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ABSTRACT

Object-centric architectures can learn to extract distinct object representations
from visual scenes, enabling downstream applications on the object level. Sim-
ilarly to autoencoder-based image models, object-centric approaches have been
trained on the unsupervised reconstruction loss of images encoded by RGB color
spaces. In our work, we challenge the common assumption that RGB images are
the optimal color space for unsupervised learning in computer vision. We discuss
conceptually and empirically that other color spaces, such as HSV, bear essential
characteristics for object-centric representation learning, like robustness to light-
ing conditions. We further show that models improve when requiring them to
predict additional color channels. Specifically, we propose to transform the pre-
dicted targets to the RGB-S space, which extends RGB with HSV’s saturation
component and leads to markedly better reconstruction and disentanglement for
five common evaluation datasets. The use of composite color spaces can be im-
plemented with basically no computational overhead, is agnostic of the models’
architecture, and is universally applicable across a wide range of visual comput-
ing tasks and training types. The findings of our approach encourage additional
investigations in computer vision tasks beyond object-centric learning.

1 INTRODUCTION

The ability to form abstract, structured representations of the physical world is a cornerstone of
human intelligence (Lake et al., 2017; Fodor & Pylyshyn, 1988). It enables us to excel in dealing
with out-of-distribution situations, reasoning, analogy-making, and causal inference. Similarly, ma-
chine learning models that adapt the structural knowledge of an environment are more efficient and
generalizable (Schölkopf et al., 2021). Modeling language as a sequence of structured tokens was a
significant step toward the applicability and generalization of LLMs (Sennrich et al., 2016; Devlin
et al., 2019). Similarly, many computer vision applications might also profit from segmenting visual
scenes into semantic tokens, but inducing those is less self-evident. Thus, state-of-the-art models
primarily represent images as a whole or as fixed-sized grids, consequently failing at simple reason-
ing that requires structural knowledge of physical entities such as counting objects (Radford et al.,
2021).

Addressing this issue, object-centric representation learning (OCRL) aims to infer a set of slots,
each representing a distinct object - allowing for causal inference at the object level (Ding et al.,
2021). Although binding an object to a slot from raw perceptual input is challenging (Greff et al.,
2020a), recent advancements in OCRL, such as the Slot Attention (SA) module (Locatello et al.,
2020), enabled unsupervised learning for simple synthetic datasets. However, scaling these methods
to complex datasets proves challenging - slots attend to features considered irrelevant (Kipf et al.,
2020) such as static backgrounds, represent spatial areas instead of objects (Seitzer et al., 2023), and
are highly entangled (Singh et al., 2023). Subsequently, researchers investigated modified architec-
tures utilizing the compositional nature of objects (Biza et al., 2023; Singh et al., 2023), optimiza-
tion methods respecting the generative process of visual scenes (Brady et al., 2023; Wiedemer et al.,
2023), and (semi-)supervised objectives (Elsayed et al., 2022b; Seitzer et al., 2023). Substantial
performance increases of the latter highlighted that a pure RGB reconstruction loss may be a signal
that is too weak for slots to segment scenes (Seitzer et al., 2023). Our work follows this assumption
- However, we provide additional unsupervised signals by augmenting the RGB color space with
color channels from other color spaces. We reason about our research in the following.
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As in many vision-based approaches, the training data for unsupervised OCRL are color images,
represented as red, green, and blue components, i.e., the classical RGB color space. To the best
of our knowledge, all previous work for OCRL trains models on such RGB scenes. The RGB
representation can be a sensible choice for images, primarily due to convenience in vector format
mapping, its byte size, and its similarity to the human eye apparatus (Podpora et al., 2014). However,
we argue that the RGB space is insufficient for unsupervised OCRL due to its color channels’ high
correlation, sensitivity to lightness, and non-uniformity. Other color spaces (which are non-linear
and non-continuous transformations from RGB), such as HSV, do not suffer from these problems.
Furthermore, they include highly discriminative features for object detection (see Figure 1) However,
they introduce other drawbacks detailed in section 2. Thus, the question arises of how OCRL models
can profit from the strengths of various color spaces while not inheriting their weaknesses - we
propose to solve this problem by developing novel composite color spaces that combine expressive
color channels from multiple spaces. We argue and show empirically that those color channels
that are robust to some effects, such as lighting or change in saturation, significantly improve the
performance of OCRL models.

Figure 1: Exemplary scene from the Clevrtex and Movi-C dataset. We plot the original image
and object masks with individual color channels on a heatmap. We show RGB’s Red, Green, and
Blue channels and HSV’s Hue, Saturation, and Value. The objects are distinguishable from the
background and other objects in all heatmaps. Contrary to the RGB channels, the HSV channels are
uncorrelated.

Our main contributions are:

• We claim that RGB image representations are suboptimal for unsupervised OCRL as their
color channels are highly correlated, sensitive to light effects, and non-uniform for natural
images.

• We show that the color space representation of the target significantly influences the per-
formance of Slot Attention models and discuss the strengths and drawbacks of color chan-
nels of multiple well-known color spaces. Consequently, we create novel, composite color
spaces by combining complementary color channels. Previous work only focuses on the
color space representation of the input.

• We demonstrate that the augmented color spaces are model-agnostic, generalizable, and
efficient while significantly outperforming the established RGB color space for object de-
tection and property disentanglement for the five multi-object datasets Clevr (Johnson et al.,
2016), Multishapenet 4, Multishapenet 24 (Stelzner et al., 2021), Clevrtex (Karazija et al.,
2021), and Movi-C (Greff et al., 2022).

2 BACKGROUND: SLOT ATTENTION

In the following, we introduce the technical background for Slot Attention (SA) (Locatello et al.,
2020). We use SA for all our experiments, but our composite color spaces are transferable to other
OCRL implementations.

Traditional encoder-decoder architectures for computer vision generate a single, fixed-size (high-
dimensional) latent vector z for an observation x. The latent space should accurately represent the
underlying data distribution and capture the generative factors (Bengio et al., 2013; Locatello et al.,
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2019). In OCRL, we assume data consists of individual objects. Thus, object-centric architectures
aim to induce a latent space decomposed into distinct objects.

For example, SA is an iterative algorithm employed on the learned features of an encoder. Each iter-
ation starts with K slots ∈ RK×Dslots and inputs ∈ RN×Denc , the position-embedded outputs
of an encoder. K must be user-defined or estimated. First, attention values attni,j are computed
between each slot and the inputs using dot-product attention with learnable linear queries and
keys (Vaswani et al., 2017). Crucially, SA introduces competition by softmax normalizing the atten-
tion coefficients over the slots, distributing inputs information among the slots.

After introducing competition, attention weights attn and a learnable function v embed the values
to update the slots. Finally, a Gated Recurrent Unit and another MLP merge the updates into
the slots. For the mathematical details and formulas, we refer to Locatello et al. (2020).

The SA algorithm delivers slots that distributedly store the input information. Depending on the
task and data, learned slot representations can be used in different downstream architectures. For
unsupervised object discovery, which we examine in our work, slots are spatially broadcasted and
decoded separately with a weight-shared decoder - the decoder usually predicts a four-dimensional
output, capturing the RGB representations and masks. Masks are softmax normalized to merge
individual reconstructions into a combined output (Greff et al., 2020b; Locatello et al., 2020).

Because RGB images strongly correlate with the lightness (see ”value” in Table 7) and the models
are optimized with a simple pixel-wise reconstruction loss, models predominantly focus on pre-
dicting the lightness accurately. Consequently, the binding mechanism discriminates spatial areas
primarily by a single dimension. Other perceptual variables, such as the hue and saturation (Smith,
1978; Schwarz et al., 1987) that may be important to discriminate between objects are thus under-
represented. We argue that requiring models to additionally decode complementary color channels,
such as hue and saturation, provides a stronger unsupervised signal for segmenting semantic objects.

3 COLOR SPACES FOR UNSUPERVISED OBJECT CENTRIC REPRESENTATION
LEARNING

In this section, we highlight the impact of color choices on unsupervised OCRL. Outgoing from the
common RGB color space, we discuss requirements for sensible color representations and arrive at
composite color spaces that combine channels with complementary information of multiple spaces.

3.1 WHY IS RGB A SUBOPTIMAL CHOICE FOR NATURAL SCENES IN OCRL?

We argue that RGB is a suboptimal color space for unsupervised OCRL, as RGB is

• strongly correlated: The RGB color space consists of the additive ”Red,” ”Green,” and
”Blue” color channels. Those are all strongly correlated in natural images. We provide
empirical evidence for that in Table 7, where we calculated the Pearson Correlation Coef-
ficient between each color channel for 1000 images, respectively sampled from ClevrTex
(Karazija et al., 2021), MS Coco (Lin et al., 2014), and ImageNet (ILSVRC2012) (Deng
et al., 2009). The correlation not only introduces redundancy into machine learning models
but clashes with the perceptual variables of humans (Smith, 1978; Schwarz et al., 1987):
As the RGB space is optimized with a reconstruction loss, models primarily focus on pre-
dicting the value (or lightness). Contrarily, humans’ color vision assimilates incoming light
sources differently — while RGB cones produce the first physical stimulus, the stimuli are
transformed into the sensations of hue, colorfulness (”saturation”), and brightness (”value”)
(Müller & , Lipsk; Kim et al., 2009). Our brain finally uses those sensations to discriminate
between objects. Consequently, objects that are similar in the perception of humans (but
differ in some properties, e.g., their hue) are scattered by the RGB space.

• sensitive to lighting: The RGB channels are not only strongly correlated with each other
but also with the value/lightness (see Table 7). In natural scenes, the same objects might
be represented by entirely different RGB color histograms due to rapid changes in lighting.
We elaborate on this effect in subsection D.4 and even show that the slot representations in
the HSV space are less dependent on the lighting conditions.
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• non-uniform in the perceived color space: Distances in uniform color spaces reflect the
perceived distance of humans (Paschos, 2001). The RGB space is non-uniform, leading
to distorted representations of visually similar features. As slots attend to similar features
(based on color representations), the binding mechanism might be negatively influenced.

3.2 ARE OTHER COLOR SPACES BETTER SUITED FOR UNSUPERVISED OBJECT CENTRIC
REPRESENTATION LEARNING?

Other color spaces, such as HSV and CIE-LAB solve some of the problems discussed for the RGB
space. HSV is a cylindrical-coordinate representation of RGB, modeling the ”Hue,” ”Saturation,”
and ”Value.” The value strongly correlates with the RGB channels (see Table 7). Contrarily, the hue
and saturation are not correlated to the RGB channels and are only slightly influenced by lighting.
Similarly, it aligns with the perceptual variables of humans (Smith, 1978; Schwarz et al., 1987).
Furthermore, it is almost perceptually uniform. CIELAB models the luminosity along with the
two color dimensions. Due to the explicit modeling of luminosity, it is perceptually uniform, non-
correlated, and robust to light influences. HSV and CIE-LAB can be losslessly transformed from
the RGB space. Although those transformations are non-continuous, they can be approximated by
machine learning algorithms. However, we argue and empirically verify that transformations in
the target representations significantly influence OCRL models’ performance. As the models are
trained on the pixel-wise reconstruction error, models may use their predictive capacity differently
depending on the color space. For example, if we use RGB space, we rely on the OCRL model
to implicitly learn objects’ invariances due to lightness effects while we model them in HSV with
the hue and saturation component. We verify in subsection D.4 that the robustness of the HSV
channels to different lighting conditions transfers to the slot representations - objects that share the
same underlying factors remain more similar when confronted with different lighting.

On the contrary, HSV and CIE-LAB introduce other problems. For example, HSV’s hue is discontin-
uous and thus not well modeled by differentiable machine learning algorithms, and transformations
from CIE-LAB to RGB are not lossless. Thus, our work doesn’t rely on a single color space but
later creates composite color spaces. To identify which color channels are suitable for composite
spaces, we first assess which color spaces impact OCRL’s performance. Therefore, we trained SA
models with the same architecture and hyperparameters predicting RGB, CIE-LAB, or HSV scenes
on the Clevr and Clevrtex datasets. The input scenes are always represented as RGB scenes, and
we trained on six random seeds. Machine learning algorithms can approximate transformations of
the inputs and thus have less impact on the performance (Mishkin et al., 2017). We further discuss
input transformations in subsection D.3. We report the Foreground Adjusted Rand Index in Table 1,
measuring object discovery in scenes.

Table 1: Object Discovery FG-ARI (↑) for various color spaces (RGB2X)

Dataset RGB-RGB RGB-LAB RGB-HSV RGB-GRAY RGB-R

Clevr 94.1± 1.1 95.0± 1.0 43.8± 9.3 87.6± 1.3 92.6± 1.5
ClevrTex 71.7± 1.4 73.1± 8.5 86.7± 1.7 63.6± 5.5 61.8± 4.0

RGB and CIELAB perform similarly. They achieve a close-to-perfect segmentation on the sim-
ple Clevr dataset but perform worse when including photorealistic textures in Clevrtex. Although
we argued that RGB is highly correlated, it still performs significantly better than grayscale values.
However, even the single gray dimension suffices to segment most scenes for the Clevr dataset. Sim-
ilarly, training only on the R dimension suffices to segment scenes on Clevr but lacks performance
on Clevrtex. We make an interesting observation for the HSV space: On the one hand, models
degenerate to bind areas instead of objects for Clevr. We suspect that the discontinuity in the hue
channel (see Figure 2, ”Hue” and ”Masks”) distorts the binding mechanism. On the other hand,
models trained on HSV show a significantly improved performance for Clevrtex. We suspect that
the fine-grained differences between objects and backgrounds are more explicitly modeled in HSV
(see Figure 1) - as the RGB space strongly correlates with the value dimension of HSV, the hue
and saturation are underrepresented. Compared to RGB, slots are thus provided with more infor-
mation to discriminate between objects. The discontinuity in the hue channels is less influential as
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SA models do not group object based on their hue alone due to complex textures and illumination
effects.

Figure 2: Two qualitative samples for SA with a RGB-HSV reconstruction on Clevr. We observe
that the reconstruction and slot assignment are degenerated, with scenes split into many different
stripe-like slots. For models trained on RGB, RGB-S, RGB-SV, the mask reconstruction almost
perfectly matches the ground-truth mask (for more details, see Figure 9)

3.3 COMBINING COLOR SPACES

While we previously gauged between individual color spaces, we will now argue about combining
complementary color channels into a composite target space. Combined color spaces have been
initially considered in the literature but have yet to be focused on OCRL (Du et al., 2024). Models
trained on composite color spaces are less dependent on inherent biases of the color spaces. For
example, differences in hue and saturation are subtle in the RGB space (due to the channels high
correlation with the lightness) but explicitly incorporated in the HSV space. For the following pa-
per, we mainly use the stability and reliability of the RGB space and enrich it with complementary
channels of the HSV space - especially the saturation bears interesting characteristics for unsuper-
vised OCRL due to its non-correlation to the RGB channels, its continuity, and robustness against
lightness. We show that this single dimension already significantly improves the performance of ob-
ject detection and intra-object disentanglement (see Table 5.1.1 and Figure 4). Moreover, we tested
further combinations of RGB and HSV, but their improvements were less significant or unstable.

The SA model requires minimal change in architecture for the enhanced color spaces. We solely
alter the spatial broadcast decoder to predict a five-dimensional output for the RGB-S space (instead
of four) consisting of the RGB channels, the saturation, and the alpha masks. The parity of the
alpha masks among the four color channels reflects the consistency of the color channels for these
objects: Slots are required to model two independent but semantically relevant targets that are
spatially compact. Similar to the minor adjustments in the architecture, the loss function remains
an unsupervised reconstruction loss but includes saturation (or any other channel) as a target. For
our experiments, the input to the networks remains RGB. Although we argue that complementary
color channels are helpful as signals in the target, we estimate that their influence is less substantial
for inputs: The RGB color space already contains all information, and the encoder can learn the
transformations. However, we consider the exploration of the input space an interesting future work,
although we report mixed initial results (see Table 8).

4 RELATED WORK

To our knowledge, combined color spaces have not yet been explored for object-centric representa-
tion, although they have shown promising success in computer vision tasks (Shin et al., 2002; Gowda
& Yuan, 2019; Li et al., 2011). However, they focus on transformations on the input instead of the
targets. In particular, using different color spaces such as HSV or YCbCr were investigated for chal-
lenging segmentation and detection tasks (Shin et al., 2002; Vandenbroucke et al., 2003; Taipalmaa
et al., 2020). The choice of input color space might have been a typical approach in feature engi-
neering. However, with the advent of deep learning-based methods, such feature engineering has
lost its importance in favor of simple and general methods (Mishkin et al., 2017). Existing work has
focused on general color transformations Miao & Wang (2023), the usage of a single alternate color
space (Lim et al., 2020), or colorspace conversion within autoencoders (Akbarinia & Gil-Rodrı́guez,
2021). All have shown mixed results, primarily due to the usage of whole color spaces. Only very
recently, the use of composite color spaces (Tan et al., 2023) has been investigated in deep learning,
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albeit for image colorization (Du et al., 2024). We revisit color space transformations for unsuper-
vised OCRL. The challenging nature of this task and the transformation of the output (instead of the
input) makes our work conceptually different from all presented work.

The observation that the RGB pixel-wise reconstruction loss does not suffice to bind semantic ob-
jects in natural scenes is discussed in the literature (Seitzer et al., 2023; Kipf et al., 2022). Conse-
quently, Elsayed et al. (2022a) enhance the RGB output space with a supervised depth signal for
object discovery in videos. They build their work on Kipf et al. (2022) which find that SA for videos
strongly improves when conditioning slots on objects in the first frame. Similarly, Kim et al. (2023)
utilize point-based descriptors to prohibit slots to focus on backgrounds. While all of the above
works utilize pixel-wise reconstruction losses, Seitzer et al. (2023); Qian et al. (2023); Wen et al.
(2024); Aydemir et al. (2023) abstain from training slots on a reconstruction error and instead predict
semantic semi-supervised signals. Similarly, Xu et al. (2022) leverage embedded text descriptions
as supervision for semantic segmentation of images. Another unsupervised alternative is discussed
by Brady et al. (2023) and Wiedemer et al. (2023) - they leverage derivatives in the loss function
to explicitly model the compositionality of OCRL scenes. In our evaluation, we also test whether
the additional color channels influence the representation of underlying generating factors in slots.
Biza et al. (2023) explicitly disentangle position, size, and pose information by invariant position
embeddings. Majellaro et al. (2024) extend this framework to disentangle the shape and texture of
objects. Singh et al. (2023) introduce the concept of blocks that bind different factors of objects, and
Stammer et al. (2024) discretize those blocks. Combined color spaces can be used complementary
to those approaches.

5 EXPERIMENTS AND RESULTS

For our experiments, we investigate the impact of five color spaces on unsupervised Slot Attention.
Our baselines are RGB and HSV, and we utilize RGB-S, RGB-SV, and RGB-HSV as combined
color spaces. For comparability, all models use the same architecture; only the final output layer
is adjusted to match the dimension of the color spaces. As motivated in subsection 3.2, we only
transform the targets, and the input remains RGB.

We mainly evaluate object discovery, measuring whether slots segment scenes into distinct objects.
In line with previous work, we report the Foreground-Adjusted Rand Index (FG-ARI) and the mean
Intersection over Union (mIoU). Additionally, we report the RGB-MSE for scene reconstruction
quality. Note that if a network predicts additional color channels, they are not considered for the
MSE measurement, and HSV is algorithmically transformed to RGB for this to work. Furthermore,
we evaluate how well the slot representations generalize to the underlying generating factors of
objects. We utilize the DCI framework (Eastwood & Williams, 2018) in line with Singh et al.
(2022). Previous work investigated that unsupervised SA trained on RGB mainly focuses on low-
level features such as color statistics (Seitzer et al., 2023) - we show that one additional, uncorrelated
color channel already suffices to achieve a significantly higher generalization of slots. We evaluate
the color spaces on five multi-object datasets, namely Clevr, MultiShapeNet (4 and 24), Clevrtex,
and Movi-C (Johnson et al., 2016; Stelzner et al., 2021; Karazija et al., 2021; Greff et al., 2022). We
treat Movi-C as an image dataset. Model and optimization parameters are detailed in Appendix A.
Furthermore, we provide qualitative results in Appendix D.

5.1 RESULTS ON OBJECT DISCOVERY

We measure object discovery for the five datasets Clevr, MultiShapeNet (4 and 24), Clevrtex, and
Movi-C (Johnson et al., 2016; Stelzner et al., 2021; Karazija et al., 2021; Greff et al., 2022). An
overview of the results is given in Table 5.1.1, and we detail the results in the following sections.

5.1.1 CLEVR

We start our evaluation with the Clevr dataset (Johnson et al., 2016), containing at most ten simple
geometric objects per scene on a gray background. For our evaluation, we use the model architecture
introduced by Locatello et al. (2020), achieving near-perfect segmentations. We already discussed
in section 3 that models trained on the HSV degenerate. We argued that the discontinuity of the hue
channel prohibits slots from binding objects. Thus, as an initial proof of concept, we first verify
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that the enhanced RGB color spaces, without non-continuous hue, do not degenerate. We report
segmentation and reconstruction quality for all datasets in Table 5.1.1. Results of models trained on
RGB values are consistent with the literature (Locatello et al., 2020). While models trained with the
Hue component degenerate (visible in the segmentation and reconstruction quality), models trained
on the RGB-S and RGB-SV space do not degenerate and even improve the segmentation quality
slightly. However, the combined color spaces do not help segment objects from the background.
Thus, the mIoU score is low for all models.

Table 2: Evaluation results on five datasets for the different predicted output color spaces. Best
values are bold (multiple if in same error band). Best predictions indicated in bold if consistent
lead for both FG-ARI and mIoU. It can be seen that, overall, enhancing RGB with other color
dimensions leads to strong performance improvements. Primarily RGB-S and RGB-SV lead to a
consistent performance improvement.

V Pred. FG-ARI ↑ mIoU ↑ RGB-MSE* ↓

C
le

vr

C
N

N

RGB 94.1± 1.1 26.9 ± 0.5 54.0± 5.1
RGB-S 94.9 ± 1.2 27.0 ± 2.0 46.5 ± 3.9
RGB-SV 95.4 ± 0.5 26.7 ± 0.7 46.0 ± 1.4
RGB-HSV 88.3± 13.2 25.6 ± 1.8 51.4± 5.5
HSV 44.9± 8.0 17.3± 2.4 99.8± 9.5

M
ul

tiS
ha

pe
N

et
-4

C
N

N

RGB 73.7± 11.8 26.9± 17.5 76.8± 13.2
RGB-S 82.1 ± 2.5 55.0 ± 16.8 73.5± 6.5
RGB-SV 81.9 ± 7.5 56.2 ± 14.3 60.3 ± 5.4
RGB-HSV 62.7± 20.2 21.6± 9.5 87.1± 5.6
HSV 61.1± 9.7 15.6± 3.3 116.9± 6.3

M
ul

tiS
ha

pe
N

et
-2

4

C
N

N

RGB 61.6± 13.2 33.6 ± 21.5 45.6 ± 5.0
RGB-S 70.3 ± 4.7 46.6 ± 19.4 44.8 ± 5.2
RGB-SV 71.7 ± 6.3 43.5 ± 19.8 44.5 ± 4.3
RGB-HSV 62.0± 12.6 22.1± 11.6 53.4± 6.0
HSV 57.7± 12.6 22.8± 11.8 74.1± 8.1

C
le

vr
te

x

C
N

N

RGB 66.3± 16.3 41.5± 13.0 293.4 ± 13.1
RGB-S 84.2 ± 3.6 61.5± 3.5 320.1± 8.1
RGB-SV 81.7± 3.8 53.3± 7.8 308.6± 8.8
RGB-HSV 85.8 ± 1.9 64.2± 4.4 318.2± 9.4
HSV 86.4 ± 1.7 70.0 ± 2.0 371.9± 10.2

R
es

N
et

RGB 75.6± 12.0 48.6± 14.8 179.9 ± 5.4
RGB-S 92.7 ± 2.4 73.6± 3.2 192.1± 11.0
RGB-SV 88.7± 10.3 67.2± 14.2 211.5± 17.5
RGB-HSV 88.6± 9.8 66.7± 13.8 195.9± 5.2
HSV 94.8 ± 0.8 81.1 ± 1.1 244.3± 4.3

M
ov

i-
C

R
es

N
et

RGB 42.9± 3.3 21.3± 1.8 192.4 ± 139.5
RGB-S 45.7 ± 2.4 27.2 ± 2.7 211.2 ± 96.1
RGB-SV 43.2 ± 4.9 22.3± 4.3 251.5 ± 173.8
RGB-HSV 40.7± 3.0 29.0 ± 3.5 425.3± 124.7
HSV 38.1± 6.0 24.8± 6.6 626.7± 71.9

* MSE caveat: A tendency for higher values for the enriched color spaces and HSV is expected as the MSE involves a conversion to RGB.

5.1.2 MULTISHAPENET

We consider two variants of Multishapenet (Stelzner et al., 2021), which we call ”4” and ”24”. In
the 4 version, we filtered for images containing exactly four objects, while we allowed 2 to 4 objects
in the 24 version. We follow the translation and scaling invariant architecture by Biza et al. (2023).
Similarly to Clevr, incorporating the hue channel leads to model degeneration. Conversely, adding
Saturation to the RGB color space significantly improves segmentation quality for both dataset vari-
ants. For MSN 4, FG-ARI is improved from 73.7 to 82.1, and for MSN 24, from 61.6 to 70.3,
representing a relative improvement of 10%. The differences are even more substantial for the
mIoU score: Although the RGB models often succeed in distributing different objects to different
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Figure 3: We show reconstructions and masks of models trained on Multishapenet, Clevrtex, and
Movi-C compared to their ground truth. While the RGB space does not confidently segment objects
from each other and from the background, RGB-S achieves close-to-perfect scene segmentations.
On Movi-C, RGB models degenerate to represent spatial areas instead of objects. The RGB-S slots
mostly attend to semantic objects, but objects are often split into multiple slots.

slots, they do not segment them clearly from the background. We visualize that behavior in Figure 3
(top row). We made similar observations for Clevrtex and Movi-C. The value channel has little to no
impact, which is expected as it highly correlates with the RGB channels Table 7. The main reason
for the worse segmentation quality of the RGB baseline is that models degenerated for some seeds
(2 for 4, 5 for 24). The FG-ARI score for the best-performing seed of RGB models is 84.1 for the
4 variant and 76.6 for the 24, competing with the enhanced color spaces. Degenerated models also
lead to a higher MSE. Contrarily, only one model of the RGB-S color space degenerated for the 24
version.

5.1.3 CLEVRTEX

Clevrtex (Karazija et al., 2021), conceptually similar to Clevr but having more shapes, sizes, and,
most importantly, a manifold of photo-realistic textures (see Figure 3), is the most challenging
dataset we considered. We use the invariant SA architecture by Biza et al. (2023) and similarly
show two variants of model complexities: We use a standard five-level CNN autoencoder (Figure 3
for details), labeled CNN in the following, and also a Resnet34 architecture which promised sig-
nificant performance gains (labeled ResNet). The RGB baselines can mostly segment scenes, but
small objects are often encoded with other slots or multiple slots encode one object. Adding the sat-
uration (and value) channels significantly improves the segmentation quality - The composite color
spaces improve the baselines for 10% in absolute FG-ARI score, independent of the model’s com-
plexity. The CNN models on the enhanced color spaces achieve segmentation results comparable to
the ResNet model trained on RGB while the encoder has approximately 20 times fewer parameters.
Surprisingly, models trained on the HSV color space work best for both model architectures. We
conclude that the hue channel, although unsteady, can be a valuable objective for more complex
scenes - it is uncorrelated to the other dimensions, and the objects are not determined by a single
color but can be composed of multiple colors - the discontinuity in the ”Hue” channel might thus not
be as influential. Further research on more complex datasets is necessary to confirm out hypothe-
sis. We also evaluated the models trained on the standard Clevrtex dataset on an out-of-distribution
test set containing novel shapes and materials. All models are robust and maintain almost the same
segmentation quality (see subsection D.1). The reconstruction error increases significantly for all
model variants.

5.1.4 MOVI-C

Originally, Movi-C (Greff et al., 2022) is a collection of short video clips. For this work, we consider
its snapshots as an image dataset, similar to Seitzer et al. (2023); Fan et al. (2024). Investigating the
effect of combined color spaces for videos is an interesting future work. Movi-C consists of 3 to 10
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photorealistic objects on a background and is yet another significant step up in complexity. While
SA trained on RGB was previously reported to fail on it (Seitzer et al., 2023), self-supervised signals
provided a significant performance step-up. Our experiments utilize the same ResNet architecture as
used for Clevrtex. Our object discovery measures for RGB are consistent with the related literature
(Seitzer et al., 2023) - although the FG-ARI scores are similar across color spaces, we observed a
qualitative difference in segmentation: The low segmentation scores for RGB originate from slots
that segment scenes into areas. Contrarily, RGB-S and RGB-HSV attend to objects but often split
the object into multiple slots (Figure 3). This observation is quantitatively captured by the mIoU
score, which is significantly higher for the enhanced color spaces. While the enhanced color spaces
improve object discovery, they do not suffice to match the performance of self-supervised signals
for Movi-C (Seitzer et al., 2023) (see subsection D.6). However, we also note that the RGB-HSV
models provide the best mIoU scores but lack proper reconstruction quality. More powerful de-
coders (in combination with additional color channels) might thus help to enhance the segmentation
performance further.

5.2 RESULTS ON UNDERLYING GENERATING FACTORS

We tested how well the slots represent the objects they binded. We, therefore, run two tests to
predict their underlying generating factors (Locatello et al., 2019). The first test is to train a linear
and shallow non-linear predictor that should map from the slot representations to the factors of
variation of the Clevrtex objects: Those are uniformly sampled from four shapes, three sizes, and 59
materials. We matched objects to slots based on the maximal mask overlap to construct the dataset to
train and evaluate the predictor. Average precision is shown in Figure 4 (left and middle). Although
the quality of slot representations was shown to correlate with the FG-ARI (Wenzel et al., 2022), the
quality of slot representations differs strongly, especially for the materials: The HSV and RGB-S
model at least double the precision of the RGB model. While the additional color dimensions do
not directly influence the size and shape, the material is mainly determined by hue, saturation, and
value. We suspect that the explicit representation helps slots generalize to underlying factors.

Figure 4: We report Slot Learning and Disentanglement results for the CNN and ResNet Variants
of the Clevrtex dataset. The left figure shows the average precision of a linear predictor trained to
map from slot representations to underlying object properties. The middle figure shows results for
a shallow non-linear predictor. The right figure shows the Informativeness, Disentanglement, and
Completeness of slot representations (Eastwood & Williams, 2018). The composite color spaces
consistently outperform the RGB space for all considered metrics. The HSV space even outper-
forms the composite color spaces. Although the composite color spaces significantly improve the
representative power of underlying object factors, they still show low performance in disentangle-
ment and completeness.

Secondly, we employed the DCI metrics (Eastwood & Williams, 2018; Li et al., 2020) (see subsec-
tion A.3) to assess slot representations further. We follow a similar procedure as Singh et al. (2023)
but employ a decision tree classifier instead of gradient-boosted trees for efficiency. Similar to our
first test, all models improve over the ones trained on RGB. However, the plain HSV models, trained
on the fully decorrelated color space, perform significantly better than all other models. Similarly,
all ResNet models improve over their CNN counterpart. Although Seitzer et al. (2023) have shown
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that scale alone is not enough to learn object representations, it seems that the simple CNN lacks the
complexity to generalize to underlying factors. Overall, all models show low performance in disen-
tanglement and completeness. An interesting future work would be to combine the color spaces with
models explicitly disentangling factor representations (Singh et al., 2023; Stammer et al., 2024). We
extend our analysis on slot representations in subsection D.4 and subsection D.5. We observed that
slots obtained from composite targets tend to be more robust against lightning changes, and slots
obtained from RGB targets tend to learn spatial areas instead of object representations.

6 LIMITATIONS AND FUTURE WORK

By only requiring a different output representation, our approach is generally applicable to all visual
scenes; nonetheless, there are several limitations in our approach and evaluation: We only consid-
ered preexisting color channels of the most common color spaces, and there may be better com-
posite channels suited for object detection. Analyzing whether a non-correlated RGB space, e.g.,
by applying PCA, already improves the scene segmentation is a promising starting point. Further-
more, we base our argument on the non-correlation to detect suitable complementary color channels.
However, more elaborate techniques considering the data distribution of pixels may be needed to
filter for complementary dimensions efficiently. Furthermore, we only evaluated our enhanced color
spaces for OCRL tasks, but they might generally apply to a broader field of computer vision. At the
same time, we based our discussion only on natural images. Finally, we only tested and compared
the enhanced color spaces on SA - however, recent approaches based on self-supervised learning
and pre-trained encoders have shown promising results - using composite color spaces (e.g., in the
pretraining method) might lead to further performance improvement, but is impossible to assess a
priori. An interesting direction for future research is if the performance leaps are achieved by using
composite color space transfer to other unsupervised networks for visual computing. We started the
elaboration of this paper by investigating the influence of the visual scene data representation on the
performance of unsupervised OCRL. Our work is a starting point, showing promising performance
without negative effects in OCRL, bearing the potential for numerous research directions: A first
step is to evaluate the design space of combined color spaces - other channels than saturation may
bear similar potentials, providing a consistent target to discriminate between objects. Furthermore,
we designed the color space for OCRL, but combining color spaces got less attention in computer
vision in general. However, a combination of color spaces still needs to be explored.

7 CONCLUSION

We challenge the common assumption that RGB images are the optimal color space for unsuper-
vised learning in computer vision (Caron et al., 2021; Radford et al., 2021; Locatello et al., 2020)
and demonstrate this for OCRL. We highlighted that the RGB space is not only highly correlated,
effectively reducing the learned target to one dimension, but that composite color spaces offer non-
correlated dimensions while upholding expressive features for OCRL. In a evaluation, we tested
the LAB and the HSV color space as complimentary targets and found that HSV shows interesting
properties due to its non-correlatedness and similarity to human perception. However, while HSV
improves models on some datasets, it leads to degeneration for other datasets due to the disconti-
nuity in the Hue channel. We thus combined the stability of the RGB space with the uncorrelated,
expressive channels of HSV, constructing combined color spaces. Training models on the combined
color spaces leaves the main architecture unchanged, is broadly applicable, virtually cost-free, and
significantly improves performance on object detection. Especially the RGB-S space, combining
the RGB space with the Saturation channel (significantly) enhances performance on object discov-
ery and scene segmentation across all five datasets. Most significantly, on the challenging Clevrtex
dataset, we increase the FG-ARI from 75.6 to 92.7. We further show evidence that the combined
color spaces also improve performance on photo-realistic datasets such as Movi-C and improve the
mIoU from 21.3 to 27.2. Similarly, we highlight that training on the pure HSV color space can
sometimes improve the FG-ARI further but lacks stability on other datasets. Moreover, we eval-
uated the extracted slots’ capability to bind object property and noticed significant improvements
from 27.1 % to 57.8 % average precision. To summarize, the composite RGB-S and RGB-SV color
space (significantly) outperforms RGB in any experiment without negative side effects or additional
cost.
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W. Stammer, A. Wüst, D. Steinmann, and K. Kersting. Neural concept binder, 2024. URL https:
//arxiv.org/abs/2406.09949.

K. Stelzner, K. Kersting, and A. R. Kosiorek. Decomposing 3d scenes into objects via unsupervised
volume segmentation, 2021. URL https://arxiv.org/abs/2104.01148.

J. Taipalmaa, N. Passalis, and J. Raitoharju. Different color spaces in deep learning-based water
segmentation for autonomous marine operations. In 2020 IEEE international conference on image
processing (ICIP), pp. 3169–3173. IEEE, 2020.

14

https://doi.ieeecomputersociety.org/10.1109/ICCV51070.2023.01529
https://doi.ieeecomputersociety.org/10.1109/ICCV51070.2023.01529
https://arxiv.org/abs/2103.00020
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9363924
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9363924
https://doi.org/10.1145/31336.31338
http://arxiv.org/abs/2209.14860
https://aclanthology.org/P16-1162
https://api.semanticscholar.org/CorpusID:249151816
https://api.semanticscholar.org/CorpusID:249151816
https://openreview.net/forum?id=ZPHE4fht19t
https://openreview.net/forum?id=ZPHE4fht19t
https://doi.org/10.1145/800248.807361
https://arxiv.org/abs/2406.09949
https://arxiv.org/abs/2406.09949
https://arxiv.org/abs/2104.01148


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

L. Tan, J. Li, L. Niu, and L. Zhang. Deep image harmonization in dual color spaces. In Proceedings
of the 31st ACM International Conference on Multimedia, MM ’23, pp. 2159–2167, New York,
NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701085. doi: 10.1145/
3581783.3612404. URL https://doi.org/10.1145/3581783.3612404.

N. Vandenbroucke, L. Macaire, and J.-G. Postaire. Color image segmentation by pixel classification
in an adapted hybrid color space. application to soccer image analysis. Computer Vision and
Image Understanding, 90(2):190–216, 2003.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

X. Wen, B. Zhao, A. Zheng, X. Zhang, and X. Qi. Self-supervised visual representation learning
with semantic grouping. In Proceedings of the 36th International Conference on Neural Infor-
mation Processing Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN
9781713871088.

F. Wenzel, A. Dittadi, P. Gehler, C.-J. Simon-Gabriel, M. Horn, D. Zietlow, D. Kern-
ert, C. Russell, T. Brox, B. Schiele, B. Schölkopf, and F. Locatello. Assay-
ing out-of-distribution generalization in transfer learning. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 7181–7198. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/2f5acc925919209370a3af4eac5cad4a-Paper-Conference.pdf.

T. Wiedemer, J. Brady, A. Panfilov, A. Juhos, M. Bethge, and W. Brendel. Provable compositional
generalization for object-centric learning, 2023.

J. Xu, S. De Mello, S. Liu, W. Byeon, T. Breuel, J. Kautz, and X. Wang. Groupvit: Semantic seg-
mentation emerges from text supervision. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 18113–18123, 2022. doi: 10.1109/CVPR52688.2022.01760.

Rongzhen Zhao, Vivienne Wang, Juho Kannala, and Joni Pajarinen. Grouped discrete representation
for object-centric learning, 11 2024.

15

https://doi.org/10.1145/3581783.3612404
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2f5acc925919209370a3af4eac5cad4a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2f5acc925919209370a3af4eac5cad4a-Paper-Conference.pdf


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A REPRODUCIBILITY OF EXPERIMENTS

Our work contains a wide range of empirical evaluations. The following section serves as documen-
tation to reproduce our experiments. We provide model architectures, optimization hyperparameters,
and further details.

A.1 MODEL ARCHITECTURE

We consider a wide range of complexities in our datasets. While Clevr contains only simple geo-
metric objects on a gray background, Movi-C depicts photorealistic textures and backgrounds. We
adjust the scale of model architectures accordingly. All models consist of an encoder, the Slot At-
tention module, and the spatial broadcast decoder. We report details of the Table A.1.1, Table A.1.2,
Table A.1.3. For the Clevr dataset, we apply vanilla Slot Attention, for all other datasets we apply
position and scale invariant slot attention (Biza et al., 2023).

A.1.1 ENCODER DETAILS

Table 3: Architecture Details of CNN encoder.

Layer Kernel Dimension Kernel Size Stride Padding Activation

C
le

vr

1 64 5x5 1x1 Same ReLu
2 64 5x5 1x1 Same ReLu
3 64 5x5 1x1 Same ReLu
4 64 5x5 1x1 Same ReLu

M
ul

tis
ha

pe
ne

t 1 64 5x5 2x2 Same ReLu
2 64 5x5 2x2 Same ReLu
3 64 5x5 2x2 Same ReLu
4 64 5x5 1x1 Same ReLu

C
le

vr
te

x

1 64 5x5 2x2 Same ReLu
2 64 5x5 2x2 Same ReLu
3 64 5x5 2x2 Same ReLu
4 64 5x5 1x1 Same ReLu

A.1.2 SLOT ATTENTION MODULE DETAILS

We use Slot Attention with three iterations and a residual connection as proposed by Locatello et al.
(2020). For all datasets except Clevr, we utilize the position-invariant variant of Biza et al. (2023).
The number of slots is set to the maximum number of objects in the dataset plus the background,
resulting in eleven slots for all datasets except Multishapenet, where we use five slots. The hyperpa-
rameters of the Slot attention module are depicted in Table A.1.2.

A.1.3 DECODER DETAILS

The hyperparameters of the spatial decoder are detailed in Table A.1.3.

A.2 OPTIMIZATION PARAMETERS

Similar to Locatello et al. (2020); Biza et al. (2023), we apply the Adam optimizer. We use a batch
size of 32 with a learning rate of 2 · 10−4 for 250k steps. We use a learning rate warm-up from 0
to 50k steps, and afterwards a cosine learning rate decay for 100k steps. Due to the large variance
for object segmentation, we train all CNN models on 10 random seeds, and all ResNet models on 6
random seeds.
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Table 4: Architecture Details of Slot Attention Module

Name Dimension Activation

C
le

vr

Position Encoding 64 ReLu
Key 64 None
Query 64 None
Value 64 None
GRU 64 ReLu
Residual MLP 128 → 64 ReLu → Relu

M
ul

tis
ha

pe
ne

t

Position Encoding 64 ReLu
Key 64 None
Query 64 None
Value 64 None
GRU 64 ReLu
Residual MLP 128 → 64 ReLu → Relu

C
le

vr
te

x
C

N
N

Position Encoding 64 ReLu
Key 64 None
Query 64 None
Value 64 None
GRU 64 ReLu
Residual MLP 128 → 64 ReLu → Relu

C
le

vr
te

x
R

es
ne

t Position Encoding 256 → 128 ReLu
Key 128 None
Query 128 None
Value 128 None
GRU 128 ReLu
Residual MLP 256 → 128 ReLu → Relu

M
ov

i-
C

Position Encoding 256 → 128 ReLu
Key 128 None
Query 128 None
Value 128 None
GRU 128 ReLu
Residual MLP 256 → 128 ReLu → Relu

A.3 EVALUATION METRICS

While the metrics for object discovery are well established for OCRL (Locatello et al., 2020; Biza
et al., 2023; Seitzer et al., 2023), we provide more details about our experiments of underlying
generating factors. There we use the DCI metrics of Eastwood & Williams (2018). According to
Eastwood & Williams (2018), those metrics measure:

• Disentanglement: ”The degree to which a representation factorizes or disentangles the
underlying factors of variation, with each variable (or dimension) capturing at most one
generative factor”

• Completeness: ”The degree to which a single code variable captures each underlying fac-
tor”

• Informativeness: ”The amount of information that a representation captures about the
underlying factors of variation”

The classifier and DCI metrics require slots to be matched to a ground truth object. We match
pairs by the largest overlap of the ground truth mask with the decoded alpha mask of slots. For the
property prediction experiments, we trained two classifiers. The linear one directly maps from the
slot representations to one-hot encoded property predictions, while the non-linear one additionally
includes a ReLu-activated intermediate layer with 128 dimensions. We utilize an external library
available at Loc for the DCI experiments. We use a decision tree classifier with a batch size of 32.
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Table 5: Architecture Details of CNN decoder

Layer Kernel Dimension Kernel Size Stride Padding Activation

C
le

vr

1 64 5x5 1x1 Same ReLu
2 64 5x5 1x1 Same ReLu
3 64 5x5 1x1 Same ReLu
4 64 5x5 1x1 Same ReLu
5 64 5x5 1x1 Same ReLu
6 Color Channels + 1 3x3 1x1 Same None

M
ul

tis
ha

pe
ne

t

1 64 5x5 2x2 Same ReLu
2 64 5x5 2x2 Same ReLu
3 64 5x5 2x3 Same ReLu
4 64 5x5 1x1 Same ReLu
5 64 5x5 1x1 Same ReLu
6 Color Channels + 1 3x3 1x1 Same None

C
le

vr
te

x
C

N
N

1 64 5x5 2x2 Same ReLu
2 64 5x5 2x2 Same ReLu
3 64 5x5 2x3 Same ReLu
4 64 5x5 1x1 Same ReLu
5 64 5x5 1x1 Same ReLu
6 Color Channels + 1 3x3 1x1 Same None

C
le

vr
te

x
R

es
ne

t 1 128 5x5 2x2 Same ReLu
2 128 5x5 2x2 Same ReLu
3 128 5x5 2x3 Same ReLu
4 64 5x5 1x1 Same ReLu
5 64 5x5 1x1 Same ReLu
6 Color Channels + 1 3x3 1x1 Same None

M
ov

i-
C

1 128 5x5 2x2 Same ReLu
2 128 5x5 2x2 Same ReLu
3 128 5x5 2x3 Same ReLu
4 64 5x5 1x1 Same ReLu
5 64 5x5 1x1 Same ReLu
6 Color Channels + 1 3x3 1x1 Same None

A.4 IMPLEMENTATION OF COLOR SPACES

In the main text, we regularly discuss RGB, CIELAB, and HSV as color spaces. However, while the
term ”color spaces” is regularly used, it is imprecise: For example, RGB comprises a collection of
additive color spaces, and arguably its most important representative is the standard RGB (sRGB)
space - images in the web are usually represented by the sRGB space if not tagged otherwise. For
our paper, we do not discriminate between the different implementations, and our reasoning is not
based on a specific implementation. Contrarily, we argue that adding additional color channels leads
to output representations that are less statistics-based but lead to more semantic segmentations. We
utilize the Tensorflow implementation (tfi) to convert images to other color spaces.

B DATASETS

B.1 CLEVR

Clevr (Johnson et al., 2016) is arguably the least complex dataset we consider. Three to ten simple
geometric objects are randomly placed on a gray background. The number of objects is uniformly
sampled, containing four factors of variations: Objects differ between three shapes, two sizes, two
materials, and eight colors. The camera and light source are randomly jittered. We trained our
models on the whole train set, consisting of 70000 images, and evaluated on 5000 images randomly
sampled from the test set. We preprocess the images by taking a 192x192 center crop of the images
and then bilinearly rescale them to 128x128. We do the same for the ground truth masks but rescale
them with nearest-neighbor interpolation. The dataset with ground truth masks is available at kub.
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B.2 MULTISHAPENET

Multishapenet (Stelzner et al., 2021) is a significant step up in complexity compared to Clevr. Al-
though the background is also gray, the objects are visually more complex: Each of the objects falls
into one of the categories of chairs, tables, and cabinets (uniformly sampled), which are then used to
sample photorealistic models from the ShapeNetV2 set (Chang et al., 2015). Multishapenet contains
11733 unique shapes. Camera and light are randomly jittered, as in Clevr. We preprocess the im-
ages by taking a 192x192 center crop of the images and then bilinearly rescale them to 128x128. We
do the same for the ground truth masks but rescale them with nearest-neighbor interpolation. The
training set contains 70000 images, while the test set contains 15000. We evaluate 5000 of them.
We filter for images containing exactly four objects for the Multishapenet 4 version. The dataset is
available at (msn).

B.3 CLEVRTEX

Clevrtex (Karazija et al., 2021) is conceptually similar to Clevr. Each scene includes 3 to 10 random
objects. However, it contains 60 photorealistic backgrounds with complex textures. Similarly, the
objects are sampled from four shapes, three sizes, and 60 complex textures. Scenes are often dark
due to the backgrounds and objects. The camera is chosen as in Clevr, but Clevrtex includes complex
lighting effects through three light sources. We apply the same cropping and resizing strategy as for
Clevr. Clevrtex includes 40000 images for training and 5000 images for training. We also evaluate
our models on an out-of-distribution set containing four unseen shapes and 25 additional textures.
Clevrtex (v2) can be downloaded at cle.

B.4 MOVI-C

Movi-C is a video dataset consisting of 24 frames showing objects falling to the ground with realistic
physics. Each scene consists of 3 to 10 objects with a complex background. Contrarily to Clevrtex,
the objects are not simple geometric shapes but are sampled from 11 realistic categories, such as
”Toys” or ”Car Seat.” The lighting effects originate from the sampled background and thus differ
strongly in their lightness. Similar to related works (Seitzer et al., 2023), we treat the dataset as an
image dataset, taking all 24 snapshots. That yields 234000 images for training and 6000 for testing.
We ensure no overlap between the train and test set; all images originate from different videos.
Movi-C can be downloaded at mov.

C COLOR SPACES AND THE BIOLOGICAL VISUAL SYSTEM

We predominantly used the RGB and HSV color space in the main text for our experimental eval-
uation. We motivate their usage in subsection 3.2 with analogies to the human visual system. This
section serves as a basic introduction to the color perception of humans. We refer to Müller &
(Lipsk) and Kim et al. (2009) for details.

Almost all theories of human color vision are based on the zone model of Müller & (Lipsk); Kim
et al. (2009). Physical light waves stimulate three types of cones (short-, middle-, and long-wave)
and rods in the pupil. Neurons combine those physical signals, yielding achromatic brightness, hue,
and colorfulness sensations. Those are finally propagated with nerve fibers to the visual cortex.
While the RGB color space is designed in analogy to the rudimentary physical activations of the
cones, the HSV space is closely related to the sensations propagated to our visual cortex (Smith,
1978; Schwarz et al., 1987). In our work, we report that using additional color channels closely
related to how humans perceive the world significantly improves the object detection capabilities of
unsupervised OCRL networks.

D EXTENDED EXPERIMENTAL RESULTS

D.1 CLEVRTEX OUT OF DISTRIBUTION

The Clevrtex dataset includes an out-of-distribution dataset containing novel objects and textures
different from those in the train set. We also evaluated the models on this test set for object discov-
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ery. As models trained on the augmented color spaces better generalize to underlying generating
factors, we hypothesized that they are more sensitive to out-of-distribution data with newly intro-
duced factors of variation. However, all models perform similarly in terms of object discovery, as
seen in Table D.1.

Table 6: Evaluation results on the out-of-distribution test set of Clevrtex for the different predicted
output color spaces.

V Pred. FG-ARI ↑ mIoU ↑ MSE* ↓
C

le
vr

te
x

O
O

D C
N

N
RGB 65.6± 16.0 39.5± 12.1 429.7 ± 49.5
RGB-S 82.5 ± 3.2 57.8± 3.6 521.4± 17.4
RGB-SV 79.9± 3.5 50.9± 7.3 488.6± 33.8
RGB-HSV 83.3 ± 1.9 59.8± 4.2 533.9± 22.8
HSV 83.6 ± 1.5 64.9 ± 2.0 591.5± 19.4

R
es

N
et

RGB 74.6± 11.5 45.3± 14.2 391.2 ± 66.6
RGB-S 90.4± 2.8 69.4± 3.7 509.1± 37.6
RGB-SV 87.3± 10.2 65.9± 14.9 480.2± 77.9
RGB-HSV 83.1± 11.4 56.7± 14.8 446.1± 81.2
HSV 92.6 ± 0.8 77.3 ± 1.6 636.1± 19.7

* MSE caveat: A tendency for higher values for the enriched color spaces and HSV is expected as the MSE involves a conversion to RGB.

D.2 CORRELATIONS OF COLOR CHANNELS

In the main text, we argued that the RGB channels are highly correlated in natural images. We em-
pirically verified that by measuring the Pearson correlation coefficient for three well-known datasets
with natural lighting, namely ClevrTex (Karazija et al., 2021), MS Coco (Lin et al., 2014), and Ima-
geNet (ILSVRC2012). We sampled 1000 images per dataset and measured the pixel-wise correlation
between the color channels. We report the results in Table 7. Additionally, we also measured the
correlation for the HSV channel. All channels of RGB strongly correlate with the value that captures
the lightness (see subsection D.8). The hue and saturation channels are mostly non-correlated. We
show in the main text that those channels provide complementary information useful for unsuper-
vised OCRL.

Table 7: Correlation of Color channel pixel values for the three datasets ClevrTex (Karazija et al.,
2021), MS Coco (Lin et al., 2014), and ImageNet (ILSVRC2012) (Deng et al., 2009).

Channel R G B H S V

C
le

vr
Te

x

R · +.91 +.78 −.16 −.19 +.98
G · +.94 ±.00 −.44 +.94
B · +.17 +.63 +.82
H · −.33 −.08
S · −.19

M
S

C
oc

o

R · +.91 +.77 −.12 −.36 +.94
G · +.91 −.01 −.47 +.94
B · +.19 −.56 +.87
H · −.05 +.01
S · −.28

Im
ag

eN
et

R · +.89 +.77 −.24 −.57 +.85
G · +.89 −.12 −.43 +.94
B · +.10 −.34 +.93
H · +.20 −.05
S · −.25
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D.3 INPUT TRANSFORMATIONS

In our main text, we mainly argued for color space transformations in the targets. Color space
transformations in the inputs were already investigated in the literature (see section 4) - depending
on the task and data, other color spaces than RGB have shown performance leaps. However, we
argued that any machine learning model can closely approximate the color space transformations,
which makes color space transformations in the inputs less convincing for OCRL. The situation is
different for transformations in the output, as the slots must represent those features. To test our
hypothesis, we run experiments with transformations in the input and output. Therefore, we used
the CNN Clevrtex model on three random seeds each. We report the FG-ARI in Table 8.

Table 8: Object Discovery FG-ARI (↑) for input/output transformations.

Input/Output RGB HSV LAB

RGB 71.7± 1.4 86.7± 1.7 71.0± 10.0
HSV 68.3± 7.0 75.8± 15.4 74.7± 15.6
LAB 74.5± 9.5 86.2± 1.5 78.8± 7.4

D.4 ROBUSTNESS UNDER LIGHTING CONDITIONS

We extend our experiments from the main text by testing how training on composite color spaces
influences the robustness of models to distribution shifts. In the following, we explore how models
behave when exposed to differing lighting. In section 3, we argued about the significant impact of
lighting on the RGB channels. In contrast, most HSV channels are only slightly perturbed. We
will explore whether those unperturbed channels transfer to more robust slot representations under
lighting conditions.

We generate a novel test set similar to Clevrtex scenes for our experiments, utilizing the same code-
base (Cle). However, for each generated scene, we generate three additional scenes where only the
lighting conditions are varied. Specifically, we push the light source apart for 5, 10, and 20 units,
respectively, resulting in gradually darker scenes. Qualitative samples for differing lighting condi-
tions are shown in Figure 8. The effects on the color channels may be observed in Figure 5: While
the R, G, B, and V channels are highly dependent on the lighting conditions, the hue and saturation
show only moderate changes. We create a total of 1024 scenes.

Table 9: Object Discovery FG-ARI (↑) and mIoU (↑) for various color spaces (RGB2X) and differing
lighting conditions.

Metric Pred. L = 0 L = 5 L = 10 L = 20

C
le

vr
te

x
Li

gh
tin

g

FG
-A

R
I↑ RGB 73.9± 7.4 73.5± 7.5 70.9± 6.9 68.2± 6.0

RGB-S 85.9± 4.3 85.7± 3.7 83.0± 3.3 79.1± 3.0
HSV 87.9± 1.3 86.9± 1.2 84.6± 0.8 81.4± 0.9

m
Io

U
↑ RGB 44.4± 9.6 40.3± 8.2 35.8± 6.5 33.6± 5.7
RGB-S 62.6± 3.7 59.1± 3.6 52.8± 3.6 48.5± 3.3
HSV 72.1± 1.5 69.1± 1.5 62.8± 2.1 57.6± 2.2

We first test whether models trained on the RGB, RGB-S, and HSV space remain robust in discov-
ering objects (see Table D.4). While the distribution shift decreases the segmentation of all models,
independent of the target color space, they remain remarkably robust. Interestingly, even in the dark-
est scenes (distance L = 20), the RGB-S and HSV models still achieve a better performance than the
RGB models without distribution shift. However, the RGB models are also only marginally influ-
enced by darker scenes. We suspect that the Clevrtex training set (containing 40k images) contains
enough scenes with dark materials to create models that are robust toward lighting effects inherently.

Secondly, we test whether the induced slot representations remain similar under different lighting
conditions. Therefore, we first match slots to ground-truth objects based on their predicted mask.
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Table 10: Slot representation distance for various color spaces (RGB2X) and differing lighting
conditions. We report the Cosine and Euclidean distances for slots binding the same object under
differing lighting conditions. ”0 → L” measures the (euclidean/cosine) distance between the slot
obtained under normal lighting conditions and the lighting conditions observed as distance L.

Metric Pred. 0 → 5 0 → 10 0 → 20

C
le

vr
te

x
Li

gh
tin

g

C
os

in
e
↓ RGB 37.4± 3.1 59.8± 5.7 76.8± 8.2

RGB-S 29.8± 2.2 46.1± 3.6 59.2± 4.1
HSV 23.3± 1.5 35.2± 2.8 45.9± 3.5

E
uc

lid
.↓ RGB 58.1± 3.0 76.4± 4.3 87.8± 5.3

RGB-S 49.2± 2.1 64.7± 3.5 75.0± 3.4
HSV 42.4± 2.2 55.6± 3.0 65.0± 3.3

Then, we compare the slot representations of darkened scenes to the slot representation without the
darkening effect. We compare them based on the Euclidean and Cosine distances. For comparison,
we normalize each model’s Euclidean and Cosine distance based on the respective average distance
of all slots.

We report the results in Table D.4. While the lighting conditions strongly influence slot represen-
tation trained on the RGB space, the slot representation trained on RGB-S and HSV remains more
robust. We attribute this to the complementary hue and saturation channels robust to lighting con-
ditions. The underlying slot representations learn those invariances, transferring to more stable slot
representations.

D.5 SLOT ATTENTION MAPS

We extend our analysis of learned slot parameters from subsection 5.2 by inspecting the attention
maps for each slot. To get an overview of the whole model, we aim to visualize not only single
scenes but the whole Clevrtex test set. For each scene, we compute the α mask for every slot and
derive the weighted (x,y)-means of the mask per slot. The mean (x,y)-values (per slot) are presented
in Figure 6 for six models trained on RGB, RGB-S, and HSV.

While all slots, independent of the color space, occupy a spatial area, the distributions of the center
points of the attention maps vary: For four models of the RGB space, the attention maps centers
differ only slightly - those represent degenerated slots, binding fixed-size grids instead of objects.
In our experiments, this behavior appears regularly for models trained on RGB and is also observed
in the related literature(Seitzer et al., 2023; Locatello et al., 2020). This behavior does not happen
as frequently with composite color spaces. We suppose that the complementary information of
the additional color channels provides targets that pressure models to discriminate between objects
and backgrounds - those might be similar in the RGB space due to their strong correlation with
lighting effects but strongly differ in the uncorrelated HSV space. Those features (e.g., in color and
saturation) must be represented by the underlying slot representations.

D.6 COMPARISON TO SELF-SUPERVISED METHODS

Although self-supervised targets are not the main focus of our research, recent related work (Seitzer
et al., 2023) has highlighted their remarkable performance on challenging real-world datasets. Thus,
we compare our composite color spaces to the recent Dinosaur (Seitzer et al., 2023) architecture.
We run experiments on the Clevrtex and Movi-C datasets using the same hyperparameter setting
as described in (Seitzer et al., 2023) for Movi-C. However, we exchange the Vit-s8 backbone for a
ResNet34 variant for comparability to our networks. We utilize training signals from a DINO (Caron
et al., 2021) Vit-b16. The Dinosaur models with the ResNet variant show superior performance over
the composite color spaces on Movi-C (FG-ARI 53.1± 1.3, mIoU 22.7± 0.6) but lack performance
on Clevrtex (FG-ARI 22.1± 10.7, mIoU 11.2± 4.8). Related work Zhao et al. (2024) optimized a
Dinosaur model for Clevrtex that does not degenerate, but its performance (FG-ARI ≈ 80.0) is still
far behind the composite color spaces.
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Figure 5: We show color statistics of our newly generated Clevrtex test set under different lighting
conditions. The distances of the lights are denoted with the variable L, distancing all light sources.
While the distribution of Hue and Saturation mostly remains consistent, all other color channels
show immense discrepancies.
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Figure 6: Detailed analysis for the Clevrtex test set: We plot the attention maps for models with a
CNN backbone trained on different color spaces. Every dot in the scatter plot represents the spatial
broadcast decoder’s weighted mean (x,y)-α mask of a slot in a scene. The x- and y-axis represent
the spatial layout of a Clevrtex scene with size (128,128). Slots are discriminated by color, and we
only plot slots that match an object based on the mIoU. While all slots bind to specific areas, most
attention maps of slots in the HSV and RGB-S model show high variance, attending to objects close
to that area. Most slots in the RGB model degenerate to fixed areas, not binding to specific objects.
One can observe that the variance of the attention maps is higher (indicating a better binding) for
HSV than RGB-S, in contrast to all other test sets.

Figure 7: We visualize the self-attention maps of the [CLS] token of different heads of the last layer
of a pre-trained DINO Vit-s8 (Caron et al., 2021) on a Clevrtex sample. For more information on
the attention heads, see Din. Each of the attention heads focuses on a group of foreground objects,
segmenting them from the background.

The extracted DINO features do not trivially segment the Clevrtex scenes into objects. Although
the objects are segmented from the background (see the attention maps in Figure 7), the features do
not naturally segment between objects. This can be observed by applying the trivial k-means clus-
tering schemes on the DINO features. This strategy already outperforms SA networks trained on
RGB losses in Seitzer et al. (2023) for the Movi and Coco datasets, but it shows poor performance
on Clevrtex (see Table 11). Self-supervised signals might not be useful for those specific data dis-
tributions. Furthermore, while self-supervised signals show a massive improvement for real-world
datasets, their performance is limited by the self-supervised signals. If information is not represented
in these signals, the OCLR network can not recover these signals. Contrarily, composite color rep-
resentations retain all information - thus, color representations might be used as complementary
targets next to self-supervised signals or as sole targets with more elaborate networks.

Table 11: Object Discovery FG-ARI and mIoU for k-means clustering on DINO features

Metric Vit-s8 Vit-s16 Vit-b8 Vit-b16

FG-ARI (↑) 50.1± 13.3 30.3± 9.9 21.3± 7.1 30.0± 10.0
mIoU (↑) 37.2± 10.1 19.4± 5.9 16.2± 5.0 19.6± 5.8
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Figure 8: We show four scenes that are generated with the Clevrtex generator. All scenes contain
the same objects and background; only the source of light is moved farther away. We plot the image
together with heatmaps of the RGB and HSV channels.

D.7 ABLATIONS ON THE NUMBER OF SLOTS

It was shown that the number of slots largely influences the performance of OCLR networks (Fan
et al., 2024). Often, a lower number of slots than objects in the scene even helps to improve object
detection. We thus run an ablation and test whether the composite color spaces improve OCLR
networks. Table D.7 shows scene segmentation quality of CNN networks on the Clevrtex test set,
trained with an ablated number of slots. We trained on three random seeds. Although the RGB
models do not degenerate as often with a reduced number of slots, the RGB-S models outperform
them consistently - the only exception is for a very low number of slots.

Table 12: Object Discovery FG-ARI and mIoU for an ablated number of slots on Clevrtex

Metric Pred. 5 Slots 7 Slots 9 Slots

C
le

vr
te

x FG-ARI ↑
RGB 65.1± 5.1 80.4± 1.5 74.3± 11.1
RGB-S 60.7± 10.4 83.1± 4.4 86.8± 1.8

mIoU ↑
RGB 37.6± 4.6 50.0± 2.2 44.3± 12.8
RGB-S 22.2± 12.1 59.2± 2.9 65.4± 0.7

D.8 QUALITATIVE LIGHTING EFFECTS ON CLEVRTEX

We qualitatively show how light effects influence color channels in Figure 8. Therefore, we created
visual scenes with the same distribution as the Clevrtex dataset; however, we manipulated the light
source, gradually moving it farther away. The objects are clearly discriminable in all channels at
the start (d = 0). However, while the hue and saturation channels uphold discriminative features,
all other channels lose them. Most objects blend into the background in the RGB and saturation
channels for the darkest scene (d = 0). As the value of HSV captures the lightness, the hue, and
saturation are less affected by light effects.

D.9 QUALITATIVE SCENE SEGMENTATION

We show qualitative samples for all evaluation datasets in Figure 9, Figure 10, Figure 11, and Fig-
ure 12.
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Figure 9: Exemplary scenes from the Clevr dataset.

Figure 10: Exemplary scenes from the Multishapenet dataset.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 11: Exemplary scenes from the Clevrtex dataset.

Figure 12: Exemplary scenes from the Movi-C dataset.
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