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A B S T R A C T

Accurate and real-time traffic forecasting is of great significance for urban traffic planning, traffic control,
and traffic management. However, the time-varying dynamic spatial relations and the complicated spatial–
temporal dependencies are still open problems to be considered in traffic forecasting. To address these issues,
we propose a graph convolutional recurrent network for traffic forecasting with a dynamic adjacency matrix
within an encoder–decoder framework, named DAGCRN. The DAGCRN consists of a spatial relation extraction
module (SREM), an adjacency matrix update module (AMUM), a dynamic graph convolutional recurrent
module (DGCRM), and a global temporal attention module (GTAM). Specifically, SREM and AMUM are
proposed to capture nodes’ mutual relations at each time step and to model the evolution of the dynamic
adjacency matrix, respectively. DGCRM captures the spatial–temporal dependencies of traffic data based on
dynamic graph convolution and gated recurrent unit. GTAM is designed to extract the long-range temporal
dependencies between future time steps and historical time steps. Extensive experiments on two real-world
traffic speed datasets demonstrate that the proposed DAGCRN outperforms a number of representative baselines
consistently.
1. Introduction

In the past decades, many countries have been devoted to estab-
lishing the intelligent transportation system (ITS) as a pivotal aspect
of a smart city owing to the rapid advancement of urbanization and
sensor technology (Guo et al., 2020; Yin et al., 2021b). As an important
component of ITS, traffic forecasting seeks to predict future traffic
conditions (𝑒.𝑔. traffic flow or traffic speed) (Wang et al., 2022) based
on the historical observations (𝑒.𝑔. recorded via sensors or derived
from surveillance videos) (Jiang & Luo, 2022). Up to now, traffic
forecasting has gained a great deal of research interest as a cornerstone
of such systems due to its widespread applications in daily urban
transportation (Zheng et al., 2020). It serves to provide references for
transportation schedules and traffic management by properly forecast-
ing future traffic states, which helps to mitigate traffic congestion and
enhance travel efficiency (Yin et al., 2021a). Furthermore, precise traf-
fic forecasting assists citizens in route planning, which has a substantial
impact on their quality of life.
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As a typical spatial–temporal modeling problem, traffic forecasting
has been widely investigated in terms of complicated spatial–temporal
dependencies among nodes (Wang et al., 2022). Early studies focus on
traffic forecasting at a single point or of a single lane (Guo & Yuan,
2020) based on some traditional models including Auto-Regression
(VAR) (Lu et al., 2016), Auto-Regressive Integrated Moving Average
(ARIMA) (Kumar & Vanajakshi, 2015), and Support Vector Regression
(SVR) (Wu et al., 2004), etc. Note that these models mainly consider the
temporal dependency while ignoring the spatial–temporal correlations
among nodes, which may lead to poor forecasting performances.

Owing to the powerful data mining capabilities of artificial in-
telligence (AI) technologies (Elsheikh, 2022; Elsheikh, Shehabeldeen,
et al., 2021; Khoshaim et al., 2021; Moustafa & Elsheikh, 2023), several
advanced AI approaches have been successfully utilized to overcome
the limitations of traditional traffic forecasting models (Jiang et al.,
2021). Among these models, Convolutional Neural Networks (CNNs)
and Graph Neural Networks (GNNs) are frequently employed because
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of their excellent performance in feature extraction (Atwood & Towsley,
2016; Kipf & Welling, 2017). More specifically, CNN-based methods
first convert the city map into regular grids and then apply convolution
operation on neighboring grids to capture spatial dependency (Liu
et al., 2020; Yao et al., 2019; Zhang et al., 2017). However, these
methods ignore the natural topology structure of the traffic network
and fail to tackle non-euclidean traffic data (Jiang & Luo, 2022).
To sidestep such limitations, GNN-based methods have been further
investigated. They model the traffic signals as graph-structured data,
which is more suitable to represent the real traffic network. They
utilize GNNs to extract spatial features of traffic data in the graph
domain. In addition, temporal features of traffic data can be captured
by recurrent neural network (RNN) (Bai et al., 2020; Li et al., 2018)
and its variants (𝑒.𝑔. long short-term memory (LSTM) (Hochreiter &
Schmidhuber, 1997) and gated recurrent unit (GRU) Cho et al., 2014)
or temporal convolutional network (TCN) (Wu et al., 2019; Yu et al.,
2018). As stated above, these deep learning methods have greatly
promoted the development of traffic forecasting and achieved state-of-
the-art performances. Despite these achievements, obtaining accurate
traffic prediction results is still challenging due to the following two
aspects.

Firstly, the dynamic spatial relations among nodes have not been
fully investigated to date. The spatial dependencies have time-varying
dynamics and capturing such dynamic variations is non-trivial (Liu
et al., 2020). A majority of the existing GNN-based methods adopt
a predefined distance-based adjacency matrix directly when modeling
the spatial relations (Li et al., 2018; Yu et al., 2018). Unfortunately,
such a predefined distance-based adjacency matrix may not reflect the
genuine mutual relations between nodes properly (Bai et al., 2020).
A center node in the distance-based graph primarily considers its
nearby neighbors while ignoring some distant nodes, even if they
share similar traffic patterns (Fang et al., 2019). In addition, the fixed
adjacency matrix restricts the variations of dynamic spatial relations
in the traffic network. As described in Yin et al. (2021a), the traffic
status at the intersection exhibits strong correlations with the two
adjacent roads under normal circumstances. When one of the roads
experiences congestion due to traffic accidents, its relationship with
the junction degrades. In such a situation, the other road’s relationship
with the junction rises. In fact, different locations have distinct impacts
on a given node, and even the same location has varying effects over
time (Guo et al., 2019).

Secondly, how to capture the complicated spatial–temporal depen-
dencies of traffic network simultaneously is still an open problem. As
proved in Guo et al. (2019), the traffic status on a road is subject to
periodicity and trends of itself in general. For example, the change of
traffic flow shows strong periodic patterns over days or even several
weeks (Guo et al., 2019). In addition, the change of traffic status is dom-
inated by the complex topological structure of traffic network (Jiang
& Luo, 2022). Strictly speaking, these characteristics are with typical
spatial–temporal dependencies to be fully considered when establishing
a traffic forecasting model.

Concerning the challenges mentioned above, we propose a novel
traffic forecasting model, named Dynamic Adjacency matrix Graph
Convolutional Recurrent Network (DAGCRN) in this paper. Specifically,
we first design a spatial relation extraction module (SREM) to model
spatial relations among nodes at each time step. Then we propose an
adjacency matrix update module (AMUM) to construct the dynamic
adjacency matrix based on a gating mechanism and sparsely connected
layers. We also present a dynamic graph convolutional recurrent mod-
ule (DGCRM) that integrates the static and dynamic adjacency matrices
together to capture the complicated spatial–temporal dependencies of
traffic networks. Finally, we design a global temporal attention mod-
ule (GTAM) to establish long-range temporal dependency. The main
2

contributions of this work are summarized as follows.
∙ We propose a novel traffic forecasting model DAGCRN based on
an encoder–decoder architecture, which captures the dynamic
spatial relations and complicated spatial–temporal dependencies
of traffic networks simultaneously.

∙ We propose a SREM together with an AMUM to model the dy-
namic spatial relations among nodes utilizing spatial attention,
gating mechanism, and sparsely connected layers.

∙ We propose a DGCRM to capture the complicated spatial–temporal
dependencies simultaneously based on dynamic graph convolu-
tion and GRU.

∙ Extensive experiments on two public real-world traffic datasets
proves that our proposed DAGCRN not only reduces the predic-
tion error significantly but also outperforms eight representative
traffic forecasting baselines.

The remainder of this paper is organized as follows: The related
work is briefly reviewed in Section 2. The traffic forecasting problem
is formulated in Section 3. The details of the proposed model are
introduced in Section 4. After that, we evaluate our model on two
public datasets and then analyze the experimental results in Section 5.
Finally, conclusions are supplied in Section 6.

2. Related works

2.1. Graph neural networks

Graphs are a kind of data structure that models a set of objects
and their mutual relations (Zhou et al., 2020). GNN was first proposed
to extend existing neural networks for processing irregular graph data
in the non-Euclidean domain Scarselli et al. (2009). With the rapidly
growing body of recent research interests in graph neural networks,
GNNs have achieved excellent performance in several tasks such as
node classification (Kipf & Welling, 2017) and link prediction (Zhang
& Chen, 2018). According to the ways of information propagation and
aggregation, GNNs can be divided into two mainstreams, 𝑖.𝑒. , graph
convolutional networks (GCNs) and graph attention networks (GATs).

GCNs aim to generalize standard convolution operations to the
graph domain. Bruna et al. (2014) proposed a spectral network, in
which the convolution operation is defined in the Fourier domain
via computing the eigenvalue decomposition of the graph Laplacian
matrix. But this network has high computational complexity. Defferrard
et al. (2016) designed ChebNet to reduce the complexity by apply-
ing truncated expansion in terms of Chebyshev polynomials. After
their pioneering work, Kipf and Welling (2017) proposed an extended
GCN to further reduce computation, which limited the order of layer-
wise convolution operation and approximated the largest eigenvalue of
Laplacian matrix. GCN finally generalized the graph convolution oper-
ation with a renormalization trick to avoid numerical instabilities and
exploding/vanishing gradients. Atwood and Towsley (2016) proposed
a diffusion convolutional neural network (DCNN) to utilize transition
matrices to model the diffusion process across each node. Hamilton
et al. (2017) designed GraphSAGE to generate node embeddings by
sampling and aggregating features from a fixed-size set of neighbors
of node.

Meanwhile, a number of attention mechanisms have been success-
fully utilized in many natural language processing (NLP) tasks like
machine translation (Vaswani et al., 2017). Veličković et al. (2018)
proposed GAT, which takes an attention mechanism into consideration
when determining the weights of neighbors. Besides GAT, Zhang et al.
(2018) proposed GaAN to introduce an attention mechanism for up-
dating the nodes’ hidden states. The difference lies in that GaAN uses
a gated self-attention approach to gather information from different
heads rather than the average pooling operation in GAT.

All in all, GNNs utilize different aggregators to gather information
from each node’s neighbors and design specific mechanisms to update
nodes’ hidden states (Zhou et al., 2020). Up to now, GNNs have been
applied to many traffic forecasting tasks to exploit the complicated
spatial relations of real-world traffic networks due to the powerful
abilities of handling graph data.
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2.2. Deep learning-based traffic forecasting methods

With the rise of artificial intelligence, machine learning methods are
widely used in many fields by learning data to improve model perfor-
mance for various tasks such as prediction (Elsheikh, 2023; Khoshaim
et al., 2022) and investigation (Elsheikh et al., 2023). Among them,
deep learning has recently demonstrated its remarkable feature extrac-
tion and aggregation capabilities in the modeling of different engineer-
ing systems (Elsheikh, Muthuramalingam, et al., 2021). The result is
that deep learning-based traffic forecasting methods have been thor-
oughly investigated from different perspectives (Jiang & Luo, 2022;
Yin et al., 2021a). In terms of the complicated spatial–temporal de-
pendencies of traffic data, deep learning-based traffic forecasting ap-
proaches primarily focus on two aspects: spatial modeling and temporal
modeling.

Deep learning-based traffic forecasting methods for spatial depen-
dency can be broadly divided into two categories: CNN-based methods
and GNN-based methods. Generally, CNN-based forecasting methods
first divide a city into a grid map based on the longitude and lat-
itude where a grid represents a region, and then they apply CNNs
to extract the spatial correlation between different regions for traffic
prediction (Liu et al., 2020; Yao et al., 2019; Zhang et al., 2017). Notice
that CNN-based approaches are limited to model Euclidean data due to
their low spatial resolution. Concerning the limitations of CNN-based
forecasting methods, GNN-based methods were proposed to model the
non-Euclidean traffic topological network as a graph and adopt GNNs
to capture the spatial dependency of traffic data (Li et al., 2018; Yu
et al., 2018; Zhang et al., 2018). To be more specific, most GNN-based
methods perform graph convolution operations directly on a predefined
distance-based graph (Li et al., 2018; Yu et al., 2018) while ignoring
the dynamic spatial relations among nodes. Some methods design
different self-adaptive mechanisms to uncover latent graph structures
from training data without any prior knowledge (Bai et al., 2020, 2019;
Diao et al., 2019; Wu et al., 2020, 2019). Another branch of GNN-based
methods utilize the predefined graph as a mask to adjust the dynamic
graphs generated by some spatial attention mechanisms (Guo et al.,
2019; Li, Wang, Zhang, & Wu, 2021; Li et al., 2022). Additionally,
GATs are also adopted to filter away adjacent but irrelevant nodes and
attend to distant but related nodes (Park et al., 2020; Yin et al., 2021b;
Zhang et al., 2018), contributing to significant enhancements in spatial
dependency modeling.

In terms of handling temporal dependency, earlier studies apply
traditional statistic-based time series methods, like VAR (Lu et al.,
2016), ARIMA (Kumar & Vanajakshi, 2015), and SVR (Wu et al., 2004),
to predict future traffic data. Compared with these traditional time
series methods, deep learning-based methods show more superiority in
tackling complicated temporal dependency due to their powerful rep-
resentation abilities. Deep learning-based traffic forecasting methods
for temporal dependency can be broadly divided into three categories:
CNN-based methods, RNN-based methods, and attention-based meth-
ods. The representative CNN-based methods employ TCN along the
temporal dimension for temporal dependency modeling (Guo et al.,
2019; Wang et al., 2022; Wu et al., 2019; Zhao et al., 2022). However,
such an implicit temporal modeling approach makes each time step
invisible, boosting efficiency at the expense of flexibility. Regarding
RNN-based methods, LSTM (Lu et al., 2020; Shi et al., 2021; Yin et al.,
2021b) and GRU (Bai et al., 2020; Li et al., 2018; Zhang et al., 2021) are
mainly used to capture long-range temporal dependency. Despite the
fact that RNN-based methods are able to design elaborate mechanisms
to update hidden node state incorporated with GNN modules, they
still fail to adequately describe the dynamics of traffic data and suffer
from error accumulation in the long-term prediction process (Wang
et al., 2023). Beyond that, attention-based methods adopt the self-
attention mechanism of Transformer (Vaswani et al., 2017) to establish
the temporal relationships between each time step directly (Cai et al.,
3

2020; Park et al., 2020; Reza et al., 2022; Wang et al., 2020; Zheng
et al., 2020).

To summarize, the aforementioned methods have highlighted the
significance of capturing both spatial and temporal features for traffic
forecasting. However, most existing models overlook the dynamics of
traffic data and are not capable of effectively capturing the complex
spatial–temporal dependencies (Shao et al., 2022). Despite the impres-
sive mechanisms proposed by some works to model dynamic spatial
relations (Guo et al., 2019; Park et al., 2020; Zhao et al., 2022), they
only take data from a single time step into account when computing
spatial relations, failing to utilize contextual information. In order
to address these issues, we present a novel traffic forecasting model
DAGCRN in this paper.

3. Problem formulation

Traffic forecasting is a classical spatial–temporal prediction problem
that aims to predict the future traffic features, 𝑖.𝑒. traffic flow or
speed, by leveraging previously observed traffic data. Generally, a
traffic network with 𝑁 nodes can be represented as a directed graph
𝐺 = (𝑉 ,𝐸,𝐴), where 𝑉 =

{

𝑣1,… , 𝑣𝑁
}

is a set of nodes and each node
epresents a traffic sensor deployed by the roadside. 𝐸 is a set of edges

which stands for the spatial connectivity of these nodes. 𝐴 ∈ R𝑁×𝑁

is a weighted adjacency matrix representing the spatial relationship
strength between nodes. At time step 𝑡, we define the traffic data of
𝑖th node as 𝑥𝑖𝑡 ∈ R𝐷, where 𝐷 is the feature dimension. The collection
of all nodes’ features is regarded as a graph signal, which is defined as
𝑋𝑡 =

[

𝑥1𝑡 ,… , 𝑥𝑁𝑡
]𝑇 ∈ R𝑁×𝐷.

With the aforementioned notations, the traffic forecasting problem
can be formally as mentioned below. Given the predefined graph 𝐺 =
(𝑉 ,𝐸,𝐴) and the historical 𝑃 time steps observed graph signals 𝑋1∶𝑃 =
[

𝑋1,… , 𝑋𝑃
]𝑇 ∈ R𝑃×𝑁×𝐷, we aim to learn a map function 𝐹𝛩(⋅), which

takes 𝐺 and 𝑋1∶𝑃 as inputs and forecasts the graph signals for the next
𝑄 time steps �̂�(𝑃+1)∶(𝑃+𝑄) =

[

�̂�𝑃+1,… , �̂�𝑃+𝑄
]𝑇 ∈ R𝑄×𝑁×𝐷. The whole

problem can be represented as follows:
[

𝑋1∶𝑃 , 𝐺
] 𝐹𝛩(⋅)
⟶ �̂�(𝑃+1)∶(𝑃+𝑄) (1)

where 𝛩 are all the parameters to be learned in the model.

4. The proposed model

We propose a novel deep model for traffic forecasting based on an
encoder–decoder architecture, named DAGCRN. Figs. 1 and 2 show the
framework of DAGCRN and a single DAGCRN cell, respectively.

In encoding stage, the encoder randomly generates 𝐷𝐴0 and 𝐻0
as the initial dynamic adjacency matrix and the initial hidden node
state. The encoder takes the historical observed traffic data 𝑋1∶𝑃 =
[𝑋1,… , 𝑋𝑃 ]𝑇 as input and encodes the input data step by step to capture
the spatial–temporal dependencies based on its recurrent structure. The
outputs of the encoder contain the hidden states [𝐻1,… ,𝐻𝑃 ]𝑇 of each
input time step and the generated dynamic adjacency matrix 𝐷𝐴𝑃 .

In decoding stage, the decoder takes 𝐷𝐴𝑃 and 𝐻𝑃 as the initial
dynamic adjacency matrix and hidden states, respectively. Addition-
ally, the decoder takes an all-zero vector as the ‘‘GO’’ symbol to start
the decoding process, which is a common practice in encoder–decoder
models. The decoder generates the output data to perform multi-step
forecasting in an auto-regressive manner, which means the output of
the current time step �̂�𝑡 will be used as the input of the next time step
𝑡 + 1.

DAGCRN consists of four primary modules: SREM, AMUM, DGCRM,
and GTAM. SREM is employed to model the spatial relations among
nodes at each time step based on a static adjacency matrix. AMUM aims
to fully leverage the dynamic contextual information of consecutive
time steps and generate a dynamic adjacency matrix based on a gating

mechanism and sparsely connected layers. DGCRM not only integrates
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Fig. 1. The overall framework of DAGCRN.
Fig. 2. The framework of a single DAGCRN cell.

both the dynamic and static adjacency matrices, but also handles
information flow over spatially dependent nodes. GTAM is designed to
capture temporal dependencies from a global perspective by directly
modeling long-range temporal relationships between future time steps
and historical time steps. The detailed implementation mechanisms of
each module will be described in the following subsections.

4.1. Spatial relation extraction module

Before introducing the implementation of SREM, we first present
the generation process of the static adjacency matrix, which is the
input of DAGCRN cell. Since traffic conditions on the traffic network
are complex and spatially dependent, an intuitive idea is to construct
a static adjacency matrix based on pairwise road network distance
between sensor nodes using a thresholded Gaussian kernel (Li et al.,
2018), as illustrated below.

𝐴𝑣𝑖 ,𝑣𝑗 =

⎧

⎪

⎨

⎪

⎩

exp
(

−
𝑑𝑣𝑖 ,𝑣𝑗
𝜎2

)

, 𝑣𝑖 ≠ 𝑣𝑗 , 𝑑𝑣𝑖 ,𝑣𝑗 ≤ 𝜅

0, otherwise
(2)

where 𝑑𝑣𝑖 ,𝑣𝑗 is the road network distance from node 𝑣𝑖 to 𝑣𝑗 , 𝜎 is
the standard deviation of distance, and 𝜅 is the threshold for sparsity
which is assigned to 0.1. However, such a distance-based adjacency
matrix may not reflect the genuine static spatial dependency of the
traffic network. On the one hand, a center node can only attend to the
information from its neighboring nodes while ignoring the information
from remote nodes with similar traffic patterns (Fang et al., 2019).
On the other hand, it is far from adequate and precise to solely take
the distance information to represent inter-node spatial relations. In
4

fact, the population density, the vehicle density, the road conditions
and some factors may affect traffic conditions (Wang et al., 2020).
Furthermore, the fixed adjacency matrix restricts the variations of
dynamic spatial relations in the traffic network.

Inspired by Guo et al. (2020), we define the static adjacency matrix
by a global matrix learning layer to discover the latent static spatial
relations adaptively as follows,

�̃� = 𝐴 + 𝐼𝑁 + 𝐴𝑝𝑎𝑟 (3)

where �̃� is the distance-based adjacency matrix supplemented by an
identity matrix 𝐼𝑁 for self-loop and a learnable parameterized matrix
𝐴𝑝𝑎𝑟. After being modified by all training samples with 𝐴𝑝𝑎𝑟, �̃� can
adequately match the static spatial relations of the traffic network and
address the aforementioned issues in a relatively simple way.

At each time step, we first concatenate the current traffic data input
𝑋𝑡 and the hidden node state 𝐻𝑡−1 ∈ R𝑁×𝑑𝑚𝑜𝑑𝑒𝑙 from the previous time
step:

𝑍𝑡 = 𝑋𝑡 ∥ 𝐻𝑡−1 (4)

where 𝑍𝑡 ∈ R𝑁×(𝐷+𝑑𝑚𝑜𝑑𝑒𝑙 ), ∥ represents the concatenation operation, 𝐷
is the feature dimension of input 𝑋𝑡, and 𝑑𝑚𝑜𝑑𝑒𝑙 is the feature dimension
of hidden node state 𝐻𝑡−1. 𝑍𝑡 is regarded as dynamic input, which will
be fed into a global diffusion GCN to extract static traffic features:

(�̃�𝑂)𝑖,𝑖 =
∑

𝑗
�̃�𝑖,𝑗 (5)

(�̃�𝐼 )𝑖,𝑖 =
∑

𝑗
�̃�𝑇
𝑖,𝑗 (6)

𝐹𝑡 = 𝜎(�̃�−1
𝑂 �̃�𝑍𝑡𝑊𝑂 + �̃�−1

𝐼 �̃�𝑇𝑍𝑡𝑊𝐼 ) (7)

where �̃�𝑂 and �̃�𝐼 denote the two degree matrices of outflow and
inflow, �̃�−1

𝑂 �̃� and �̃�−1
𝐼 �̃�𝑇 denotes the transition matrices of the dif-

fusion process and its reverse one, respectively. 𝑊𝐼 and 𝑊𝑂 are two
parameter matrices of outflow and inflow. 𝜎(⋅) is an activation function.
Here we adopt the bidirectional diffusion to capture the influence from
both the upstream and downstream traffic (Li et al., 2018). The output
𝐹𝑡 ∈ R𝑁×𝑑𝑚𝑜𝑑𝑒𝑙 denotes the nodes features of traffic network, which
contains the static spatial information at time step 𝑡.

To further model the nodes’ mutual spatial relations, we adopt
the attention mechanism (Vaswani et al., 2017) to derive the current
adjacency matrix at time step 𝑡 as follows:

𝑀𝑡 =
(𝐹 𝑡𝑊 1)(𝐹 𝑡𝑊 2)𝑇

√

𝑑𝑚𝑜𝑑𝑒𝑙
(8)

where 𝑊 1,𝑊 2 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙 are two linear transformation matrices
and (⋅)𝑇 denotes the tensor transpose operation. In this paper, we adopt
inner product to quantify the strength of spatial relations between
nodes. In fact, multi-head attention mechanism is with a top priority
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Fig. 3. An example of two methods of matrix feature transformation. (⋅)𝑖,𝑗 denotes the spatial relation between node 𝑖 and node 𝑗 of corresponding adjacency matrix.
since it can lead to the creation of richer representations, which in turn
allows for increased performance on machine learning tasks (Vaswani
et al., 2017).

We can obtain ℎ adjacency matrices 𝑀 𝑖
𝑡 (𝑖 = 1,… , ℎ):

𝑀 𝑖
𝑡 =

(𝐹 𝑡𝑊 1
𝑖 )(𝐹

𝑡𝑊 2
𝑖 )

𝑇

√

𝑑𝑚𝑜𝑑𝑒𝑙∕ℎ
(9)

where 𝑊 1
𝑖 ,𝑊

2
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙∕ℎ are two linear transformation matrices

of the 𝑖th head and 𝑀 𝑖
𝑡 ∈ R𝑁×𝑁 is the output of the 𝑖th head. To

aggregate spatial information from different sub-spaces adaptively, we
apply average pooling to obtain the final current adjacency matrix
𝑀𝑡 ∈ R𝑁×𝑁 as follows:

(𝑀𝑡)𝑖,𝑗 =
1
ℎ

ℎ
∑

𝑘=1
(𝑀𝑘

𝑡 )𝑖,𝑗 (10)

4.2. Adjacency matrix update module

The core idea of DAGCRN is the update of the dynamic adjacency
matrix based on the gating mechanism of GRU, which models the
dynamic evolution process of spatial relations. At time step 𝑡, the inputs
to the adjacency matrix update module include the dynamic adjacency
matrix 𝐷𝐴𝑡−1 of the previous time step and the current adjacency
matrix 𝐴𝑡 from SREM. We first concatenate the two adjacency ma-
trices

[

𝐷𝐴𝑡 ∥ 𝑀𝑡
]

∈ R𝑁×2𝑁 , where 2𝑁 denotes the matrix feature
dimension. The most common way to perform matrix transformation
and derive the output adjacency matrix 𝐼𝐴𝑡 ∈ R𝑁×𝑁 is through a fully
connected layer (Guo et al., 2020) whose parameter size is R2𝑁×𝑁 . The
calculation process of fully connected layer is illustrated in Fig. 3(a).
However, such a fully connected layer has two limitations: (1) The
value of (𝐼𝐴𝑡)𝑖,𝑗 is the linear combination of (𝐷𝐴𝑡)𝑖,. and (𝑀𝑡)𝑖,., that
is, (𝐼𝐴𝑡)𝑖,𝑗 not only counts on (𝐷𝐴𝑡)𝑖,𝑗 and (𝑀𝑡)𝑖,𝑗 but also attends to
other inter-node relations, which will bring noise especially in the
circumstance that no spatial correlations exist. (2) A fully connected
layer requires a total of 2𝑁2 parameters, which is computationally
intensive. However, it is difficult to optimize the entire model when
𝑁 is quite large.

To address the above two limitations, we propose a sparsely con-
nected layer for matrix transformation, depicted in Fig. 3(b). The value
of the intermediate adjacency matrix (𝐼𝐴𝑡)𝑖,𝑗 is a linear combination
of (𝐷𝐴𝑡)𝑖,𝑗 and (𝑀𝑡)𝑖,𝑗 , avoiding the noise of other inter-node relations.
Also notice that the sparsely connected layer only requires 2𝑁 parame-
ters due to its sparsity. The process of the sparsely connected layer can
be defined as follows:

𝐼𝐴𝑡 = 𝑊𝑠𝑐
[

𝐷𝐴𝑡 ∥ 𝑀𝑡
]

(11)

where 𝑊𝑠𝑐 denotes the learnable parameters of the sparsely connected
layer and 𝐼𝐴𝑡 ∈ R𝑁×𝑁 is the output of sparse connected layer.

The gating mechanism applied in GRU has shown its powerful
ability to control information flow along the temporal dimension (Cho
et al., 2014; Wang et al., 2022). We use the current and historical
spatial information to generate the dynamic spatial adjacency matrix
𝐷𝐴 via a modified GRU, where the original fully connected layers are
5

𝑡

Fig. 4. The process of dynamic graph convolution.

substituted with the sparsely connected layers. The calculation process
is denoted by:

𝑧𝐴𝑡 = 𝜎(𝑊 𝑧
𝑠𝑐
[

𝐷𝐴𝑡 ∥ 𝑀𝑡
]

) (12)

𝑟𝐴𝑡 = 𝜎(𝑊 𝑟
𝑠𝑐
[

𝐷𝐴𝑡 ∥ 𝑀𝑡
]

) (13)

�̃�𝐴
𝑡 = tanh(𝑊 ℎ

𝑠𝑐
[

𝑟𝐴𝑡 ⊙𝐷𝐴𝑡−1 ∥ 𝑀𝑡
]

) (14)

𝐷𝐴𝑡 = (1 − 𝑧𝐴𝑡 )⊙𝐷𝐴𝑡−1 + 𝑧𝐴𝑡 ⊙ �̃�𝐴
𝑡 (15)

where ⊙ represents Hadamard product, 𝑊 𝑧
𝑠𝑐 , 𝑊 𝑟

𝑠𝑐 , 𝑊 ℎ
𝑠𝑐 are parameters

for the corresponding sparsely connected layers, 𝑧𝐴𝑡 , 𝑟𝐴𝑡 are update gate
and reset gate, respectively, �̃�𝐴

𝑡 is the GRU cell state, and 𝐷𝐴𝑡 ∈
R𝑁×𝑁 is the derived dynamic adjacency matrix, which contains con-
textual information and will be used in the establishment of dynamic
graph convolutional recurrent module. All the intermediate variables
in AMUM are identified by the superscript (⋅)𝐴.

To summarize, we combine GRU’s recurrent structure with the
generation of the dynamic adjacency matrix by adding the previous
time step’s hidden node state to SREM’s input and updating the dy-
namic adjacency matrix in AMUM. By this way, the dynamic spatial
adjacency matrix becomes more effective and meaningful due to the
graph convolution and spatial attention in SREM, which fuses a center
node’s information with its neighbors’ information and captures mutual
spatial relations between nodes. Furthermore, we can fully explore the
dynamic spatial relations by employing AMUM to obtain a dynamic
representation of the traffic network, which serves as a complement to
the static adjacency matrix.

4.3. Dynamic graph convolutional recurrent module

We first introduce dynamic graph convolution, which aims to trans-
form and fuse information between nodes and their neighbors to ex-
press dynamic spatial dependencies in the traffic network. The static
adjacency matrix �̃� and the dynamic adjacency matrix 𝐷𝐴𝑡 reflect
spatial interactions among nodes from different perspectives. In this
module, we incorporate both of them to exploit the static and dynamic
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spatial properties of traffic data. We present the implementation pro-
cess of dynamic graph convolution as illustrated in Fig. 4. Specifically,
we first utilize 𝐷𝐴𝑡 to adjust �̃� dynamically with an element-wise
roduct operation as follows:

̃𝑡 = 𝐷𝐴𝑡 ⊙ �̃� (16)

�̃�𝑡𝑂)𝑖,𝑖 =
∑

𝑗
(�̃�𝑡)𝑖,𝑗 (17)

�̃�𝑡𝐼 )𝑖,𝑖 =
∑

𝑗
(�̃�𝑇

𝑡 )𝑖,𝑗 (18)

here �̃�𝑡 denotes the fused dynamic adjacency matrix, �̃�𝑡𝑂 and �̃�𝑡𝐼
enotes the two degree matrices of outflow and inflow.

Then we perform graph convolution in a two-stage manner: prop-
gation stage and mix stage. The propagation stage aims to fuse a
ode’s information with its deeper neighbors’ in a recursive manner.
e define the largest depth of propagation as 𝐾. The 𝑘𝑡ℎ (𝑘 = 1,… , 𝐾)

hop propagation process can be described as follows:

�̃� (𝑘)
𝑡 = �̃�−1

𝑡𝑂 �̃�𝑡𝐻
(𝑘−1)
𝑡 𝑊 (𝑘)

𝑂 + �̃�−1
𝑡𝐼 �̃�𝑇

𝑡 𝐻
(𝑘−1)
𝑡 𝑊 (𝑘)

𝐼 (19)

𝐻 (𝑘)
𝑡 = ReLU

((

𝛼𝐻 𝑖𝑛
𝑡 + (1 − 𝛼)�̃� (𝑘)

𝑡

)

𝑊 (𝑘)
𝑃

)

(20)

𝐻 (0)
𝑡 = 𝐻 𝑖𝑛

𝑡 (21)

where �̃�−1
𝑡𝑂 �̃�𝑡 and �̃�−1

𝑡𝐼 �̃�𝑇
𝑡 denotes the transition matrices of the diffu-

sion process and its reverse process, 𝑊 (𝑘)
𝑂 and 𝑊 (𝑘)

𝐼 are two parameter
matrices of outflow and inflow, 𝑊 (𝑘)

𝑃 is the parameter matrix of 𝑘th
hop propagation, 𝛼 is a hyper-parameter to retain a proportion of node
original information so that the propagated state can both preserve
locality and explore a deeper neighborhood (Wu et al., 2020), and 𝐻 𝑖𝑛

𝑡
represents the input node state of dynamic graph convolution.

The mix stage is introduced to aggregate results produced at dif-
ferent hops and filter out irrelevant information as well. We first
concatenate the multi-hop node states along the feature dimension and
then apply a fully connected layer to select useful information. The
process is defined as follows:

𝐻𝑜𝑢𝑡
𝑡 =

(

∥𝐾𝑘=0𝐻
(𝑘)
𝑡

)

𝑊 𝑂 (22)

where 𝐻𝑜𝑢𝑡
𝑡 represents the output node state of dynamic graph convolu-

tion and 𝑊 𝑂 is a learnable feature transformation matrix. In fact, 𝑊 𝑂

functions as a feature selector. Under the extreme circumstance that
no spatial dependencies exist, it is still able to retain the original node
state by setting the corresponding weights to 0. The whole process of
the aforementioned dynamic graph convolution can be shortened as:

𝐻𝑜𝑢𝑡
𝑡 = 𝛩⋆𝐺(𝐻 𝑖𝑛

𝑡 ) (23)

where ⋆𝐺 and 𝛩 denote the dynamic graph convolution and its learn-
able parameters.

To capture spatial and temporal dependencies simultaneously, we
eplace the matrix multiplications in GRU with the dynamic graph
onvolution following previous study (Bai et al., 2020; Li, Feng, et al.,
021; Li et al., 2018) to develop DGCRM as follows:
𝐹
𝑡 = 𝜎(𝛩𝑧

⋆𝐺
[

𝐻𝑡−1 ∥ 𝑋𝑡
]

) (24)
𝐹
𝑡 = 𝜎(𝛩𝑟

⋆𝐺
[

𝐻𝑡−1 ∥ 𝑋𝑡
]

) (25)
̃ 𝐹
𝑡 = tanh(𝛩ℎ

⋆𝐺
[

𝑟𝐹𝑡 ⊙𝐻𝑡−1 ∥ 𝑋𝑡
]

) (26)

𝑡 = (1 − 𝑧𝐹𝑡 )⊙𝐻𝑡−1 + 𝑧𝐹𝑡 ⊙ �̃�𝐹
𝑡 (27)

here 𝛩𝑧, 𝛩𝑟, 𝛩ℎ are parameters for the corresponding dynamic graph
onvolution layers, 𝑧𝐹𝑡 and 𝑟𝐹𝑡 respectively represent the update gate
nd the reset gate, �̃�𝐹

𝑡 is the candidate GRU cell state, and 𝐻𝑡 ∈
𝑁×𝑑𝑚𝑜𝑑𝑒𝑙 is the output hidden node state at time step 𝑡. All the inter-
ediate variables in DGCRM are identified by the superscript (⋅)𝐹 . We
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lso add a residual shortcut path to speed up the convergence rate.
.4. Global temporal attention module

To alleviate the error propagation effect in long-term forecasting
nd further explore global temporal relationships, we utilize a global
emporal attention to directly model the relations between future time
teps and historical time steps (Guo et al., 2021).

At each decoding time step 𝑗, we first calculate the attention coef-
icients between decoder’s output node state 𝐻𝐷𝑒

𝑗 ∈ R𝑁×𝑑𝑚𝑜𝑑𝑒𝑙 and the
ncoded node states 𝐻𝐸𝑛 =

[

𝐻1,… ,𝐻𝑃
]𝑇 ∈ R𝑃×𝑁×𝑑𝑚𝑜𝑑𝑒𝑙 from encoder

s follows:

𝑗 = 𝜎
(

(𝐻𝐷𝑒
𝑗 𝑈1)𝑈2((𝐻𝐸𝑛)𝑇𝑈3)𝑇 + 𝑏𝑒

)

𝑉𝑒 (28)

here 𝑈1 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×1, 𝑈2 ∈ R𝑁×𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑈3 ∈ R𝑁×1, 𝑏𝑒 ∈ R1×𝑃 , and 𝑉𝑒 ∈
𝑃×𝑃 are all parameters to be learned. The global temporal attention
echanism can select relevant historical time steps adaptively.

Then we use a softmax function to guarantee that the sum of
ttention weights equals to 1,

𝑖
𝑗 =

exp(𝐸𝑖
𝑗 )

∑𝑃
𝑝=1 exp(𝐸

𝑝
𝑗 )

(29)

where 𝑍𝑗 =
[

𝑍1
𝑗 ,… , 𝑍𝑃

𝑗

]𝑇
∈ R𝑃×1 is a normalized vector, which

describes the relative importance of different historical time steps to
decoding time step 𝑗. Based on the normalized attention weights and
the encoded node states, we get the context vector 𝐶𝑗 ∈ R𝑁×𝑑𝑚𝑜𝑑𝑒𝑙 as
the weighted sum of 𝐻𝐸𝑛:

𝐶𝑗 =
𝑃
∑

𝑖=1
𝑍 𝑖

𝑗𝐻
𝐸𝑛
𝑖 (30)

Finally, we concatenate the decoder’s output node state 𝐻𝐷𝑒
𝑗 and

the context vector 𝐶𝑗 together and feed it into a fully-connected layer
o generate the final prediction results:

̂ 𝑗 =
(

𝐻𝐷𝑒
𝑗 ∥ 𝐶𝑗

)

𝑊 𝑅 (31)

here 𝑊 𝑅 ∈ R2𝑑𝑚𝑜𝑑𝑒𝑙×𝐷 denotes the learnable parameters for the final
eature transformation.

L1 loss is used as the loss function to train the whole model in an
nd-to-end manner:

= 1
𝑄

𝑄
∑

𝑖=1

|

|

|

�̂�𝑃+𝑖 −𝑋𝑃+𝑖
|

|

|

(32)

here 𝑃 is the length of historical time steps and 𝑄 is the length of
uture time steps. �̂�𝑃+𝑖 is the prediction result of all nodes’ traffic data
t time step 𝑃 + 𝑖 and 𝑋𝑃+𝑖 is the ground truth of all nodes’ traffic data
t time step 𝑃 + 𝑖.

. Experiments and result analysis

.1. Data

We conduct experiments on two real-world traffic datasets:

∙ METR-LA (Li et al., 2018): This dataset contains traffic speed
information collected from the highway of Los Angeles with 207
sensors. The time period of this dataset ranges from Mar 1st 2012
to Jun 30th 2012. The samples are aggregated to 5 min. The unit
of speed is mile/h.

∙ PEMS-BAY (Li et al., 2018): This dataset contains traffic speed
information collected from the Bay Area by California Transporta-
tion Agencies with 325 sensors. The time period of this dataset
ranges from Jan 1st 2017 to May 31th 2017. The samples are
aggregated to 5 min. The unit of speed is mile/h.
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Following previous work (Li et al., 2018), we use the first 70% of
data as train set, the last 20% of data as test set, and the remaining 10%
of data as validation set in chronological order. We use the mean and
standard deviation of the train set to apply Z-Score normalization to
the whole dataset. For both datasets, we regard each sensor as a node
in the graph. The pre-defined adjacency matrix 𝐴 is constructed based
on pair-wise road network distance between sensors with thresholded
Gaussian kernel as described in Eq. (2).

5.2. Parameters settings

In our experiments, We repeat the same experiments 5 times and
record the average value of metrics. The inputs of the model include
time of day and the normalized traffic speed, while the output of the
model is the predicted traffic speed. The length of the input sequence
𝑃 = 12 and the size of the predicting window 𝑄 = 12, that is,

e use the past 1 hour historical data to predict the next 1 hour
raffic speed. We set the 𝑑𝑚𝑜𝑑𝑒𝑙 = 64 and 𝑑𝑚𝑜𝑑𝑒𝑙 = 80 for METR-
A and PEMS-BAY, respectively. The number of multi-head is set to
. The largest propagation depth 𝐾 in dynamic graph convolution is

set to 2. The batch size is set to 64 for both datasets. The hyper-
parameter 𝛼 in Eq. (20) for preserving original information is set to
0.05. Adam optimizer is utilized for training with learning rate 0.001.
Early stopping is employed to avoid overfitting. Furthermore, we utilize
the scheduled sampling strategy to bridge the gap between the training
stage and the inference stage (Bengio et al., 2015).

5.3. Baselines

We compare the proposed DAGCRN with several traditional
statistic-based methods and GNN-based methods for traffic forecasting
tasks.

∙ VAR (Lu et al., 2016): Vector Auto-Regression uses an auto-
regressive component to model multiple time series.

∙ ARIMA (Kumar & Vanajakshi, 2015): Autoregressive Integrated
Moving Average is a classical method for time series prediction,
which integrates auto-regression with moving average model.

∙ FC-LSTM (Sutskever et al., 2014): Fully-Connected LSTM network
is a variant of RNN, which learns the spatial dependency of
sequence data with fully connected hidden units.

∙ DCRNN (Li et al., 2018): Diffusion Convolutional Recurrent Neu-
ral Network integrates diffusion graph convolution with GRU to
predict traffic data.

∙ ASTGCN (Guo et al., 2019): Attention Based Spatial–Temporal
Graph Convolutional Networks designs spatial and temporal at-
tention mechanisms to model dynamics of traffic data.

∙ STSGCN (Song et al., 2020): Spatial–Temporal Synchronous Graph
Convolutional Network proposes a novel multi-module mecha-
nism to capture localized spatial–temporal heterogeneity simul-
taneously.

∙ AGCRN (Bai et al., 2020): Adaptive Graph Convolutional Re-
current Network utilizes a node adaptive parameter learning
module to enhance GCN and combines it with GRU to capture
spatial–temporal dependencies of traffic data.

∙ MTGNN (Wu et al., 2020): It is a deep learning model for mul-
tivariate time series forecasting, which employs adaptive graph,
GNN, and dilated inception layers to capture spatial–temporal
dependencies.

The performances of all methods are evaluated by three commonly used
metrics, including (1) mean absolute error (MAE), which reflects the
actual situation of prediction accuracy, (2) root mean squared error
(RMSE), which is more sensitive to abnormal values, and (3) mean
absolute percentage error (MAPE), which eliminates the influence of
data units. These metrics are defined as follows:

MAE(�̂�, 𝑋) = 1 ∑

|

|

|

�̂�𝑖 −𝑋𝑖
|

|

|

(33)
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|𝛺| 𝑖∈𝛺
MSE(�̂�, 𝑋) =
√

1
|𝛺|

∑

𝑖∈𝛺

(

�̂�𝑖 −𝑋𝑖
)2 (34)

APE(�̂�, 𝑋) = 1
|𝛺|

∑

𝑖∈𝛺

|

|

|

|

|

�̂�𝑖 −𝑋𝑖
𝑋𝑖

|

|

|

|

|

(35)

where �̂� denotes the prediction results after inverse normalization, 𝑋
is the ground truth, and 𝛺 represents the set of temporal indices.

5.4. Overall prediction performance results

Table 1 shows the multi-step forecasting results on the two datasets
generated by our proposed DAGCRN and other baselines. Horizon
refers to the time interval between the current time step and the
predicted time step. Specifically, the results are composed of the per-
formance comparisons for 15 min (horizon 3), 30 min (horizon 6),
and 1 hour (horizon 12) ahead forecasting. By comparison with tra-
ditional statistical methods (VAR and ARIMA), deep-learning based
method (FC-LSTM), and other GNN-based methods (DCRNN, ASTGCN,
STSGCN, AGCRN, and MTGNN), the evaluation metrics (MAE, RMSE,
and MAPE) of DAGCRN reduce at least (1) {2.28%, 1.93%, 2.92%} for
horizon 3, {1.31%, 1.13%, 1.59%} for horizon 6, and {1.43%, 0.83%,
1.22%} for horizon 12 on the METR-LA dataset, (2) {3.03%, 2.87%,
3.25%} for horizon 3 and {2.42%, 1.60%, 1.36%} for horizon 6 on
the PEMS-BAY dataset. The prediction performance results show that
DAGCRN can generally outperform other baselines on the two datasets
for most forecasting tasks except for certain metrics in the long-range
horizon (𝑒.𝑔. 1 hour ahead) on the PEMS-BAY dataset. The remarkable
improvements indicate the effectiveness of modeling dynamic spatial
relations. The employment of SREM and AMUM can dynamically adjust
the spatial adjacency matrix based on historical information, which is
crucial for performance improvement. We also find that the difficulty of
traffic prediction task increases with the increase of horizon. DAGCRN
only gets marginal improvements for horizon 12 on the PEMS-BAY
dataset due to error accumulation in the long-term prediction, but it
still achieves on-par performance by comparison with other baselines.

The limitations of other baselines can be summarized as below.
Traditional statistical time series prediction methods perform worse
than deep learning methods because they fail to model the complex
spatial–temporal dependencies of non-linear traffic data. FC-LSTM per-
formances better than traditional statistical methods due to its ability
of capturing complicated temporal dependency. But it ignores the
mutual influence between nodes, which restraints the overall prediction
performances. Graph-based methods further enhance the forecasting
performances significantly due to the consideration of traffic network
topology. However, DCRNN only counts on the given distance-based
adjacency matrix, which restricts its forecasting performance heavily.
ASTGCN employs spatial attention to capture spatial dependencies
dynamically, but it depends on the whole input sequence which fails
to precisely capture the dynamics between adjacent time steps. STS-
GCN designs a spatial–temporal graph convolutional module to capture
the localized spatial–temporal dependencies synchronously, but breaks
down when employed on the METR-LA dataset due to the missing val-
ues and the restricted representation ability of the fixed graph structure.
AGCRN benefits a lot from the self-adaptive adjacency matrix generated
from node embedding. However, once the training stage is complete,
the self-adaptive adjacency matrix remains static in the inference stage,
making it ineffective in capturing dynamic spatial dependency. MTGNN
shows outstanding forecasting performances owing to its well-designed
graph learning layer and dilated inception layer, but it fails to model
the spatial dynamics between consecutive time steps. To sum up,
most baselines neglect the dynamic properties of the traffic network,
which degrades their representation abilities. The results demonstrate
that the proposed DAGCRN can effectively model the dynamic spatial
relations of traffic data and capture the complicated spatial–temporal
dependencies.
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Table 1
Multi-step forecasting performance comparison on the two traffic speed datasets (The best performances are in bold type).

Dataset Methods Horizon 3 Horizon 6 Horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA

VAR 4.42 7.89 10.20% 5.41 9.13 12.70% 6.52 10.11 15.80%
ARIMA 3.99 8.21 9.60% 5.15 10.45 12.70% 6.90 13.23 17.40%
FC-LSTM 3.44 6.30 9.60% 3.77 7.23 10.90% 4.37 8.69 13.20%
DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
ASTGCN 4.86 9.27 9.21% 5.43 10.61 10.13% 6.51 12.52 11.64%
STSGCN 3.31 7.62 8.06% 4.13 9.77 10.29% 5.06 11.66 12.91%
AGCRN 2.87 5.58 7.70% 3.23 6.58 9.00% 3.62 7.51 10.38%
MTGNN 2.69 5.18 6.86% 3.05 6.17 8.19% 3.49 7.23 9.87%
DAGCRN(ours) 2.63 5.08 6.67% 3.01 6.10 8.06% 3.44 7.17 9.75%

PEMS-BAY

VAR 1.74 3.16 3.60% 2.32 4.25 5.00% 2.93 5.44 6.50%
ARIMA 1.62 3.30 3.50% 2.33 4.76 5.40% 3.38 6.50 8.30%
FC-LSTM 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%
DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
ASTGCN 1.52 3.13 3.22% 2.01 4.27 4.48% 2.61 5.42 6.00%
STSGCN 1.44 3.01 3.04% 1.83 4.18 4.17% 2.26 5.21 5.40%
AGCRN 1.37 2.87 2.94% 1.69 3.85 3.87% 1.96 4.54 4.64%
MTGNN 1.32 2.79 2.77% 1.65 3.74 3.69% 1.94 4.49 4.53%
DAGCRN(ours) 1.28 2.71 2.68% 1.61 3.68 3.64% 1.92 4.51 4.56%
Table 2
Ablation study: effects of different components on the PEMS-BAY dataset.

Dataset Methods Horizon 3 Horizon 6 Horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PEMS-BAY

DAGCRN w/o 𝐴𝑝𝑎𝑟 1.39 2.95 2.97% 1.79 4.13 4.08% 2.16 4.88 4.90%
DAGCRN w/o 𝐷𝐴𝑡 1.40 2.91 2.93% 1.73 3.90 3.87% 2.12 4.86 4.93%
DAGCRN w/o AMUM 1.37 2.88 2.90% 1.71 3.85 3.81% 2.07 4.82 4.79%
DAGCRN w/o Mix 1.41 2.89 2.96% 1.74 3.84 3.86% 2.07 4.69 4.78%
DAGCRN w/o GC 1.41 3.02 2.95% 1.83 4.18 4.12% 2.28 5.30 5.54%
DAGCRN w/o GTAM 1.35 2.86 2.84% 1.70 3.91 3.82% 2.10 4.92 4.81%
DAGCRN w/o directed 1.33 2.82 2.79% 1.68 3.80 3.76% 2.01 4.65 4.73%
DAGCRN(ours) 1.28 2.71 2.68% 1.61 3.68 3.64% 1.92 4.51 4.56%
5.5. Ablation study

In this subsection, we conduct two groups of ablation studies on
the PEMS-BAY dataset to analyze the effects of different components
in DAGCRN and the effectiveness of the proposed sparse connections
separately.

5.5.1. Effects of different components
We first conduct an ablation study to validate the impacts of differ-

ent key components in DAGCRN. We name DAGCRN without different
components as follows:

∙ DAGCRN w/o 𝐴𝑝𝑎𝑟: DAGCRN without learnable parameterized
matrix 𝐴𝑝𝑎𝑟 in Eq. (3).

∙ DAGCRN w/o 𝐷𝐴𝑡: DAGCRN without dynamic adjacency ma-
trix. That is, both SREM and AMUM are removed, and graph
convolution is employed based on the static adjacency matrix 𝐴
purely.

∙ DAGCRN w/o AMUM: DAGCRN without adjacency matrix update
module. Dynamic graph convolution is performed based on the
fusion of 𝑀𝑡 and 𝐴.

∙ DAGCRN w/o Mix: DAGCRN without the mix stage in dynamic
graph convolution. The result of the last hop is taken as the output
of the dynamic graph convolution.

∙ DAGCRN w/o GC: DAGCRN without the graph convolution op-
eration. We replace all the graph convolution layers with linear
transformations.

∙ DAGCRN w/o GTAM: DAGCRN without GTAM.
∙ DAGCRN w/o directed: DAGCRN with undirected graph.

Table 2 shows the experimental results of different DAGCRN vari-
nts. From the results, it can be observed that: (1) 𝐴𝑝𝑎𝑟 significantly
8

improves the performance as it can discover the latent spatial relations
between nodes besides the road distance information in a self-adaptive
manner. (2) DAGCRN’s forecasting performance declines rapidly when
the dynamic adjacency matrix 𝐷𝐴𝑡 is removed, which implies that
the consideration of time-varying spatial adjacency relations is in-
dispensable. (3) The effect of the elaborate AMUM is also evident
as it can model the evolution process of dynamic spatial relations
with the shift of time. (4) The proposed mix stage in dynamic graph
convolution is of great significance as it can aggregate and select
useful information from each propagation hop. (5) The ablation study
on graph convolution indicates that though these nodes are isolated
geographically but interdependent with each other. The employment
of graph convolution enables information flow among interdependent
nodes, thus improving the model’s performance. (6) In terms of short-
term forecasting, GTAM has a minor impact, but it has a significant
impact on long-term forecasting. (7) The ablation study on directed
graph indicates that considering the direction between paired nodes
can improve the prediction performance. The undirected graph ignores
that the influence between nodes is different, leading to inadequate
modeling of spatial dependency. The result indicates the effective-
ness of GTAM in alleviating the error propagation effect in long-term
forecasting and exploring global temporal relationships.

5.5.2. Effects of sparse connections
We conduct the second group of ablation study to verify the effec-

tiveness of the proposed sparse connections, which are used in AMUM
for matrix feature transformation. We compare the proposed DAGCRN
with another variant, named DAGCRN-fully, which keeps the model
structure unchanged except that the sparsely connected layers for
matrix feature transformation are replaced by the fully connected lay-
ers. We present the overall forecasting performances of three metrics,
computation time and the number of parameters in Table 3.

It can be observed that the employment of fully connected layers

degrades the performance of model owing to noise from other unrelated
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Table 3
Ablation study: effects of sparse connections on the PEMS-BAY dataset.

Dataset Methods Overall metrics Computation time # Parameters

MAE RMSE MAPE Training(s/epoch) Inference(s)

PEMS-BAY DAGCRN 1.56 3.68 3.61% 225.13 20.83 409950
DAGCRN-fully 1.65 3.82 3.78% 302.62 29.68 1675500
inter-node relations. Meanwhile, the fully connected layers require
more computation costs and parameters. In contrast, the proposed
sparse connections can effectively transform matrix dimension while
avoiding the noise of irrelevant inter-node relations. In summary, the
application of sparse connections improves the model’s forecasting
performance and reduces its complexity.

5.6. Case study

We randomly select one day (2012-06-06) and one sensor (Node
115) from METR-LA dataset and plot the time series of ground truth
and prediction results as depicted in Fig. 5(a), where the 𝑥-axis and
𝑦-axis represent time and speed (mph), respectively. To make the
chart clearer, we only plot the prediction results of DCRNN, ASTGCN,
AGCRN, and the proposed DAGCRN instead of all the methods listed
in Table 1. Through Fig. 5(a), we can observe that: (1) Compared
with the daytime, violent fluctuations in traffic speed occurred more
frequently at night. In comparison to the three baselines, the proposed
DAGCRN could better capture the dynamic change in traffic speed. (2)
This road was congested from 17:15 and the congestion was alleviated
at approximately 18:50. Though all of the four models could learn the
peak and valley trend, time lag could still be observed on the three
baselines due to their insensitivity to the dynamic change in traffic
speed.

To further analyze how DAGCRN captures the spatial adjacency
relations dynamically, we plot the dynamic spatial heatmap of Node
115 from 17:00 to 20:00 in Fig. 6, where the 𝑥-axis and 𝑦-axis represent
node index and time, respectively. First, we find that DAGCRN gave
less attention to other nodes and focused on the node itself more
when the road was unimpeded. Then as time passed and congestion
occurred, Node 36, 118, 145, and 184 gained more attention. We
also plot the speed records of Node 145 in Fig. 5(b) due to its strong
spatial attention. We find that the decline of traffic speed of Node 145
tended to precede that of Node 115 by about 45 min. When checking
the geographical locations of the two nodes, we find that they are
located on the same arterial road, and the distance between the two
nodes is around 0.97 miles. Additionally, Node 145 is downstream of
Node 115, which implies that congestion propagated from Node 145 to
Node 115 with the shift of time. This result shows that DAGCRN could
learn dynamically changing spatial dependencies effectively. Overall,
the interpretable and superior experimental results of DAGCRN are
due to the fact that DAGCRN uses SREM and AMUM to model the
evolution of dynamic spatial relations and leverages DGCRM to capture
the complicated spatial–temporal dependencies of traffic data.

5.7. Parameter study

In this subsection, we conduct a parameter study on core hyper-
parameters of DAGCRN on the two datasets to analyze their impacts.
The chosen hyper-parameters are listed as follows: (1) dimension of
hidden node state 𝑑𝑚𝑜𝑑𝑒𝑙, ranging from 32 to 96, (2) number of heads ℎ
in spatial attention, ranging from 1 to 8, and (3) the largest propagation
depth 𝐾 in graph convolution, ranging from 0 to 3. We record the
average of MAE on the validation set. In each experiment, we only
change one hyper-parameter while fixing the other parameters. Figs. 7–
9 show the experimental results of parameter study. As shown in Fig. 7,
the representation ability of DAGCRN improves dramatically with the
increase of the dimension of hidden node state. It is worthwhile noting
that if we set the dimension of hidden node state too large, it will
9

Fig. 5. Time series of ground truth and prediction results on METR-LA dataset.

Fig. 6. Dynamic spatial heatmap of Node 115 in different time steps.
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Fig. 7. Effects of dimension of hidden node state. (a) and (b) are respectively the results on METR-LA and PEMS-BAY.
Fig. 8. Effects of number of heads. (a) and (b) are respectively the results on METR-LA and PEMS-BAY.
Fig. 9. Effects of propagation depth. (a) and (b) are respectively the results on METR-LA and PEMS-BAY.
result in over-fitting, deteriorating the performance of the model. There
is an optimal value for the dimension of hidden node state at 64
for METR-LA and 80 for PEMS-BAY. We hold the opinion that there
are more nodes and more samples in PEMS-BAY, so the model needs
richer hidden representations to distinguish different nodes and store
the more complicated temporal patterns. Fig. 8 shows that increasing
the number of heads will improve the forecasting performance. This
can be explained that the model can capture more diverse perspectives
of spatial dependency with a larger number of heads. Likewise, if
the number of heads is set too large, a single head will contain less
information, and the spatial dependency will not be fully explored.
There is an optimal value for the number of heads at 4 for both datasets.
Fig. 9 shows the effects of propagation depth. The larger propagation
depth indicates that the model can attend to more neighbors. We find
that aggregating neighbors’ information can remarkably enhance the
model’s performance compared with 𝑑𝑒𝑝𝑡ℎ = 0. However, there exists
an increase of MAE when the propagation depth changes from 2 to 3.
This is because the larger propagation depth not only leads to more
computation costs but also causes the over-smoothing problem. There
is an optimal value for the propagation depth at 2 for both datasets.
10
To sum up, all the hyper-parameters have non-negligible impacts
on the ultimate performance of DAGCRN and should be verified based
on the specific dataset. We can find that the results are similar across
the two datasets. This is because the two datasets have relatively
similar traffic patterns, and also indicates that the model is with good
generalization ability. We select the optimal values of all the hyper-
parameters with reference to the model’s performance on the validation
set.

5.8. Complexity study

To evaluate the complexity of our model, we compare the computa-
tion time and the number of parameters of DAGCRN with several graph-
based models, including DCRNN, ASTGCN, STSGCN, and AGCRN. All
the experiments are conducted on the RTX 2080Ti GPU with 11 GB
memory and the size of a mini-batch is uniformly set to 64. Under
this experiment condition, we count the time cost of five models on
the test set (see Table 4). We naturally get the following conclu-
sions: (1) Compared with CNN-based temporal modeling methods (𝑒.𝑔.
ASTGCN and STSGCN), RNN-based methods (𝑒.𝑔. DCRNN, AGCRN,
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Table 4
Complexity study on the METR-LA dataset.

Methods Computation time # Parameters

Training(s/epoch) Inference(s)

DCRNN 446.85 30.69 372353
ASTGCN 127.74 11.68 237731
STSGCN 140.29 12.56 1921886
AGCRN 216.12 23.61 751650
DAGCRN(ours) 187.06 15.85 236230

and DAGCRN) require more computation cost due to their intrinsic
recurrent structures. However, the proposed DAGCRN still requires
relatively less computation time owing to its efficient tensor operations.
(2) Because STSGCN combines three graphs at adjacent time steps into
a holistic graph as the adjacency matrix, it requires a large number of
parameters to model the complex spatial–temporal dependencies. Since
key components of DAGCRN are all shared across different time steps,
it uses fewer parameters than other baselines.

Overall, our proposed DAGCRN uses reasonable computation costs
and fewer parameters while obtains the best forecasting performance.
The complexity study indicates the feasibility and practical application
prospects of our model.

6. Conclusion

In this paper, we have presented a novel deep learning model
DAGCRN for traffic forecasting, which successfully models the dynam-
ics of spatial relations and handles the complicated spatial–temporal
dependencies of traffic data. Experimental results on two real-world
datasets for multi-step traffic speed forecasting prove the effective-
ness and robustness of DAGCRN in both short-term and long-term
forecasting tasks. What is more, the experimental results of three
aspects, including ablation study, case study, and complexity study, also
demonstrate various advantages of DAGCRN.

In the future study, more external factors will be considered and
utilized to enhance the performance of the traffic forecasting model.
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