
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTING MONTE CARLO TREE SEARCH FOR GEN-
ERATIVE FLOW NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative Flow Networks, or GFlowNets, formulate generative modelling in dis-
crete spaces as a sequential decision-making problem. Sampling plays a key role
in GFlowNet training, as most algorithms use the learned policy to sample tra-
jectories from the environment. Monte-Carlo Tree Search (MCTS) is a planning
algorithm that has successfully been applied to train sequential decision-making
models with reinforcement learning (RL). In this work, we leverage known con-
nections between GFlowNets and maximum-entropy RL to adapt MCTS for
GFlowNet training. We prove that standard MCTS tree construction processes
can be modified to calculate the optimal flows for a GFlowNet, given sufficient
samples from the environment. Our results extend to multiple cases of GFN mod-
elling, including terminating-energy and intermediate-energy environments. We
investigate practical strategies for employing MCTS as a sampling tool and apply
it to different GFN parameterizations and training objectives. Through extensive
experiments in a variety of discrete domains, including a language-based reason-
ing task, we show that our proposed method offers an improvement over standard
on-policy sampling.

1 INTRODUCTION

Generative Flow Networks, or GFlowNets (Bengio et al., 2021a;b), are generative models that can
sequentially generate objects based on their energy (or reward). GFlowNets act as energy sam-
plers such that they learn and match the underlying energy function and can sample from multiple
modes. The GFlowNet policy generates a sample sequentially, by taking one action at a time, and
from this perspective, is similar to a Reinforcement Learning (RL) policy. However, unlike the RL
training objective that mainly focuses on reward maximization, the GFlowNet training objective
aims to learn a policy that can match the reward or energy distribution and sample proportionally
to it. While Monte-Carlo Markov chains (MCMC) methods can also sample from an unnormalized
energy function, they are computationally expensive and slow to achieve mode-mixing. However,
GFlowNets amortize the expensive computation in a single trained generative pass, making it possi-
ble to leverage the generalization capabilities of machine learning and learn structure in the energy
distribution.

The training objective of GFlowNets is usually formulated in the form of a flow objective such
that the incoming and outgoing flows are matched (Bengio et al., 2021a;b; Malkin et al., 2022;
Madan et al., 2023). The data to compute these objectives is commonly collected using the current
GFlowNet policy and the quality of these collected samples can affect the training efficiency of
GFlowNets. However, on-policy approaches face several limitations. They can fail to explore the
environment by overfitting to high reward (low energy) trajectories that were sampled recently. This
is of particular concern in low-entropy environments, where the reward landscape is quite sparse.
On-policy approaches also suffer from poor sample efficiency, as each sampled trajectory is only
used for a single gradient update. A number of works have taken inspiration from RL methods to
improve sampling for GFlowNet training, including ϵ-uniform exploration, replay buffers, and local
search (Kim et al., 2024). In this work, we propose a novel and flexible way of improving data
sampling and training efficiency of GFlowNets.

Monte-Carlo Tree Search (MCTS) is a widely used planning algorithm in Reinforcement Learning
that has been successfully applied to a number of settings (Browne et al., 2012; Silver et al., 2017;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Kajita et al., 2020). Since GFlowNets can be trained in an off-policy manner and usually operate
in a deterministic environment dynamics, we demonstrate how integrating MCTS with GFlowNets
can improve data sampling, leading to a more efficient learning algorithm. Through extensive ex-
periments over a wide range of tasks, including an LLM based reasoning benchmark, we show how
combining MCTS with GFlowNets can enable efficient training throughout the different default
training objectives and GFlowNet parameterizations.

The main contributions of our work are the following:

1. We introduce Monte Carlo DAG Search (MCDS), an adaptation of MCTS that can be used
to calculate optimal flows in a GFlowNet environment.

2. We provide a method for using the proposed MCDS to influence trajectory sampling in a
way that improves GFlowNet training.

3. We empirically demonstrate the effectiveness of our method with different GFlowNet pa-
rameterizations and environment structures.

Figure 1: Visual comparison of the Backup operation in Monte Carlo DAG Search (MCDS) vs
standard MCTS. In MCDS, the information passed from a child node s′ to its parent is modulated by
a distribution PB(s|s′) over all parents s, taking into account the DAG structure of the environment.

2 BACKGROUND

2.1 GENERATIVE FLOW NETWORKS (GFLOWNETS)

Consider a Directed Acyclic Graph, or DAG, G = (S,A) where S and A represent the state and
action spaces. Given any two states s ∈ S and s′ ∈ S, an edge is represented as (s, s′). The
action space A consists of directed edges S × S and is thus made up of transitions between any
two states. A trajectory τ is represented as a sequence of states: τ = (s1 → s2 → · · · → sn) =
(s1, s2, . . . , sn) such that the corresponding actions are (si → si+1) ∈ A that iteratively build this
trajectory one action, or one time step, at a time. Since G is a DAG, there exists no trajectory with
sn = sm;∀n > m. Given a transition st → st+1, the state st is called the parent of st+1 and
st+1 is called the child of st. A state s′ is said to be a descendent of s if there exists a trajectory
τ ∈ T such that s′ appears after s: we denote this relationship as s ≺ s′. A special initial state,
called source state, s0, is defined such that s0 ≺ s for all s ∈ S\{s0}. Similarly, a final state called
a sink state sf is defined such that s ≺ sf for all s ∈ S\{sf}. The parent of a sink state sf is
called a terminating state: the set of terminating states is denoted X ⊆ S . A complete trajectory is
represented as τ = (s0, s1, . . . , sn, sf) and the set of all complete trajectories is denoted by T .

An environment is a combination of a state graph G and an energy function E(s) : S → R+.
The energy can also be expressed as the reward function R(x) = exp−E(x)/α, where α is a
temperature parameter (typically we set α = 1). The reward function can be normalized to define a
distribution over terminating states P (x) ∝ R(x). The goal of GFlowNet training is learn a model
P (x; θ) that approximates P (x). The environment is described as having terminating energy (or
terminating reward) if E(s) =∞ for all s ∈ S/X , otherwise it is referred to as intermediate energy
(intermediate reward).

Given a graph G = (S,A) as defined above, a forward policy, PF , can be defined in terms of a
forward probability function PF :

∑
s′:s′∈Ch(s) PF (s

′|s) = 1, where Ch(s) is the set of children

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

of s. Similarly a backward policy, PB , can be defined in terms of a backward probability function
PB :

∑
s:s∈Par(s′) PB(s|s′) = 1.

A state flow F (s) : S → R+ is defined as the measure of the set of complete trajectories passing
through a state s. An edge flow F (s, s′) : (S × S) → R+ is defined as the measure of the set of
the complete trajectories through an edge (s, s′). The flow through a set of trajectories A ⊆ T is
defined as the sum of flows of all trajectories τ ∈ A. The total flow Z is the total flow through all
the trajectories τ , defined as: Z = F (T) =

∑
τ∈T F (τ) =

∑
x∈X R(x).

A flow F corresponding to a given graph G is called Markovian if it satisfies the Markovian property,
i.e. the next state s′ only depends on the current state s and not the previous history. Formally, given
a trajectory τ = (s0, s1, . . . , sn, sf), a flow is called Markovian if ∀(s → s′), P (s′|τ) = P (s′|s).
Using this Markovian flow formulation, a trajectory τ can be generated by either iteratively sampling
the next state s′ forward from the current state s using the forward transition probability PF (s

′|s)
until reaching sf , or starting at sf and iteratively sampling the parent state s backwards from the
current state s′ until s0 is reached.

Many training objectives have been defined for GFlowNets, such as Flow Matching objective (Ben-
gio et al., 2021a), Detailed Balance objective (Bengio et al., 2021b), Trajectory Balance objective
(Malkin et al., 2022) and SubTB(λ) objective (Madan et al., 2023), and these operate on the level of
the state, edge, full length (complete) trajectories and sub-trajectories of any lengths, respectively.
These training objectives are obtained by setting up a set of flow-matching constraints with the
property that when all these constraints are satisfied, the GFlowNet sampling policy has the desired
property that generates terminating states with probability proportional to R(x). Each constraint can
be turned into a loss, typically by taking the square of the logarithm of the ratio of the right-hand
side to the left-hand side of the equality constraint. Each loss term thus corresponds to an amount
of constraint violation. Training consists in sampling trajectories and measuring these constraint
violations (the loss) and its gradient on the parameters of interest.

The Flow Matching (FM) (Bengio et al., 2021a) objective parameterizes GFlowNets through edge
flows F (s → s′; θ) on states s. The Trajectory Balance (TB) (Malkin et al., 2022) objective works
with complete trajectories, and parameterizes the GFlowNet through an initial state flow Zθ, and
forward and backward policies, PF (s

′|s; θ) and PB(s|s′; θ), respectively. The Detailed Balance
(DB) (Bengio et al., 2021b) and the SubTB(λ) (Madan et al., 2023) objectives parameterize the
state flow F (s; θ), forward policy PF (s

′|s; θ), and backward policy PB(s|s′; θ) on actions s → s′

to define a GFlowNet. The flow-matching constraints represented by these parameterized quantities
are converted into a loss function by equating the left and right hand sides of the constraint equations
as a squared loss. The flow matching equation for the DB loss is described by Equation 1:

F (s; θ)PF (s
′|s; θ) = F (s′; θ)PB(s|s′; θ) (1)

2.2 MONTE-CARLO TREE SEARCH (MCTS)

Although MCTS can in principle be applied to a variety of environments, for simplicity we consider
only environments with DAG-structured discrete state spaces, as described in Section 2.1. For a
more comprehensive treatment of the subject, we refer the reader to (Browne et al., 2012).

Let the search tree T be a DAG 1 consisting of a set of nodes ST ⊆ S¬f and edges AT ⊆ A, where
S¬f = S/sf and A¬f = A/{(x, sf) : x ∈ X}. Let QT (s, s

′) be the search value function for
edge (s, s′) ∈ AT . The MCTS algorithm iteratively builds T through repeated application of three
construction steps: Select, Expand, and Backup.

The search tree is initialized without any information: ST = {s0}, AT = {}. In the Select step, a
new node s′ /∈ ST is visited by sampling a trajectory through the search tree (s0 → · · · → s→ s′)
where each action is selected using a tree policy PT (s

′|s). In the Expand step, the edge values
QT (s

′, s′′) from the new node s′ to each of its children s′′ ∈ Ch(s′) are initialized using a heuristic
approximation. Finally, in the Backup step information from the new state s′ is propagated back up
along the path in reverse order, starting from s and moving towards s0.

1Despite the name, most implementations of MCTS construct a DAG, not a tree (Cazenave et al., 2012).
However, in many applications the search DAG is sparse and tree-like.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Like many sampling/search methods, MCTS can be used for both optimization (i.e. finding
argmaxx R(x)) and integration (i.e. calculating

∑
x R(x)). Details about each step in the algo-

rithm, such as how the paths through the search tree are selected (i.e. greedy vs stochastic), how
the value functions are initialized (i.e. Monte Carlo rollout vs neural network prediction) and how
the value functions are updated in the Backup step, can vary depending on the specific use case.
In the next section, we discuss a particular implementation of MCTS that can be used to solve the
GFlowNet problem in a tree-structured environments.

2.3 MCTS FOR APPROXIMATE INFERENCE

Suppose G is tree-structured environment with terminal energies. Previous work has shown that
MCTS can be used to calculate the true distribution P (x) ∝ R(x): we briefly outline this work
below.

First, observe that in tree-structured environments, each state s can only be reached by a unique
trajectory τ = (s0, . . . , s).

The reward function R(s, s′) is defined by equation 2:

R(s, s′) =

{
−E(s) if s′ = sf
0 otherwise

(2)

Further, suppose that the Backup step on a single pair of nodes (s, s′) is given by Equation 3:

QT (s, s
′)← R(s, s′) +QT (s

′) (3)

Note that QT (s) = log
∑

s′∈Ch(s) expQT (s, s
′) is simply the search value function for the node

s. This equation is reminiscent of the Soft-Bellman backup equation used in maximum-entropy RL
(Haarnoja et al., 2017).

If the tree is fully constructed, i.e. ST = S¬f and AT = A, it is possible to show that the
tree value functions are equivalent to the optimal maximum-entropy state-action value functions
(Buesing et al., 2019). This is stated formally in Theorem 1:

Theorem 1 (Search Tree Consistency) If the search tree T is constructed exhaustively using Equa-
tion 3 for the Backup step, then QT (s, s

′) =
∑

x:s≺x R(x) for all (s, s′) ∈ AT .

Note that this result does not require a particular strategy for sampling search tree paths in the
Select step, nor does it require a specific value function initialization in the Expand step. Theorem
1 can also be extended to environments with intermediate energies (see Buesing et al. 2019 for full
details). While useful, this approach does not generalize to non-tree structured environments, such
as the common GFlowNet benchmark Hypergrid (Bengio et al., 2021a). Briefly, if this Backup is
applied to such an environment, the search tree values QT (s, s

′) may be biased by the number of
unique trajectories leading to each terminating state (see Figure 2); in tree-structured environments,
this is not an issue since every state can only be reached by a single trajectory (refer to Bengio et al.
2021b for further details).

3 RELATED WORK

MCTS (Kocsis & Szepesvári, 2006; Kocsis et al., 2006) has long been used for planning in Markov
Decision Processes Browne et al. (2012). Early approaches employed simple methods for estimating
state values, such as performing Monte Carlo rollout with a heuristic policy. More recent approaches
(Anthony et al., 2017; Silver et al., 2017) have replaced these heuristics with neural networks, which
are faster and can in principle generalize to regions of the space that are unseen. Remarkably, it
has been demonstrated that these networks can effectively be trained with the samples that they
themselves generate through sampling, even in cases where the dynamics of the environment are
unknown (Schrittwieser et al., 2019).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Maximum Entropy Reinforcement Learning (MaxEnt RL, Fox et al. (2015)) differs from standard
RL by seeking a balance between maximizing rewards and maintaining diversity. This approach
can improve exploration and make control more robust when the model is imperfect. It can also
be viewed as a form of probabilistic inference, where the optimal policy samples trajectories pro-
portion to their reward Levine (2018). More recently, MaxEnt RL has been linked to GFlowNets
through reward shaping Tiapkin et al. (2024); Deleu et al. (2024); Mohammadpour et al. (2024).
This provides a framework for converting existing maximum-entropy RL algorithms into equiva-
lent GFlowNet algorithms: for example, the Detailed Balance GFlowNet algorithm (Bengio et al.,
2021b) can be expressed as Soft Q-Learning (Haarnoja et al., 2017) with a particular type of reward
shaping. MCTS can also be modified to work with MaxEnt RL (Xiao et al., 2019) and perform
inference in tree-structured environments (Buesing et al., 2019).

Our work also shares some similarities with a concurrent work (Morozov et al., 2024): however,
our contributions differ in several ways. Our work is more general in the sense that it is applicable
to multiple GFlowNet parameterizations (DB, SubTB, and FM) and works with both terminating-
reward and intermediate-reward environments, while theirs is limited to Soft Q-Learning (i.e. DB) in
terminating-reward environments. Additionally, the manner in which their tree is constructed differs
considerably from our own approach: theirs is similar to AlphaZero in the sense that it evolves
several independent search trees simultaneously, while ours is more like TreeSample (Buesing et al.,
2019) in that it builds one large search DAG (in parallel) from which trajectories can be sampled
during training, somewhat like a replay buffer. Finally, the way they use search to influence training
is distinct: their approach relies on taking the flow estimates from the search tree directly as training
targets, while our approach only constructs the tree for the purposes of sampling.

4 METHODOLOGY

4.1 MONTE CARLO DAG SEARCH (MCDS)

In this section, we describe how to iteratively build a search DAG D using MCTS-inspired graph
operations. We call this approach Monte Carlo DAG Search (MCDS).

Like with the search tree T in MCTS, the search DAG D consists of a set of nodes SD ⊆ S¬f and
edgesAD ⊆ A that corresponds to a connected subgraph of the environment DAG G. Let FD(s, s′)
be the search DAG flow function for edge (s, s′), and let R(s, s′) be the reward function (defined
below).

The particular manner in which the flow functions are updated for each action (s, s′) in the trajectory
is described in Equation 4:

logFD(s, s′)← R(s, s′) + logFD(s′) (4)

Note that FD(s) =
∑

s′∈Ch(s) FD(s, s′) is simply the state flow in the search DAG D. This equation
is nearly identical to the Soft-Bellman backup in Equation 3, although the value functions have been
replaced with flow functions.

Assuming that G corresponds to a terminating reward environment, we can define the edge reward
function as follows:

R(s, s′) =

{
−E(s) if s′ = sf
logPB(s|s′) otherwise

(5)

This definition corresponds to the reward shaping for maximum entropy RL described in (Tiapkin
et al., 2024; Deleu et al., 2024). If the DAG construction proceeds until the D covers the entire
environment graph G (i.e. SD = S¬f and AD = A), Theorem 2 asserts that the DAG flows are
equal to the optimal GFlowNet flows (a proof can be found in Appendix 7.2).

Theorem 2 (Search DAG consistency) If the search DAG D is constructed exhaustively using
Equation 4 for the Backup step, then FD(s, s′) = F (s, s′) for all (s, s′) ∈ A.

A simple corollary is that the tree policy PD(s′|s) ∝ FD(s, s′) can be used to sample terminating
states x ∈ X proportional to R(x). Let PD(x) =

∑
τ :(x,sf)∈τ PD(τ).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: With sufficient budget, MCDS can approximate the true flows, forward policies, and ter-
minating distributions in an 8x8 Hypergrid environment. Each square represents a state in the hyper-
grid, with s0 = (0, 0) in the bottom left. The green shading represents the terminating distribution
P (s), and the arrows and dots represent the forward policy PF (s

′|s), with the red dot indicating
the terminating probability PF (sf |s). The MCTS solution is biased towards states further from the
origin since they can be reached with a larger number of unique trajectories.

Corollary 2.1 If D is exhaustive, then the terminating state distribution PD(x) induced by the tree
policy PD(s′|s) is equal to the true terminating state distribution P (x) ∝ R(x).

Following (Deleu et al., 2024), the reward can be modified slightly to accommodate DAG construc-
tion in intermediate energy environments:

R(s, s′) =

{
0 if s′ = sf
E(s)− E(s′) + logPB(s|s′) otherwise

(6)

Theorem 2 can be extended to both intermediate-energy and terminating-energy environments; the
proof in Appendix 7.2 covers both cases.

In terminating reward environments, it is possible to run MCDS without requiring additional reward
function evaluations during construction. This can be accomplished by modifying Equation 5 such
that R(s, s′) = FD(s, s′) when s′ = sf . In this case, the MCDS can be viewed as simply aggre-
gating flow estimates across multiple states. After exhaustive construction the DAG flows FD(s, s′)

will correspond to the flows for a distribution P̂ (x) ∝ R̂(x), where R̂(x) is the value used to ini-
tialize FD(x, sf) in the Expand step for the terminating state x. In Section 5.1 we demonstrate that
this approach can be useful for training.

4.2 APPLYING MCDS FOR GFLOWNET TRAINING

Most GFlowNet algorithms involve sampling trajectories from the environment and minimizing a
differentiable loss on these samples with gradient descent. The precise form of the loss function
depends on the particular GFlowNet parameterization and training objective. However, regardless

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

of parameterization, the sampling strategy is a critical part of the optimization can have a large
impact on overall performance.

Let PM (s′|s) denote the sampling policy. In principle, the only requirement of the sampling policy
is that it has full support over the set of trajectories T . The most basic strategy therefore is to sample
trajectories on-policy using the current model’s parameters. In the case of DB, SubTB, and TB,
the learned forward policy can be used PM (s′|s) = PF (s

′|s; θ). In the case of FM, which does
not parameterize a forward policy directly, the sampling policy can be defined using the edge flow
function: PM (s′|s) ∝ F (s, s′; θ).

Our method involves constructing a search DAG D with MCDS and drawing samples with
PM (s′|s) = PD(s′|s). Inspired by previous works combining MCTS with RL (Silver et al.,
2017; Buesing et al., 2019; Xiao et al., 2019), we can guide construction of D by using the cur-
rent GFlowNet flow estimates in the Expand step. First, let us consider the DB objective (Bengio
et al., 2021b), which requires parameterizing a forward policy PF (s

′|s; θ), a state flow function
F (s; θ), and (optionally) a backward policy PB(s|s′; θ). In this case we can apply the flow identity
F (s, s′; θ) = F (s; θ)PF (s

′|s; θ) and initialize tree flows for new nodes using Equation 7:

logFD(s, s′)← logF (s, s′; θ) (7)

This approach also works for the SubTB objective (Madan et al., 2023), since it parameterizes the
distribution in the same manner. For the FM (Bengio et al., 2021a) case, we can use the learned
state-action flow F (s, s′; θ) directly.

In the intermediate reward case the forward-looking flow F̃ (s, s′; θ) (Pan et al., 2023) is used in
combination with the intermediate energy E(s), as described in Equation 8 (see Appendix 7.2 for
justification):

logFD(s, s′)← log F̃ (s, s′; θ)− E(s) (8)

As tree construction progresses, the tree flows FD(s, s′) move away from the GFlowNet estimates
F (s, s′; θ) and towards the optimal flows F (s, s′). Exhaustive tree construction is usually imprac-
tical; in cases where it is feasible, learning an approximation PF (s

′|s; θ) is superfluous since the
DAG distribution PD(x) perfectly models the distribution over terminating states P (x). In practice,
we build D stochastically using a fixed budget B ≪ |A| of construction iterations. The method for
sampling from the (usually incomplete) search DAG is described in Equation 9:

PM (s′|s) =
{
PD(s′|s) if s ∈ SD
PF (s

′|s; θ) otherwise
(9)

Empirically we find that mixing samples from PM (s′|s) and PF (s
′|s; θ) in a 1:1 ratio produces

the best results. We can observe that sampling trajectories from the optimal distribution PF (s
′|s)

does not necessarily lead to superior optimization: empirically, simple on-policy training can re-
sult in faster convergence under certain conditions (Atanackovic & Bengio, 2024). Intuitively, it is
important for the sampling policy to capture regions of the space where the current model and the
optimal distribution differ. Focusing exclusively on the modes of the distribution might not be the
best strategy for finding such states.

Building D every iteration can be quite inefficient, since the GFlowNet policy PF (s
′|s; θ) does not

change much after a single gradient update. It also slows down training dramatically, since each time
D is constructed the model F (s′|s; θ) and energy function E(s) are queried several times. In our
experiments D is built every few iterations, and the construction operations are executed in parallel
(see Algorithm 1 for full details).

5 EXPERIMENTS

5.1 HYPERGRID

First we evaluate our method on the standard Hypergrid GFlowNet benchmark from (Bengio et al.,
2021a). Hypergrid is a D-dimensional grid environment of size HD where every state is terminating.
It uses a sparse, multi-modal reward function that is concentrated near each of the 2D corners of the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) 204 MCDS (b) 204 MCDS No Reward (c) 204 MCTS

(d) 324 MCDS (e) 324 MCDS No Reward (f) 324 MCTS

Figure 3: Hypergrid experiments with varying grid sizes and MCDS configurations. MCDS works
both with and without access to reward function during tree construction. Larger tree budgets help
with MCDS, but are not helpful with MCTS. Experiments run with 3 seeds, mean and standard
deviation reported. The reported metric is average L1 distance |P (x)− P (x; θ)| over states x ∈ X .

hypergrid. The initial state is the origin (0)D located at the corner of the hypergrid. Each action is a
step that increments one of the D coordinates by 1 (up to a maximum of H − 1).

For our experiments we use the sparser formulation of the hypergrid reward (R0 = 0.0001, R1 =
1.0, R2 = 3.0), and focus on two large environments (D = 4, H ∈ {20, 32}). We compare
on-policy training using the DB objective (Bengio et al., 2021b) with different configurations of
MCDS and MCTS. The results are summarized in Figure 3. MCDS (Figures 3a and 3d) improves
training compared to on-policy sampling, with larger tree construction budgets providing a bigger
improvement. Furthermore, we show that MCTS (Figures 3c and 3f) does not meaningfully improve
training with equal construction budgets, and may even harm it. We also show how variants of
MCDS that do not query the reward function during construction (Figures 3b and 3e) can improve
convergence.

5.2 BLOCKSWORLD

5.2.1 TASK DESCRIPTION

We have done extensive experiments with the Blocksworld (Valmeekam et al., 2023) planning prob-
lems to test our methodology in a language model reasoning task. In this task, the model is required
to produce a sequence of actions to rearrange blocks into stacks in a specified order. A state s rep-
resents the current arrangement of the blocks, and each action is a written instruction for moving
the blocks. The actions use one of four verbs—STACK, UNSTACK, PUT, or PICKUP—along with
the corresponding objects. We generate valid actions based on domain constraints and the current
block configuration, and query the language model to estimate the flow F (s; θ) and forward policy
PF (s

′|s; θ). Based on the current state and the action taken, the next state can be obtained in a deter-
ministic fashion. The planning process terminates when the maximum number of steps is reached,
such that all trajectories have the same length. A step count is used to prevent cycles and enforce
the DAG structure of the environment. The reward for a terminating state x is a function of how
well the current block configuration meets the goal criteria specified in the environment definition.
Let f(x) be the fraction of the criteria satisfied in state x; if f(x) = 1 then R(x) = 100, otherwise

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Results on the Blocksworld task with different difficulty levels, with the number of test
examples (environments) indicated in brackets. Acc = accuracy @ 20, Reward = average reward
@ 20. Mean and standard deviations reported over five seeds.

Method 2-step (15) 4-step (42) 6-step (99) 8-step (138)
Acc (%) Reward Acc (%) Reward Acc (%) Reward Acc (%) Reward

CoT (2-shot) 37.3 ± 8.9 5.6 ± 0.8 6.7 ± 5.2 1.0 ± 0.0 3.0 ± 1.6 0.4 ± 0.1 1.3 ± 0.6 0.7 ± 0.0

CoT (5-shot) 40.1 ± 14.1 5.0 ± 1.0 4.8 ± 2.7 0.9 ± 0.1 3.0 ± 0.0 0.5 ± 0.0 2.3 ± 0.0 0.5 ± 0.1

DB
On-Policy 81.3 ± 21.8 41.7 ± 20.8 80.0 ± 10.0 17.4 ± 2.5 41.8 ± 20.6 4.5 ± 2.0 6.7 ± 2 1.8 ± 0.2

MCDS 96.0 ± 6.0 69.1 ± 7.2 81.4 ± 4.6 31.3 ± 15.0 73.7 ± 7.3 23.1 ± 5.6 20.3 ± 7.6 2.4 ± 1.1

SubTB
On-Policy 90.7 ± 10.1 74.5 ± 8.4 50.5 ± 21.2 22.4 ± 12.9 37.8 ± 21.6 8.1 ± 5.5 7.3 ± 3.4 2.4 ± 0.3

MCDS 90.7 ± 10.1 78.7 ± 9.7 73.3 ± 12.4 36.4 ± 12.5 68.1 ± 7.4 23.1 ± 5.6 38.4 ± 11.6 5.1 ± 1.3

TB 86.7 ± 13.3 75.6 ± 11.7 57.1 ± 15.1 28.7 ± 10.6 32.5 ± 24.5 10.9 ± 12.5 4.1 ± 2.3 2.2 ± 0.7

TBVar 94.7 ± 5.6 81.5 ± 11.0 39.5 ± 15.0 13.8 ± 7.4 34.5 ± 25.0 9.0 ± 6.6 3.3 ± 1.2 1.7 ± 0.7

R(x) = 10f(x). For example, it could be the case that in the initial state, the orange block is on the
table, the blue block is on the table and the hand is empty. A valid action in this case would be to
pickup the orange block. The goal criteria of the environment could be that the orange block ends
up on top of the blue block.

5.2.2 TRAINING SETUP

The maximum number of steps needed to reach the goal from the initial state defines the task’s
difficulty. The distribution of tasks is as follows: 30 examples require 2 steps, 57 examples require
4 steps, 114 examples require 6 steps, and 153 examples require 8 steps. Based on the setup from
(Hao et al., 2023), we choose the first 15 examples from each group as training, with the remaining
ones used as test samples. We show the accuracy and average reward of different methods for
these groups in the table 1. During the test phase, for each environment (example) we sample 20
trajectories and if any trajectory reaches the goal, we consider the instance solved. All experiments
are done with 5 random seeds and the mean and standard deviation are reported. Further details
about the Blocksworld task and training can be found in Appendix 7.3

5.2.3 RESULTS

In all experiments, we fine-tuned the LLama3 8B model (Dubey et al., 2024) to predict policies and
flows. The base model, without fine-tuning, was unable to produce admissible results in any of the
evaluated settings. However, fine-tuning the model using any of the baseline GFN methods con-
sistently resulted in improved performance. Notably, incorporating MCTS significantly enhanced
GFN training across all configurations. Furthermore, as task difficulty increased, the performance
gap widened, emphasizing the impact of MCTS in this challenging reasoning experiment. In Table
1, TB corresponds most closely to (Hu et al., 2023), while TBVAR aligns with the approach in (Yu
et al., 2024), which uses the modified TB objective from (Zhang et al., 2023).

5.3 FACTOR GRAPHS

The Factor Graphs benchmark, originally proposed in (Buesing et al., 2019) but reformulated for
GFlowNets in (Deleu et al., 2024), is a challenging discrete inference task. Each Factor Graph
environment corresponds to a factorizable distribution over N categorical variables (each with sup-
port size K). Notably, since each factor only depends on a subset of the N variables, intermediate
rewards can be given once those variables have been assigned. Each action in the environment cor-
responds to the assignment of one of the N variables, resulting in a total of (K+1)N states of which
KN are terminating.

We consider two environments: the Permuted Chain environment and the Factorgraphs1 environ-
ment (see Section 7.3 for more details). As described in Section 4.1, MCDS construction can pro-
ceed with or without intermediate rewards. The forward-looking (FL) variants that use intermediate
rewards for both tree construction and loss calculation clearly outperform those that do not, as shown

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

in Figures 4a and 4c. Furthermore, MCDS does seem to improve over on-policy in the FL case, al-
though in the terminating reward case MCDS and on-policy sampling both perform poorly. Figures
4b and 4d demonstrate that MCDS also works with SubTB FL, although both SubTB FL methods
seem to be more unstable than their DB FL counterparts.

(a) Permuted Chain (N = 12,K = 5)
DB-FL and DB

(b) Permuted Chain (N = 12,K = 5)
DB-FL and SubTB-FL

(c) Factorgraphs1 (N = 8,K = 5)
DB-FL and DB

(d) Factorgraphs1 (N = 8,K = 5)
DB-FL and SubTB-FL

Figure 4: Experiments in two different Factorgraphs environments (Permuted Chain and Factor-
graphs1) with different GFN objectives (DB and SubTB). The thin dashed lines represent individual
trajectories for 10 seeds; the thick lines represent the median across seeds. MCDS consistently re-
sults in faster convergence in the forward-looking (FL) case.

6 CONCLUSION

In this work, we propose Monte Carlo DAG Search (MCDS), a novel adaptation of MCTS to the
GFlowNet problem. Our method employs reward shaping to modify the Backup step in maximum
entropy MCTS so that it can apply to GFlowNets. We show that our approach can be used to
calculate optimal flows in both terminating and intermediate reward environments. By employing
MCDS as a tool for sampling the environment, we demonstrate how it can improve GFlowNet
training. Through a series of experiments covering different state spaces, reward structures, neural
network architectures, and GFlowNet parameterizations, we demonstrate the broad applicability and
effectiveness of our method for GFlowNet training.

There are several promising directions for future work. Our current MCDS formulation requires
parameterizing a state flow F (s) or state-action flow F (s, s′), which limits its applicability to the
DB, SubTB, and FM parameterizations. However, it may be possible to develop a strategy that works
with TB. Furthermore, we have not explored combining MCDS with other successful GFlowNet
sampling methods like replay buffers, local search (Kim et al., 2024), and Thompson sampling
(Rector-Brooks et al., 2023), which could further improve performance. Finally, it would be valuable
to explore different formulations of the DAG policy PD(s′|s) that is used in tree construction. Our
approach is most similar to MENTS (Xiao et al., 2019), but it may be possible to consider other
variants (Buesing et al., 2019) which offer a different balance of exploration and exploitation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and
tree search, 2017. URL https://arxiv.org/abs/1705.08439.

Lazar Atanackovic and Emmanuel Bengio. Investigating generalization behaviours of generative
flow networks, 2024. URL https://arxiv.org/abs/2402.05309.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation, 2021a. URL
https://arxiv.org/abs/2106.04399.

Yoshua Bengio, Tristan Deleu, Edward J. Hu, Salem Lahlou, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. CoRR, abs/2111.09266, 2021b. URL https://arxiv.org/abs/
2111.09266.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in Games, 4(1):1–43, 2012. doi: 10.1109/
TCIAIG.2012.2186810.

Lars Buesing, Nicolas Heess, and Theophane Weber. Approximate inference in discrete distributions
with monte carlo tree search and value functions, 2019.

Tristan Cazenave, Jean Méhat, and Abdallah Saffidine. UCD : Upper confidence bound for rooted
directed acyclic graphs. Knowledge-Based Systems, 34:26–33, 2012. doi: 10.1016/j.knosys.2011.
11.014. URL https://hal.science/hal-01499672. Publisher: Elsevier.

Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, and Yoshua Bengio. Discrete
Probabilistic Inference as Control in Multi-path Environments, February 2024. URL http:
//arxiv.org/abs/2402.10309. arXiv:2402.10309 [cs].

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Roy Fox, Ari Pakman, and Naftali Tishby. G-learning: Taming the noise in reinforcement learning
via soft updates. CoRR, abs/1512.08562, 2015. URL http://arxiv.org/abs/1512.
08562.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pp. 1352–1361. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.
press/v70/haarnoja17a.html.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. arXiv preprint
arXiv:2310.04363, 2023.

Seiji Kajita, Tomoyuki Kinjo, and Tomoki Nishi. Autonomous molecular design by Monte-
Carlo tree search and rapid evaluations using molecular dynamics simulations. Communica-
tions Physics, 3(1):1–11, May 2020. ISSN 2399-3650. doi: 10.1038/s42005-020-0338-y.
URL https://www.nature.com/articles/s42005-020-0338-y. Publisher: Na-
ture Publishing Group.

11

https://arxiv.org/abs/1705.08439
https://arxiv.org/abs/2402.05309
https://arxiv.org/abs/2106.04399
https://arxiv.org/abs/2111.09266
https://arxiv.org/abs/2111.09266
https://hal.science/hal-01499672
http://arxiv.org/abs/2402.10309
http://arxiv.org/abs/2402.10309
http://arxiv.org/abs/1512.08562
http://arxiv.org/abs/1512.08562
https://proceedings.mlr.press/v70/haarnoja17a.html
https://proceedings.mlr.press/v70/haarnoja17a.html
https://www.nature.com/articles/s42005-020-0338-y

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn,
and Jinkyoo Park. Local search gflownets, 2024. URL https://arxiv.org/abs/2310.
02710.

Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-Carlo Planning. In Johannes Fürnkranz,
Tobias Scheffer, and Myra Spiliopoulou (eds.), Machine Learning: ECML 2006, pp. 282–293,
Berlin, Heidelberg, 2006. Springer. ISBN 978-3-540-46056-5. doi: 10.1007/11871842 29.

Levente Kocsis, Csaba Szepesvari, and Jan Willemson. Improved monte-carlo search. 2006. URL
https://api.semanticscholar.org/CorpusID:9831567.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
CoRR, abs/1805.00909, 2018. URL http://arxiv.org/abs/1805.00909.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from partial
episodes for improved convergence and stability, 2023. URL https://arxiv.org/abs/
2209.12782.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory bal-
ance: Improved credit assignment in gflownets. CoRR, abs/2201.13259, 2022. URL https:
//arxiv.org/abs/2201.13259.

Sobhan Mohammadpour, Emmanuel Bengio, Emma Frejinger, and Pierre-Luc Bacon. Maximum
entropy gflownets with soft q-learning, 2024. URL https://arxiv.org/abs/2312.
14331.

Nikita Morozov, Daniil Tiapkin, Sergey Samsonov, Alexey Naumov, and Dmitry Vetrov. Improv-
ing gflownets with monte carlo tree search, 2024. URL https://arxiv.org/abs/2406.
13655.

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of gflownets
with local credit and incomplete trajectories, 2023. URL https://arxiv.org/abs/2302.
01687.

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath
Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration in
gflownets, 2023. URL https://arxiv.org/abs/2306.17693.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by planning with a learned model. CoRR,
abs/1911.08265, 2019. URL http://arxiv.org/abs/1911.08265.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of Go without human knowledge. Nature, 550(7676):354–359, October 2017. ISSN
1476-4687. doi: 10.1038/nature24270. URL https://www.nature.com/articles/
nature24270. Number: 7676 Publisher: Nature Publishing Group.

Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry Vetrov. Generative Flow Networks
as Entropy-Regularized RL, February 2024. URL http://arxiv.org/abs/2310.12934.
arXiv:2310.12934 [cs, stat] version: 3.

Karthik Valmeekam, Sarath Sreedharan, Matthew Marquez, Alberto Olmo, and Subbarao Kamb-
hampati. On the planning abilities of large language models (a critical investigation with a pro-
posed benchmark). arXiv preprint arXiv:2302.06706, 2023.

Chenjun Xiao, Ruitong Huang, Jincheng Mei, Dale Schuurmans, and Martin Müller. Maximum
entropy monte-carlo planning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/7ffb4e0ece07869880d51662a2234143-Paper.pdf.

12

https://arxiv.org/abs/2310.02710
https://arxiv.org/abs/2310.02710
https://api.semanticscholar.org/CorpusID:9831567
http://arxiv.org/abs/1805.00909
https://arxiv.org/abs/2209.12782
https://arxiv.org/abs/2209.12782
https://arxiv.org/abs/2201.13259
https://arxiv.org/abs/2201.13259
https://arxiv.org/abs/2312.14331
https://arxiv.org/abs/2312.14331
https://arxiv.org/abs/2406.13655
https://arxiv.org/abs/2406.13655
https://arxiv.org/abs/2302.01687
https://arxiv.org/abs/2302.01687
https://arxiv.org/abs/2306.17693
http://arxiv.org/abs/1911.08265
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
http://arxiv.org/abs/2310.12934
https://proceedings.neurips.cc/paper/2019/file/7ffb4e0ece07869880d51662a2234143-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7ffb4e0ece07869880d51662a2234143-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning: Efficient
training of llm policy with divergent thinking. arXiv preprint arXiv:2406.05673, 2024.

David W Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling with
gflownets. arXiv preprint arXiv:2302.05446, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

7 APPENDIX

7.1 MCDS FULL ALGORITHMS

Algorithm 1 Monte Carlo DAG Search

Require: Environment graph G, energy function E(s), flow function F (s, s′; θ), backward policy
PB(s|s′; θ), budget B, worker count W

1: Initialize SD = {s0},AD = {}, b = 0
2: while b < B do
3: w ← min(W,B − b)
4: for i ∈ {0, · · ·w − 1} do
5: si ← ∅, s′i ← s0, τi ← () ▷ Start SELECT step
6: while s′i ∈ SD and s′i ̸= sf do
7: s← s′i
8: C ← {s′ ∈ Ch(s) : (s, s′) /∈ AD}
9: PD(s′|s)← FD(s, s′)/

∑
s′′∈C FD(s, s′′) for all s′ ∈ C

10: s′ ∼ PD(s′|s)
11: s′i ← s′, si ← s, τi ← τi · (s, s′)
12: end while
13: if s′i ̸= sf then ▷ Start EXPAND step
14: FD(s′i, s

′′)← F (s′i, s
′′; θ)

15: end if
16: SD ← SD ∪ {s′i}
17: AD ← AD ∪ {(si, s′i)}
18: for j ∈ {|τi| − 1, · · · , 0} do ▷ Start BACKUP step
19: (s, s′)← τi[j]
20: if s′ = sf then
21: FD(s′)← 0
22: else
23: FD(s′)←

∑
s′′∈Ch(s′) F (s′, s′′)

24: end if
25: logFD(s, s′)← R(s, s′) + logF (s′)
26: end for
27: end for
28: b = b+ w
29: end while
30: return D, FD(s, s′)

7.2 PROOF OF MCDS DAG CONSISTENCY

We define MCDS (Algorithm 1, using Backup Equation 4)) as being run to completion if SD = S¬f

and AD = A.

Let G be an environment with associated reward R(x). First, we will prove the terminating-reward
case, i.e. R(s) = 0 for all s /∈ X .

Claim 1 In a terminating reward environment, if MCDS is run to completion, then FD(s, s′) =
F (s, s′) for all (s, s′) ∈ A, where F (s, s′) is the optimal edge flow induced by the environment G
and the reward function R(s).

Proof 1 Let L(s) be the length of the longest trajectory from s to sf , using edges in A.

Let N = maxs∈S¬f
L(s).

We will prove the claim by induction on L(s).

Base case: Assume L(s) = 0

If L(s) = 0, then s ∈ X by definition.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 2 MCDS GFlowNet Training

Require: Environment graph G, energy function E(s), budget B, worker count W , training itera-
tions I , batch size J , build frequency K, loss function L

1: Initialize θ
2: for i ∈ {0, · · · , I − 1} do
3: if i mod K = 0 then
4: D,FD(s, s′)← MCDS(G, E , B,W)
5: end if
6: S = {}
7: for j ∈ {0, · · · , J − 1} do
8: sj ← s0
9: while sj ̸= sf do

10: s← sj
11: if s ∈ SD then
12: PB(s

′|s)← FD(s, s′)/
∑

s′′∈Ch(s) FD(s, s′′)

13: s′ ∼ PB(s
′|s)

14: else
15: s′ ∼ P (s′|s; θ)
16: end if
17: sj ← s′

18: end while
19: end for
20: l = 1

|S|L(S, θ)
21: θ ← θ +∇θl
22: end for
23: Return θ

In this case, FD(s, sf) = R(s, sf) = R(s) by the Backup equation.

Terminating reward environments have the property that F (s, sf) = R(s), thus FD(s, sf) =
F (s, sf).

Inductive case: Assume the claim holds for L(s) < n, we want to prove it for L(s) = n.

If L(s) = n, then by definition each node s′ ∈ Ch(s) has L(s′) < n.

By the inductive hypothesis, FD(s′, s′′) = F (s′, s′′) for all s′′ ∈ Ch(s′).

This implies FD(s′) =
∑

s′′∈Ch(s′) FD(s′, s′′) = F (s′).

By the Backup equation,

logFD(s, s′) = R(s, s′) + logFD(s′)

= logPB(s|s′) + logF (s′)

= logF (s, s′)

Therefore, FD(s, s′) = F (s, s′) for L(s) = n, completing the induction.

■

Now, we will prove the intermediate reward case, again by using induction on L(s).

Claim 2 In an intermediate reward environment, if MCDS is run to completion, then FD(s, s′) =

F̃ (s, s′) for all (s, s′) ∈ A, where F̃ (s, s′) is the optimal forward-looking edge flow induced by the
environment G and the reward function R(s).

Proof 2 Base case: Assume L(s) = 0

In this case, FD(s, sf) = R(s, sf) = 0 by the Backup equation.

Intermediate reward environments have the property that F̃ (s, sf) = 0, thus FD(s, sf) = F̃ (s, sf).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Inductive case: Assume the claim holds for L(s) < n, want to prove L(s) = n.

By the inductive hypothesis, FD(s′, s′′) = F̃ (s′, s′′) for all s′′ ∈ Ch(s′).

This implies FD(s′) =
∑

s′′∈Ch(s′) FD(s′, s′′) = F̃ (s′).

By the Backup equation,

logFD(s, s′) = R(s, s′) + logFD(s′)

= E(s)− E(s′) + logPB(s|s′) + log F̃ (s′)

= logF (s) + logPB(s|s′)− E(s′)
= logF (s, s′)− E(s′)
= log F̃ (s, s′)

Therefore, FD(s, s′) = F̃ (s, s′) for L(s) = n, completing the induction.

■

7.3 EXPERIMENTAL DETAILS

Here we provide more details about the training and the benchmarks.

7.3.1 HYPERGRID

The hypergrid reward takes the form described in Equation 10, where H ∈ N is the height of the
grid, D ∈ N is the dimension, and R0, R1, R3 ∈ R+ are parameters that control sparsity. Each
hypergrid environment has |X | = HD, |S| = HD + 1, and |A| = D(HD −HD−1).

R(x) = R0 +R1

D∏
d=1

I
[
0.25 <

∣∣∣∣ xd

H − 1
− 0.5

∣∣∣∣]+R2

D∏
d=1

I
[
0.3 <

∣∣∣∣ xd

H − 1
− 0.5

∣∣∣∣ < 0.4

]
(10)

Following previous work (Madan et al., 2023), we use a simple 2-layer 256-dimensional MLP with
weight typing to parameterize the flow and policy functions F (s; θ), PF (s

′|s; θ) and PB(s|s′; θ). We
do not employ ϵ-uniform exploration or replay buffers for any of the methods. We run experiments
with a batch size of 16 for 62500 steps, resulting in 1 million sampled trajectories. The learning
rate is set to 1e-3. Training statistics are calculated using a moving average of the last 200,000
trajectories sampled on-policy from the model.

7.3.2 BLOCKSWORLD

In all the experiments, we finetune Llama3 8B with LoRA (Hu et al., 2021) with r = 32, α = 64,
and dropout=0.1. The learning rate is set to 2e-5 and the number of trajectories is set to 20. Since
the study is about investigating the effect of MCTS on GFlowNet methods, we avoid learning rate,
reward, and sampling temperature scheduling. For all methods we use a uniform backwards policy
and do not employ ϵ-uniform exploration or replay buffers.

An example prompt for a 4-step example is given in Table 2.

The prompt format and instructions do not vary across tasks or states, but the goal, in-context exam-
ples, and current state information do. In Table 2, <current state> and <goals> are filled with the
corresponding status of the current state and task goal.

The sizes of each of the environments and the MCDS budgets used for each experiment are summa-
rized in Table 3.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

I am playing with a set of blocks where I need to arrange the blocks into stacks.
Here are the actions I can do:
Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block
I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block is clear.
A block is clear if the block has no other blocks on top of it and if the block is not picked up.
I can only unstack a block from on top of another block if the block
I am unstacking was really on top of the other block.
I can only unstack a block from on top of another block if the block I am unstacking is clear.
Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the block being stacked.
I can only stack a block on top of another block if the block onto which I am stacking the
block is clear.
Once I put down or stack a block, my hand becomes empty.
[STATEMENT]
As initial conditions I have that, the red block is clear, the blue block is clear, the yellow block is clear,
the hand is empty, the blue block is on top of the orange block, the red block is on the table, the orange
block is on the table, and the yellow block is on the table. My goal is to have that the orange block is on
top of the blue block.
My plan is as follows:
[PLAN]
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]
[STATEMENT]
As initial conditions I have that, <current state>
My goal is to have that <goals>
My plan is as follows:
[PLAN]
<action>

Table 2: 4-step prompt example

Environment B |S| |X | |A|
2-step 16 9 (8-13) 5 (4-8) 13 (11-21)
4-step 32 56 (11-136) 29 (4-81) 107 (15-283)
6-step 64 77 (27-522) 37 (11-249) 148 (45-1173)
8-step 100 58 (32-423) 167 (75-1232) 345 (142-2891)

Table 3: BlocksWorld environment sizes (in terms of states S, terminating states X , and
edges/transitions A) and associated MCDS budgets B. Environment sizes are reported as median
(min-max).

7.3.3 FACTOR GRAPHS

Our environments were constructed in the same manner as Deleu et al. (2024). However, we ad-
justed the parameters to create sparser environments with lower entropies. For the Permuted Chain
environment we set the rbf scale parameter to 2.5 and the factor parameter to 2.0, resulting
in an entropy of approximately 3.97 (using the natural logarithm): for comparison, the uniform dis-
tribution has entropy of 12.42. For the Factorgraphs1 environment we set the scale parameter to
3.0, resulting in an entropy of approximately 2.84, compared with the uniform entropy of 12.88.

Each factor graph environment has |S| = 1 + (K + 1)N , |X | = KN , and |A| = KN +∑N−1
n=1

(
N
n

)
(N − n)Kn+1. The Permuted Chain environment (K = 5, N = 12) has |S| ≈ 2e9,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 5: Hypergrid experiment testing ϵ-uniform exploration.

|X | ≈ 2e8, |A| ≈ 2e10. The Factorgraphs1 environment (K = 5, N = 8) has |S| ≈ 2e6,
|X | ≈ 4e5, |A| ≈ 1e7.

Similar to our setup with Hypergrid, we use a simple 2-layer 256-dimensional MLP with weight
typing to parameterize the flow and policy functions F (s; θ), PF (s

′|s; θ); the backward policy is
uniform. We do not employ ϵ-uniform exploration or replay buffers for any of the methods. We run
experiments with a batch size of 128 for 62500 steps, resulting in 4 million sampled trajectories.
The learning rate is set to 1e-4. Training statistics are calculated using a moving average of the last
200,000 trajectories sampled on-policy from the model.

7.4 EPSILON-UNIFORM EXPLORATION EXPERIMENTS

In the 204 sparse hypergrid, on-policy sampling outperforms configurations with ϵ ∈
{0.01, 0.025, 0.05, 0.1}, as demonstrated in Figure 5. Since MCDS outperforms on-policy train-
ing in this setting (Figure 3), it also outperforms the configurations with exploration.

7.5 RUNTIME COMPARISON

Constructing the MCDS DAG requires additional computation that can slow down training when
compared to on-policy sampling. However, the magnitude of the slowdown depends on the con-
struction budget B, the number of parallel workers W , and the build frequency K. Table 4 sum-
marizes the relative slowdown of different MCDS variants used in the Hypergrid and Factor Graph
experiments (DB parameterization). Note that the reported metrics include time associated with the
calculation of rewards, losses, gradients, and evaluation metrics. With the configurations we tested,
the total MCDS runtime penalty ranges from a factor of 1.30 to 3.47.

Environment B W K Ratio
204 Hypergrid 64 16 1 1.55
204 Hypergrid 256 16 4 2.11
204 Hypergrid 1024 16 16 3.47
324 Hypergrid 64 16 1 1.30
324 Hypergrid 256 16 4 1.58
324 Hypergrid 1024 16 16 1.94

58 Factorgraphs1 1024 16 16 1.75
512 Permuted Chain 1024 16 16 2.45

Table 4: Total runtime of different MCDS variants, relative to comparable on-policy variants. B is
budget, W is worker count, K is build frequency.

18

	Introduction
	Background
	Generative Flow Networks (GFlowNets)
	Monte-Carlo Tree Search (MCTS)
	MCTS for Approximate Inference

	Related Work
	Methodology
	Monte Carlo DAG Search (MCDS)
	Applying MCDS for GFlowNet Training

	Experiments
	Hypergrid
	BlocksWorld
	Task Description
	Training Setup
	Results

	Factor Graphs

	Conclusion
	Appendix
	MCDS Full Algorithms
	Proof of MCDS DAG Consistency
	Experimental Details
	Hypergrid
	Blocksworld
	Factor Graphs

	Epsilon-Uniform Exploration Experiments
	Runtime Comparison

