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Abstract
Deep exploration requires coordinated long-term planning. We present a model-based reinforce-
ment learning algorithm that guides policy learning through a value function that exhibits optimism
in the face of uncertainty. We capture uncertainty over values by combining predictions from an
ensemble of models and formulate an upper confidence bound (UCB) objective to recover opti-
mistic estimates. Training the policy on ensemble rollouts with the learned value function as the
terminal cost allows for projecting long-term interactions into a limited planning horizon, thus en-
abling deep optimistic exploration. We do not assume a priori knowledge of either the dynamics
or reward function. We demonstrate that our approach can accommodate both dense and sparse
reward signals, while improving sample complexity on a variety of benchmarking tasks.
Keywords: Reinforcement Learning, Deep Exploration, Model-Based, Value Function, UCB

1. Introduction

Reinforcement learning (RL) provides a framework for intelligent agents to acquire complex behav-
iors autonomously. Selecting an interaction strategy that ensures efficiency of the learning process
remains a challenge. This concern is prevalent in domains with continuous state and action spaces
and exacerbated by problem dimensionality. Robotics applications typically feature continuous con-
trol over high-dimensional state spaces. Enabling autonomous robots to learn temporally extended
behaviors through interaction, therefore, requires focused, information-dense sampling strategies.

Model-based reinforcement learning (MBRL) informs decision-making in the real world by estimat-
ing the performance of candidate actions on an environment model. The control policy is optimized
by solving a finite-horizon planning problem involving the model dynamics and objective func-
tion. Some formulations leverage nominal models to recover value estimates (Lowrey et al. (2019);
Seyde et al. (2019)), while others employ learned models without considering behavior beyond the
preview horizon (Kurutach et al. (2018); Chua et al. (2018); Clavera et al. (2018)). True autonomy
arises at the intersection of these approaches, where the agent is capable of continuously refining its
belief about environment dynamics and task objective, while efficiently planning towards goals that
may extend far into the future.
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In this work, we learn coordinated long-term planning in scenarios where both the environment
dynamics and task objective are not known a priori. Our algorithm guides policy learning through a
value function that exhibits optimism in the face of uncertainty. We capture uncertainty over values
by combining predictions from a model ensemble (Lakshminarayanan et al. (2017); Pearce et al.
(2018)) and formulate an upper confidence bound (UCB) objective (Auer et al. (2002); Krause and
Ong (2011)) to recover optimistic performance estimates. Training the policy on ensemble rollouts
with the learned value function as the terminal cost allows for projecting long-term interactions into
a finite planning horizon, thus enabling deep optimistic exploration with minimal prior information.
The contributions of this paper are:

• A policy optimization not requiring a priori knowledge about the dynamics or objective, that
can accommodate sparse reward signals, and is applicable to high-dimensional control tasks
• A framework for efficient deep exploration that leverages an uncertainty-aware value function
• Improved sample complexity over state-of-the-art RL algorithms on a set of benchmark tasks

2. Related Work

Model-free reinforcement learning (MFRL) algorithms have solved a variety of challenging prob-
lems by forgoing sample complexity in favor of asymptotic performance (Silver et al. (2016); Fu-
jimoto et al. (2018); Haarnoja et al. (2018); Hwangbo et al. (2019)). The efficiency of MBRL ap-
proaches has been demonstrated with parametric linear models (Levine and Abbeel (2014); Kumar
et al. (2016)) and non-parametric Gaussian process models (Kuss and Rasmussen (2004); Deisen-
roth and Rasmussen (2011); Kamthe and Deisenroth (2018)) in low-dimensional settings. Moving
to higher dimensions with hybridized states, modelling the dynamics with neural networks is a
common practice for both state-space (Kurutach et al. (2018); Nagabandi et al. (2018); Chua et al.
(2018); Clavera et al. (2018)) and latent space planning (Hafner et al. (2019)). Low sample density
induces bias in these representations, which can be alleviated by ensembling (Kurutach et al. (2018);
Chua et al. (2018); Clavera et al. (2018)). Finite horizon model rollouts are then used to either train a
policy (Kurutach et al. (2018); Clavera et al. (2018)) or solve an MPC-type optimization (Nagabandi
et al. (2018); Chua et al. (2018); Hafner et al. (2019)). These approaches limit predictions to the
preview window and select actions either greedily or with added stochasticity, neglecting structured
exploration. Here, we also mitigate model bias by considering ensemble rollouts but additionally
leverage the associated uncertainty in achieving efficient long-term exploration.

Directed exploration strategies have been extensively studied for discrete action spaces. One line of
research adds an information gain bonus to capture unexpected environment behavior (Stadie et al.
(2015); Ostrovski et al. (2017); Pathak et al. (2017)). Interactions are then driven by uncertainty
over the dynamics and not over long-term rewards. Osband et al. (2016a, 2017) consider the latter
implicitly by extending their work on randomized value functions (Osband et al. (2016b)) in com-
bination with DQN (Mnih et al. (2013)) to model a distribution over value functions and sampling
from the posterior. Chen et al. (2017) build on this idea by combining the mean and variance of a
value ensemble into a UCB objective for action selection. O’Donoghue et al. (2018) furthermore
propose the Uncertainty Bellman equation to improve uncertainty propagation in deep exploration.

In the continuous domain, uncertainty-aware objectives based on predicted disagreement of model
behavior (Still and Precup (2012); Houthooft et al. (2016); Henaff (2019)) or trajectory returns
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(Depeweg et al. (2018)) have been well-studied for finite-horizon rollouts. Lowrey et al. (2019)
consider infinite horizon planning by leveraging an ensemble of value functions in guiding an MPC
into regions of uncertain returns for continuous control under a known nominal model. Here, we
extend the idea of uncertainty driven value exploration to scenarios with unknown dynamics and
objective functions by combining finite-horizon ensemble rollouts with an optimistic value function.

3. Preliminaries

We formulate the underlying optimization problem as a Markov decision process (MDP) defined
by the tupleM = {S,A, f, r, ρ0, γ}, where S ∈ Rn denotes the state space, A ∈ Rm the action
space, f : S×A → S the transition function, r : S×A → R the reward function, ρ0 the initial state
distribution, and γ ∈ [0, 1) the discount factor. We define st and at to be the state and action at time
t, respectively, and use the notation rt = r (st, at). Let πθ : S → A denote a deterministic policy
parameterized by θ and define the discounted infinite horizon return η (θ) =

∑∞
t=0 γ

tr (st, at),
where s0 ∼ ρ0, st+1 = f (st, at), and at = πθ (st). The objective is to find the optimal policy π∗θ
that maximizes the return η (θ), where we treat both the dynamics and reward function as unknown.

4. Model-Based Deep Reinforcement Learning

Model-based policy learning constructs an environment model to inform real-world interactions. In
the online phase, the policy is used to interact with the environment and corresponding observations
are appended to the memory D. In the offline phase, the memory is queried to refine the model and
to propagate information into the policy by training on simulated interactions.

4.1. Model Learning

The environment interaction at time t is represented as the tuple (st, at, st+1, rt), corresponding
to the discrete time transition st+1 = f (st, at). Here, we do not assume prior knowledge of the
dynamics or the objective function and model them using function approximators f̂φ and r̂ψ, param-
eterized by φ and ψ, respectively. We apply standard supervised learning techniques in combination
with episodic warm starts to optimize the generalized objective

min
ω

1

|D|
∑

(st,at,st+1,rt)∈D

‖τ − ĝω (st, at)‖22 , (1)

where ĝω = {f̂φ, r̂ψ} denotes the function approximator and τ = {st+1 − st, rt} the target vector.

4.2. Policy Learning

Our goal is to find the optimal policy π∗θ (st) that maximizes the return η (θ) =
∑∞

t=0 γ
tr (st, at).

This objective is computationally intractable and we instead re-formulate it using model rollouts
over a finite horizon T with a value function as the terminal return. The policy objective becomes

η (θ, φ, ψ, ν, T ) =
T−1∑
t=0

γtr̂ψ (st, at) + γT V̂ π
ν (sT ) , (2)
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where s0 ∈ D, at = πθ (st), st+1 = f̂φ (st, at), and the true value function V π∗
is approximated

under the current policy πθ using a neural network parameterized by ν. The value function is
trained synchronously with the policy using fitted value iteration on the Bellman backups described
by equation (2), where we note that V π

ν (s0) = η (θ, φ, ψ, ν, T ) under the optimal policy πθ = π∗.
For notational convenience, we use the abbreviation η (θ, ν) := η (θ, φ, ψ, ν, T ).

5. Deep Exploration through Model Uncertainty

The environment model trained in section 4.1 exhibits strong bias in regions of low sample density,
while the deterministic policy of section 4.2 overfits to simulated data. Exploratory behavior then
arises from exploiting model mismatches. To overcome these limitations, we introduce our method
of learning a deterministic policy that is uncertainty-aware and intrinsically exhibits long-term ex-
plorative behavior. The policy training is guided by an optimistic value function that encodes the
long-term potential of actions. Uncertainty estimates over environment behavior are recovered by
leveraging an ensemble of models.

5.1. Model Learning with Uncertainty Estimation

In regions of low sample density, observed data constrains the network weights only weakly and the
influence of random biases such as network initialization and the order of observed training samples
become more prevalent. To reduce the effect of these biases, a model ensemble can be employed.
We define an ensemble as a collection of M particles. Each particle is assigned a unique pairing of
a dynamics and a reward function, {{f̂φ1 , r̂ψ1}, . . . , {f̂φM , r̂ψM

}}, representing unique hypotheses
on environment behavior. The particles are used in equation (2) to generate a set of predicted returns

ηi (θ, ν) =

T−1∑
t=0

γtr̂ψi
(si,t, ai,t) + γT V̂ π

ν (si,T ) , (3)

where si,0 = s0, ai,t = πθ (si,t), and si,t+1 = f̂i (si,t, ai,t). Particle distinctness is encouraged
by varying the initial network weights and training batch order. Predicted trajectory returns with
uncertainty estimates are then obtained by computing the ensemble mean µη and variance σ2η

µη (θ, ν) =
1

M

M∑
i=1

ηi (θ, ν) , σ2η (θ, ν) =
1

M

M∑
i=1

(ηi (θ, ν)− µν (θ, ν))2 , (4)

where µη provides a de-biased estimator of the return and σ2η an estimator of prediction uncertainty.

5.2. Policy Learning with Directed Exploration

Replacing the policy objective in equation (2) by the predicted mean in equation (4) reduces model-
specific bias in the policy. The resulting greedy strategy would be reliant on random exploration.
Instead, we encourage active exploration by considering the potential improvement via the predicted
variance in equation (4). We define the policy objective via the upper confidence bound (UCB)

ηUCB (θ, ν) = µη (θ, ν) + βση (θ, ν) , (5)
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where the scalar β quantifies the exploration-exploitation trade-off. The greedy policy is recov-
ered at β = 0, while increasing β increases the optimism that uncertainty translates to potential
for improvement. The objective flexibly scales exploratory behavior, while remaining more ro-
bust to outlier predictions from the ensemble than taking the maximum. The resulting policy is
uncertainty-aware and behaves intrinsically explorative. However, exploration is restricted by the
preview horizon as uncertainty will only propagate locally up until the terminal reward is queried.
To address this limitation, we formulate our value function to encourage long-term exploration be-
yond the preview horizon by defining it over the infinite horizon UCB return. This modified value
function implicitly encodes optimism in the face of uncertainty as it is biased towards the maximum
return of the ensemble. It is approximated by the value network V̂ π

ν and trained via fitted value
iteration on ηUCB (θ, ν). The policy and value function are trained concurrently on the objectives

max
θ

∑
s0∈D

ηUCB (θ, ν) , min
ν

∑
s0∈D

∥∥∥ηUCB (θ, ν)− V̂ π
ν (s0)

∥∥∥2
2
, (6)

where s0 ∈ D. This process yields a purely deterministic policy capable of exploration through
global uncertainty-awareness, while only requiring training on a finite preview horizon.

6. Deep Optimistic Value Exploration (DOVE)

The algorithm runs for K episodes, alternating between two phases: in the online phase, the policy
is used to interact with the environment for N timesteps and the observed transitions are appended
to memory D. In the offline phase, the environment models are updated according to equation
(1) using common supervised learning practices, while varying the batch order between ensemble
members. The policy and value function are optimized iteratively on the objectives in equation (6).
Each iteration consists of a policy optimization step under the current value function, followed by a
value function optimization step under the updated policy. The corresponding initial conditions are
generated by locally perturbing states from memory to ensure that information propagation is not
limited to on-policy observations. All networks are trained with the Adam optimizer (Kingma and
Ba (2014)). A schematic representation of the approach is provided in Algorithm 1.

Algorithm 1: Deep Optimistic Value Exploration (DOVE)
Initialize: D ← ∅ and {φi, ψi, θ, ν} ← U (a, b)
for i← 1 to K do // episodes

for t← 1 to N do // timesteps
Execute at = πθ (st) in environment, add transition to D;

end
Train {f̂φi , r̂ψi

}Mi=1 on transitions from D using supervised learning;
for b← 1 to B do // batches

Sample observations from D, perturb locally to generate initial conditions;
Policy rollout on {f̂φi , r̂ψi

}Mi=1, train πθ to maximize ηUCB;
Policy rollout on {f̂φi , r̂ψi

}Mi=1, train V̂ π
ν to approximate ηUCB;

end
end
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7. Experiments

In the following, we provide results for training agents with the DOVE algorithm in various settings.
First, we show-case a task with sparse reward signals to illustrate how active exploration emerges
when learning an optimistic value function that is uncertainty aware. Then, we demonstrate that
DOVE improves performance over state-of-the-art on four higher dimensional benchmarking tasks.
We employ an ensemble of size M = 5 and provide other relevant parameters in Appendix A 1.

7.1. Intuitive Example: Pendulum with Sparse Rewards

The simple pendulum has several function mappings with straight-forward graphic representations.
We define a swing-up task with sparse reward feedback around the upright position. The agent does
not have access to the nominal dynamics or reward function and sparsity avoids guidance towards
the goal through the lack of smooth reward gradients. We remove random exploration by initializing
the agent at rest in the downward configuration and the policy to not generate visible motions.

Figure 1 (A-C) depicts the learned representations of the reward function, value function, and pol-
icy. Both the value function and policy accurately capture the desired swing-up and stabilization
behavior, solving the task. The role of exploring through model uncertainty in building these repre-
sentations is apparent by examining how the first non-zero reward is obtained in episode 5. Figure
1 depicts the UCB value function and its uncertainty before and after the interaction (D-E, respec-
tively). Before, the downward configuration is well explored and high uncertainty remains around
the upright configuration (D). The optimistic agent plans to explore this high uncertainty region as
it holds potential for improvement. It performs a swing-up and rotates with positive velocity, effec-
tively cutting uncertainty in that region of the state space (E). The observed reward is immediately
propagated into the value function and guides the agent in optimizing its swing-up and stabilization
behavior. Based on the UCB trade-off, the agent is furthermore capable of ignoring uncertain areas
of the state space that are non-conducive to the task. This is demonstrated by the remaining reward
uncertainty at high velocity regimes around the upright position in Figure 1 (A). These states would
not allow for immediate stabilization. The UCB formulation therefore induces high selectivity in
planning long-term interactions. This remains valid even in sparse reward settings, where reward
uncertainty can be leveraged in the absence of informative mean estimates. We observe similar
exploratory behavior on the mountain car with sparse rewards as displayed in Appendix B 1.

7.2. Performance on Benchmarking Tasks

The previous section highlighted the algorithm’s ability to explore efficiently even with only sparse
reward signals. In this section, we compare performance to state-of-the-art MBRL and MFRL al-
gorithms on four benchmarking tasks. The tasks vary in their respective timescales, episode lengths
and motion objectives, therefore constituting a concise setting to demonstrate the versatility of the
approach. The Reacher task requires generalization of a 2D reaching behavior to arbitrary goal
locations. The Hopper, HalfCheetah and SlimHumanoid tasks require fast forward locomotion un-
der non-smooth impact dynamics. All tasks penalize the usage of control inputs. We analyze the
learning progress on five random seeds over the first 100 episodes to highlight sample-efficiency.
It needs to be noted that, while our algorithm does not have access to the nominal dynamics and

1. Please refer to the extended version of this article at https://dspace.mit.edu/handle/1721.1/125161.
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Figure 1: Pendulum swing-up from downward configuration with sparse rewards within |θ| ≤ 15◦.
Top to bottom: (A) learned reward function mean and standard deviation. (B) learned value function
and standard deviation. (C) episodic rewards and learned policy. (D), (E) learned value function
and standard deviation before and after episode 5, respectively. DOVE actively explores the high
potential rewards of spinning with positive velocity and reduces associated uncertainty (red circle).
Furthermore, uncertain regions not allowing for immediate stabilization at the top are ignored (A).

reward function, the MBRL algorithms we compare to leverage nominal rewards in their planning.
The resulting performance curves are provided in Figure 2, where baseline performance is taken
from Wang et al. (2019). Across all tasks, DOVE performs better than or on par with the MBRL
and the MFRL baselines. This holds despite DOVE having to learn the reward signals used for
planning, whereas the MBRL baselines plan on nominal rewards. The performance gap widens with
increasing task dimensionality, relatively doubling scores on Hopper and HalfCheetah and increas-
ing scores tenfold on SlimHumanoid after 100 episodes, underlining DOVE’s ability to effectively
focus exploration only on regions of the state space that exhibit strong potential for improvement.
We achieve this by guiding the policy learning through optimistic value estimates, thereby predict-
ing long-term behavior and enabling targeted deep exploration. DOVE can then efficiently learn
complex, temporally extended motion patterns while planning only over short time horizons of
T < 0.5 s. The results in Figure 2 also show that DOVE improves performance over DVE, a base-
line with model ensembles and a regular value function without UCB component. Our ablation
study in Appendix C 1 confirms that performance is further reduced when only considering a single
ensemble particle with a non-UCB value function. This highlights the importance of deep, directed
exploration facilitated by model ensembling and an uncertainty-aware optimistic value function.

8. Discussion & Conclusion

We propose DOVE, an MBRL algorithm that enables sample-efficient deep exploration with a de-
terministic policy. Policy learning is guided by a value function that exhibits optimism in the face
of uncertainty. The value function encodes an upper confidence bound over performance estimates
from a model ensemble. Training the policy on finite horizon model rollouts with the optimistic
value function as the terminal reward enables computationally tractable deep optimistic exploration.
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Figure 2: Performance on the Reacher, Hopper, Cheetah, and SlimHumanoid benchmarking tasks.
DOVE is compared against state-of-the-art MBRL and MFRL algorithms and DVE, a variation
of DOVE that only uses a non-UCB value function (β = 0). Performance is evaluated over 100
episodes, averaged over 5 random seeds and compared to baseline data from Wang et al. (2019).
DOVE performs best on all tasks, while scaling gracefully with increased problem dimensionality.

The approach assumes no prior knowledge over the dynamics, reward function or policy, and learns
all representations jointly. Experimental evaluation shows that DOVE efficiently solves tasks that
only provide sparse reward signals and extends well to higher dimensional systems. Performance
improvements over various state-of-the-art MBRL and MBFL algorithms have been demonstrated
on the Reacher, Hopper, Cheetah, and SlimHumanoid benchmarking tasks. We observed that
DOVE scaled much better with problem dimensionality than the other MBRL algorithms, high-
lighting the approach’s ability to effectively focus exploration only on regions with strong potential
for improvement. Furthermore, DOVE was able to do so by planning based on the learned reward
functions and did not have access to the nominal rewards. In the future, we hope to build on these
results by utilizing a model predictive controller in the online phase. Planning over a receding hori-
zon is likely to further increase sample efficiency, as online re-planning will mitigate some effects
of model mismatch. We are furthermore interested in extending our work to latent space planning
from first-person perspective images, as they provide a concise representation of environment states
that are difficult to measure directly.

Acknowledgments

This work was supported in part by the Office of Naval Research (ONR) Grant N00014-18-1-2830,
Qualcomm and Toyota Research Institute (TRI). This article solely reflects the opinions and con-
clusions of its authors and not TRI, Toyota, or any other entity. We thank them for their support.

8



DOVE: DEEP OPTIMISTIC VALUE EXPLORATION

References

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002.

Richard Y Chen, Szymon Sidor, Pieter Abbeel, and John Schulman. UCB exploration via Q-
ensembles. arXiv preprint arXiv:1706.01502, 2017.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in Neural Infor-
mation Processing Systems, pages 4754–4765, 2018.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
Model-based reinforcement learning via meta-policy optimization. In Conference on Robot
Learning, pages 617–629, 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In International Conference on Machine Learning, pages 465–472, 2011.

Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft. Decom-
position of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning. In
International Conference on Machine Learning, pages 1184–1193, 2018.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing Function Approximation Error in Actor-
Critic Methods. In International Conference on Machine Learning, pages 1582–1591, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pages 1856–1865, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning Latent Dynamics for Planning from Pixels. In International Conference on
Machine Learning, pages 2555–2565, 2019.

Mikael Henaff. Explicit Explore-Exploit Algorithms in Continuous State Spaces. In Advances in
Neural Information Processing Systems, pages 9372–9382, 2019.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In Advances in Neural Information Processing
Systems, pages 1109–1117, 2016.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26), 2019.

Sanket Kamthe and Marc Deisenroth. Data-Efficient Reinforcement Learning with Probabilistic
Model Predictive Control. In International Conference on Artificial Intelligence and Statistics,
pages 1701–1710, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

9



DOVE: DEEP OPTIMISTIC VALUE EXPLORATION

Andreas Krause and Cheng S Ong. Contextual gaussian process bandit optimization. In Advances
in neural information processing systems, pages 2447–2455, 2011.

Vikash Kumar, Emanuel Todorov, and Sergey Levine. Optimal control with learned local models:
Application to dexterous manipulation. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 378–383. IEEE, 2016.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. In International Conference on Learning Representations, 2018.

Malte Kuss and Carl E Rasmussen. Gaussian processes in reinforcement learning. In Advances in
neural information processing systems, pages 751–758, 2004.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, pages 6402–6413, 2017.

Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search under
unknown dynamics. In Advances in Neural Information Processing Systems, pages 1071–1079,
2014.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control. In Interna-
tional Conference on Learning Representations, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dy-
namics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 7559–7566. IEEE, 2018.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. In Advances in neural information processing systems, pages 4026–4034,
2016a.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. International Conference on Machine Learning, page 2377–2386, 2016b.

Ian Osband, Benjamin Van Roy, Daniel Russo, and Zheng Wen. Deep exploration via randomized
value functions. Journal of Machine Learning Research, 2017.
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