
Under review as a conference paper at ICLR 2021

MULTI-AGENT IMITATION LEARNING WITH COPULAS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-agent imitation learning aims to train multiple agents to perform tasks from
demonstrations by learning a mapping between observations and actions, which
is essential for understanding physical, social, and team-play systems. However,
most existing works on modeling multi-agent interactions typically assume that
agents make independent decisions based on their observations, ignoring the com-
plex dependence among agents. In this paper, we propose to use copula, a pow-
erful statistical tool for capturing dependence among random variables, to explic-
itly model the correlation and coordination in multi-agent systems. Our proposed
model is able to separately learn marginals that capture the local behavioral pat-
terns of each individual agent, as well as a copula function that solely and fully
captures the dependence structure among agents. Extensive experiments on syn-
thetic and real-world datasets show that our model outperforms state-of-the-art
baselines across various scenarios in the action prediction task, and is able to gen-
erate new trajectories close to expert demonstrations.

1 INTRODUCTION

Recent years have witnessed great success of reinforcement learning (RL) for single-agent sequential
decision making tasks. As many real-world applications (e.g., multi-player games (Silver et al.,
2017; Brown & Sandholm, 2019) and traffic light control (Chu et al., 2019)) involve the participation
of multiple agents, multi-agent reinforcement learning (MARL) has gained more and more attention.
However, a key limitation of RL and MARL is the difficulty of designing suitable reward functions
for complex tasks with implicit goals (e.g., dialogue systems) (Russell, 1998; Ng et al., 2000; Fu
et al., 2017; Song et al., 2018). Indeed, hand-tuning reward functions to induce desired behaviors
becomes especially challenging in multi-agent systems, since different agents may have completely
different goals and state-action representations (Yu et al., 2019).

Imitation learning provides an alternative approach to directly programming agents by taking ad-
vantage of expert demonstrations on how a task should be solved. Although appealing, most prior
works on multi-agent imitation learning typically assume agents make independent decisions after
observing a state (i.e., mean-field factorization of the joint policy) (Zhan et al., 2018; Le et al., 2017;
Song et al., 2018; Yu et al., 2019), ignoring the potentially complex dependencies that exist among
agents. Recently, Tian et al. (2019) and Liu et al. (2020) proposed to implement correlated poli-
cies with opponent modeling, which incurs unnecessary modeling cost and redundancy, while still
lacking coordination during execution.

Compared to the single-agent setting, one major and fundamental challenge in multi-agent learning
is how to model the dependence among multiple agents in an effective and scalable way. Inspired
by probability theory and statistical dependence modeling, in this work, we propose to use copulas
(Sklar, 1959b; Nelsen, 2007; Joe, 2014) to model multi-agent behavioral patterns. Copulas are pow-
erful statistical tools to describe the dependence among random variables, which have been widely
used in quantitative finance for risk measurement and portfolio optimization (Bouyé et al., 2000).
Using a copulas-based multi-agent policy enables us to separately learn marginals that capture the
local behavioral patterns of each individual agent and a copula function that only and fully captures
the dependence structure among the agents. Such a factorization is capable of modeling arbitrarily
complex joint policy and leads to interpretable, efficient and scalable multi-agent imitation learning.
As a motivating example (see Figure 1), suppose there are two agents, each with one-dimensional
action space. In Figure 1a, although two joint policies are quite different, they actually share the
same copula (dependence structure) and one marginal. Our proposed copula-based policy is capable

1

Under review as a conference paper at ICLR 2021

+

+

+

+

=

=

Gaussian(0, 1)

Gaussian(0, 1)

Gaussian(0, 1)

Gumbel(-1.5, 0.7)

(a) Same copula but different marginals

+

+

+

+

=

=

Uniform over
[0,1]!

Uniform over
[0, "

!
]!∪ ["

!
, 1]!

(b) Same marginals but different copulas

Figure 1: In each subfigure, the left part visualizes the joint policy π(a1, a2|s) on the joint ac-
tion space [−3, 3]2 and the right part shows the corresponding marginal policies (e.g., π1(a1|s) =∫
a2
π(a1, a2|s)da2) as well as the copula c(F1(a1|s), F2(a2|s)) on the unit cube. Here Fi is the

cumulative distribution function of the marginal πi(ai|s) and ui := Fi(ai|s) is the uniformly dis-
tributed random variable obtained by probability integral transform with Fi. More details and defi-
nitions can be found in Section 3.2.

of capturing such information and more importantly, we may leverage such information to develop
efficient algorithms for such transfer learning scenarios. For example, when we want to model team-
play in a soccer game and one player is replaced by his/her substitute while the dependence among
different roles are basically the same regardless of players, we can immediately obtain a new joint
policy by switching in the new player’s marginal while keeping the copula and other marginals un-
changed. On the other hand, as shown in Figure 1b, two different joint policies may share the same
marginals while having different copulas, which implies that the mean-field policy in previous works
(only modeling marginal policies and making independent decisions) cannot differentiate these two
scenarios to achieve coordination correctly.

Towards this end, in this paper, we propose a copula-based multi-agent imitation learning algorithm,
which is interpretable, efficient and scalable for modeling complex multi-agent interactions. Ex-
tensive experimental results on synthetic and real-world datasets show that our proposed method
outperforms state-of-the-art multi-agent imitation learning methods in various scenarios and gener-
ates multi-agent trajectories close to expert demonstrations.

2 PRELIMINARIES

In this work, we consider the problem of multi-agent imitation learning under the framework of
Markov games (Littman, 1994), which generalize Markov Decision Processes to multi-agent set-
tings, where N agents are interacting with each other. Specifically, in a Markov game, S is the
common state space, Ai is the action space for agent i ∈ {1, . . . , N}, η ∈ P(S) is the ini-
tial state distribution and P : S × A1 × . . . × AN → P(S) is the state transition distribution
of the environment that the agents are interacting with. Here P(S) denotes the set of probabil-
ity distributions over state space S. Suppose at time t, agents observe s[t] ∈ S and take actions
a[t] := (a1[t], . . . , aN [t]) ∈ A1× . . .×AN , the agents will observe state s[t+1] ∈ S at time t+1
with probability P (s[t + 1]|s[t], a1[t], . . . , aN [t]). In this process, the agents select the joint action
a[t] by sampling from a stochastic joint policy π : S → P(A1 × . . . × AN). In the following,
we will use subscript −i to denote all agents except for agent i. For example, (ai,a−i) represents
the actions of all agents; πi(ai|s) and πi(ai|s,a−i) represent the marginal and conditional policy of
agent i induced by the joint policy π(a|s) (through marginalization and Bayes’s rule respectively).

We consider the following off-line imitation learning problem. Suppose we have access to a set of
demonstrations D = {τ j}Mj=1 provided by some expert policy πE(a|s), where each expert trajec-
tory τ j = {(sj [t],aj [t])}Tt=1 is collected by the following sampling process:

s1 ∼ η(s),a[t] ∼ πE(a|s[t]), s[t+ 1] ∼ P (s|s[t],a[t]) for t ∈ {1, . . . , T}.

2

Under review as a conference paper at ICLR 2021

The goal is to learn a parametric joint policy πθ to approximate the expert policy πE such that we
can do downstream inferences (e.g., action prediction and trajectory generation). The learning prob-
lem is off-line as we cannot ask for additional interactions with the expert policy or the environment
during training, and the reward is also unknown.

3 MODELING MULTI-AGENT INTERACTIONS WITH COPULAS

3.1 MOTIVATION

Many modeling methods for multi-agent learning tasks employ a simplifying mean-field assumption
that the agents make independent action choices after observing a state (Albrecht & Stone, 2018;
Song et al., 2018; Yu et al., 2019), which means the joint policy can be factorized as follows:

π(a1, . . . , aN |s) =
N∏
i=1

πi(ai|s) (1)

Such a mean-field assumption essentially allows for independent construction of each agent’s policy.
For example, multi-agent behavior cloning by maximum likelihood estimation is now equivalent to
performing N single-agent behavior cloning tasks:

max
π

E(s,a)∼ρπE
[logπ(a|s)] =

N∑
i=1

max
πi

E(s,ai)∼ρπE
,i[log πi(ai|s)] (2)

where the occupancy measure ρπ : S × A1 × . . . × AN → R denotes the state action distribution
encountered when navigating the environment using the joint policy π (Syed et al., 2008; Puterman,
2014) and ρπ,i is the corresponding marginal occupancy measure.

However, when the expert agents are making correlated action choices (e.g., due to joint plan and
communication in a soccer game), such a simplifying modeling choice is not able to capture the rich
dependency structure and coordination among agent actions. To address this issue, recent works
(Tian et al., 2019; Liu et al., 2020) propose to use a different factorization of the joint policy such
that the dependency among N agents can be preserved:

π(ai,a−i|s) = πi(ai|s,a−i)π−i(a−i|s) for i ∈ {1, . . . , N}. (3)
Although such a factorization is general and captures the dependency among multi-agent inter-
actions, several issues still remain. First, the modeling cost is increased significantly, because
now we need to learn N different and complicated opponent policies π−i(a−i|s) as well as
N different marginal conditional policies πi(ai|s,a−i), each with a deep neural network. It
should be noted that there are many redundancies in such a modeling choice. Specifically, sup-
pose there are N agents and N > 3, for agent 1 and N , we need to learn opponent policies
π−1(a2, . . . , aN |s) and π−N (a1, . . . , aN−1|s) respectively. These are potentially high dimensional
and might require flexible function approximations. However, the dependency structure among
agent 2 to agent N − 1 are modeled in both π−1 and π−N , which incurs unnecessary modeling
cost. Second, when executing the policy, each agent i makes decisions through its marginal pol-
icy πi(ai|s) = Eπ−i(a−i|s)(ai|s,a−i) by first sampling a−i from its opponent policy π−i then
sampling its action ai from πi(·|s,a−i). Since each agent is performing such decision process inde-
pendently, coordination among agents are still impossible due to sampling randomness. Moreover, a
set of independently learned conditional distributions are not necessarily consistent with each other
(i.e., induced by the same joint policy) (Yu et al., 2019).

In this work, to address above challenges, we draw inspiration from probability theory and propose
to use copulas, a statistical tool for describing the dependency structure between random variables,
to model the complicated multi-agent interactions in a scalable and efficient way.

3.2 COPULAS

When the components of a multivariate random variable x = (x1, . . . , xN) are jointly independent,
the density of x can be written as:

p(x) =

N∏
i=1

p(xi) (4)

3

Under review as a conference paper at ICLR 2021

When the components are not independent, this equality does not hold any more as the dependen-
cies among x1, . . . , xN can not be captured by the marginals p(xi). However, the differences can be
corrected by multiplying the right hand side of Equation (4) with a function that only and fully de-
scribes the dependency. Such a function is called a copula (Nelsen, 2007), a multivariate distribution
function on the unit hyper-cube with uniform marginals.

Intuitively, let us consider a random variable xi with continuous cumulative distribution function Fi.
Applying probability integral transform gives us a random variable ui = Fi(xi), which has standard
uniform distribution. Thus one can use this property to separate the information in marginals from
the dependency structures among x1, . . . , xN by first projecting each marginal onto one axis of the
hyper-cube and then capture the pure dependency with a distribution on the unit hyper-cube.

Formally, a copula is the joint distribution of random variables u1, . . . , uN , each of which is
marginally uniformly distributed on the interval [0, 1]. Furthermore, we introduce the following
theorem that provides the theoretical foundations of copulas:

Theorem 1 ((Sklar, 1959a)). Suppose the multivariate random variable (x1, . . . , xN) has marginal
cumulative distribution functions F1, . . . , FN and joint cumulative distribution function F , then
there exists a unique copula C : [0, 1]N → [0, 1] such that:

F (x1, . . . , xN) = C
(
F1(x1), . . . , FN (xN)

)
(5)

When the multivariate distribution has a joint density f and marginal densities f1, . . . , fN , we have:

f(x1, . . . , xN) =

N∏
i=1

fi(xi) · c
(
F1(x1), . . . , FN (xN)

)
(6)

where c is the probability density function of the copula. The converse is also true. Given a copula
C and marginals Fi(xi), then C

(
F1(x1), . . . , FN (xN)

)
= F (x1, . . . , xN) is a N -dimensional

cumulative distribution function with marginal distributions Fi(xi).

Theorem 1 states that every multivariate cumulative distribution function F (x1, . . . , xN) can be
expressed in terms of its marginals Fi(xi) and a copula C

(
F1(x1), . . . , FN (xN)

)
. Comparing Eq.

(4) with Eq. (6), we can see that a copula function encoding correlations between random variables
can be used to correct the mean-field approximation for arbitrarily complex distribution.

3.3 MULTI-AGENT IMITATION LEARNING WITH COPULA-BASED POLICIES

A central question in multi-agent imitation learning is how to model the dependency structure among
agent decisions properly. As discussed above, the framework of copulas provides a mechanism to
decouple the marginal policies (individual behavioral patterns) from the dependency left in the joint
policy after removing the information in marginals. In this work, we advocate copula-based policy
for multi-agent learning because copulas offer some unique and desirable properties in multi-agent
scenarios. For example, suppose we want to model the interactions among players in a sports game.
Using copula-based policy, we will obtain marginal policies for each individual player as well as
dependencies among different roles (e.g., forwards and midfielders in soccer). Such a multi-agent
learning framework has the following advantages:

• Interpretable. The learned copula density can be easily visualized to intuitively analyze
the correlation among agent actions.

• Scalable. When the marginal policy of agents changes but the dependency among different
agents remain the same (e.g., in a soccer game, one player is replaced by his/her substitute,
but the dependence among different roles are basically the same regardless of players), we
can obtain a new joint policy efficiently by switching in the new agent’s marginal while
keeping the copula and other marginals unchanged.

• Succinct. The copula-based factorization of the joint policy avoids the redundancy in pre-
vious opponent modeling approaches (Tian et al., 2019; Liu et al., 2020) (as discussed in
Section 3.1) by separately learning marginals and a copula.

4

Under review as a conference paper at ICLR 2021

Algorithm 1: Training procedure
Input: The number of trajectories M , the length of trajectory T , the number of agents N , demonstrations

D = {τ i}Mi=1, where each trajectory τ i = {(si[t],ai[t])}Tt=1

Output: Marginal action distribution MLP MLPmarginal, state-dependent copula MLP MLPcopula or
state-independent copula density c(·)

// Learning marginals
1 while MLPmarginal not converge do
2 for each state-action pair (s, (a1, · · · , aN)) do
3 Calculate the conditional marginal action distributions for all agent:

{fj(·|s)}Nj=1 ←MLPmarginal(s)
4 for agent j = 1, · · · , N do
5 Calculate the likelihood of the observed action aj : fj(aj |s)
6 Maximize fj(aj |s) by optimizing MLPmarginal using gradient descent

// Learning copula
7 while MLPcopula or c(·) not converge do
8 for each state-action pair (s, (a1, · · · , aN)) do
9 {fj(·|s)}Nj=1 ←MLPmarginal(s)

10 for agent j = 1, · · · , N do
11 Fj(·|s)← the CDF of fj(·|s)
12 Transform the agent action aj to uniformly distributed value uj ← Fj(aj |s)
13 Obtain u = (u1, · · · , uN) in the unit hyper-cube [0, 1]N

14 if copula is set as state-dependent then
15 Calculate the state-dependent copula density c(·|s)←MLPcopula(s)
16 Calculate the likelihood of u: c(u|s)
17 Optimize MLPcopula by maximizing log c(u|s) using gradient descent
18 else
19 Calculate the likelihood of u: c(u)
20 Optimize parameters of c(·) using maximum likelihood or non-parametric methods

21 return MLPmarginal, MLPcopula or c(·)

Learning. In this section, we discuss how to learn a copula-based policy from a set of expert
demonstrations. Under the framework of Markov games and copulas, we factorize the parametric
joint policy as:

π(a1, . . . , aN |s;θ) =
N∏
i=1

πi(ai|s; θi) · c
(
F1(a1|s; θ1), . . . , FN (aN |s; θN)|s; θc

)
(7)

where πi(ai|s; θi) is the marginal policy of agent i with parameters θi and Fi is the corresponding
cumulative distribution function; the function c (parameterized by θc) is the density of the copula on
the transformed actions ui = Fi(ai|s; θi) obtained by processing original actions with probability
integral transform.

The training algorithm of our proposed method is presented as Algorithm 1. Given a set of expert
demonstrations D, our goal is to learn marginal actions of agents and their copula function. Our
approach consists of two steps.1 We first learn marginal action distributions of each agent given
their current state (lines 1-6). This is achieved by training MLPmarginal that takes as input a state s
and output the parameters of marginal action distributions ofN agents given the input state (line 3).2
In our implementation, we use mixture of Gaussians to realize each marginal policy πi(ai|s; θi) such
that we can model complex multi-modal marginals while having a tractable form of the marginal
cumulative distribution functions. Therefore, the output of MLPmarginal consists of the means,
covariance, and weights of components for the N agents’ Gaussian mixtures. We then calculate the
likelihood of each observed action aj based on agent j’s marginal action distribution (line 5), and
maximize the likelihood by optimizing the parameters of MLPmarginal (line 6).

1An alternate approach is to combine the two steps together and use end-to-end training, but this does not
perform well in practice because the copula term is unlikely to converge before marginals are well-trained.

2Here we assume that each agent is aware of the whole system state. But our model can be easily generalized
to the case where agents are only aware of partial system state by feeding the corresponding state to their MLPs.

5

Under review as a conference paper at ICLR 2021

After learning marginals, we fix the parameters of marginal MLPs and start learning the copula (lines
7-20). We first process the original demonstrations using probability integral transform and obtain a
set of new demonstrations with uniform marginals (lines 8-13). Then we learn the density of copula
(lines 14-20). Notice that the copula can be implemented as either state-dependent (lines 14-17) or
state-independent (lines 18-20): For state-dependent copula, we use MLPcopula to take as input the
current state s and outputs the parameters of copula density c(·|s) (line 15). Then we calculate the
likelihood of copula value u (line 16) and maximize the likelihood by updating MLPcopula (line
17). For state-independent copula, we directly calculate the likelihood of copula value u under c(·)
(line 19) and learn parameters of c(·) by maximizing the likelihood (line 20).

The copula density (c(·) or c(·|s)) can be implemented using parametric methods such as Gaussian
or mixture of Gaussians. It is worth noticing that if copula is state-independent, it can also be
implemented using non-parametric methods such as kernel density estimation (Parzen, 1962; Davis
et al., 2011). In this way, we no longer learn parameters of copula by maximizing likelihood as in
lines 19-20, but simply store all copula values u for density estimation and sampling in inference
stage. We will visualize the learned copula in experiments.

Inference and Generation. In inference stage, the goal is to predict the joint actions of all agents
given their current state s. The inference algorithm is presented as Algorithm 2 in Appendix A,
where we first sample a copula value u = (u1, · · · , uN) from the learned copula, either state-
dependent or state-independent (lines 1-5), then apply inverse probability transform to transform
them to the original action space: âj = F−1j (uj |s) (lines 7-10). Note that an analytical form of the
inverse cumulative distribution function may not always be available. In our implementation, we use
binary search to approximately solve this problem since Fj is a strictly increasing function, which
is shown to be highly efficient in practice. In addition, we can also sample multiple i.i.d. copula
values from c(·|s) or c(·) (line 3 or 5), transform them into the original action space, and take their
average as the predicted action. This strategy is shown to be able to improve the accuracy of action
prediction (in terms of MSE loss), but requires more running time as a trade-off.

The generation algorithm is presented as Algorithm 3 in Appendix A. To generate new trajectories,
we repeatedly predict agent actions given the current state (line 2), then execute the generated action
and obtain an updated state from the environment (line 3).

The computational complexity of the training and the inference algorithms is analyzed as follows.
The complexity of each round in Algorithm 1 is O(MTN), where M is the number of trajectories
in the training set, T is the length of each trajectory, and N is the number of agents. The complexity
of Algorithm 2 is O(N). The training and the inference algorithms scales linearly with the size of
input dataset.

4 RELATED WORK

The key problem in multi-agent imitation learning is how to model the dependence structure among
multiple interactive agents. Le et al. (2017) learn a latent coordination model for players in a coop-
erative game, where different players occupy different roles. However, there are many other multi-
agent scenarios where agents do not cooperate for a same goal or they do not have specific roles
(e.g., self-driving). Bhattacharyya et al. (2018) adopt parameter sharing trick to extend generative
adversarial imitation learning to handle multi-agent problems, but it does not model the interaction
of agents. Interaction Network (Battaglia et al., 2016) learns a physical simulation of objects with
binary relations, and CommNet (Sukhbaatar et al., 2016) learns dynamic communication among
agents. But they fail to characterize the dependence among agent actions explicitly.

Researchers also propose to infer multi-agent relationship using graph techniques or attention mech-
anism. For example, Kipf et al. (2018) propose to use graph neural networks (GNN) to infer the type
of relationship among agents. Hoshen (2017) introduces attention mechanism into multi-agent pre-
dictive modeling. Li et al. (2020) combine generative models and attention mechanism to capture
behavior generating process of multi-agent systems. These works address the problem of reasoning
relationship among agents rather than capturing their dependence when agents are making decisions.

Another line of related work is deep generative models in multi-agent systems. For example, Zhan
et al. (2018) propose a hierarchical framework with programmatically produced weak labels to gen-

6

Under review as a conference paper at ICLR 2021

Figure 2: Experimental environments (left to right): PhySim, Driving, and RoboCup.

erate realistic multi-agent trajectories of basketball game. Yeh et al. (2019) use GNN and variational
recurrent neural networks (VRNN) to design a permutation equivariant multi-agent trajectory gen-
eration model for sports games. Ivanovic et al. (2018) combine conditional variational autoencoder
(CVAE) and long-short term memory networks (LSTM) to generate behavior of basketball play-
ers. Most of the existing works focus on agent behavior forecasting but provide limited information
regarding the dependence among agent behaviors.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method in three settings. PhySim is a synthetic physical environment
where 5 particles are connected by springs. Driving is a synthetic driving environment where one
vehicle follows another along a single lane. RoboCup is collected from an international scientific
robot competition where two robot teams (including 22 robots) compete against each other. The
detailed dataset description is provided in Appendix B. Experimental environments are shown in
Figure 2.

Baselines. We compare our method with the following baselines: LR is a logistic regression
model that predicts actions of agents using all of their states. SocialLSTM (Alahi et al., 2016) pre-
dicts agent trajectory using RNNs with a social pooling layer in the hidden state of nearby agents.
IN (Battaglia et al., 2016) predicts agent states and their interactions using deep neural networks.
CommNet (Sukhbaatar et al., 2016) simulates the inter-agent communication by broadcasting the
hidden states of all agents and then predicts their actions. VAIN (Hoshen, 2017) uses neural net-
works with attention mechanism for multi-agents modeling. NRI (Kipf et al., 2018) designs a graph
neural network based model to learn the interaction type among multiple agents. Since most of the
baselines are used for predicting future states given historical state, we change the implementation of
their objective functions and use them to predict the current action of agents given historical states.
Each experiment is repeated 3 times, and we report the mean and standard deviation.

5.2 RESULTS

LR SocialLSTM IN CommNet VAIN NRI Copula

PhySim 0.064
± 0.002

0.186
± 0.032

0.087
± 0.013

0.089
± 0.007

0.082
± 0.010

0.055
± 0.011

0.037
± 0.005

Driving 0.335
± 0.007

0.283
± 0.024

0.247
± 0.033

0.258
± 0.028

0.242
± 0.031

0.296
± 0.018

0.158
± 0.019

RoboCup 0.478
± 0.009

0.335
± 0.051

0.320
± 0.024

0.311
± 0.042

0.315
± 0.028

0.401
± 0.042

0.221
± 0.024

Table 1: Root mean squared error (RMSE) between predicted actions
and ground-truth actions for our method and baselines.

We compare our method
with baselines in the task of
action prediction. The re-
sults of root mean squared
error (RMSE) between pre-
dicted actions and ground-
truth actions are presented
in Table 1. The number
of Gaussian mixture com-
ponents in our method is set to 2 for all datasets. The results demonstrate that all methods performs
the best on PhySim dataset, since agents in PhySim follow simple physical rules and the relation-
ships among them are linear thus easy to infer. However, the interactions of agents in Driving and
RoboCup datasets are more complicated, which causes LR and NRI to underperform other base-
lines. The performance of IN, CommNet, and VAIN are similar, which is in accordance with the
result reported in Hoshen (2017). Our method is shown to outperform all baselines significantly

7

Under review as a conference paper at ICLR 2021

on all three datasets, which demonstrates that explicitly characterizing dependence of agent actions
could greatly improve the performance of multi-agent behavior modeling.

Uniform copula KDE copula Gaussian mix. copula
PhySim 8.994± 0.001 1.256± 0.006 2.893± 0.012
Driving −0.571± 0.024 −0.916± 0.017 −0.621± 0.028

RoboCup 3.243± 0.049 0.068± 0.052 3.124± 0.061

Table 2: Negative log-likelihood (NLL) of test trajecto-
ries evaluated by different copula. Uniform copula as-
sumes no dependence among agent actions. KDE cop-
ula uses kernel density estimation to model the copula,
which is state-independent. Gaussian mixtures copula
uses Gaussian mixture model to characterize the cop-
ula, which is state-dependent.

To investigate the efficacy of copula, we
implement three types of copula function:
Uniform copula means we do not model
dependence among agent actions. KDE
copula uses kernel density estimation to
model the copula function, which is state-
independent. Gaussian mixtures copula
uses Gaussian mixture model to character-
ize the copula function, of which the pa-
rameters are output by an MLP taking as
input the current state. We train the three
models on training trajectories, then calcu-
late negative log-likelihood (NLL) of test
trajectories using the three trained models. A lower NLL score means that the model assigns high
likelihood to given trajectories, showing that it is better at characterizing the dataset. The NLL
scores of the three models on the three datasets are reported in Table 2. The performance of KDE
copula and Gaussian copula both surpasses uniform copula, which demonstrates that modeling de-
pendence among agent actions is essential for improving model expressiveness. However, Gaussian
copula performs worse than KDE copula, because Gaussian copula is state-dependent thus increases
the risk of overfitting. Notice that the performance gap between KDE and Gaussian copula is less on
PhySim, since PhySim dataset is much larger so the Gaussian copula can be trained more effectively.

5.3 GENERALIZATION CAPABILITY OF COPULA

Original marginals
+ original copula

Original marginals
+ new copula

New marginals
+ original copula

New marginals
+ new copula

PhySim 10.231± 0.562 8.775± 0.497 1.301± 0.016 1.259± 0.065
Driving 15.184± 1.527 13.662± 0.945 0.447± 0.085 −0.953± 0.024

RoboCup 4.278± 0.452 4.121± 0.658 0.114± 0.020 0.077± 0.044

Table 3: Negative log-likelihood (NLL) of new test trajectories in
which the action distribution of one agent is changed. We evaluate
the new test trajectories based on whether to use the original marginal
action distributions or copula, which results in four combinations.

One benefit of copulas is
that copula captures the
pure dependence among
agents, regardless of their
own marginal action distri-
butions. To demonstrate the
generalization capabilities
of copulas, we design the
following experiment. We
first train our model on
the original dataset, and learn marginal action distributions and copula function (which is called
original marginals and original copula). Then we substitute one of the agents with a new agent and
use the simulator to generate a new set of trajectories. Specifically, this is achieved by doubling
the action value of one agent (for example, this can be seen as substituting an existing particle with
a lighter one in PhySim). We retrain our model on new trajectories and learn new marginals and
new copula. We evaluate the likelihood of new trajectories based on whether to use the original
marginals or original copula, which, accordingly, results in four combinations. The NLL scores of
four combinations are presented in Table 3. It is clear, by comparing the first and the last column,
that “new marginals + new copula” significantly outperform “original marginals + original copula”,
since new marginals and new copula are trained on new trajectories and therefore characterize the
new joint distribution exactly. To see the influence of marginals and copula more clearly, we further
compare the results in column 2 and 3, where we use new copula or new marginals separately. It is
clear that the model performance does not drop significantly if we use the original copula and new
marginals (by comparing column 3 and 4), which demonstrates that the copula function basically
stays the same even if marginals are changed. The result supports our claim that the learned copula
is generalizable in the case where marginal action distributions of agents change but the internal
inter-agent relationship stays the same.

5.4 COPULA VISUALIZATION

Another benefit of copulas is that it is able to intuitively demonstrate the correlation among agent
actions. We choose the RoboCup dataset to visualize the learned copula. As shown in Figure 4a

8

Under review as a conference paper at ICLR 2021

in Appendix D, we first randomly select a game (the 6th game) between cyrus2017 and helios2017
and draw trajectories of 10 players in the left team (L2 ∼ L11, except the goalkeeper). It is clear
that the 10 players fulfill specific roles: L2 ∼ L4 are defenders, L5 ∼ L8 are midfielders, and L9 ∼
L11 are forwards. Then we plot the copula density between the x-axis (the horizontal direction) of
L2 and the x-axis of L3 ∼ L11, respectively, as shown in Figure 4b in Appendix D. These figures
illustrate linear correlation between their moving direction along x-axis, that is, when L2 moves
forward other players are also likely to move forward. However, the correlation strength differs with
respect to different players according to the visualized result: L2 exhibits high correlation with L3
and L4, but low correlation with L9 ∼ L11. This is because L2 ∼ L4 are all defenders so they
collaborate more closely with each other, but L9 ∼ L11 are forwards thus far from L2 in the field.

5.5 TRAJECTORY GENERATION

4

2

3

5

6

7

8

9

10

11

(a) Independent

4

2

3

5

6

7

8

9

10

11

(b) Copula

Figure 3: Generated trajectories on RoboCup
dataset using independent modeling or copula.
Dotted lines are ground-truth trajectories and solid
lines are generated trajectories.

The learned copula can also be used to gen-
erate new trajectories. We visualize the result
of trajectory generation on RobuCup dataset.
As shown in Figure 3, the dotted lines denote
the ground-truth trajectories of the 10 player
in an attack from midfield to the penalty area.
The trajectories generated by our copula model
(Figure 3b) are quite similar to the demonstra-
tion as they exhibit high consistency. It is clear
that midfielders and forwards (No. 5 ∼ No.
11) are basically moving to the same direction,
and they all make a left turn on their way to
penalty area. However, the generated trajecto-
ries by independent modeling show little corre-
lation since the players are all making independent decisions. We also present the result of trajectory
generation on Driving dataset in Appendix E.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a copula-based multi-agent imitation learning algorithm that is inter-
pretable, efficient and scalable to model complex multi-agent interactions. Sklar’s theorem allows
us to separately learn marginal policies that capture the local behavioral patterns of each individual
agent and a copula function that only and fully captures the dependence structure among the agents.
Compared to previous multi-agent imitation learning methods based on independent policies (mean-
field factorization of the joint policy) or opponent modeling, our method is capable of modeling
complex dependence among agents and achieving coordination without any modeling redundancy.
Experimental results on physical simulation, driving and robot soccer datasets demonstrate the ef-
fectiveness of our method compared with state-of-the-art baselines.

We point out two directions of future work. First, the copula function is generalizable only if the
dependence structure of agents (i.e., their role assignment) is unchanged. Therefore, it is interest-
ing to study how to efficiently apply the learned copula to the scenario with evolving dependence
structure. Another practical question is that whether our proposed method can be extended to the
setting of decentralized execution, since the step of copula sampling (line 3 or 5 in Algorithm 2)
is shared by all agents. A straightforward way to solve this problem is to set a fixed sequence of
random seeds for all agents in advance, so that the copula sample obtained by all agents is the same
at each timestamp. Designing a more robust and elegant mechanism for decentralized execution is
also a promising direction.

REFERENCES

Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio
Savarese. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 961–971, 2016.

9

Under review as a conference paper at ICLR 2021

Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258:66–95, 2018.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Advances in neural information processing
systems, pp. 4502–4510, 2016.

Raunak P Bhattacharyya, Derek J Phillips, Blake Wulfe, Jeremy Morton, Alex Kuefler, and Mykel J
Kochenderfer. Multi-agent imitation learning for driving simulation. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 1534–1539. IEEE, 2018.

Eric Bouyé, Valdo Durrleman, Ashkan Nikeghbali, Gaël Riboulet, and Thierry Roncalli. Copulas
for finance-a reading guide and some applications. Available at SSRN 1032533, 2000.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885–890, 2019.

Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. Multi-agent deep reinforcement learning for
large-scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 21(3):
1086–1095, 2019.

Richard A Davis, Keh-Shin Lii, and Dimitris N Politis. Remarks on some nonparametric estimates
of a density function. In Selected Works of Murray Rosenblatt, pp. 95–100. Springer, 2011.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA:
An open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning,
pp. 1–16, 2017.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning. arXiv preprint arXiv:1710.11248, 2017.

Yedid Hoshen. Vain: Attentional multi-agent predictive modeling. In Advances in Neural Informa-
tion Processing Systems, pp. 2701–2711, 2017.

Boris Ivanovic, Edward Schmerling, Karen Leung, and Marco Pavone. Generative modeling of
multimodal multi-human behavior. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3088–3095. IEEE, 2018.

Harry Joe. Dependence modeling with copulas. Chapman and Hall/CRC, 2014.

Thomas N Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard S Zemel. Neural
relational inference for interacting systems. In International Conference on Machine Learning,
2018.

Hoang M Le, Yisong Yue, Peter Carr, and Patrick Lucey. Coordinated multi-agent imitation learning.
In Proceedings of the 34th International Conference on Machine Learning, pp. 1995–2003, 2017.

Max Guangyu Li, Bo Jiang, Hao Zhu, Zhengping Che, and Yan Liu. Generative attention networks
for multi-agent behavioral modeling. In AAAI, pp. 7195–7202, 2020.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Minghuan Liu, Ming Zhou, Weinan Zhang, Yuzheng Zhuang, Jun Wang, Wulong Liu, and Yong Yu.
Multi-agent interactions modeling with correlated policies. arXiv preprint arXiv:2001.03415,
2020.

Olivia Michael, Oliver Obst, Falk Schmidsberger, and Frieder Stolzenburg. Robocupsimdata: A
robocup soccer research dataset. arXiv preprint arXiv:1711.01703, 2017.

Roger B Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, pp. 2, 2000.

10

Under review as a conference paper at ICLR 2021

Emanuel Parzen. On estimation of a probability density function and mode. The annals of mathe-
matical statistics, 33(3):1065–1076, 1962.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Stuart Russell. Learning agents for uncertain environments. In Proceedings of the eleventh annual
conference on Computational learning theory, pp. 101–103, 1998.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

A. Sklar. Fonctions de Répartition à n Dimensions et Leurs Marges. Publications de L’Institut de
Statistique de L’Université de Paris, 8:229–231, 1959a.

M Sklar. Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ. Paris, 8:
229–231, 1959b.

Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon. Multi-agent generative adversarial
imitation learning. In Advances in neural information processing systems, pp. 7461–7472, 2018.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropaga-
tion. In Advances in neural information processing systems, pp. 2244–2252, 2016.

Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning using linear pro-
gramming. In Proceedings of the 25th international conference on Machine learning, pp. 1032–
1039, 2008.

Zheng Tian, Ying Wen, Zhichen Gong, Faiz Punakkath, Shihao Zou, and Jun Wang. A regularized
opponent model with maximum entropy objective. arXiv preprint arXiv:1905.08087, 2019.

Raymond A Yeh, Alexander G Schwing, Jonathan Huang, and Kevin Murphy. Diverse generation
for multi-agent sports games. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4610–4619, 2019.

Lantao Yu, Jiaming Song, and Stefano Ermon. Multi-agent adversarial inverse reinforcement learn-
ing. In International Conference on Machine Learning, 2019.

Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, and Patrick Lucey. Generating multi-agent
trajectories using programmatic weak supervision. arXiv preprint arXiv:1803.07612, 2018.

11

Under review as a conference paper at ICLR 2021

A PSEUDO CODE FOR TRAINING, INFERENCE, AND GENERATION
PROCEDURE

The pseudo code for inference and generation procedure are presented in Algorithm 2 and 3, respec-
tively.

Algorithm 2: Inference procedure
Input: Marginal action distribution MLP MLPmarginal, state-dependent copula MLP MLPcopula or

state-independent copula density c(·), current state s
Output: Predicted action â
// Sample from copula

1 if copula is set as state-dependent then
2 Calculate (parameters of) state-dependent copula density c(·|s)←MLPcopula(s)
3 Sample a copula value u = (u1, · · · , uN) from c(·|s)
4 else
5 Sample a copula value u = (u1, · · · , uN) from c(·)
// Transform from copula space to action space

6 Calculate (parameters of) the conditional marginal action distributions for all agents:
{fj(·|s)}Nj=1 ←MLPmarginal(s)

7 for agent j = 1, · · · , N do
8 Fj(·|s)← CDF of fj(·|s)
9 âj ← F−1

j (uj |s)
10 â← (â1, · · · , âj)
11 return â

Algorithm 3: Generation procedure
Input: Inference module (Algorithm 2), initial state s[0], required length L, environment E
Output: Generated trajectory τ̂

1 for l = 0, · · · , L do
2 Feed state s[l] to the inference module and get the predicted action â[l]
3 Execute â[l] in environment E and get a new state s[l + 1]

4 τ̂ = {(s[l], â[l])}Ll=0

5 return τ̂

B DATASET DETAILS

PhySim is collected from a physical simulation environment where 5 particles move in a unit 2D
box. The state is locations of all particles and the action is their acceleration (there is no need to in-
clude their velocities in state because accelerations are completely determined by particle locations).
We add Gaussian noise to the observed values of actions. Particles may be pairwise connected by
springs, which can be represented as a binary adjacency matrix A ∈ {0, 1}N×N . The elasticity be-
tween two particles scales linearly with their distance. At each timestamp, we randomly sample an
adjacency matrix from {A1,A2} to connect all particles, where A1 and A2 are set as complimen-
tary (i.e. A1 +A2 + I = 1) to ensure that they are as different as possible. Therefore, the marginal
action distribution of each particle given a system state is Gaussian mixtures with two components.
Here the coordination signal for particles can be seen as the hidden variable determining which set
of springs (A1 or A2) is used at current time. We generate 10, 000 training trajectories, 2, 000 val-
idation trajectories, and 2, 000 test trajectories for experiments, where the length of each trajectory
is 500.

Driving is generated by CARLA3 (Dosovitskiy et al., 2017), an open-source simulator for au-
tonomous driving research that provides realistic urban environments for training and validation
of autonomous driving systems. To generate the driving data, we design a car following scenario,

3https://carla.org/

12

https://carla.org/

Under review as a conference paper at ICLR 2021

where a leader car and a follower car drive in the same lane. We make the leader car alternatively
accelerate to a speed upper bound and slow down to stopping. The leader car does not care about
the follower and drives following its own policy. The follower car tries to follow closely the leader
car while keeping a safe distance. Here the state is the locations and velocities of the two cars, and
the action is their accelerations. We generate 1, 009 trajectories in total, and split the whole data into
training, validation, and test set with ratio of 6 : 2 : 2. The average length of trajectories is 85.5 in
Driving dataset.

RoboCup (Michael et al., 2017) is collected from an international scientific robot football compe-
tition in which teams of multiple robots compete against each other. The original dataset contains
all pairings of 10 teams with 25 repetitions of each game (1, 125 games in total). The state of a
game (locations and velocities of 22 robots) is recorded every 100 ms, resulting in a trajectory of
length 6, 000 for each game (10 min). We select the 25 games between two teams, cyrus2017 and
helios2017, as the data used in this paper. The state is locations of 10 robots (except the goalkeeper)
in the left team, and the action is their velocities. The dataset is split into training, validation, and
test set with ratio of 6 : 2 : 2.

For the three datasets, to learn the marginal action distribution of each agent (i.e. Gaussian mixtures),
we use an MLP with one hidden layer to take as input a state and output the centers of their Gaussian
mixtures. To prevent overfitting, the variance of these Gaussian mixtures is parameterized by a free
variable for each particle, and the weights of mixtures are set as uniform. Each dimension of states
and actions in the original datasets are normalized to range [−1, 1]. For PhySim, the number of
particles are set to 5. Learning rate is set to 0.01, and the weight of L2 regularizer is set to 10−5.
For Driving, learning rate is 0.005 and L2 regularizer weight is 10−5. For RoboCup, learning rate is
0.001 and L2 regularizer weight is 10−6.

C BASELINE IMPLEMENTATION DETAILS

For LR, we use the default implementation in Python sklearn package. For SocialLSTM (Alahi
et al., 2016), the dimension of input is set as the dimension of states in each dataset. The spatial
pooling size is 32, and we use an 8× 8 sum pooling window size without overlaps. The hidden state
dimension in LSTM is 128. The learning rate is 0.001. For IN (Battaglia et al., 2016), all MLPs
are with one hidden layer of 32 units. The learning rate is 0.005. For CommNet (Sukhbaatar et al.,
2016), all MLPs are with one hidden layer of 32 units. The dimension of hidden states is set to 64,
and the number of communication round is set to 2. The learning rate is 0.001. For VAIN (Hoshen,
2017), the encoder and decoder functions are implemented as a fully connected neural network with
one hidden layer of 32 units. The dimension of hidden states is 64, and the dimension of attention
vectors is 10. The learning rate is 0.0005. For NRI (Kipf et al., 2018), we use an MLP encoder and
an MLP decoder, with one hidden layer of 32 units. The learning rate is 0.001.

D VISUALIZED COPULA ON ROBOCUP DATASET

The trajectories of players in one game as well as the visualized pairwise copula are presented in
Figure 4.

E GENERATED TRAJECTORIES ON DRIVING DATASET

For the Driving dataset, we randomly select 10 original trajectories and 10 trajectories generated by
our method, and show the visualization results in Figure 5. The x-axis is timestamp and y-axis is the
location (coordinate) of two cars. Our learned policy is shown to be able to maintain the distance
between two cars.

13

Under review as a conference paper at ICLR 2021

L2 L3

L4 L5

L6 L7

L8 L9

L10 L11

(a)

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L3
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L4
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L5
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L6
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L7
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L8
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L9
x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L1
0x

0.25 0.50 0.75
L2x

0.2

0.4

0.6

0.8

L1
1x

(b)

Figure 4: (a) Trajectories of 10 players (except the goalkeeper) of the left team in one RoboCup
game; (b) Copula density between x-axis of the L2 player and x-axis of another player (L3 ∼ L11).

0 25 50

0

50

100

0 25 50

0

50

100

0 25 50

0

50

100

0 25 50

0

50

100

0 25 50
0

50

100

0 25 50

0

50

100

0 25 50

0

50

100

0 25 50

0

50

100

0 25 50

0

50

100

0 25 50

0

50

100

(a) Original trajectories

0 25 50
0

50

100

0 25 50
0

50

100

0 25 50

0

50

100

0 25 50
0

50

100

0 25 50

0

50

100

0 25 50
0

50

100

0 25 50
0

50

100

0 25 50

0

50

100

0 25 50
0

50

100

0 25 50
0

50

100

(b) Generated trajectories

Figure 5: Original and generated trajectories on Driving dataset. The x-axis is timestamp and y-axis
is the location (1D coordinate) of two cars.

14

	Introduction
	Preliminaries
	Modeling Multi-Agent Interactions with Copulas
	Motivation
	Copulas
	Multi-Agent Imitation Learning with Copula-based Policies

	Related Work
	Experiments
	Experimental Setup
	Results
	Generalization Capability of Copula
	Copula Visualization
	Trajectory Generation

	Conclusion and Future Work
	Pseudo Code for Training, Inference, and Generation Procedure
	Dataset Details
	Baseline Implementation Details
	Visualized Copula on RoboCup Dataset
	Generated Trajectories on Driving Dataset

