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Abstract

De novo molecular design is a thriving research area in machine learning (ML)
that lacks ubiquitous, high-quality, standardized benchmark tasks. Many existing
benchmark tasks do not precisely specify a training dataset or an evaluation budget,
which is problematic as they can significantly affect the performance of ML algo-
rithms. This work elucidates the effect of dataset sizes and experimental budgets on
established molecular optimization methods through a comprehensive evaluation
with 11 selected benchmark tasks. We observe that the dataset size and budget
significantly impact all methods’ performance and relative ranking, suggesting that
a meaningful comparison requires more than a single benchmark setup. Our results
also highlight the relative difficulty of benchmarks, implying that logP and QED
are poor objectives. We end by offering guidance to researchers on their choice of
experiments.

1 Introduction

In recent years, de novo molecular design has seen increased attention from the ML community.
The goal is to produce data-driven algorithms that can effectively and efficiently guide the design
of novel molecules and materials with desirable properties such as drug efficacy. Mathematically
the problem is typically posed as the optimization of a black-box objective function over molecular
space. For real-world problems, evaluating these objective functions typically involves costly and
time-consuming computational or wet-lab experiments; for this reason, researchers often assess
their algorithms on fast and approximate computational objectives instead. The community still
lacks ubiquitous benchmarks (like Imagenet [Deng et al., 2009], for instance), and many nascent
benchmarks suffer from severe limitations, such as

1. Unrealistic Optimization Objectives: Simply maximizing molecular properties such as the
logP, a metric for the solubility of a compound in non-polar solvents, or the “Quantitative
Estimate of Druglikeness” (QED) have limited medicinal value. Further, such objectives are
more manageable than real-world de novo molecular design tasks and can be easily solved with
basic random-search-like algorithms (see Brown et al. [2019] and Section 3).

2. Lack of Canonical Datasets: The size and composition of the training set are known to impact
the performance of virtually every ML algorithm significantly. Despite this, many de novo
design benchmark tasks either lack an accompanying training set or are frequently used with
non-standard, modified training sets (e.g., subsampling, adding unlabelled data).

3. Unspecified Evaluation Budgets: Real de novo design problems that require experimental
evaluation will be constrained by a limited time and resource budget, which is not reflected
in most de novo design benchmarks. Researchers either focus on the setting in which there
is an infinite budget or set an arbitrary finite budget. This is problematic since the available
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number of objective function evaluations can fundamentally change the nature and difficulty
of an optimization problem. For example, a small budget may favor exploitative algorithms,
whereas a larger budget requires a balance of exploration and exploitation.

The field of de novo design would benefit from the adoption of high-quality standardized benchmarks.
These benchmarks should include an explicitly defined objective function, dataset, and evaluation
budget. Furthermore, they ought to closely reflect the difficulty of de novo design problems. However,
the best benchmark is a priori unclear partly because there are no known systematic evaluations
of benchmark candidates. This work provides a preliminary comparison of different benchmark
candidates by running a few established algorithms on many previously proposed benchmarks. We
test 16 variations of each benchmark with different training set sizes and evaluation budgets rather
than choosing a single setting as commonly done in the literature. In total, we performed over 200
experiments. We analyze the difficulty of each benchmark in detail and provide fresh insights into
the merits of each objective function, dataset, and budget combination. Based on our results, we offer
concrete suggestions to researchers and propose directions for the field to adopt better benchmarks:
(1) fix datasets and budgets for a fair comparison, (2) test multiple datasets and budget settings for
each objective, (3) do not use (penalized) logP and QED objectives, and (4) use GuacaMol and
DOCKSTRING instead.

2 Experimental Setup

Starting from a list of algorithms, objective functions, datasets, and budgets, we ran an experiment
with every algorithm/objective/dataset/budget combination. We performed three replicates of each
experiment to account for randomness. Below, we specify the experimental setups.

De novo design algorithms. In total, we tested five different algorithms: “Dataset Best”, “Random
ZINC”, Graph GA, SELFIES GA, and GP BO. “Dataset Best” is a trivial algorithm that performs no
queries and returns the best molecule in the training set. “Random ZINC” ignores the training set
and uses the budget to randomly evaluate molecules from the ZINC dataset of ~1 billion purchasable
drug-like molecules [Irwin et al., 2012, 2020]. We chose these trivial baselines as a sanity check:
if either of these algorithms is competitive, the task must be too easy. Graph GA and SELFIES
GA are genetic algorithms (GAs) that use graph-based [Jensen, 2019] and string-based [Krenn
et al., 2020] representations of molecules, respectively. We selected these algorithms to represent
prototypical exploratory algorithms: if these algorithms are competitive, the task can be solved
chiefly via exploration. Gaussian process Bayesian optimization (GP BO) [Srinivas et al., 2010]
is a well-established algorithm known for its capacity for both exploration and exploitation and its
good performance in the low-budget regime. A priori GP BO was expected to be the best-performing
algorithm. Further details on these algorithms are given in Appendix B. We are aware that many
algorithm classes and variants are not represented here: these algorithms were chosen because they
are well-established, fast, work well with a wide range of dataset sizes and budgets, and have very
few hyperparameters to tune.

Objective functions. We examined 11 objective functions in total. Maximization of logP
[Wildman and Crippen, 1999], penalized logP [Gómez-Bombarelli et al., 2018], and QED [Bickerton
et al., 2012] were chosen due to their frequent use in previous work, despite their well-documented
limitations. We selected the Celecoxib and Troglitazone rediscovery, Median Molecules 1 and 2,
and Osimertinib and Zaleplon MPO (multi-property objective) objectives from the 20 goal-directed
generation objectives in the GuacaMol benchmark suite [Brown et al., 2019] (chosen to represent the
three major task types in their benchmark suite). Finally, we selected two tasks from the recently
published DOCKSTRING study [García-Ortegón et al., 2021]: F2 and Selective JAK2. These tasks
both involve proposing drug-like molecules with low binding free energies to a target protein. The
objective functions are described in more detail in Appendix C.

Datasets. In this work, we vary only the size of the dataset and not its distribution. We choose to
examine datasets of size {102, 103, 104, 105} produced by uniformly subsampling molecules from a
larger dataset (without replacement). For logP, QED, and GuacaMol tasks, the GuacaMol dataset
consisting of ~106 molecules is employed. For the DOCKSTRING tasks, ~250 000 molecules from the
accompanying dataset are used.
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Evaluation Budget. For each experiment, we fixed the number of objective function evaluations,
i.e., computational budget. The list of budgets was: {102, 103, 104, 105}. Due to its relatively high
computational cost, we omit the 105 budget for the DOCKSTRING tasks.

3 Results

The results are summarized in Figure 1 (see also Table A.1). First, it can be seen that the dataset
size and budget affect the performance of all algorithms. As one would expect, algorithms generally
tend to achieve higher scores with larger datasets and higher budgets. But there are exceptions: for
example, the performance of GP BO with a budget of 105 is virtually the same for all dataset sizes on
Celecoxib. Second, for each objective, the ranking of different algorithms can change depending on
the budget and initial dataset size. For example, for p-logP with an initial dataset size and budget of
105, the order is SELFIES GA > Graph GA > GP BO, while with an initial dataset size and budget
103, the order is reversed. Third, for a fixed initial dataset and budget, the order can change for
different objectives: for example, for an initial dataset size and budget of 105, the order on Zaleplon
MPO is GP BO > Graph GA > SELFIES GA while it is Graph GA > SELFIES GA > GP BO on
Osimertinib MPO. Overall our findings indicate that the selected tasks vary significantly in difficulty
and that measuring performance on one task is not a reliable predictor of performance on another one.
We give a brief interpretation of the results for each objective below, with more details in Appendix A.

logP and penalized logP are exploited by algorithms that propose large molecules (such as SELFIES
GA). We recommend against using these objectives. QED is too easy: performance saturates at
0.948 with even a moderate budget and is also achieved by all baseline algorithms, including random
ZINC and dataset best. Celecoxib and Troglitazone Rediscovery are such that some but not all
algorithms achieve the maximum score of 1.0 with a high budget or large initial dataset. Troglitazone
is the more challenging of the two since the perfect score is achieved less often. Median Molecules
1 and 2 showcase that the performance of algorithms varies significantly with dataset size and
budget. Median mols 1 seems more sensitive to dataset size and budget. Osimertinib and Zaleplon
MPO are difficult and look qualitatively different: Osimertinib MPO appears to require significant
exploration, whereas Zaleplon MPO seems to require both significant exploration and exploitation.
DOCKSTRING tasks seem more exploratory as performance depends weakly on the dataset size, but
the strong performance of GP BO suggests that exploration alone is insufficient. Overall they appear
to be qualitatively different from all other GuacaMol objectives.

4 Conclusions

Based on the results, we have the following recommendations:

1. Fix datasets and budgets for a fair comparison. The performance of the baseline algorithms
varies considerably for the same objective with different budgets/dataset sizes. Therefore, to
fairly compare algorithms, the same dataset and budget must be used.

2. Test multiple datasets and budget settings for each objective. The relative performance of
algorithms can depend on the initial dataset and budget. This dependence can be easily missed
if only one setting for the dataset and budget is used. If it is necessary to choose only one
configuration, a principled justification should be given.

3. Do not use (penalized) logP and QED objectives. Despite previous works decrying how poor
these objectives are [Brown et al., 2019, García-Ortegón et al., 2021], they continue to be used.
Our results provide further evidence that these tasks are poor benchmarks.

4. Use GuacaMol and DOCKSTRING instead. The GuacaMol benchmarks have objectives of
varying difficulty, with the MPO objectives being particularly challenging. The DOCKSTRING
objectives are difficult and qualitatively different from GuacaMol tasks. They have the bonus of
being medicinally relevant, albeit computationally expensive.

Our main contribution has been to highlight the importance of specifying the dataset and budget of
a benchmark, and we hope that the field moves towards standardizing and specifying these in their
future work. An expanded analysis of the variance of different algorithms and the diversity of the
molecules produced would be an excellent follow-up to the paper. We hope this paper inspires the
community to re-access its commonly used benchmarks.
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Figure 1: Median task scores as a function of computational budget achieved by five methods for
varying initial dataset sizes (over three runs). For the tasks F2 and JAK2-LCK, not all experiments
could be performed due to limited computational resources.
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A Additional Results

The complete results can be found in Table A.1. We give a more detailed assessment of the objectives
in Appendix A.1. In Appendix A.2 we answer some additional questions about the results.

A.1 Comments On Each Objective

logP and penalized logP. With a sufficient budget, all non-trivial algorithms significantly out-
perform the best in the dataset. logP and penalized logP are easy to maximize by adding more
(carbon) atoms to a molecule. Therefore, this objective can efficiently be maximized ad infinitum
by algorithms. Graph GA, SELFIES GA, and GP BO do this, and consequently, we see steadily
increasing performance with an increasing budget. Graph GA and GP BO have an internal bias
against proposing molecules with high molecular weight. Therefore, they are outperformed by
SELFIES GA, which does not have such an internal bias. However, SELFIES GA performs worse at
most other tasks that are more demanding. In conclusion, logP variants are poor proxies for different
tasks, and we recommend against their use.

QED. QED appears to have a global maximum at 0.948, as none of our algorithms and previous
works failed to find a molecule with a higher score [Guimaraes et al., 2017, Liu et al., 2018, You
et al., 2018, Jin et al., 2018, Zhou et al., 2019]. All algorithms reached this value with a high budget
(the trivial Dataset Best and Random ZINC baselines even with moderate budgets). This suggests
that the task is too easy to determine the relative performance of algorithms; at best, it could be used
as a sanity check or as a benchmark in the extremely low-budget setting. Overall we recommend
against using this objective.

Celecoxib and Troglitazone Rediscovery. These objectives are challenging, as the trivial
baselines and SELFIES GA do not achieve the theoretical maximum of 1.0. However, Graph GA
and GP BO obtain good results with a moderate budget and a large dataset. Celecoxib seems to
be slightly easier than Troglitazone as the highest possible score is achieved with multiple settings.
These objectives could be employed in the low data or low budget settings or as a toy objective.

Median Molecules 1 and 2. The performance of all algorithms varies with dataset size and
budget. Median Molecules 1 seems more difficult as good performance is achieved only with a high
budget and a large dataset. In contrast, the performance on the Median Molecules 2 task can be
improved with just a large dataset (at least with GP BO). For small budgets, the best molecule in the
dataset is competitive.

Osimertinib and Zaleplon MPO. The plots for Osimertinib MPO resemble those of logP, with
performance depending more strongly on the budget than on the dataset size. This suggests that the
task requires more exploration than exploitation, and that the GuacaMol dataset does not contain many
molecules close to the optimum. The fact that both genetic algorithms outperform GP BO bolsters this
claim since these algorithms are more exploratory. For Zaleplon MPO, the performance of GP BO
increases significantly with dataset size, whereas for the other methods, there is a comparatively small
increase. This behavior is not seen with any other objective function, suggesting that Zaleplon MPO
has unique difficulties not present in the other benchmarks. GP BO also significantly outperforms the
genetic algorithms, suggesting that exploitation is necessary to achieve competitive results. Since GP
BO achieved the best score in the maximum data and budget setting, we conclude that Zaleplon MPO
requires significant exploration and exploitation. This appears to be the most challenging GuacaMol
task out of the ones surveyed.

DOCKSTRING tasks. First, all algorithms see an increased performance with an increasing
budget, suggesting that the global maximum is not in or near the dataset. Secondly, performance
varies less significantly with dataset size than other tasks, suggesting that the dataset does not contain
many points near the optimum. Further, significant exploration is required for good performance.
Unlike Osimertinib MPO, GP BO significantly outperforms both genetic algorithms with a high
budget, showing that exploitation is necessary (or that random exploration is less likely to succeed).
Also, unlike the GuacaMol tasks, SELFIES GA fails to outperform the best in the dataset in almost
every setting. These tasks are qualitatively different from any other GuacaMol tasks and would be
good benchmarks for novel algorithms in various settings, mainly owing to their medicinal relevance.
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Table A.1: Median best molecule across three runs for each task. A subset of this data is visualized
in Figure 1. The abbreviated task names are penalized logP (p-logP), Celecoxib rediscovery (Cel.),
Troglitazone rediscovery (Trog.), Median Molecules 1 and 2 (MM1 and MM2), Osimertinib MPO (O
MPO), and Zaleplon MPO (Z MPO). F2 and JAK2-LCK correspond to the F2 and Selective JAK2
task from DOCKSTRING.

Method Initial Dataset Size Budget logP p-logP QED Cel. Trog. MM1 MM2 O MPO Z MPO F2 JAK2-LCK

Dataset Best 102 0 8.359 4.374 0.924 0.325 0.234 0.156 0.183 0.760 0.386 7.712 7.634
103 0 11.703 6.633 0.943 0.383 0.264 0.194 0.229 0.798 0.439 8.197 8.784
104 0 15.039 8.581 0.947 0.438 0.345 0.250 0.292 0.810 0.492 8.778 8.972
105 0 19.775 11.095 0.948 0.476 0.364 0.309 0.359 0.829 0.528 9.278 9.280

Random ZINC 0 102 5.131 2.751 0.927 0.267 0.212 0.157 0.156 0.746 0.396 7.789 7.808
103 6.152 3.432 0.944 0.335 0.248 0.200 0.180 0.778 0.440 8.438 8.626
104 7.772 4.692 0.948 0.387 0.280 0.210 0.211 0.799 0.486 8.867 9.180
105 11.132 6.038 0.948 0.481 0.373 0.244 0.232 0.826 0.519 - -

Graph GA 102 102 9.973 3.871 0.940 0.285 0.230 0.174 0.190 0.787 0.417 7.246 8.044
103 12.564 7.542 0.942 0.466 0.279 0.231 0.219 0.798 0.457 8.637 8.942
104 21.121 11.810 0.948 0.711 0.454 0.319 0.314 0.884 0.560 10.336 9.923
105 30.864 20.980 0.948 1.000 0.556 0.367 0.374 0.954 0.609 - -

103 102 10.527 6.182 0.937 0.379 0.245 0.228 0.191 0.777 0.431 8.006 7.660
103 14.768 8.676 0.945 0.570 0.311 0.247 0.240 0.804 0.489 8.665 8.823
104 26.910 20.016 0.948 1.000 0.466 0.315 0.333 0.870 0.563 9.992 9.609
105 31.396 21.457 0.948 1.000 0.621 0.358 0.385 0.947 0.636 - -

104 102 10.643 7.443 0.944 0.467 0.293 0.249 0.246 0.788 0.453 8.382 8.542
103 17.172 10.174 0.947 0.647 0.452 0.312 0.319 0.815 0.468 9.019 8.999
104 27.495 19.539 0.948 1.000 0.830 0.346 0.453 0.875 0.560 10.742 10.069
105 32.502 20.920 0.948 1.000 1.000 0.401 0.453 0.962 0.648 - -

105 102 15.000 10.458 0.945 0.495 0.419 0.263 0.272 0.829 0.479 8.995 8.722
103 19.182 12.444 0.948 0.732 0.591 0.329 0.382 0.843 0.479 9.056 9.127
104 27.271 18.820 0.948 1.000 1.000 0.400 0.453 0.895 0.563 10.911 10.023
105 32.957 21.206 0.948 1.000 1.000 0.419 0.453 0.968 0.659 - -

SELFIES GA 102 102 6.740 3.877 0.865 0.264 0.211 0.129 0.149 0.726 0.282 6.928 7.299
103 9.886 3.849 0.929 0.301 0.246 0.204 0.168 0.792 0.427 8.011 8.452
104 22.583 6.411 0.948 0.395 0.303 0.306 0.199 0.806 0.514 8.914 8.943
105 81.522 19.784 0.948 0.588 0.476 0.400 0.273 0.900 0.560 - -

103 102 9.672 5.008 0.916 0.327 0.227 0.173 0.168 0.770 0.404 8.096 8.059
103 13.813 6.359 0.946 0.366 0.253 0.211 0.196 0.803 0.448 8.399 8.731
104 25.450 11.679 0.948 0.441 0.321 0.318 0.214 0.842 0.516 8.942 9.453
105 78.788 28.247 0.948 0.543 0.495 0.400 0.272 0.898 0.606 - -

104 102 11.668 7.490 0.939 0.346 0.273 0.233 0.207 0.792 0.431 8.313 8.198
103 17.249 8.262 0.946 0.439 0.299 0.252 0.271 0.803 0.487 8.944 8.969
104 25.655 12.017 0.948 0.533 0.469 0.345 0.269 0.836 0.528 9.092 9.354
105 77.323 28.065 0.948 0.753 0.560 0.400 0.362 0.918 0.574 - -

105 102 15.811 10.094 0.944 0.432 0.296 0.244 0.280 0.806 0.478 8.682 8.423
103 22.705 11.457 0.948 0.452 0.355 0.277 0.313 0.821 0.503 8.800 8.942
104 31.087 15.885 0.948 0.583 0.489 0.400 0.336 0.844 0.537 9.311 9.490
105 78.489 33.089 0.948 0.775 0.593 0.400 0.362 0.918 0.589 - -

GP BO 102 102 15.371 7.737 0.924 0.553 0.341 0.268 0.272 0.795 0.406 8.569 8.391
103 18.521 10.593 0.940 1.000 0.460 0.314 0.311 0.812 0.481 9.917 9.611
104 25.532 13.689 0.948 1.000 0.496 0.338 0.353 0.863 0.504 11.091 10.451
105 35.561 16.546 0.948 1.000 0.676 0.400 0.386 0.911 0.506 - -

103 102 18.238 9.124 0.939 0.714 0.471 0.282 0.311 0.791 0.458 8.563 8.794
103 24.179 10.991 0.947 1.000 0.570 0.322 0.314 0.820 0.528 9.907 9.668
104 27.543 13.569 0.948 1.000 0.676 0.368 0.376 0.870 0.589 12.332 10.783
105 31.021 17.705 0.948 1.000 0.676 0.400 0.400 0.925 0.632 - -

104 102 20.185 10.068 0.903 1.000 0.638 0.329 0.392 0.792 0.490 8.551 8.795
103 23.701 13.394 0.947 1.000 1.000 0.367 0.400 0.815 0.572 10.036 9.606
104 28.135 15.311 0.948 1.000 1.000 0.401 0.453 0.881 0.609 11.559 10.881
105 30.595 17.873 0.948 1.000 1.000 0.400 0.453 0.917 0.679 - -

105 102 19.829 10.650 0.909 1.000 0.776 0.400 0.453 0.817 0.522 9.066 9.249
103 25.986 13.841 0.938 1.000 1.000 0.400 0.453 0.830 0.604 10.497 9.476
104 27.749 16.246 0.948 1.000 1.000 0.419 0.453 0.827 0.691 12.037 10.266
105 30.742 17.042 0.948 1.000 1.000 0.419 0.453 0.905 0.764 - -

A.2 Miscellaneous Questions about the results

Were the same datasets used for all runs? For each dataset size, we randomly sub-sampled
ten datasets from the total dataset. For the replications of individual experiments, we used different
datasets to account for variation in performance due to which dataset was chosen (therefore, three
datasets were used for each experiment). However, the same datasets were used for each different
algorithm so that they are directly comparable. To give a concrete example, for the task “Celecoxib
rediscovery” with dataset size 103, we had a pool of 10 different datasets (#1–#10) sub-sampled from
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the larger GuacaMol training set of size ≈ 1.5 × 106. Each experiment (e.g., SELFIES GA with
budget = 104, GP BO with budget = 102) was run three times, the first using dataset #1, the second
using dataset #2, and the third using dataset #3.

Non-monotonicity in performance: is this odd or unexpected? There are various non-
monotonic trends that can be observed in Figure 1. For example, in SELFIES GA for Median
Molecules 2 with a dataset of size 104, the performance is slightly worse with a budget of 104
than 103. Another example is in GP-BO for the JAK2-LCK task with a budget of 104, where the
performance with initial dataset size 105 is worse than with an initial dataset size of 104 or 103. There
are several possible explanations for this:

• Randomness: all the optimization procedures tested are stochastic, so there is inherently
some variation between different runs. With only three trials for each experiment, the
empirical median is a rough noisy estimate of the true median, and therefore some truly
monotonic trends may appear to be non-monotonic.

• Local optima: the chance of getting stuck in a local optimum does not have a clear depen-
dence on dataset size. For example, with a small dataset, an algorithm might get stuck
exploiting the optimum closest to the initial dataset. Alternatively, a large dataset may
contain more local optima, which could all take time to be explored before the algorithm is
able to escape.

• Explore-exploit behavior: the algorithms tested combine elements of “exploration” and
“exploitation”. Depending on the size and composition of the known dataset, the balance of
exploration and exploitation in a different algorithm can change.

While we are unsure exactly what the cause of each monotonic trend is, we conjecture that for the
two genetic algorithms, the most important factor is randomness, while for the GP-BO algorithm, it
is getting stuck in local optima.

B Experimental Details

The implementation of Graph GA was taken directly from García-Ortegón et al. [2021]. The
implementation of GP BO was a basic Bayesian optimization loop using a GP with the Tanimoto
kernel [Tanimoto, 1958] and an upper confidence bound acquisition function [Srinivas et al., 2010].
The implementation was based on García-Ortegón et al. [2021] but was modified to use a larger
batch size for the budget of 105. Further, it was modified to employ a subset of the data at all times
rather than simply starting with a subset of the data. The SELFIES GA implementation was based
heavily on the Graph GA, except that the mutation step used the SELFIES [Krenn et al., 2020] genetic
algorithm mutation function from Nigam et al. [2021].

Code is available at https://github.com/AustinT/ai4sci-2021-denovo-benchmarks/.

C Explanation of objectives

A brief explanation of all the objectives is given below. For more details, see the original references
for logP [Wildman and Crippen, 1999, Gómez-Bombarelli et al., 2018], QED [Bickerton et al., 2012],
GuacaMol [Brown et al., 2019], and DOCKSTRING [García-Ortegón et al., 2021] objectives.

• logP and penalized logP: a measure of solubility in oil; approximated as a sum over atoms
where each atom type has either a positive or negative contribution to the total. penalized
logP adds two additional terms (synthetic accessibility and a penalty for large rings) and
reweights all the terms.

• QED: a measure of drug-likeness between zero and one. It penalizes molecules for violating
Lipinski’s rules on molecular weight, logP, and number of hydrogen bond donors and
acceptors. It also penalizes certain moieties.

• Celecoxib and Troglitazone rediscovery (GuacaMol): similarity to the known drug molecules
Celecoxib and Troglitazone, respectively, as measured by Morgan-2 fingerprints.
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• Median Molecules 1 and 2 (GuacaMol): the geometric mean of fingerprint similarities of
two relatively different molecules. For Median Molecules 1, these molecules are camphor
and menthol. For Median Molecules 2, these molecules are tadalafil and sildenafil.

• Osimertinib MPO (GuacaMol): a complicated function rewarding molecules for be similar
(but not too similar) to the drug Osimertinib and for having the logP and TPSA in a drug-like
range.

• Zaleplon MPO (GuacaMol): function which rewards molecules similar to the drug zaleplon
and whose chemical formula is C19H17N3O2 (different than zaleplon’s actual chemical
formula).

• F2 (DOCKSTRING): docking score against the F2 protein (Thrombin), which is involved in
blood clotting, with a penalty against molecules with low QED.

• Selective JAK2 (DOCKSTRING): a complicated function rewarding molecules with strong
binding to JAK2 (Janus kinase 2, often mutated in cancers) but weak binding to KIT
(tyrosine-protein kinase, also often mutated in cancers), and also a high QED. It is motivated
by the pharmaceutical desire to find drugs that bind selectively to a specific protein.
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