN-STEIN

To see the connection between the hierarchical Stein force given in Equation (3) and the Rényi
divergence, consider the gradient of the log hierarchical likelihood (that occurs in SH+

Φ ) and the
VR bound given in Equation (6) for α = 0. Presuming the support of the variational likelihood
q(z|ϕϕϕ) is a subset of the support of the prior of p, supp(q(z|ϕϕϕ)) ⊆ supp(p(z)), the gradient of the log
hierarchical likelihood is given by

∇ϕϕϕ log p(D|ϕϕϕ) = ∇ϕϕϕ logEq
[
p(D, z)
q(z|D,ϕϕϕ)

]
(α = 0, eq. (6))

= ∇ϕϕϕ (log p(D)−Dα=0[q(z|D,ϕϕϕ) ∥ p(z|D)])
= −∇ϕϕϕDα=0[q(z|D,ϕϕϕ) ∥ p(z|D)]. (11)

From Equation (11), we see that the gradient of the log marginal likelihood is exactly the gradient
of the difference between the score log p(D), on the one hand, and the Rényi divergence (at α = 0)
between the variational posterior q(z|ϕϕϕ) and the model posterior p(z∥D), on the other hand. Thus,
Equation (11) shows that the attractive hierarchical force (SH+

Φ ) pushes the components of the
variational posterior, q(z|D,ϕϕϕ), towards the model posterior, p(z|D), see Appendix D for details. The
equivalence in Equation (11) suggests a whole class of hierarchical attractive forces indexed by the
order α of the VR bound. Note that choosing α ̸= 0 means we lose the interpretation of the attractive
force as moving the particles towards the nearest peak of the conditional evidence. Assuming our
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(a) Low accuracy gra-
dient approximation

(b) High accuracy gra-
dient approximation

Figure 1: Two particle system at theoretical fixed point. The blue arrows indicate the magnitude and
direction of the attractive force, the red arrows show the repulsive force, and the black arrows the
Stein force. Note that Figure 1b has no Stein force as expected for a converged system.

marginal variational posterior q(z|ϕϕϕ) is reparameterizable, we can approximate the attractive force
for any α ≥ 0 as

Sα+Φ (ϕϕϕi) = Eϕϕϕ∼qΦ [k(ϕϕϕi,ϕϕϕ)ΛK(ϕϕϕ)] , (12)

where ΛK(ϕ) is given by Equation (7). We call inference with Equation (12) α-indexed Stein
mixture inference. There are two special cases of α that are worth highlighting. The first is α = 1/2,
for which the Rényi divergence corresponds to the Hellinger divergence (Van Erven & Harremos,
2014)(Li & Turner, 2016). The second is α = 1, corresponding to the DKL-divergence. In this case,
the VR bound recovers the ELBO. We call this instance of our α-indexed SM inference algorithm
ELBO-within-Stein. In Appendix E we show that we can also recover the α = 1 case directly by
applying Jensen’s inequality to the conditional evidence.

3.1 INVESTIGATING THE SIGNAL-TO-NOISE RATIO

Estimation of a Stein mixture converges when SHΦ = 0, which means that the repulsive and attractive
forces must be equal and oppose for them to cancel. Hence, convergence requires ∆α

M,K(ϕϕϕ) and
∇ϕϕϕ1

k(ϕϕϕ1,ϕϕϕ2) to be accurate. In Figure 1 we demonstrate the effect of inaccurate gradient approxima-
tions. To study the sensitivity of gradient approximations to the choice of α, we measure the SN-ratio
(see Equation (9)) of the VR bound gradients (see Equation (6)). We simulate data {xi}ni=1 from a
simple latent variable model given by N (D|z, Id)N (z|µµµ, Id), where µµµ ∈ Rd is unknown and Id is
the d-dimensional identity matrix. To approximate its posterior we use a Stein mixture of the form

1/2(N (ϕϕϕ1, 3/2Id) +N (ϕϕϕ2, 3/2Id)),

and an expected likelihood kernel. We choose a (computationally convenient) fixed variance such that
the Stein mixture cannot exactly recover the posterior. We can see this as the posterior is unimodal
which is only the case for the Stein mixture if |ϕϕϕ1 −ϕϕϕ2| < 3 (Behboodian, 1970), but in this interval
the variance of the Stein mixture will be greater than or equal to 3/2. With the expected likelihood
kernel we can analytically characterize all fixed points for the Stein particles as

−∇ϕϕϕ1

1

1− α
logEq(z|ϕϕϕ1)

[(
p(z,D)
q(z|ϕϕϕ1)

)1−α
]
= ∇ϕϕϕ2

1

1− α
logEq(z|ϕϕϕ2)

[(
p(z,D)
q(z|ϕϕϕ2)

)1−α
]
.

See the Appendix B for the derivation. To measure the effect of gradient approximation on the system
we use Equation (10) to estimate the gradients.

To conduct our experiment, we sample the location µµµ from a 20-dimensional standard Gaussian and
use this µµµ to simulate n = 64 data points D. We then approximate the gradients at a random point
close to a fixed point

(ϕϕϕ1,ϕϕϕ2) =

(
µµµ+ nD
n+ 1

+∇ϕϕϕ1
∆α
M,K(ϕϕϕ1) + ϵ,

µ+ nD
n+ 1

+∇ϕϕϕ2
∆α
M,K(ϕϕϕ2)

)
,

where D is the data average, µ+nD/n+1 is the posterior mean and ϵ offsets each dimension by a
Gaussian with mean zero and variance 0.01.
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(a) Experimental setup.
(b) SN-ratio convergence with a
local latent variable.

(c) SN-ratio convergence with a
global latent variable.

Figure 2b and Figure 2c show the convergence of the SN-ratio (see Equation (9)) as we tighten the
VR bound by increasing either K or M . We only show the SN-ratio for the first particle (ϕϕϕ1) as the
behaviour for the second particle is the same. For the ELBO (α = 1), we fix K = 1 and increase M
to reduce the gradient approximation variance, while for the rest (α ∈ {0, 0.5, 2, 10}), we fix M = 1
and increase K to tighten the VR bound. In Figure 2b, there is a latent variable for each data point.
Note how the SN-ratio only improves with tightness for α = 1 (green line). In Figure 2c all data
points share a latent variable.

Figure 2a illustrates the experimental setup in two dimensions. For legibility in Figure 2a, we do not
include the perturbation (i.e. added ϵ noise) on ϕϕϕ1 to the visualization. The contours correspond to the
exact posterior. As the particles are placed equidistant from the posterior mean (marked with a blue
cross), in this setting the Stein forces are zero. As we would expect (see blue arrows in Figure 2a) the
gradient estimations of∇ϕϕϕ∆α

M,K are equal and opposite for the two particles.

For α ̸= 1 we fix M = 1 and vary K, while for α = 1 we fix K = 1 and vary M . We do not need to
consider α ̸= 1 when K = 1 as the associated gradient scaling (1− α) cancels in the SN-ratio. We
empirically estimate the SN-ratio by estimating the expectation and standard deviation from 10, 000
gradient samples. In Figure 2b we show a local variate of the model where there is a latent variable
zi for each xi ∈ D. We see that for α ̸= 1 the SN-ratio does not depend on the particular choice of
α and that the growth in SN-ratio is superseded by that of α = 1. This means there is little to no
benefit in increasing K beyond K = 1, for which we recover the ELBO gradient when the guide is
reparameterizable (see Section 2). In Figure 2c we evaluate a global latent variable variate of the
model, so that there is one z for all datapoints in D. As with the local version, we fix either M or
K. For this model, we see that α = 0 and α = 1/2 achieve the highest SN-ratio. The result aligns
with the BNN example, where α = 1 is not dominating in performance over the α ∈ {0, 1/2} on all
datasets.

High precision is desirable to avoid fluctuation at convergence. From the above results, we see that
α = 0 is not necessarily the best choice for precise (high SN-ratio) gradient estimation. In particular,
for local latent variable models, α = 1 is a better choice, and for that, for global latent models,
α = 1/2 is on par with α = 0 in our experiment.

3.2 BLACK-BOX INFERENCE FOR ELBO-WITHIN-STEIN

We provide a mini-batch version of ELBO-within-Stein, called EinSteinVI, in NumPyro. To compute
the VR bound exactly requires all the datapoints, that is, we cannot represent the bound as a point-
wise expectation, except for α = 1. Therefore, in order to make EinSteinVI scalable to tall data,
we provide an approximation of the VR bound which replaces the likelihood by pI(D|z,ϕϕϕ) =∏
i∈I p(xi|z,ϕϕϕ)

|D|/|I|, where I is a subset of a permutation of the data indices. The approximate
attractive force Sα+Φ (ϕϕϕ) used in EinSteinVI is given by

Sα+Φ (ϕϕϕi) = Eϕϕϕ∼qΦ

[
k(ϕϕϕ,ϕϕϕi)∇ϕϕϕ

1

1− α
logEqI(z|D)

[(
pI(D|z,ϕϕϕ)p(z)
qI(z|D,ϕϕϕ)

)1−α
]]

, (13)

which recovers the exact VR bound when |I| = |D|. We describe the NumPyro integration and
provide example programs in Appendix I.
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Table 1: Average RMSE (lower is better) test results for BNNs on UCI benchmark. EoS (ours)
corresponds α = 1, Hell (ours) to α = 0.5, and SM (Nalisnick & Smyth, 2017) to α = 0. Parentheses
mean we use Dirac delta guides. EoS and Hell gives the best results.

Average Root Mean Squared Deviation (RMSE)
Dataset EoS Hell SM SVGD MFVI Laplace

Boston 3.5± 0.82
(2.8± 0.4)

3.92± 1.3
(2.71± 0.26)

3.9± 1.29
(2.715± 0.263) 2.86± 0.23 3.28± 0.1 3.68± 0.33

Concrete 5.76± 0.55
(4.61± 0.34)

6.55± 0.63
(5.2± 0.3)

6.51± 0.59
(5.23± 0.32) 5.54± 0.33 5.6± 0.3 5.22± 0.43

Energy 0.53± 0.05
(0.45± 0.03)

0.94± 0.15
(0.67± 0.03)

0.81± 0.16
(0.74± 0.05) 1.30± 0.08 1.75± 0.15 0.46± 0.03

Naval 0.04± 0.04
(0.00± 0.00)

0.004± 0.001
(0.001± 0.00)

0.004± 0.002
0.001± 0.000

0.007± 0.000 0.000± 0.00 0.00± 0.00

Wine 0.6± 0.038
(0.07± 0.00)

0.61± 0.03
(0.08± 0.00)

0.61± 0.03
0.08± 0.00

0.62± 0.04 0.59± 0.04 0.61± 0.01

Yacht 1.76± 0.41
(0.45± 0.03)

1.66± 0.65
(0.67± 0.03)

1.61± 0.5
(0.74± 0.05) 1.11± 0.3 4.09± 0.34 2.16± 0.37

Power 4.04± 0.16
(3.91± 0.18)

4.15± 0.21
(3.98± 0.19)

4.16± 0.21
(3.97± 0.2) 4.06± 0.17 3.94± 0.18 3.99± 0.17

4 RELATED WORK

Nalisnick & Smyth (2017) first suggested Stein mixtures as an alternative to HVMs (Ranganath et al.,
2016). Using SVGD allows Stein mixtures to side-step the need of HVMs for an auxiliary distribution
to keep the bound (learning objective) tight. This is an improvement as the effect of the auxiliary
distribution on the approximation is implicit and therefore hard to understand, whereas with Stein
mixtures the choice of kernel controls the tightness and we have theoretical understanding of kernels
(Wang et al., 2019; Gorham & Mackey, 2017; Liu & Wang, 2018). Mixture approximations have a
long history of work (Jaakkola & Jordan, 1998; Bishop et al., 1997; Gershman et al., 2012; Miller
et al., 2017) focusing on approximating or lower-bounding the intractable mixture ELBO. Van Erven
& Harremos (2014) unifies a number of variational techniques by considering them as optimizing
different orders of the VR bound. They further demonstrate that two different variants of mini-batch
training with the VR bound recover Stochastic EP (Li et al., 2015) and Black-box α (Hernandez-
Lobato et al., 2016), respectively. The Rényi divergence has been studied in other forms under the
name α-divergence (Amari, 2012; Tsallis, 1988). Hernandez-Lobato et al. (2016) introduced a black-
box algorithm for variational inference based on the α-divergence using automatic differentiation.
Unlike our algorithm, their algorithm is not for HVMs. Rainforth et al. (2018) demonstrated that for
VAEs the gradient estimation degrades for multi-sample approximations when using the importance
weighted variational autoencoder (IWAE) bound (Burda et al., 2015). Furthermore, Rainforth et al.
(2018) showed that this is not the case when using the ELBO. Rainforth et al. (2018) differs from
our work in that the VAEs estimated are with a point mass guide, as their inference algorithm is
not for HVMs. Le et al. (2020) investigates the deterioration experimentally, providing evidence
for it on several real world tasks. Tucker et al. (2018) show that by double reparameterizing the
gradient estimator, they can eliminate the degrading SN-ratio for multi-sample estimation of the
IWAE gradient, among others.

5 EXAMPLES

We evaluate α-indexed Stein mixture inference by inferring Bayesian neural networks (BNN) and
variational autoencoders (VAE) on standard datasets. We use the BNNs for regression on the UCI
regression benchmark (the same as Hernández-Lobato & Adams (2015)) and VAE for unsupervised
learning on MNIST (Salakhutdinov & Murray, 2008; LeCun et al., 1998) and OMNIGLOT (Lake
et al., 2013).

Bayesian neural networks For brevity, we present BNNs for the subset of the UCI regression
benchmark detailed in Appendix G. All datasets use real-valued features. We use a 90-10 split
for training and test datasets. We compare α-indexed SM inference for α ∈ {0, 0.5, 1} on BNN
regression. We test with two guides: factorized Gaussian guides with an EL kernel and point mass
(Dirac delta) guides with an RBF kernel. Like Liu & Wang (2016), we use a BNN with one hidden
layer of size fifty and a RELU activation. We put a Gamma(1, 0.1) prior on the precision of the
neurons and the likelihood. We use five particles for all experiments. We run all datasets for 35,000
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Table 2: Average log likelihood (higher is better) test results for BNNs on UCI benchmark. EoS
(ours) corresponds α = 1, Hell (ours) to α = 0.5, and SM (Nalisnick & Smyth, 2017) to α = 0.
Parentheses mean we use Dirac delta guides. EoS generally outperforms Hell and SM.

Average log-likelihood
Dataset EoS Hell SM SVGD MFVI Laplace

Boston −0.66± 0.34
(−0.64± 0.27)

−0.79± 0.32
(−1.50± 1.34)

−0.79± 0.33
(−1.48± 1.32) −2.55± 0.08 −0.74± 0.04 −0.56± 0.03

Concrete −0.58± 0.25
(−0.5± 0.09)

−1.02± 0.37
( −1± 0.27)

−1.01± 0.37
(−1± 0.29) −3.18± 0.06 −0.54± 0.11 −0.96± 0.49

Energy 0.02± 0.76
(−0.25± 0.81)

−0.10± 0.63
( −3.02± 1.64)

−0.13± 0.70
(−1.61± 1.50) −1.76± 0.03 0.06± 0.12 0.31± 0.70

Naval 1.72± 0.84
(−21.40± 19.71)

−0.54± 0.49
( −5.32± 0.96)

−0.99± 0.78
(−4.80± 1.04) 3.46± 0.04 1.48± 1.37 2.05± 0.93

Wine −1.38± 0.01
( −1.23± 0.05)

−1.35± 0.04
( −1.43± 0.11)

−1.35± 0.04
(−1.43± 0.10) −0.96± 0.5 −1.26± 0.07 −1.52± 0.08

Yacht 0.08± 0.46
(−0.20± 0.58)

−0.26± 0.53
(−2.83± 2.19)

−0.27± 0.51
(−2.89± 2.17 ) −2.11± 0.63 −0.83± 0.05 −0.12± 0.10

Power 0.04± 0.06
(−0.20± 0.58)

−0.08± 0.10
(−0.23± 0.18)

−0.08± 0.11
(−0.23± 0.15) −2.83± 0.03 0.03± 0.06 0.02± 0.07

Table 3: Log likelihood (higher is better) test results for VAE. EoS (ours) corresponds α = 1, Hell
(ours) to α = 0.5, and SM (Nalisnick & Smyth, 2017) to α = 0.

Dataset SM Hell EoS

MNIST −101.874 −100.541 −77.400
OMNIGLOT −146.241 −146.257 −148.428

epochs with a subsample size of 32, the Adam optimizer (Kingma & Ba, 2014) and a step size of
0.002. All measurements are repeated three times and obtained on a GPU2.

We compare against the SVGD implantation from Liu et al. (2016) with 20 particles, mean field
variational Bayes (MFVI) with a factorized Gaussian guide (Hoffman et al., 2013) and Laplace
approximation. For the latter two we inference engines from NumPyro (Phan et al., 2019).

Table 1 shows the root mean squared error (RMSE) on test sets. EoS with delta Guides out perfor-
mance baselines and other α-orders, except on Boston. SM and Hell perform similarly with factorized
Gaussian guides, which aligns with our SN-ratio experiment that shows the gradient approximations
are similar for these two cases. Note the Stein mixtures use only five particles, whereas SVGD
uses twenty. Table 2 gives the log-likelihood on the same test sets. EoS achieves better average
log-likelihood for all datasets with factorized Gaussian guides than other α-orders. We see that α = 0
and α = .5 performs similarly with a factorized Gaussian prior, which aligns with our SN-ratio
experiment in that the quality of gradient approximations is similar.

Variational autoencoder We evaluate Stein mixtures and SVGD for VAEs on two datasets with
α ∈ {0, 0.5, 1}. We use binarized MNIST (Salakhutdinov & Murray, 2008; LeCun et al., 1998), a
dataset of 28× 28 pixel images of handwritten single digit numbers, and a variate of OMNIGLOT
(Lake et al., 2013), which contains 28× 28 pixel images of characters from fifty different alphabets.
We use the same VAE architecture as Burda et al. (2015), detailed in Appendix H. For both datasets
we optimize using the Adam optimizer and learning rate of 5 · 10−4. We optimize with a batch size of
20 and use 20 draws to approximate the gradients. For OMNIGLOT we use 20 epochs and for MNIST
we use 50. Table 3 show the performance of ELBO-within-Stein for α ∈ {0.0, 0.5, 1.0}. We find that
ELBO-within-Stein with α = 1 achieves better log-likelihoods on MNIST datasets. On OMNIGLOT
α = 0.5 and α = 0 achieve comparable log-likelihood with α0 the slightly outperforming α = 0.5.

6 SUMMARY

We introduce a new algorithm called ELBO-within-Stein (EoS) based on a new connection between
the inference of Stein mixtures and the Rényi variational bound. We demonstrate that Eos provides
better gradient approximations than alternative algorithms, which results in better performance for
standard benchmark problems. EoS is integrated as a black box library in the NumPyro PPL which is
distributed freely.

2Quadro RTX 6000 with Cuda V11.4.120
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A VARIATIONAL RÉNYI BOUND

For convenience, we derive the variational Rényi bound (Li & Turner, 2016) in the context of
inference with our algorithm below. Recall that Stein mixtures lift the set of guide hyper-parameters
ϕ (optimized in VI) to a random variable ϕϕϕ. Let D be a finite set of observations, z ∈ Rd be a latent
variable, Dα [q||p] the Rényi α-divergence (Rényi, 1961) between distributions p and q, and ϕϕϕ ∈ Rd
a set of guide hyper-parameters lifted to a random variable. Then we have

log p(D)−Dα [q(z|D,ϕϕϕ)||p(z|D)] =
1

1− α
logEq(z|ϕϕϕ)

[(
p(z,D)
q(z|D,ϕϕϕ)

)1−α
]
. (14)

To see this, consider,

Dα [q(z|D,ϕϕϕ)||p(z|D)] =
1

α− 1
log

∫
q(z|D,ϕϕϕ)αp(z|D)1−αdz

=
1

α− 1
log

∫
q(z|D,ϕϕϕ)α

(
p(z,D)
p(D)

)1−α

dz

=
1

α− 1
log

∫
q(z|D,ϕϕϕ)αp(z,D)1−αdz · p(D)α−1

=
1

α− 1
log

∫
q(z|D,ϕϕϕ)αp(z,D)1−αdz+ α− 1

α− 1
log p(D)

=
1

α− 1
log

∫
q(z|D,ϕϕϕ)q(z|D,ϕϕϕ)−(1−α)p(z,D)1−α + log p(D)

=
1

α− 1
logEq(z|D,ϕϕϕ)

[(
p(z,D)
q(z|D,ϕϕϕ)

)1−α
]
+ log p(D),
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from which we recover the desired equality by rearranging and multiplying both sides by negative
one,

log p(D)−Dα(q(z|ϕϕϕ)||p(z|D)) =
1

1− α
logEq(z|D,ϕϕϕ)

[(
p(z,D)
q(z|ϕϕϕ)

)1−α
]
.

To shorten notation, we let Cα(D,ϕϕϕ) = E
[
(p(z,D)/q(z|D,ϕϕϕ))

1−α
]

where the expectation is with
respect to q(z|D,ϕϕϕ). The gradient of the variational Rényi bound with respect to ϕϕϕ is

∇ϕϕϕ
1

1− α
logE

[(
p(z,D)
q(z|D,ϕϕϕ)

)1−α
]
=

1

1− α
Cα(D,ϕϕϕ)−1E

[
∇ϕϕϕ

(
p(z,D)
q(z|D,ϕϕϕ)

)1−α
]

= Cα(D,ϕϕϕ)−1E

[(
p(z,D)
q(z|D,ϕϕϕ)

)1−α

∇ϕϕϕ log
(
p(z,D)
q(z|D,ϕϕϕ)

)]

= E


(

p(z,D)
q(z|D,ϕϕϕ)

)1−α

Cα(D,ϕϕϕ)−1
∇ϕϕϕ log

(
p(z,D)
q(z|D,ϕϕϕ)

)
= E

[
ωα(z,D)∇ϕϕϕ log

(
p(z,D)
q(z|D,ϕϕϕ)

)]
,

where

ωα(z,D) = (p(z,D)/q(z|D,ϕϕϕ))
1−α

E
[
(p(z,D)/q(z|D,ϕϕϕ))

1−α
] .

B CHARACTERIZING TWO PARTICLE FIXED POINTS

We give the full derivation of stationary points for the Stein mixture that we consider in Section 3.
Recall that Section 3 investigated the SN-ratio for a Stein mixture given by

1

2
(N (ϕϕϕ1, 3/2Id) +N (ϕϕϕ2, 3/2Id)) ,

where ϕϕϕ1,ϕϕϕ2 ∈ Rd are two d-dimensional particles. We use the kernel given by

k(ϕϕϕ1,ϕϕϕ2) = exp

(
− 1

h
||ϕϕϕ1 −ϕϕϕ2||22

)
, (15)

where h ∈ R+ is the bandwidth. The kernel has the following properties:

∇ϕϕϕ1
k(ϕϕϕ1,ϕϕϕ2) = −∇ϕϕϕ2

k(ϕϕϕ1,ϕϕϕ2),

k(·, ·) = 1,

k(ϕϕϕ1,ϕϕϕ2) = k(ϕϕϕ2,ϕϕϕ1),

∇ϕϕϕk(·, ·) = 0,

which we will use in the derivation. Finally, we introduce ξα(ϕϕϕ) = 1
1−α logEq(z|ϕϕϕ)

[(
p(z,D)
q(z|ϕϕϕ)

)1−α
]

as notation short-hand.

Our two particle configuration reaches a fixed point when

(ϕϕϕ1 + ϵSHΦ (ϕϕϕ1),ϕϕϕ2 + ϵSHΦ (ϕϕϕ2)) = (ϕϕϕ1,ϕϕϕ2),

where ϵ ≥ 0 is the step size. Therefore, SHΦ (ϕϕϕ1) = 0 and SHΦ (ϕϕϕ2) = 0 at any fixed point. SHΦ (ϕϕϕ1) is
given by

SHΦ (ϕϕϕ1) =

1︷ ︸︸ ︷
k(ϕϕϕ1,ϕϕϕ1)∇ϕϕϕ1

ξα(ϕϕϕ1) +

0︷ ︸︸ ︷
∇ϕϕϕ1

k(ϕϕϕ1,ϕϕϕ1)+k(ϕϕϕ1,ϕϕϕ2)∇ϕϕϕ2
ξα(ϕϕϕ2) +∇ϕϕϕ2

k(ϕϕϕ1,ϕϕϕ2)

= ∇ϕϕϕ1
ξα(ϕϕϕ1) + k(ϕϕϕ1,ϕϕϕ2)∇ϕϕϕ2

ξα(ϕϕϕ2) +∇ϕϕϕ2
k(ϕϕϕ1,ϕϕϕ2) = 0.
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Therefore,
−∇ϕϕϕ2

k(ϕϕϕ1,ϕϕϕ2) = ∇ϕϕϕ1
ξα(ϕϕϕ1) + k(ϕϕϕ1,ϕϕϕ2)∇ϕϕϕ2

ξα(ϕϕϕ2) (16)

at a fixed point. By a similar argument for SHΦ (ϕϕϕ2), we have

∇ϕϕϕ1
k(ϕϕϕ1,ϕϕϕ2) = −(∇ϕϕϕ2

ξα(ϕϕϕ2) + k(ϕϕϕ1,ϕϕϕ2)∇ϕϕϕ1
ξα(ϕϕϕ2)) (17)

at a fixed point. As∇ϕϕϕ1
k(ϕϕϕ1,ϕϕϕ2) = −∇ϕϕϕ2

k(ϕϕϕ1,ϕϕϕ2), it follows from Equations (16) and (17) that

∇ϕϕϕ1
k(ϕϕϕ1,ϕϕϕ2) = −∇ϕϕϕ2

k(ϕϕϕ1,ϕϕϕ2)

−(∇ϕϕϕ2
ξα(ϕϕϕ2) + k(ϕϕϕ1,ϕϕϕ2)∇ϕϕϕ1

ξα(ϕϕϕ2)) = ∇ϕϕϕ1
ξα(ϕϕϕ1) + k(ϕϕϕ1,ϕϕϕ2)∇ϕϕϕ2

ξα(ϕϕϕ2)

−∇ϕϕϕ2
ξα(ϕϕϕ2)(1 + k(ϕϕϕ1,ϕϕϕ2)) = ∇ϕϕϕ1

ξα(ϕϕϕ1)(1 + k(ϕϕϕ1,ϕϕϕ2))

−∇ϕϕϕ2
ξα(ϕϕϕ2) = ∇ϕϕϕ1

ξα(ϕϕϕ1).

Hence, we see that at any fixed point for our two particle configuration, the gradients of the VR-bound
are equal and opposite.

C KERNELS IN SVGD

For an example of a kernel, consider the radial basis function (RBF) kernel k(zi, zj) =
exp

(
− 1
h ∥ zi − zj ∥22

)
with bandwidth parameter h, chosen as 1

logN med(Z), where med is the
median operator.

The repulsive force moves particles away from each other, ensuring that they do not collapse onto the
same mode. For the RBF kernel, the repulsive force becomes

Ezj∼qZ
[
∇zjk(zi, zj)

]
=

∑
j

− 2

h
k(zi, zj) (zi − zj) · 1d,

where · is the (euclidean) inner product and 1d is a d-dimensional one vector. It follows that zi is
pushed away from zj when k(zi, zj) is large.

D CONDITIONAL EVIDENCE AS RÉNYI DIVERGENCE BETWEEN POSTERIORS

That Equation (11) pushes posteriors towards each other follows from properties of Rényi divergence
with α ∈ [0, 1] and the negative direction of the gradient on the Rényi divergence. In particular, we
have (i) that the divergence is a similarity measure of distributions for α ≥ 0 so Dα=0[q||p] = 0 =⇒
q = p, (ii) that Dα[q ∥ p] is everywhere positive, and (iii) the divergence is jointly convex (i.e. convex
in both distributions) (Van Erven & Harremos, 2014). Putting it all together, we see from (ii) and (iii)
that the extremum at Dα=0[q||p] = 0 is global and from the (negative) gradient we are minimizing
Dα=0[q||p]. So, we have that −∇ϕϕϕDα=0[q(z|D,ϕϕϕ) ∥ p(z|D)] = 0 =⇒ Dα=0[q(z|D,ϕϕϕ) ∥
p(z|D)] = 0 which from (i) means q(z|D,ϕϕϕ) = p(z|D).

E ALTERNATIVE ELBO-WITHIN-STEIN DERIVATION

For α = 1 we can derive the attractive force of SHΦ directly by applying Jensen’s inequality to the log
conditional evidence, resulting in

∇ϕϕϕ logEq
[
p(D, z|ϕϕϕ)
q(z|D,ϕϕϕ)

]
≥ ∇ϕϕϕEq

[
log

p(D, z|ϕϕϕ)
q(z|D,ϕϕϕ)

]
. (18)

In ELBO-within-Stein, the attractive force takes the simple form

SELBO+
Φ (ϕϕϕi) = Eϕϕϕ∼qΦ

[
k(ϕϕϕi,ϕϕϕ)∇ϕϕϕEq(z|ϕϕϕ) [log p(D, z|ϕϕϕ)]− k(ϕϕϕi,ϕϕϕ)∇ϕϕϕEq(z|ϕϕϕ) [q(z|D,ϕϕϕ)]

]
,
(19)

and the repulsive force is given by Equation (5).
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Table 4: Summary statistics of datasets from the UCI regression benchmark.

Dataset Data points Feature count

Boston (Harrison Jr & Rubinfeld, 1978) 506 13
Concrete (Yeh, 1998) 1030 8
Energy (Tsanas & Xifara, 2012) 768 8
Power (Tüfekci, 2014) 9568 4
Protein (Rana, 2013) 45730 9
Year (Bertin-Mahieux et al., 2011) 515345 90

Table 5: Variational autoencoder architecture for MNIST and OMNIGLOT. s denotes a stochastic
layer and d denotes a deterministic layer. Read the networks left-to-right for guide description and
right-to-left for model description.

Dataset Architecture Activation

MNIST d200-d200-s50 tanh
OMNIGLOT d200-d200-s100-d100-d100-s50 tanh

F ILLUSTRATING STEIN MIXTURES

To illustrate the use of a SM, consider the variational autoencoder (VAE) (Kingma & Welling, 2013).
The VAE simultaneously trains a generative model p(D|gθ(z))p(z) and a variational approximation
q(z|fψ(D)) of the posterior p(z|D). Here, θ and ψ are parameters of the generative neural network
gθ(·) and the inference network fψ(·), respectively. VAE training is typically done by stochastic
variational inference (SVI) (Hoffman et al., 2013) which optimizes θθθ and ψψψ to minimize the ELBO.
With a SM, the generative model remains the same, that is, we obtain a point estimate of θ. However,
the marginal posterior approximation changes to 1/|Φ|

∑
ϕϕϕ∈Φ q(z|fϕϕϕ(D)). So with a Stein mixture,

each particle ϕϕϕ parameterizes a separate inference network, i.e. fϕϕϕ(·), meaning the guide becomes
amortized similar to Shu et al. (2018).

G UCI BENCHMARK DETAILS

We compare ELBO-within-Stein for α ∈ {0, 0.5, 1} on BNNs regression point mass (Dirac delta)
guide and a RBF kernel. With ELBO-within-Stein we recover a variant of SVGD with a VR gradient
rather than the score function. Like Liu & Wang (2016), we use a BNN with one hidden layer of
size fifty and a RELU activation. We put a Gamma(1, 0.1) prior on the precision of the neurons and
the likelihood. For both versions we use 5 particles and update Year for 40 epochs, Protein for 100
epochs and 500 epochs for the rest. We use Adagrad (Duchi et al., 2011) with a step size of 0.05 and
a subsample size of 100. All measurements are repeated five times and obtained on a GPU3.

H VAE DETAILS

Following Li & Turner (2016); Burda et al. (2015); Rainforth et al. (2018), we use VAEs with multiple
stochastic layers. The idea is to define the model through ancestral sampling as

p(x|θθθ) =
∑

z1,...,zL

p(zL)p(zL−1|fθθθL−1
(zL)) . . . p(x|fθθθ0(z1)),

where x is a data-point (which we will also denote z0), z1, . . . , zL are the L stochastic layers, and
θθθl parameterizes a neural network fl which takes zl+1 to the parameters of the distribution pl, i.e.
p(zl|fl(zl+1). We then let the guide factor in the opposite direction, resulting in

q(z|ϕϕϕ,x) = q(z1|fϕϕϕ1
(x))q(z2|fϕϕϕ2

(z1)) . . . p(zL|fϕϕϕL
(zL−1)).

3Quadro RTX 6000 with Cuda V11.4.120
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We use the same network architecture as Rainforth et al. (2018) (summarized in Table 5). In Table 5,
s denotes a stochastic layer and d denotes a deterministic layer (affine transforms). We use tanh as
the activation functions on deterministic layers. Stochastic layers distribute according to a factorized
Gaussian distribution, and for the likelihood we use the Bernoulli distribution (hence the binarization
of the datasets).

I THE EINSTEINVI LIBRARY

We provide a library called EinSteinVI for inferring Stein mixtures in the probabilistic program-
ming language (PPL) NumPyro (Bingham et al., 2019; Phan et al., 2019). EinSteinVI uses
α-indexed SM inference as its core algorithm as described in Section 3. NumPyro is a universal
PPL (van de Meent et al., 2018) embedded in Python. NumPyro provides specialized constructs
for expressing probabilistic models as Python programs and allows executing arbitrary code in its
model and guide. The computational backend of NumPyro is Jax (Frostig et al., 2018), which
combines XLA (accelerated linear algebra) (Sabne, 2020) program transformations with automatic
differentiation. As EinSteinVI works with arbitrary guides, NumPyro is a well-suited language
for embedding EinSteinVI. Further, we chose NumPyro because:

• NumPyro is embedded in Python, the de-facto programming language for data science;

• NumPyro includes the necessary data structures for tracking random variables in both
model and guide;

• NumPyro features stochastic variational inference (SVI) with an application programming
interface (API) that is well suited for EinSteinVI; and

• NumPyro benefits computationally from Jax.

I.1 A EINSTEINVI PROGRAM EXAMPLE

To demonstrate the two modes of VI (SVGD and Stein mixtures) with EinSteinVI, we consider the 1D
Gaussian mixture 1/3N (−2, 1) + 2/3N (2, 1) (see Figure 3 and Figure 4). The Gaussian mixture is
bi-modal and well-suited for the nonparametric nature of SVGD and Stein mixtures. Figure 4 shows
that both SVGD4 and the Stein-mixture naturally capture the bi-modality of the target distribution,
compared to SVI with a Gaussian guide. Note the reduction in particles required to estimate the target
when using Stein mixtures compared to SVGD. Also, note that the Stein-mixture overestimates the
variance and slightly perturbs the locations. The error seen at the right mode for the Stein-mixture
with two particles is due to the uniform weighting of the particles in SVGD, and as such is algorithmic.
The Stein-mixture will therefore not be able to exactly capture the mixing components of a target
mixture model with one particle per component. However, with more particles the mixture can be
approximated better as demonstrated using three particles.

I.2 INTEGRATION WITH NUMPYRO

Integrating EinSteinVI with NumPyro requires handling transformations between the parameter
representation of NumPyro5 and the array representation that ELBO-within-Stein operates on. For
this, we rely on Jax’s PyTrees6 which converts back and forth between Python dictionaries and
array representations.

Algorithm 1 shows the black-box version of α-indexed SM inference in NumPyro. The algorithm
allows SVI to estimate a subset of the parameters and α-indexed SM inference the rest. To differentiate
the two, we denote parameters updated by SVI withψψψ and parameters updated by ELBO-within-Stein
with ϕϕϕi (i.e. the Stein particles Φ = {ϕϕϕ}Ni=1). In the model, only SVI can update parameters which
we denote by θθθ. We update θθθ and ψψψ by averaging the loss over the Stein particles. For the Stein
particles, the process is more elaborate. First, we convert the set of individual distribution parameters
in the guide to a monolithic array using Jax’s PyTrees. The array represents the particles as a

4We recover SVGD with a point mass (Delta dirac distribution) on all distributions in the guide.
5A dictionary mapping parameters to their values, which can be of arbitrary Python type
6https://jax.readthedocs.io/en/latest/pytrees.html
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def model():
sample('x', NormalMixture(jnp.array([1 / 3, 2 / 3]),

jnp.array([-2.0, 2.0]),
jnp.array([1.0, 1.0])))

(a) 1D Gaussian mixture model
svi = SVI(

model,
AutoNormal(model),
Adagrad(step_size=1.0),
Trace_ELBO()

)

results = svi.run(rng_key,
num_iterations)

(b) SVI

stein = SteinVI(
model,
AutDelta(model),
Adagrad(step_size=1.0),
Trace_ELBO(),
RBFKernel(),

)
results = stein.run(rng_key,

num_iterations)

(c) SVGD with EinSteinVI

Figure 3: 1D Gaussian mixture model in NumPyro. We use the deprecated NormalMixture over
the more general (and more verbose) MixtureSameFamily for clarity.

(a) SVI (b) SVGD (RBF kernel) (c) Two particle Stein-
mixture (linear kernel)

(d) Three particle Stein-
mixture (RBF kernel)

Figure 4: The blue dashed line is the target pdf, while the solid green line is the density of the
particles. We estimate the particle density for SVGD with Gaussian kernel density estimation. We use
100 particles for SVGD, and two or three particles for the Stein-mixture. SVI uses a Gaussian guide.
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flattened and stacked Jax array. Then, we compute a kernel on the particles, delegated to the kernel
interface (see Appendix I.3) as the computation is kernel-dependent.

We apply Jax’s vmap (Frostig et al., 2018; Phan et al., 2019) operator to compute the Stein forces
for each particle in a vectorized manner. As we compute the Stein forces in unconstrained space,
we must correct them by the Jacobian of the bijection to constrained space. Naively computing the
Jacobian on the monolithic array incurs a massive memory overhead. However, as NumPyro registers
a bijection for each distribution parameter, we can eliminate the overhead by computing the Jacobian
on the Jax representations of the individual distribution parameters rather than the monolith. Like
computing the Stein forces, the correction is embarrassingly parallel so that we can use a vmap
operator again. Inside the vmap we nest a tree_map to do the appropriate conversion between
representations. Finally, we convert the monolithic array to its NumPyro representation and return
the expected changes for SVI- and Stein- parameters.

Require: SVI parameters θθθ and ψψψ, Stein parameters {ϕϕϕi}Ni=1, model pϕϕϕ(z,x), guide qθθθ,ψψψ(z), loss
Lα, kernel interface KI.

Ensure: Parameter changes based on SVI (∆θθθ, ∆ψψψ) and hierarchical Stein forces ({∆ϕϕϕi}Ni=1).
procedure UPDATE(θθθ, ψψψ, {ϕϕϕi}Ni=1, pθθθ, qϕϕϕ,ψψψ)

∆θθθ ← Eθθθ[∇θθθLα(pθθθ, qϕϕϕ,ψψψ)]
∆ψψψ ← Eψψψ[∇ψψψLα(pθθθ, qϕϕϕ,ψψψ)]
{ai}i ← PyTreeFlatten({ϕϕϕi}Ni=1)
k ← KI({ai}Ni=1)

procedure HSTEIN-FORCES(ai) ▷ Calculate forces per particle for higher-order
vmap function.

θθθi ← PYTREERESTORE(ai)
∆ai ←

∑
aj
k(aj ,ai)∇ai

Lα(pϕϕϕ, qθθθi,ψψψ) +∇ai
k(aj ,ai)

return ∆ai
end procedure

{∆ai}i ← VMap({ai}i, HSTEIN-FORCES)
{∆ϕϕϕi}Ni=1 ← PYTREERESTORE({∆ai}Ni=1)
return ∆θθθ, ∆ψψψ, {∆ϕϕϕi}Ni=1

end procedure
Algorithm 1: α-indexed Stein Mixture inference

I.3 KERNEL INTERFACE

The kernel interface is straightforward. To extend the interface, users must implement the compute
function, which accepts as input the current set of particles, the mapping between model parameters
and particles, and the loss function L and returns a differentiable kernel k. Table 6 gives the complete
list of kernels in EinSteinVI.
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Table 6: Kernels included in the EinSteinVI library.

Kernel Definition Comments Type Reference

Radial Basis
Function (RBF)

exp( 1h ∥ x− y ∥22) scalar Liu & Wang
(2016)

exp( 1h (x− y)) vector Pyro7

Inverse Multi-
Quadratic

(IMQ)
(c2+ ∥ x− y ∥22)β β ∈ (−1, 0) and c > 0 scalar

Gorham &
Mackey
(2017)

Random
Feature

Expansion
Ew[ϕϕϕ(x,w)ϕϕϕ(y,w)]

ϕϕϕ(x,w) =√
2 cos( 1hw

⊤
1 x+ w0)

where w0 ∼ Unif(0, 2π)
and w1 ∼ N (0, Id)

scalar Liu & Wang
(2018)

Linear x⊤y + 1 scalar Liu & Wang
(2018)

Mixture
∑
iωωωiki(x,y)

{ki}i individual kernels,
weights ωωωi

scalar,
vector,
matrix

Liu & Wang
(2018)

Scalar-based
Matrix k(x,y)Id k scalar-valued kernel matrix Wang et al.

(2019)
Vector-based

Matrix diag(k(x,y)) k vector-valued kernel matrix Wang et al.
(2019)

Graphical diag({K(ℓ)(x,y)}ℓ)
{K(ℓ)}ℓ scalar-valued

kernels, each for a unique
partition of latent variables

matrix,
placed
on the
diago-

nal

Wang et al.
(2019)

Constant Pre-
conditioned Q− 1

2K(Q
1
2x,Q

1
2y)Q− 1

2

K is an inner matrix-valued
kernel andQ is a

preconditioning matrix like
the Hessian −∇2

z̄ log p(z̄|x)
or Fisher information

−Ez∼qZ(z)[∇2
z log p(z|x)]

matrices

matrix Wang et al.
(2019)

Anchor Point
Precondi-

tioned

∑m
ℓ=1KQℓ

(x,y)ωωωℓ(x)ωωωℓ(y)

{aℓ}mℓ=1 is a set of anchor
points,Qℓ = Q(aℓ) is a

preconditioning matrix for
each anchor point, KQℓ

is
an inner kernel conditioned

usingQℓ, and ωωωℓ(x) =
softmaxℓ({N (x|aℓ′ ,Q−1

ℓ′ )}ℓ′)

matrix Wang et al.
(2019)
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